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ABSTRACT
Crowdsourcing is a new computing paradigm where humans
are actively enrolled to participate in the procedure of com-
puting, especially for tasks that are intrinsically easier for
humans than for computers. The popularity of mobile com-
puting and sharing economy has extended conventional web-
based crowdsourcing to spatial crowdsourcing (SC), where
spatial data such as location, mobility and the associated
contextual information, plays a central role. In fact, spa-
tial crowdsourcing has stimulated a series of recent indus-
trial successes including Citizen Sensing (Waze), P2P ride-
sharing (Uber) and Real-time Online-To-Offline (O2O) ser-
vices (Instacart and Postmates).

In this tutorial, we review the paradigm shift from web-
based crowdsourcing to spatial crowdsourcing. We dive deep
into the challenges and techniques brought by the unique
spatio-temporal characteristics of spatial crowdsourcing. Par-
ticularly, we survey new designs in task assignment, qual-
ity control, incentive mechanism design and privacy pro-
tection on spatial crowdsourcing platforms, as well as the
new trend to incorporate crowdsourcing to enhance exist-
ing spatial data processing techniques. We also discuss case
studies of representative spatial crowdsourcing systems and
raise open questions and current challenges for the audience
to easily comprehend the tutorial and to advance this im-
portant research area.

1. INTRODUCTION
Crowdsourcing is a new computing paradigm where hu-

mans actively participate in the procedure of computing,
especially for tasks that are intrinsically easier for humans
than for computers. It has attracted much attention of
both the industrial and the academic communities with the
blossom of successful crowdsourcing platforms [14, 20, 24,
31]. With the unprecedented development of mobile Internet
and sharing economy, crowdsourcing platforms are shifting
from traditional web-based crowdsourcing platforms, such as
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Amazon Mechanical Turks (AMT) [1] and oDesk [6], to spa-
tial crowdsourcing (a.k.a mobile crowdsourcing) platforms
[16], where (i) each crowd worker (worker for short) is con-
sidered as a mobile computing unit to complete tasks using
their mobile devices [34] and (ii) spatial information such
as location, mobility and the associated contexts plays a
crucial role. Applications of spatial crowdsourcing cover a
wide spectrum of ubiquitous computing in daily life, where
the most representative include real-time taxi-calling ser-
vice, e.g., Uber [9] and DiDi [2], product placement check-
ing in supermarkets, e.g., Gigwalk [3] and TaskRabbit [8],
on-wheel meal-ordering service, e.g., GrubHub [4] and In-
stacart [5], and citizen sensing service, e.g., Waze [10] and
OpenStreetMap [7]. Despite the success of general-purposed
crowdsourcing [14, 20, 24, 31], the unique spatio-temporal
dynamics in spatial crowdsourcing calls for new designs in
crowdsourcing theories and systems. The concept of crowd-
sourcing also brings in new opportunities to enhance existing
research on spatial data processing.

In this tutorial, we review the state-of-the-art research
on spatial crowdsourcing and point out future challenges
and opportunities. The tutorial will act as an invitation to
the database community to fill up and solve emerging and
potential questions from all kinds of spatial crowdsourcing
applications. The tutorial is divided into five parts. In the
first part, we review a brief history of spatial crowdsourcing
research and motivate the need for spatial crowdsourcing via
typical real-world applications in daily life.The second part
highlights four core issues in spatial crowdsourcing platforms
including task assignment, quality control, incentive mecha-
nism and privacy protection. The third part focuses on the
new trend to incorporate crowdsourcing to enhance existing
spatial data processing techniques. The fourth part shows
various case studies of systems and applications in spatial
crowdsourcing. Finally, we identify the open problems and
current challenges of spatial crowdsourcing and conclude the
tutorial in the fifth part.

2. TARGET AUDIENCE
The target audience for this tutorial is anyone who is inter-

ested in crowdsourced data processing in general, and spatial
crowdsourcing in particular. The tutorial does not require
any particular background or knowledge about crowdsourc-
ing and spatial data processing techniques. However it re-
quires basic database knowledge, which is assumed to be
there for the typical database conference attendees includ-
ing junior database students.
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3. TUTORIAL OUTLINE
The tutorial consists of five parts as shown below and is

explained in detail in the following.
• Part 1: Motivations of Spatial Crowdsourcing

(10 minutes)
– A brief history of spatial crowdsourcing
– Typical applications of spatial crowdsourcing

• Part 2: Science of Spatial Crowdsourcing (30
minutes)

– Task assignment
– Quality control
– Incentive mechanism
– Privacy protection

• Part 3: Crowdsourced Spatial Data Processing
(30 minutes)

– Crowdsourced route recommendation
– Crowdsourced map matching
– Crowdsourced urban traffic speed estimation
– Crowdsourced POI labelling

• Part 4: Case Studies (10 minutes)
– General system case studies
– Application case studies

• Part 5: Open Problems (10 minutes)
– Theoretical guarantee of online task assignment
– Dynamic indexing in spatial crowdsourcing
– Lack of benchmarks about spatial crowdsourcing

3.1 Part 1: Motivations of Spatial Crowd-
sourcing

As introduced in the outline, the first part takes 10 min-
utes to explain the need for spatial crowdsourcing. Specifi-
cally, we first review the history from traditional web-based
crowdsourcing to spatial crowdsourcing and then illustrate
the importance of spatial crowdsourcing with representative
real-world applications. Finally, we explain why existing
web-based general-purpose crowdsourcing techniques can-
not support the needs in spatial crowdsourcing [44, 45, 46].

3.2 Part 2: Science of Spatial Crowdsourcing
In the second part, as shown in the outline above, we

spend 10 minutes to summarize the core issues in spatial
crowdsourcing platforms, including task assignment, quality
control, incentive mechanisms and privacy protection.

Task Assignment. Task assignment is important in spa-
tial crowdsourcing [21, 22, 23, 28, 29, 46]. It aims to assign
tasks to suitable workers such that the total number of as-
signed tasks or the total weighted value of the assigned pairs
of tasks and workers is maximized. We categorize task as-
signment in spatial crowdsourcing into (static) offline and
(dynamic) online scenarios. In offline scenarios most efforts
unitize weighted bipartite matching approaches [21, 23, 28,
32, 44, 47, 49]. In online scenarios, the spatio-temporal
information of all the tasks and workers is unknown be-
forehand. Existing solutions often develop two-sided online
matching algorithms to adapt the subsequent unknown ar-
rival objects [36, 39, 41, 45, 46, 48].
Quality Control. Results collected from mobile com-

puting units can be of low quality and noisy, which makes
quality control essential in spatial crowdsourcing. There are
two types of quality control with either worker or spatio-
temporal constraints. For worker constraints based quality
control, traditional approaches such as majority voting [13]

can be extended to spatial crowdsourcing [29]. For spatio-
temporal constraints based quality control, research efforts
not only use the spatio-temporal diversity to enhance the
quality of aggregated results but also utilize different skills
of workers to maximize the quality of aggregated results [18,
19].

Incentive Mechanism. An effective incentive mech-
anism is indispensable in spatial crowdsourcing. Workers
need to move from one location to another to perform tasks
and the platform needs to dynamically adjust the rewards
to workers based on the spatial distribution of tasks and
workers. Most solutions integrate online auction and game
theory techniques for mechanism design in spatial crowd-
sourcing [37, 38].

Privacy Protection. Privacy protection in spatial crowd-
sourcing is related to location-based privacy [25], and focuses
on the privacy of mobile workers in dynamic scenarios. Pri-
vacy protection is an emerging issue in spatial crowdsourc-
ing [35, 42, 43], which often builds specific index structures
to satisfy differential privacy.

3.3 Part 3: Crowdsourced Spatial Data Pro-
cessing

In addition to the science of spatial crowdsourcing, we
also introduce the efforts to enhance spatial data processing
via crowdsourcing. First, we demonstrate how to integrate
the suggestions from taxi drivers (crowds) for better route
recommendation [40, 50]. Second, we show the benefits of
crowdsourcing in map matching, a well-known difficult prob-
lem in spatial database research [12, 33]. Finally, we illus-
trate recent research on urban traffic speed estimation and
POI labelling leveraging crowdsourcing [26, 27].

3.4 Part 4: Case Studies
In the fourth part, we spend 10 minutes on various case

studies in spatial crowdsourcing. We first explain how full-
fledged systems such as gMission [17] and MediaQ [30] are
tailored to support the four core issues in spatial crowd-
sourcing. Then we demonstrate case studies of industrial
applications to solve real-world problems in daily life, such
as taxi dispatching [45] and ride-sharing [11].

3.5 Part 5: Open Problems in Spatial Crowd-
sourcing

In the fifth part, we discuss cutting-edge open problems in
spatial crowdsourcing, including but not limited to the fol-
lowing three problems. First, most real-world applications
of spatial crowdsourcing are under online scenarios [45, 46].
An interesting open question is whether there are online
task assignment techniques that have theoretical guarantee
for the assignment results [45]. The second open issue is
whether existing spatial indexes, which support moving ob-
ject queries, can be extended to support the online data pro-
cessing in spatial crowdsourcing. Third, well-defined bench-
marks to test and compare different spatial crowdsourcing
data processing techniques are desired.

4. RELEVANCE TO VLDB
The research of spatial data processing has always been

one of the most important parts of the database community.
Crowdsourced data processing is becoming a hot topic in re-
cent database conferences and journals. Particularly, with
the blossom of successful large-scale spatial crowdsourcing
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platforms such as Uber, Didi, Gigwalk, etc., a tutorial about
large-scale spatial crowdsourcing is desired. Many of the re-
search efforts covered in this tutorial have been published
in highly refereed database and geographic information sys-
tems conferences, such as VLDB, SIGMOD, ICDE, GIS. In
addition, this tutorial introduces how to extend and inte-
grate the key techniques of crowdsourced data processing
and spatial data management to satisfy the requirements of
the novel large-scale spatial platforms, which makes it di-
rectly relevant to the database community.

5. PREVIOUS TUTORIALS
Lei Chen has already delivered two successful tutorials

about crowdsourcing-based data processing in ICDE 2015
and CIKM 2014, and two about uncertain data processing
in VLDB 2015 and DASFAA 2012.

This tutorial is spiritually connected to two recent tuto-
rials, “Data-driven Crowdsourcing: Management, Mining,
and Applications” [14] and “Crowdsourcing in Information
and Knowledge Management” [15], which are presented by
Lei Chen with Dongwon Lee, Tova Milo and Meihui Zhang
at ICDE 2015 and CIKM 2014, respectively. However, this
tutorial substantially differs from the above two tutorials in
content. All techniques and approaches described in the
current tutorial focus on spatial crowdsourcing scenarios
such as Uber and Gigwalk, rather than general web-based
crowdsourcing scenarios, such as Amazon Mechanical Turks
(AMT) and oDesk, which are covered in the previous two
tutorials. Therefore, this tutorial is substantially different
from the aforementioned two tutorial in ICDE 2015 and
CIKM 2014, respectively.

6. CONCLUSION
The rapid development of mobile Internet and the Online-

To-Offline (O2O) business model has stimulated the boom
of all kinds of spatial crowdsourcing platforms in daily life.
This tutorial aims to not only raise awareness of this topic
in the database community but also invite the database re-
searchers to advance this promising area. We survey the
state-of-the-art techniques for spatial crowdsourcing, with
comprehensive comparisons among the challenges and tech-
niques in spatial crowdsourcing, traditional spatial data pro-
cessing, and general-purposed crowdsourcing. We also high-
light open questions for future research in this active re-
search area. We envision this tutorial as a bridge to link
the research in the database community and in other disci-
plines to develop more comprehensive techniques for spatial
crowdsourcing.
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