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Abstract and Goal
The concept of event processing is established as a generic
computational paradigm in various application fields, ranging
from data processing in Web environments, over maritime
and transport, to finance and medicine. Events report on
state changes of a system and its environment. Complex
Event Recognition (CER) in turn, refers to the identification
of complex/composite events of interest, which are collections
of simple events that satisfy some pattern, thereby providing
the opportunity for reactive and proactive measures. Exam-
ples include the recognition of attacks in computer network
nodes, human activities on video content, emerging stories
and trends on the Social Web, traffic and transport incidents
in smart cities, fraud in electronic marketplaces, cardiac
arrhythmias, and epidemic spread. In each scenario, CER
allows to make sense of Big event Data streams and react
accordingly. The goal of this tutorial is to provide a step-by-
step guide for realizing CER in the Big Data era. To do so,
it elaborates on major challenges and describes algorithmic
toolkits for optimized manipulation of event streams char-
acterized by high volume, velocity and/or lack of veracity,
placing emphasis on distributed CER over potentially hetero-
geneous (data variety) event sources. Finally, we highlight
future research directions in the field.

1. INTRODUCTION & MOTIVATION
Systems for symbolic Complex Event Recognition (CER)

accept as input a stream of time-stamped ‘simple, derived
events’. These are the result of applying a computational
derivation process to some other event, such as a measure-
ment coming from a sensor. Using simple events as input,
CER systems identify complex/composite events of interest,
which are collections of events that satisfy some pattern [4,
11, 12]. The pattern of a complex event imposes temporal
and, possibly, atemporal constraints on its subevents, i.e. sim-
ple or other complex events. Thus, contrary to “classical”
data stream querying that leaves to the clients the respon-
sibility of attaching a particular meaning on the result set,
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CER encompasses the ability to query for complex patterns
through predefined rules that match incoming event notifica-
tions on the basis of their content and other spatiotemporal
constraints [10, 13]. Hence, CER introduces peculiarities and
significantly differentiates itself from traditional streaming
conceptualizations [15].

Consider, for example, maritime surveillance, where pre-
venting accidents at sea by monitoring vessel activity results
in substantial financial savings for shipping companies and
averts maritime ecosystem damages. CER allows for express-
ing patterns that attach meaning to fused, context-deprived
streaming tuples for the real-time detection of suspicious
or potentially dangerous situations that may have a serious
impact on the environment and on safe navigation at sea [25].
Simple position signals are continuously collected from hun-
dreds of thousands of ships worldwide. Vessels report their
position in different time scales, while the messages are often
noisy, offering contradicting information. Vessel movement
is combined with static geographical information while, for
effective vessel identification and tracking, additional data
sources are taken into account, such as weather reports and
frequently updated satellite images of the surveillance areas.
Moreover, the properties of the event patterns also add to
the complexity of CER. Patterns may be required to adapt
to dynamic environments, integrate various event sources,
and (consequently) be inherently uncertain.

Therefore, the unique characteristics of Big event Data, im-
pose novel challenges to efficient stream management. This
tutorial presents the end-to-end modeling pipeline and a step-
by-step guide for realizing CER in the Big Data era. We
elaborate on research challenges and practical algorithmic
toolkits for: (a) parallel (volume), (b) elastic (volatile veloc-
ity/distribution), (c) uncertainty-aware (veracity) and (d)
scalable distributed solutions over potentially heterogeneous
(variety) event sources. Special emphasis will be placed on
(c), (d) given their limited study so far and notable recent
advancements. Finally, we will elaborate on contemporary
research trends and point out takeaway messages for the
audience. To illustrate the reviewed approaches, we will use
real-world applications from the FERARI1 and datACRON2

projects, that employ CER techniques for Big Data analytics.

Target Audience. The intended audience consists of aca-
demics, students and practitioners investigating the open
issues of CER, and/or are willing to apply event recognition
techniques for extracting knowledge from structured and

1http://www.ferari-project.eu/
2http://datacron-project.eu/
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unstructured datasets. Familiarity with distributed systems
and/or artificial intelligence techniques is desirable.

2. TOPICS & DESCRIPTION
While modern Big Data applications related to CER are

characterized by a variety of challenging features, research
approaches tend to focus on one or few of them, often re-
stricting the processing to take place at a single site/cluster,
thus ignoring the inherent distribution in the collected data,
or avoiding to tackle the lack of veracity of the data. The
recent development of stream processing frameworks, such
as Apache STORM, Spark, AKKA, Apache Flink, etc, have
made simpler to design approaches for distributed processing,
but they are not on their own sufficient for CER. Thus, in
this tutorial we will show how to bridge the gap between
expressive (relational) CER languages describing application
queries and the aforementioned Big Data-oriented frame-
works. In the tutorial, we opt for presenting the end-to-end
modeling pipeline for materializing and optimizing CER at
large and massive scales dealing with all Vs and the D (for
distribution) of Big Data streams. Below we present and
describe the main topics that are covered, while an outline
of the tutorial follows in the upcoming section.

2.1 Complex Event Recognition Languages
Numerous CER systems and languages have been pro-

posed in the literature [3, 10, 5]. These systems have a
common goal, but differ in their architectures, data models,
pattern languages, and processing mechanisms. For example,
many CER systems provide users with a pattern language
that is later compiled into some form of automaton. The
automaton model is generally used to provide the seman-
tics of the language and/or as an execution framework for
pattern matching [8, 24, 33]. Apart from automata-based
models, some CER systems employ tree-based models [21,
1]. Again, tree-based formalisms are used for both modeling
and recognition, i.e., they may describe the complex event
patterns to be recognized as well as the applied recognition
algorithm. Recently, logic-based approaches to CER have
been attracting considerable attention, since they exhibit a
formal, declarative semantics, and at same have been proven
efficient enough for Big Data applications [4].

2.2 Uncertainty Handling
The events arriving at a CER system almost always carry

a certain degree of uncertainty and/or ambiguity. Informa-
tion sources might be heterogeneous, with data of different
schemata, they might fail to respond or even send corrupt
data. Even if we assume perfectly accurate sensors, the do-
main under study might be difficult or impossible to model
precisely, thereby leading to another type of uncertainty.
Until recently, most CER systems did not make any effort
to handle uncertainty (instructively, see the relevant discus-
sion on uncertainty in [10]). This need is gradually being
acknowledged and uncertainty handling has become a major
line of research for CER.

Most efforts targeting the problem of uncertainty in CER
are based on extensions of crisp engines, the majority of which
employ automata [32, 23]. Input events are usually in the
form of streams/sequences of events, similar to strings of char-
acters recognized by (Non-)Deterministic Finite Automata.
Complex events are usually expressed in a declarative way

with the sequence operator (time ordered conjunction) play-
ing a central role. These expressions are transformed into
automata, using the stream of simple events as input. In
the probabilistic versions of automata-based methods, it is
usually the simple events that are uncertain, accompanied
by probability values with respect to their occurrence and/or
attributes, as opposed to the complex event patterns. The
goal is to use these probabilistic simple events in order to
determine the probabilities of complex events.

Another line of research revolves around methods em-
ploying probabilistic graphical models in order to handle
uncertainty [29, 22, 7]. These models take the form of net-
works whose nodes represent random variables and edges
encode probabilistic dependencies. The two main classes of
probabilistic graphical models used in CER are Markov Net-
works and Bayesian Networks, the former being undirected
models whereas the latter are directed. When used for CER,
Markov Networks may be combined with first-order logic,
in which case they are called Markov Logic Networks. The
nodes in a Markov Logic Network represent ground logical
predicates, as determined by the (weighted) formulas that
express complex event patterns. When Bayesian Networks
are used, the nodes usually represent simple/complex events.

Many approaches to CER using Markov Logic Networks
are concerned with human activity recognition, with input
events derived mostly from video sources (less frequently from
GPS or RFID traces). As a result, many of them develop
solutions that are domain-dependent. In the tutorial, we will
focus on those representative papers that are more closely
related to CER, by providing a more generic way for handling
events, such as the combination of Markov Logic Networks
with Allen’s Interval Algebra and the Event Calculus.

Contrary to automata-based solutions, Markov Logic Net-
works focus on encoding probabilistic rules. This allows both
for incorporating background knowledge and for building
hierarchies of complex events with correct probability propa-
gation. On the other hand, they use the less intuitive weights
instead of probabilities, which indicate how strong a rule
is compared to the others. While it might be possible for
certain simple domains to manually define weights, usually
a learning phase is required to optimize them.

The manual development of complex event patterns is a
tedious, time-consuming and error-prone process. Moreover,
it is often necessary to update such patterns during the
event recognition process, due to new information about the
application under consideration. Consequently, methods for
automatically generating and refining event patterns from
data are highly desirable. Both supervised and unsupervised
techniques have been employed to automatically adapt and
construct event patterns [22]. In addition to learning the
structure of an event pattern, the weight (confidence value) of
the pattern can be learned from data. To avoid sub-optimal
results, the tasks of structure learning and weight learning
should not be separated.

2.3 Complex Event Recognition at Scale
The volume and velocity of Big Data streams pose un-

precedented challenges in designing scalable algorithms that
can process massive amounts of data online so as to support
real-time, CER related, decision making. In fact, current
distributed stream processing systems like Apache Storm and
Spark Streaming leverage Big Data fundamentals, running
on commodity clusters and clouds, supporting fast processing
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over voluminous data. CER at large scale is realized by dis-
tributing event recognition tasks among multiple processing
nodes. When the aforementioned nodes are collocated, i.e.,
within a cluster and can be assumed to share resources (such
as memory), scalability places its emphasis on efficient par-
allelization strategies, tailored to CER [6, 9, 13, 18, 20, 26],
as well as elastic resource utility [13, 17, 31]. In a nutshell,
elasticity refers to the fundamental property of dynamically
adjusting resource allocation or the parallelization strategy
itself, so that throughput (rate of tuples being processed) is
continuously optimized.

There is a number of approaches tailored for parallel CER
in the literature [13, 20, 30]. Partition-based paralleliza-
tion [18] uses one or more attributes of incoming event tuples
as the keys in a partition-map that assigns certain streaming
tuples to a processing unit. The partition-map ensures parti-
tion contiguity and partition isolation during the extraction
of event pattern matches. State-based parallelization [6]
entails that each processing unit is assigned a thread that is
responsible for a certain Non-deterministic Finite Automa-
ton (NFA) state in the logical pattern matching execution
plan. The processing is distributed in the sense that both
buffer management as well as predicate-related optimizations
concerning individual NFA states are performed in each node
individually. Partial pattern matches derived in each pro-
cessing node, need to be pipelined to the node that processes
tuples involving the next state in the NFA to extract full
matches. Operator-based parallelization [26] assigns opera-
tors to processing units while operators can send events to
each other within a processing node and also to operators
on other nodes so as to detect full pattern matches. Run-
based parallelization [6] performs the processing in batches
of event tuples. Each batch includes ordered, i.e., pattern
matching takes place on a given sequence of input events,
tuples and possesses an identifier. Based on this identifier, it
is assigned to a particular processing node where it initiates
a run. To extract full matches that span multiple nodes,
the end of a batch must be replicated at the beginning of
the runs belonging to nodes receiving contiguous batches. A
key observation is that there is no one size fit all solution
for parallel CER, while, surprisingly, most approaches lack
provisions for elastic resource allocation.

One step further, CER applications at vast scale operate
over a set of distributed, i.e., geographically dispersed, sites
each accumulating event streams which later need to be effi-
ciently synthesized to provide holistic answers to application
queries. In this case, apart from retaining the advantages of
parallelization and elasticity locally per site, communication
scalability issues are of additional essence. To achieve that,
CER algorithms generally incorporate a couple of tools in
their arsenal. On the one hand, in-situ processing constructs
qualifying conditions and places local filters to minimize
communication by performing as much of the computation
as possible in the event sources (potentially, subset of sites)
[6, 16, 19, 27]. While these conditions may be easy to set for
simple aggregates, they are much more challenging to invent
for generic, non-linear event query operators. On the other
hand, in-network processing [28] pushes the evaluation of
query operations, defined on the union of local data streams,
to sites that are near to the relevant event sources [14, 2],
thus also exploiting data stream variety. In that, the qualified
portion of local data streams is synthesized early, extracting
compact aggregates to be further forwarded in the network.

3. OUTLINE OF THE TUTORIAL

Tutorial Duration: 90 minutes.

Tutorial Structure.

Introduction (10 minutes).
• Introduction & motivation.
• Relevant research areas.
• Real-world applications & running examples.

Indicative reference: [10].

Complex Event Recognition Languages (10 minutes).
• Requirements & properties of CER languages.
• A unifying Event Algebra.

Indicative references: [3, 4, 11, 33].

Uncertainty Handling (20 minutes).
• Automata-based methods.
• Probabilistic graphical models.

Indicative references: [7, 22, 23, 29, 32].

Scalable Distributed CER (45 minutes).
• Towards scalable CER.

– Parallelization strategies.
– Elasticity in CER.
– CER over distributed sites.

• Optimized in-network CER.
– Optimal operator push under various metrics.
– Handling adaptivity - Operator migration.

• Leveraging in-situ processing.
– Linear vs non-linear operator monitoring.

Indicative references: [2, 6, 9, 13, 14, 17, 18, 20, 26, 27, 31].

Open Issues & Takeaways (5 minutes).
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