
Scalable Replay-Based Replication For Fast Databases

Dai Qin
University of Toronto

mike@eecg.toronto.edu

Angela Demke Brown
University of Toronto

demke@cs.toronto.edu

Ashvin Goel
University of Toronto

ashvin@eecg.toronto.edu

ABSTRACT
Primary-backup replication is commonly used for providing
fault tolerance in databases. It is performed by replaying
the database recovery log on a backup server. Such a scheme
raises several challenges for modern, high-throughput multi-
core databases. It is hard to replay the recovery log con-
currently, and so the backup can become the bottleneck.
Moreover, with the high transaction rates on the primary,
the log transfer can cause network bottlenecks. Both these
bottlenecks can significantly slow the primary database.
In this paper, we propose using record-replay for repli-

cating fast databases. Our design enables replay to be per-
formed scalably and concurrently, so that the backup per-
formance scales with the primary performance. At the same
time, our approach requires only 15-20% of the network
bandwidth required by traditional logging, reducing network
infrastructure costs significantly.

1. INTRODUCTION
Databases are often a critical part of modern computing

infrastructures and hence many real-world database deploy-
ments use backup and failover mechanisms to guard against
catastrophic failures. For example, many traditional data-
bases use log shipping to improve database availability [19,
20, 24]. In this scheme, transactions run on a primary server
and after they commit on the primary, the database recov-
ery log is transferred asynchronously and replayed on the
backup. If the primary fails, incoming requests can be redi-
rected to the backup.
This replication scheme raises several challenges for in-

memory, multi-core databases. These databases support
high transaction rates, in the millions of transactions per
second, for online transaction processing workloads [14, 16,
30]. These fast databases can generate 50 GB of data per
minute on modern hardware [36]. Logging at this rate re-
quires expensive, high-bandwidth storage [30] and leads to
significant CPU overheads [17]. For replication, the log

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 13
Copyright 2017 VLDB Endowment 2150-8097/17/08.

transfer requires a 10 Gb/s link for a single database. Fail-
over and disaster recovery in enterprise environments, where
the backup is located across buildings (possibly separated
geographically), is thus an expensive proposition. These net-
work links are expensive to operate or lease, and upgrades
require major investment. A second challenge is that the
backup ensures consistency with the primary by replaying
the database log in serial order. This replay is hard to per-
form concurrently, and so the backup performance may not
scale with the primary performance [13].
These challenges can lead to the network or the backup

becoming a bottleneck for the primary, which is otherwise
scalable. Two trends worsen these issues: 1) the availability
of increasing numbers of cores, and 2) novel databases [21,
15], both of which further improve database performance.
While there is much recent work on optimizing logging and

scalable recovery [17, 36, 35, 33], replication for fast data-
bases requires a different set of tradeoffs, for two reasons.
First, when logging for recovery, if the storage throughput
becomes a bottleneck, storage performance can be easily up-
graded. For instance, a 1 TB Intel SSD 750 Series PCIe card
costing less than $1000 can provide 1 GB/s sequential write
performance, which can sustain the logging requirements de-
scribed above. Much cheaper SSDs can also provide similar
performance in RAID configurations. In comparison, when
logging for replication, if a network link becomes a bottle-
neck, especially high-speed leased lines, an upgrade typically
has prohibitive costs and may not even be available.
Second, unlike recovery, which is performed offline after a

crash, a backup needs to be able to catch up with the pri-
mary, or it directly impacts primary performance [1]. Data-
bases perform frequent checkpointing, so the amount of data
to recover is bounded. If the recovery mechanism doesn’t
scale with the primary, the consequence is a little more time
for recovery. However, for replication, if the backup cannot
sustain the primary throughput, then it will fall increasingly
far behind and may not be able to catch up later.
Our goal is to perform database replication with minimal

performance impact on the primary database. We aim to
1) reduce the logging traffic, and 2) perform replay on the
backup efficiently so that the backup scales with the pri-
mary. To reduce network traffic, we propose using determin-
istic record-replay designed for replicating databases. The
primary sends transaction inputs to the backup, which then
replays the transactions deterministically. This approach re-
duces network traffic significantly because, as we show later,
transaction inputs for OLTP workloads are much smaller
than their output values.

2025

For deterministic replay, we record and send the transac-
tion write-set so that the backup can determine the records
that were written by the transaction. On the backup, we use
multi-versioning, so that writers can execute concurrently,
and safely create new versions while readers are accessing the
old versions. Our replay uses epoch-based processing, which
allows both readers and writers to efficiently determine the
correct versions to access, while allowing readers to execute
concurrently with the writers. Together, these techniques
allow highly concurrent and deterministic replay.
Our main contribution is a generic and scalable replay-

based database replication mechanism. By decoupling our
replication scheme from the primary database, we enable
supporting different database designs. Our approach allows
the primary to use any concurrency control scheme that sup-
ports total ordering of transactions, and imposes no restric-
tions on the programming model. In addition, the backup is
designed so that it makes no assumptions about the work-
loads, data partitioning, or the load balancing mechanism
on the primary. For example, to support different kinds of
applications fast databases often make various design trade-
offs, such as data partitioning [14, 7] and a special program-
ming model [8]. Our approach is designed to scale without
relying on any specific primary database optimizations, and
without requiring any developer effort for tuning the backup
for these optimizations.
We have implemented replication for ERMIA [15], an in-

memory database designed to support heterogeneous work-
loads. Our backup database is specifically designed and
optimized for replaying transactions concurrently. Our ex-
periments with TPC-C workloads show that our approach
requires 15-20% of the network bandwidth required by tra-
ditional logging. The backup scales well, replaying transac-
tions as fast as the primary, and the primary performance
is comparable to its performance with traditional logging.
An added reliability benefit of our generic replication mech-
anism is that it can be used to validate the concurrency con-
trol scheme on the primary. We found and helped fix several
serious bugs in the ERMIA implementation that could lead
to non-serializable schedules.
The rest of the paper describes our approach in detail.

Section 2 provides motivation for our approach, and Sec-
tion 3 describes related work in the area. Section 4 describes
our multi-version replay strategy and the design of our sys-
tem. Section 5 provides details about our implementation,
and Section 6 describes experimental results that help eval-
uate our approach. Finally, Section 7 describes bugs found
using our replay approach and Section 8 gives conclusions.

2. MOTIVATION
A recent incident at gitlab.com, a popular source code

hosting site, illustrates the importance of fast and scalable
database replication. On Jan 31, 2017, a spam robot cre-
ated large numbers of read-write transactions on the produc-
tion database [10]. Due to limited network bandwidth, the
backup database lagged far behind the primary and eventu-
ally stopped working. The maintenance crew decided to
wipe the backup database and set up a new backup in-
stance from scratch. However, while setting up the backup
instance, a team member logged into the wrong server and
accidentally deleted the production database. The gitlab.
com site had to shut down for more than 24 hours to recover
from an offline backup and lost 6 hours of data.

While log shipping is commonly used for backup and fail-
over, it raises several challenges in a production environ-
ment. A recent post by Uber describes these issues in de-
tail [31]. First, log shipping incurs significant network traffic
because it sends physical data, and this is expensive be-
cause backup machines are usually situated across buildings
or data centers. Second, databases usually do not maintain
storage compatibility between major releases. Because log
shipping ships physical data, the backup and the primary
database have to run exactly the same version of the data-
base software, making database upgrades a challenge. Tra-
ditional databases usually provide an offline storage format
converter [25], and both the primary and the backup have to
shut down to perform a major upgrade. This significantly in-
creases the downtime and maintenance complexity. Finally,
if the primary database has bugs that can corrupt data, log
shipping will propagate the corruption to the backup data-
base as well.
Uber’s current solution to these problems is to use My-

SQL’s statement level replication [22]. This approach sim-
plifies the upgrade process and saves some network traffic
because the logging granularity is row level. However, this
approach can still generate close to 10Gb/s for a fast data-
base, and the re-execution needs to be performed serially.
It also doesn’t help with data corruption. Our replay-based
approach is designed to address these issues.

3. RELATED WORK
In this section, we describe related work in the areas of

database replication and deterministic replay schemes. Ta-
ble 1 provides a summary comparing our scheme with vari-
ous logging and replay schemes.
Primary-backup replication based on traditional log ship-

ping is easy to implement and commonly available in many
traditional databases such as SQL Server [20], DB2 [19],
MySQL [22], and PostgreSQL [24], but it has significant
logging requirements as discussed earlier. While it can be
executed relatively efficiently, Hong et al. suggest that seri-
ally replaying the recovery log on the backup database can
become a bottleneck with increasing cores on the primary
database [13]. To enable concurrent log replay, their KuaFu
system constructs a dependency graph on the backup, based
on tracking write-write dependencies in the log. Then it uses
topological ordering to concurrently apply the logs of non-
conflicting transactions. KuaFu is implemented for a tradi-
tional MySQL database with a throughput on the order of
1000 transactions per second. Its dependency tracking and
transaction ordering need to be performed serially, and so it
is unclear whether the scheme will scale for high-throughput
databases.
The rest of the schemes in Table 1 are designed for fast,

in-memory databases. Calvin [28] uses deterministic lock-
ing and scheduling to guarantee deterministic database ex-
ecution [27]. Incoming transactions are assigned a serial
order and then replicas execute transactions concurrently
using a deterministic concurrency control scheme that guar-
antees equivalence to the predetermined serial order. The
deterministic scheme requires knowing the read and write
sets of transactions. Compared to our approach, Calvin
requires significantly more network bandwidth for logging
the read set, especially when OLTP transactions perform
scans. Our evaluation shows that our backup scales bet-
ter than Calvin’s deterministic locking scheme and single

2026

gitlab.com
gitlab.com
gitlab.com

Table 1: A comparison of logging, recovery and replay schemes

Read Set
Needed?

Write Set
Needed?

Row Data
Needed?

Multi-
Version

Network
BW Needs

Developer
Effort

Scalability Bottlenecks
on Backup

Traditional
Log
Shipping

No Yes Yes No High N/A Serial replay

Kuafu [13] No Yes Yes No High N/A Dependency analysis;
Frequent write-write
dependencies

Calvin [28] Yes Yes No No Depends on
read-set

N/A Deterministic locking

Bohm [7] For
performance

Yes No Link
list

Low Specify data
partitioning

Either data or thread
partitions imbalanced

Command
Logging [17]

No No No No Low Specify data
partitioning

Data partitions imbalanced;
Cross-partition transactions

Adaptive
Logging [35]

No Adaptive Adaptive No High Specify data
partitioning

Same as above;
Dependency analysis
on primary

Pacman [33] No No No No Low Limited by
static analysis

Data accesses are
imbalanced

Our
Approach

No Yes No Array Low N/A Wait on read
dependency

version store. Furthermore, Calvin does not easily support
serializable schemes that allow transactions to commit back
in time [9, 32], as described later in Section 4.4.2.
Our work is closest to Bohm’s multi-versioning scheme [7].

Bohm’s placeholder approach for tracking tuple versions is
similar to our approach, but it uses a linked list versus our
array implementation which has a significant impact on per-
formance, as we show in Section 6.4.2. The key difference
between the two schemes is that Bohm partitions data while
we partition transactions on the backup. To support its de-
sign, Bohm requires its log to contain transaction data in
serial order. All partitions (cores) process the entire log
while creating tuple versions. Bohm uses a set of concur-
rency control threads and execution threads that operate
on batches of transactions.
While data partitioning works well for a primary, it is

problematic for a backup that is designed to serve differ-
ent primary databases. Consider a non-partitioned, high-
performance primary such as ERMIA [15] or Silo [30] be-
ing served by a Bohm backup. First, a developer would
need to decide how the keyspace should be partitioned on
the backup. Improper data partitioning would lead to load
imbalance because the concurrency control threads operate
on a batch of transactions in lock-step. Second, unlike our
scheme, the primary’s log would need to be serialized, and
processed by all cores. Third, Bohm requires the read set for
optimizing its multi-versioning performance because of its
linked-list based placeholder approach. Fourth, Bohm’s per-
formance depends on carefully tuning the number of threads
for the concurrency control and the execution layers, with
the optimal choice being non-trivial because it is workload
dependent. Finally, the execution layer runs transactions on
cores based on data dependencies. When a thread performs
a read, if the version is not available, the transaction that
produces the value is run by the same thread. However, it is
unclear whether this execution model provides good locality
when dependencies cross partitions. For example, 15% of
the payment transactions in TPC-C access two warehouses.
Our approach sidesteps issues of determining partitioning

on the backup by simply relying on the primary’s transaction
partitioning scheme to execute transactions on the same core
on the backup as on the primary. This allows the backup

to scale as well as the primary, for both non-partitioned or
partitioned databases.
Malviya et al. show that logging in high-throughput data-

bases imposes significant processing overheads [17]. They
propose recovering databases using command logging, and
show that their approach improves database performance
by 50%. Command logging logs the transaction inputs and
replays the transactions deterministically for recovery. In
their VoltDB distributed database, command logs of differ-
ent nodes are merged at the master node during recovery.
To guarantee correctness during recovery, transactions are
processed in serial order based on their timestamps, and sig-
nificant synchronization is needed for cross-partition trans-
actions. As a result, a pure command logging approach
on the backup will not scale with primary performance, as
shown by the adaptive logging work [35].
Adaptive logging improves recovery for command logging

by generating a graph based on data dependencies between
transactions. Their focus is on single node failure in a dis-
tributed database. When a node fails, all the transactions
on the failed node and any transactions on which it depends
on other nodes are replayed concurrently, in topological or-
der, similar to Kuafu [13]. Adaptive logging reduces recov-
ery time further by logging rows for some transactions, thus
avoiding serial replay of long chains of transactions. Adap-
tive logging is designed for recovery and thus generates its
dependency graph offline. Unfortunately, the paper does not
evaluate how long it takes to generate this graph, whether
it can be performed scalably, and the size of the graph. For
replication, this graph would need to be generated online,
impacting primary performance, and sent to the backup,
requiring significant network bandwidth.
These command logging approaches are designed for par-

titioned databases, making them unsuitable for a backup,
as described earlier. Our design uses command logging style
deterministic replay, and although it requires sending the
write set, it enables the replay to be performed concurrently
without requiring dependency analysis.
Pacman [33] proposes a novel method for parallelizing re-

covery for in-memory databases that use command logging.
They use a combination of static and dynamic analysis to
parallelize replaying of transactions during recovery and do

2027

not depend on partitioned-data parallelism. The static anal-
ysis performs intra- and inter-procedure analysis to create a
global dependency graph based on coarse-grained table-level
dependencies. The dynamic analysis performs fine-grained
dependency analysis for nodes in the global graph, allowing
concurrent execution of pieces of code with no data depen-
dencies. This approach can be applied for a backup and we
believe its dynamic analysis can scale well for replication.
However, its static analysis assumes that the transaction
logic is simple enough to determine the read and write sets
easily, limiting the programming model. It also assumes
that all the stored procedures are known in advance, com-
plicating the deployment of new stored procedures.
Silo [30] uses a variant of optimistic concurrency control

(OCC), with a novel, decentralized transaction ID (TID)
assignment protocol that avoids scaling bottlenecks during
commit, and enables a concurrent recovery scheme in Silo-
R [36]. However, SiloR uses value logging, which generates
a GB per second of log data, requiring high-bandwidth stor-
age. Silo’s TID assignment makes it hard to use command
logging without logging the read-set as well. To support
Silo and hardware transactional memory databases using a
similar TID assignment scheme [34], we would need to use
a global counter to determine the serial order of transac-
tions. However, our experiments with up to 32 cores in Sec-
tion 6.3 show that such a counter is not a scaling bottleneck
for OLTP workloads.
Write-behind logging [1] is an efficient logging and recov-

ery scheme for in-memory multi-version databases that use
NVM for durable storage. This logging scheme logs the
timestamp ranges of uncommitted transactions, requiring
minimal logging and it provides very fast recovery because
it reuses the multi-versioned data in the database. How-
ever, since the log only contains timestamps and not the
data, replication still requires traditional row-level logging.
Many recent in-memory databases use multi-versioning,

with an emphasis on providing serializability as efficiently as
single-versioned designs [21, 15]. Our backup scheme knows
the serialization order and thus requires much simpler syn-
chronization. However, it requires an initialization phase
for each batch of transactions that needs to be performed
efficiently, so that the backup can keep up with a scalable
primary. Furthermore, in traditional MVCC systems, read-
ers tend to access the latest versions, while in our system,
readers frequently access older versions in order to guaran-
tee that they can read identical data, motivating our binary
search based multi-versioning.

4. MULTI-VERSION REPLAY
We now describe our approach for replicating fast data-

bases. Our aim is to replay transactions on the backup con-
currently, while requiring low network bandwidth. We begin
by estimating the network bandwidth that can be saved by
our record-replay method. Next we describe our transaction
model, followed by an overview of our approach. Finally we
provide more details about the design of the primary and
the backup databases.

4.1 Record-Replay
Our design is motivated by the observation that for many

OLTP workloads, the transaction input size is smaller than
the output size. As a result, replicating transaction inputs to

Table 2: Input Size versus Output Size in TPC-C

Input Size Output Size
(Row Level)

Output Size
(Cell Level)

NewOrdera 200 bytes 996 bytes 903 bytes
Delivery 12 bytes 741 bytesb 356 bytes
Payment 32 bytes 346 bytes 118 bytes

aWe assume that the customer orders 15 items, the max-
imum allowed for a NewOrder transaction.
bThis output includes the c_data column in the Cus-
tomer Table, which is a VARCHAR(500) type. We esti-
mate its length to be around 30.

replay the transactions will reduce network traffic compared
to replicating the transaction outputs [17].
To estimate the likely benefits of our approach, we con-

sider the TPC-C benchmark, designed to be representative
of common OLTP applications. TPC-C uses several stored
procedures to simulate an online-shopping workload. It con-
tains three read-write transactions. Table 2 shows the in-
put and output size of these transactions. For example,
in the TPC-C NewOrder transaction, the input parameters
are the customer and the products the customer would like
to purchase, and the outputs are the rows updated by the
NewOrder transaction.
The input size is the total size of the parameters of the

stored procedures. We estimate the output size based on
commonly used row-level logging (Column 3), as well as cell-
level logging (Column 4).
We observe that the input parameter size for OLTP trans-

actions is significantly smaller than the output size. This
suggests that our replay-based approach can save network
traffic by replicating the transaction inputs and re-executing
transactions on the backup. As a side effect of reducing net-
work traffic, our approach can help reduce the recent modi-
fications that may be lost after a failure.

4.2 Transaction Model
We assume that all transaction inputs are available at the

start of a transaction and requests do not require any further
client input. This avoids long latencies due to client commu-
nication during the transaction, which can raise abort rates.
This model is commonly used in fast OLTP databases [30].
For replaying transactions deterministically, we need to

handle two sources of non-determinism in transactions. The
first is non-deterministic database functions such as NOW()
and RAND(). We capture the return values of these function
calls on the primary and pass them as input parameters
to the transaction during replay. While our current sys-
tem does not perform this record-replay automatically, the
functionality can be implemented at the SQL layer or the
C library layer [11], or the system call layer [26], without
requiring any changes to the transaction processing code.
SQL queries may also return non-deterministic results such
as performing a read or write based on the results from “Se-
lect count(*) FROM Table T1”. Unlike OLAP workloads,
OLTP workloads generally do not use such queries to avoid
returning non-deterministic results. However, to support
them, the developer could add order clauses to ensure de-
terminism, or we can revert to row-level logging for such
queries. All command logging based schemes must handle
these issues.

2028

The second source of non-determinism arises due to con-
currently reading and writing data to the database, which
presents challenges for concurrent recording and replay, sim-
ilar to the challenges with replaying other concurrent pro-
grams [11] and systems [6].
We assume that data integrity is maintained by executing

transactions serializably, so that the outcome of the concur-
rent execution is the same as the transactions executing in
some total order, or serial order. Serializability is commonly
supported by fast, in-memory databases [5, 30, 15, 34].

4.3 Overview of Approach
Serializability regulates non-determinism, making it sim-

ple to replay transactions correctly. For example, command
logging can be used to replay transactions deterministically
in a serial order. This serial replay scheme requires mini-
mal network traffic because the primary only needs to send
the input parameters and the serial order of the transac-
tions. However, replaying transactions in serial order will
not scale, making the backup a bottleneck.
An alternative replay scheme is to send the read-set for

each transaction (the data for all records read by the trans-
action). With this data, transactions can be replayed con-
currently because read values are available and reads do not
need to be synchronized with writes. A similar approach
is used to replay concurrent programs in multi-core sys-
tems [6]. However, OLTP transactions have a high read-
write ratio and issue large scans, and so read-set based re-
play will generate significant network traffic.
Our multi-version replay approach lies in between, gener-

ating logs that are similar in size to command logging, while
allowing concurrent and scalable replay similar to read-set
based replay. Besides the data needed for serial replay, we
also send the write-set of each transaction to the backup.
The write-set contains the keys of all the records written
by the transaction, but not the row data. The write-set,
together with the serial order, allows transactions to infer
the correct data to read during concurrent replay. This ap-
proach has lower logging requirements than value logging
because keys are generally smaller than row data.
On the backup, we use two techniques to replay transac-

tions concurrently. First, we use multi-versioning, so that
transactions can read and write different versions of rows
concurrently. In particular, writers can create new row ver-
sions safely while readers are accessing old versions.
Multi-versioning, however, is not sufficient for performing

replay concurrently. During replay, when a transaction reads
a row, it doesn’t know the specific version to read because we
don’t send read-sets. Instead, the transaction needs to read
the version that was written by a previous transaction that
last updated this row. However, with concurrent replay,
this transaction may still be running, and so the required
version may not exist yet. Even if the version exists, we
don’t know whether it is the correct version until all previous
transactions have been replayed in serial order. Thus replay
must still be performed serially.
We need a mechanism to identify the version to read while

allowing concurrent replay. If we know about all the possible
versions of a record before starting replay, we can infer the
correct version to read based on the serial order of trans-
actions. Based on this insight, we replay transactions in
epochs, so that all versions of a row that will be created in
an epoch are known in advance. This allows the reads of a

T1 Write A (A1) Commit
T2 Read A (A0) Write C Commit

Figure 1: An Example of Commit Back In Time

transaction to select the correct version, without waiting for
all previous transactions to complete in an epoch. The re-
sult is that replay can proceed concurrently, while requiring
synchronization for true read-after-write dependencies only.

4.4 Recording on the Primary
On the primary, we record the inputs and the write-set

of transactions, which is relatively simple. In addition, we
need to determine the serial order of transactions and batch
transactions in epochs. Next, we describe these two opera-
tions in more detail.

4.4.1 Determining the Serial Order
Our approach allows the primary database to use any con-

currency control mechanism that ensures serializability. The
primary may be a single or multi-versioned store, and it may
or may not partition data. We assign a serial id to each
transaction, representing its serial order, and send this se-
rial id with the rest of the transaction information to the
backup. The serial id is closely tied to the concurrency con-
trol scheme implemented by the database. For example, the
traditional methods for implementing serializability are two-
phase locking and optimistic concurrency control [16, 30].
For both, when the transaction commits, we use a global
timestamp (often maintained by the database implementa-
tion) to assign the serial id of the transaction.
Multi-version databases often implement more advanced

concurrency control schemes such as Serializable Snapshot
Isolation (SSI) [9] and Serial Safety Net (SSN) [32]. Obtain-
ing the serial id is more involved in these schemes because
they allow transactions to commit “back in time”.
Consider the example shown in Figure 1: T1 writes a new

version of A, while T2 reads A and writes C concurrently.
T2 reads A before T1 commits and so it reads A0, the old
version of A. Then T1 writes to A and commits, creating A1,
a new version of A. Finally, T2 writes to C and commits.
Under two-phase locking, T2 would hold the lock on A and

so T1 would not have been able to proceed with writing A
until T2 had committed. This schedule would not be valid
under optimistic concurrency control either, because T2’s
read set has been overwritten, and so T2 would be aborted.
However in multi-version protocols like SSI and SSN, T1

and T2 can commit successfully. In fact, this concurrent
interleaving is serializable, and the serial order is T2, T1. In
this case, we say that T2 commits back in time, before T1.
Later, in Section 5, we describe how we obtain the serial id
for the SSI and the SSN protocols in the ERMIA database.

4.4.2 Batching Transactions in Epochs
As mentioned in Section 4.3, we need to batch transac-

tions into epochs so that the backup can replay the transac-
tions within an epoch concurrently. An epoch must satisfy
the constraint that any data read in the epoch must have
been written before the end of the epoch. In other words,
transactions should never read data from future epochs, or
else epoch-based replay could not be performed correctly.
The simplest method for implementing epochs is to batch

transactions in actual commit order. Since transactions are
serializable, this order satisfies our epoch constraint. Epochs

2029

based on commit order work correctly even when transac-
tions can commit back in time in our multi-versioned backup
database. A transaction in a later epoch may need to read
an older version of a data item, but a transaction never
needs to read from a future epoch. Consider the example
in Figure 1 again. Suppose T1 is batched in an epoch and
T2 is batched in the next epoch. T1 will create version A1

during replay, but when T2 is replayed in the next epoch,
it will still read the previous version, A0, because its serial
order is before T1. The benefit of using the commit order
for defining epoch boundaries is that we do not need to wait
for transactions to commit back in time. Note that a single-
versioned backup design, e.g., based on Calvin [28], cannot
easily support such back in time commits across epochs.
It may appear that epochs are expensive to implement

but they can be defined more flexibly. In practice, data-
bases often use epochs for various purposes such as recovery
or resource management. We can reuse the same epochs
for batching transactions. For example, ERMIA supports
snapshot isolation and uses epochs based on the start times
of transactions, which allows more efficient garbage collec-
tion of dead versions [15]. Our implementation for ERMIA
uses the same epochs because snapshot isolation guarantees
that reads see the last committed values at the time the
transaction started, hence satisfying our epoch constraint.

4.5 Replaying on the Backup
We designed our backup database from scratch because

there are several differences between replay and normal data-
base execution. First, non-deterministic functions need to
be handled by replaying the return values of these functions
recorded at the primary. Second, we require an initialization
phase at each epoch so that transactions in the epoch can be
replayed correctly. Third, we replay committed transactions
only, and thus require a simple synchronization scheme and
no machinery for handling aborts or deadlocks.
To simplify the design of a failover scheme, we imple-

mented the backup database with a structure similar to a
fast, in-memory database, such as Silo [30] and ERMIA [15].
We use a B-Tree index to represent a table in the database,
with the keys of the B-Tree representing the primary keys
of the table. Like many multi-version databases, the values
in the B-Tree are pointers to indirect objects that maintain
the different versions of the rows. In our case, this object is
an array, with each entry containing a version number and
a row. The version number is the serial id of the transac-
tion that created this row version. It not only indicates the
transaction that created this version but also the serial order
in which the version was created. The array is kept sorted
by the version number.

4.5.1 Replay Initialization
We need to first perform an initialization step before re-

playing an epoch. For each transaction in the epoch, we
process each key in its write-set by creating a new row ver-
sion. The version number of the row is the transaction’s
serial id, and its value is set to an empty value, indicating
the value has not yet been produced. This empty value will
be overwritten by actual row data when this transaction is
replayed later. New row versions are added to the version
array using insertion sort to maintain sorted order.
We perform the initialization step concurrently on the

backup. This step scales for three reasons. First, updates

 Read A
 Write B

Figure 2: An Example of Replaying a Transaction

are more frequent than inserts in OLTP transactions. Since
the values in the B-Tree leaf nodes point to indirect ob-
jects, while inserting new keys can modify the B-Tree index,
updating existing keys does not modify the B-Tree. As a
result, concurrent initialization will generate a read-mostly
workload on the B-Tree index, and existing B-Tree imple-
mentations scale well under a read-mostly workload [18].
Second, write-write conflict rates are low in OLTP transac-
tions, and so acquiring locks on the indirect objects should
not cause significant contention. Third, we send transaction
data from each primary core to a separate backup core to
minimize contention on the sending or receiving path. This
data is mostly sorted by serial id. As a result, when new
versions are inserted in the version array, they are mostly
appended, and insertion sort is efficient in this case.

4.5.2 Replay
After the initialization step, we replay the transactions in

the epoch concurrently. Any read during replay will see all
the possible row versions created during the epoch. When a
transaction with a serial id t reads a key, we simply read from
the greatest version that is smaller than t, i.e., the previous
version. We use binary search to find this correct version
in the version array. If this version contains an empty row,
we need to wait until the actual row data is written (by the
transaction that creates this version).
Figure 2 shows an example of replaying a transaction

(Transaction 6) at the backup. The figure shows that trans-
actions with serial id 4-7 are batched in Epoch 1. Trans-
action 6 has an input parameter x, and it reads key A and
writes key B. Transactions 4, 5 and 7 write to key A.
On the backup, the Index represents a table or an index

to the table. We initialize replay for Epoch 1 by creating
versions for keys A and B. Each key points to an indirect
object containing a sorted array of row versions. For epoch
1, we initialize versions 4, 5 and 7 for key A, and version 6
for key B. When Transaction 6 is replayed, it reads version 5
of key A (the largest version smaller than 6). At this point,
this version is still an empty row, and so Transaction 6 will
wait until Transaction 5 updates this version. During replay,
Transaction 6 will write to version 6 of key B.
One corner case is that a transaction can read its own

writes. On the first read, the replay will correctly read the
previous version. However, after a write, we can no longer
read the previous version. We resolve this issue with a per-
transaction write buffer. On a read, the transaction first
searches the buffer for the updates it has made before search-

2030

ing the database. When the transaction commits, it releases
the writes from the buffer into the database and frees the
entire buffer. Since OLTP transactions are read-dominated,
the overhead of using the write buffer is small.
We do not need to grab any lock or perform any synchro-

nization, other than waiting for empty row versions, during
replay. This avoids the significant overheads associated with
performing concurrency control [12]. Since we only replay
committed transactions, there are no aborts, and the replay
is deadlock free.

4.5.3 Garbage Collection
We perform garbage collection of old versions of rows at

epoch boundaries, when we know that replay is not running
and the old versions are not being accessed concurrently. At
replay initialization, we only perform garbage collection for
keys that are overwritten in the epoch. For each such key,
our garbage collector requires that the previous versions of
these keys will be read from only the last epoch in which
they were written. Thus it keeps all the versions of that
last epoch, and reclaims all previous versions from preced-
ing epochs. The garbage collector’s requirement is met by
ERMIA because it only creates new epochs when all cores
have entered the current epoch. For example, it will only
create Epoch N when all transactions in Epoch N − 2 have
committed. As a result, transactions in epoch N will not
read a version created in epoch N − 2, if there is an update
in epoch N − 1. When we replay epoch N , we need to keep
all the versions of epoch N − 1 but can reclaim previous
versions.

5. IMPLEMENTATION
Our backup database is designed to work with any pri-

mary database that provides serializability. To stress our
replay server, we chose to use ERMIA [15], a fast in-memory
database, as the primary database. ERMIA performs well
under heterogeneous workloads such TPC-E and TPC-C+
in which OLTP transactions run together with some long
running transactions. ERMIA also achieves high through-
put on traditional OLTP workloads like TPC-C. Next, we
describe our replay implementation for ERMIA.

5.1 Recording on the Primary
The TPC-C and TPC-C+ benchmarks implemented in

ERMIA are not fully deterministic. For benchmarking pur-
poses, these transactions generate random data for the data-
base contents. In practice, these random contents would be
specified by the end user, as inputs to transactions. We mod-
ified the TPC-C and TPC-C+ benchmark in ERMIA to pass
the randomly generated content as input to the transactions,
making the benchmark logic deterministic.

5.1.1 Obtaining Serial Order
ERMIA implements two serializability-enforcing concur-

rency control protocols, SSI [9] and SSN [32]. Both use
timestamps to disallow certain transaction interleavings that
may cause serializability violations, and they allow “back in
time” commits for additional concurrency. Our prototype
supports obtaining the serial order for both SSI and SSN.
Next, we describe how the SSI protocol works, and then how
we derive the transaction serial order from the protocol.
In SSI, similar to OCC, the transaction checks if its read

set has been overwritten before commit. If not, it acquires

a commit timestamp and assigns it to all the tuples in its
write set and then commits. If its read set has been over-
written, then a write skew is possible, making it dangerous
to commit the transaction [2]. SSI determines whether the
transaction can be committed without violating serializabil-
ity by looking for dangerous structures, in which two adja-
cent rw-dependency edges occur between concurrent trans-
actions [9]. ERMIA implements SSI by first determining
the minimum commit timestamp among all the overwriters
of this transaction.
We call this timestamp the skew_timestamp. Next, the

transaction checks the previous versions of the tuples in its
write set. For these tuples, we calculate the maximum of
their commit timestamps and their readers’ commit times-
tamps1, and we refer to this timestamp as the predecessor
_stamp. If the predecessor_stamp is larger than or equal
to the skew_timestamp, the transaction aborts, otherwise
it can commit at the skew_timestamp, i.e., commit back
in time.
While the SSI concurrency control protocol is compli-

cated, calculating the serial id is relatively simple. When
a transaction commits back in time, we assign its serial id
to be 2 × skew_timestamp - 1. Otherwise, the serial id is
assigned as 2 × commit_id of the transaction. This assign-
ment ensures that the serial id of a transaction that commits
back in time is below the skew timestamp.
Unlike SSI, SSN allows nested commit back in time. For

example, with three transactions T1, T2 and T3, T2 can
commit back before T1, and T3 can commit back before T2.
The SSN serial order needs to handle these nested commits,
but is otherwise obtained in a similar way to SSI, and is not
described here.

5.1.2 Batching Transactions in Epochs
ERMIA uses an epoch manager for tracking various time

lines, including for garbage collection of dead versions, and
RCU-style memory management. We reuse these epochs to
batch transactions. In each epoch, transactions are commit-
ted on different cores. We create a TCP connection for each
core, and send the transactions committed on that core to
a specific core on the backup database, where those trans-
actions are replayed. This allows the backup to perform
the replay initialization on different cores concurrently with
minimal contention.
We use one worker thread per core for processing an epoch.

Each epoch consists of three stages: fetch, initialization and
execution. Each worker performs all these stages sequen-
tially and the workers execute concurrently. During fetch,
the worker fetches the data from the network socket and
parses the packet. During initialization, empty values are
inserted for transactions using their serial id. Last, transac-
tions execute deterministically.
We allow the fetch and the initialization phase of the cur-

rent epoch, and the execution phase of the current epoch
and the fetch phase of the next epoch to run concurrently.
However, the initialization stage and the execution stage do
not overlap in time (within or across epochs). As a result,
during execution, the B-Tree index and the version arrays

1Since keeping track of all commit timestamps of readers is
expensive, ERMIA only tracks which core has read the data
and the latest commit timestamp on that core, which may
cause false positives when aborting a transaction.

2031

are read-only, and thus do not need any synchronization.
We use a single control thread to synchronize the stages.

5.2 Replaying on the Backup
Our prototype system uses Masstree [18] as the B-Tree

index because it scales well for read-mostly workloads. We
need to acquire a lock on the indirect object associated with
a key when updating the key during replay initialization.
Since this lock is unlikely to be contended, as explained in
Section 4.5.1, we use a spinlock for its implementation.
During replay, the B-Tree indices and the version arrays

are read but their structures are not updated. The only
synchronization is while waiting for empty rows. To make
the wait efficient, we replay transactions using co-routines.
When a transaction needs to wait, it performs a user-space
context switch to the next transaction in the run queue,
so threads make progress even when a transaction needs to
wait.

5.3 Failover
When the primary database fails, database requests need

to be redirected to the backup database, so that it can take
over from the primary. Since our backup database is replay-
based, and its internal multi-version storage structures are
different from the primary database, we need to migrate the
database to a new primary.
Our prototype can export the backup database into an

ERMIA checkpoint image and start ERMIA from the image.
We scan the tables and indices and export them in ERMIA’s
checkpoint format. Our current implementation is single-
threaded due to limitations in ERMIA’s checkpoint format,
thus it takes roughly two minutes to export a 32 warehouse
TPC-C workload. This time can be significantly reduced by
using concurrent checkpointing methods [36].
A more efficient failover scheme can convert data struc-

tures in memory. In our current prototype, all the row
data storage format and indices are compatible with ER-
MIA, with the multi-version storage structures needing con-
version. To implement this feature efficiently, our replay
engine could be a plugin for ERMIA, making it aware of our
storage structure, allowing it to convert them lazily.
Our failover functionality can also be used to ease the

process of upgrading primary database software. Upgrading
of databases is often a cumbersome process that needs to
be performed offline [25], with little support for streaming
replication [4]. Our replay-based replication can export the
backup to the new storage format asynchronously, and then
minimize downtime by performing a controlled shutdown of
the primary and replay-based failover to the backup.

5.4 Read-Only Transactions
Since our backup database is multi-versioned, it can pro-

vide consistent snapshots to read-only transactions. The
simplest option is to serve snapshots at epoch boundaries by
executing these transactions in the same way as we replay
transactions. To reduce staleness, we can also track the se-
rial id before which all transactions have been replayed, and
assign this serial id to the read-only transaction. This serial
id can be maintained scalably by using per-core counters.
Currently, we do not support read-only transactions be-

cause our garbage collector is unaware of them. To support
read-only transactions, we would need to implement a sec-

ond epoch timeline that tracks read-only transactions and
thus can be used to reclaim versions safely.

6. EVALUATION
In this section, we evaluate the performance of our repli-

cation method. We use ERMIA as the primary database.
We compare our approach against a baseline ERMIA (no
log shipping), ERMIA with its log shipping implementation,
and our Calvin implementation on the backup [28].
ERMIA uses row-level logging, which consumes less net-

work traffic than traditional ARIES style page-level logging.
All our experiments are performed with ERMIA using the
SSI concurrency control protocol. We also performed exper-
iments using the SSN protocol; the numbers were similar
and are not presented here.
The Calvin primary ships both the read-set and the write-

set keys. Our Calvin backup implementation closely mirrors
the original design. However, unlike the original implemen-
tation that uses a centralized lock manager for deterministic
locking during initialization, we reuse the version arrays in
our backup to implement a per-tuple lock queue that allows
concurrent initialization. As described in Section 4.4.2, Cal-
vin is unable to handle back in time commits across epochs,
and our implementation ignores these errors.
Our evaluation uses two metrics. First, we compare the

network traffic of the different methods. Second, we mea-
sure the throughput and scalability on the primary and the
backup databases. We use two network configurations in our
log shipping and replay experiments. For most experiments,
we use a 10 Gb/s Ethernet network so that the network is
not a bottleneck. We also show the impact on the primary
when using a slower 1 Gb/s network.
We execute the ERMIA primary database and our backup

database on machines with the same hardware configura-
tion: 4-socket Intel Xeon CPU E5-2650 (32 cores total) and
512 GB DRAM. Data sets for all workloads fit into DRAM.
Both databases run on Linux 3.10 with glibc 2.17. ERMIA
is compiled with gcc 4.8.5 and our backup database is com-
piled with clang 3.8, both with the -Ofast optimization.

6.1 Workloads
We use 4 kinds of workloads in our experiments: TPC-

C, TPC-C+, TPC-C Spread and TPC-C+ Spread. TPC-C
is a typical OLTP workload that simulates an E-Commerce
workload: customers query and purchase items online, and
items are delivered from warehouses to customers. There are
three types of read-write transactions in TPC-C: NewOrder,
Delivery, and Payment. These read-write transactions
constitute 92% of the total transactions; the remaining 8%
are read-only transactions.
TPC-C+ [3] is designed to evaluate heterogeneous (non-

pure OLTP) workloads. It is similar to TPC-C, but it adds
CreditCheck, a type of analytic transaction. This transac-
tion scans the customer’s order history and account balance
to determine the customer’s credit level, and it takes signif-
icantly longer to run than other TPC-C transactions.
By default, ERMIA partitions the database by warehouse

id and associates a worker thread with each warehouse. Since
most TPC-C/TPC-C+ transactions tend to operate on a
single warehouse, ERMIA runs a transaction on the worker
thread serving its warehouse. To evaluate how our approach
will perform when data cannot be easily partitioned, we dis-
able this thread pinning in ERMIA by letting transactions

2032

Table 3: Network Traffic
Record Log Shipping Calvin Calvin Optimized

TPC-C 6.988 GB 35.739 GB (5.11x) 8.445 GB (1.21x) 7.257 GB (1.04x)
TPC-C+ 5.081 GB 27.398 GB (5.39x) 12.789 GB (2.52x) 11.969 GB (2.36x)

TPC-C Spread 3.600 GB 24.481 GB (6.80x) 4.730 GB (1.31x) 3.814 GB (1.06x)
TPC-C+ Spread 2.832 GB 19.120 GB (6.75x) 8.157 GB (2.88x) 7.486 GB (2.64x)

run on arbitrary worker threads. We call these the “spread”
workloads: TPC-C Spread and TPC-C+ Spread.
During replay, we avoid second-guessing the data par-

titioning policy. We replay the transaction on the same
backup core as the transaction was run on the primary,
which helps preserve the partitioning policy of the primary.

6.2 Network Traffic
In this section, we measure the network traffic using the

10 Gb/s network so that it is not a bottleneck. We use 16
cores on the primary database, because with 32 cores, log
shipping can generate traffic close to 10 Gb/s.
Table 3 shows the network traffic generated by each work-

load in 60 seconds. Compared to our approach, log shipping
requires 5x more network bandwidth for the TPC-C and
TPC-C+ workloads, and 7x more bandwidth for the spread
workloads. Our bandwidth savings are higher for the spread
workloads because they commit fewer NewOrder transac-
tions (due to higher abort rates). We save more network
traffic on the other transactions types, which make up a
larger share of the committed transactions.
For the Calvin backup, the primary sends read-sets as well

as write-sets to the backup. This requires 1.2-2.9x network
traffic compared to our approach because some transactions
issue long table scans. Most of these scans are issued on
read-only tables and thus read locks are not needed for these
rows during replay. To measure the benefits of optimizing
for read-only tables, we modify the Calvin primary so that it
specifically does not send the read-set keys for these tables.
With this optimization, the network traffic for Calvin is

close to our approach for the TPC-C and TPC-C Spread
workloads, but still incurs much higher network traffic on the
TPC-C+ workload. For TPC-C, most of the records being
read are updated in the transaction, and so the read-set is
mostly covered by the write-set. However for TPC-C+, the
CreditCheck transaction issues scans on many read-write
tables, and sending the read-set for these scans consumes
significant network traffic. By default, the CreditCheck
transactions are 4% of all the issued transactions. Increasing
this ratio will increase the network traffic as well.
We also evaluate statement level logging in MySQL [22]

using the TPC-C implementation from Percona Lab [23].
We configure the benchmark with just 1 warehouse and run
the workload for 60 seconds. MySQL is able to commit 7078
transactions and generates a 22MB replication log. With
ERMIA generating 700K transactions/s, MySQL would re-
quire 20x network traffic compared to our approach.

6.3 Primary Performance
In this section, we measure the performance impact on

the primary database for recording transaction inputs, the
write-set keys and sending them to the backup. For the base-
line, we use default ERMIA (no log shipping). We also show
the performance of ERMIA with log shipping. To avoid
any performance bottlenecks on the backup, we discard any
packets that it receives during this experiment. We warm up

8 16 24 32
Number of cores

0

100000

200000

300000

400000

500000

600000

T
hr

ou
gh

pu
t (

tx
n/

s)

TPC-C No Replication
TPC-C Log Shipping
TPC-C Record
TPC-C Spread No Replication
TPC-C Spread Log Shipping
TPC-C Spread Record

8 16 24 32
Number of cores

0

100000

200000

300000

400000

T
hr

ou
gh

pu
t (

tx
n/

s)

TPC-C+ No Replication
TPC-C+ Log Shipping
TPC-C+ Record
TPC-C+ Spread No Replication
TPC-C+ Spread Log Shipping
TPC-C+ Spread Record

Figure 3: Primary Performance

ERMIA by running each workload for 30 seconds and then
we measure the average throughput for the next 30 seconds.
Fast databases are designed to scale with the number of

cores. Thus, we show the throughput of the workloads with
increasing numbers of cores (from 8 to 32). Figure 3 shows
that the throughput of our recording approach is close to
the performance of the original database and scales with the
number of cores. While the throughput slows down slightly
per core, it has no visible scalability impact. Although our
approach requires global serial ordering, it has minimal ef-
fect under transactional workloads.
Log shipping also performs similarly to the original data-

base, but the 10 Gb/s becomes a bottleneck for the TPC-C
workload at 32 cores. Both our approach and log shipping
send data in a background thread. Although log shipping
sends large amounts of data, it has only about 2% overhead
when the network is not the bottleneck. Our prototype has
slightly more overhead (3-4%), because it requires copying
the transaction input parameters and the write-set keys in
the commit path.

6.3.1 Performance Over Slow Network
Table 3 shows that replicating fast databases consumes

significant network traffic. If the network is slow, then
replication will have a significant impact on primary per-
formance. In this section, we compare log shipping and
our approach using a 1Gb/s network. Though expensive,
a 1Gb/s link is practical in the wide area. Depending on
the region and the ISP, the estimated cost of such a wide
area link is roughly between $100K-500K per year. Both
ERMIA’s log shipping and our approach use a 512MB send

2033

8 16 24 32
Number of cores

0

100000

200000

300000

400000

500000

600000
T

hr
ou

gh
pu

t (
tx

n/
s)

TPC-C No Replication
TPC-C Log Shipping
TPC-C Record
TPC-C Spread No Replication
TPC-C Spread Log Shipping
TPC-C Spread Record

8 16 24 32
Number of cores

0

100000

200000

300000

400000

T
hr

ou
gh

pu
t (

tx
n/

s)

TPC-C+ No Replication
TPC-C+ Log Shipping
TPC-C+ Record
TPC-C+ Spread No Replication
TPC-C+ Spread Log Shipping
TPC-C+ Spread Record

Figure 4: Primary Performance, 1 Gb/s Network

buffer. If the network is slow, the send buffer will fill up and
stall the primary.
Figure 4 shows the primary throughput with increasing

number of cores. Our approach can sustain the primary
throughput up to 16 cores for TPC-C and 24 cores for TPC-
C+. In contrast, log shipping performs much worse than our
approach. For the Spread workloads, our approach scales
until 32 cores, while log shipping still performs poorly.

6.4 Replay Performance
In this section, we measure the performance of our concur-

rent replay method on the backup server. To avoid perfor-
mance artifacts caused by the primary, we collect the packet
traces generated by the primary, and send these traces to the
backup on the 10 Gb/s network.
We evaluate backup performance by measuring the replay

time for a 30 second trace.2 If the backup can finish replay-
ing within 30 seconds, then it will not be a bottleneck on
primary performance. We also compare with Calvin’s de-
terministic execution scheme to show the benefits of using
multiple versions. Figure 5 shows the replay time on the
backup with increasing numbers of cores. For each data
point, the primary and the backup use the same number of
cores. Our numbers are marked using solid lines and Calvin
numbers are marked using dashed lines.
Our approach is able to replay the trace within 30 seconds

under all 4 workloads, except TPC-C Spread at 24 cores.
For TPC-C and TPC-C+, our approach takes roughly 18-
23s. The spread workloads represent a worst-case scenario
with no data locality and much higher contention. Even
in this extreme setup, our approach can replay the trace in
29-32s.
Calvin shows slightly worse performance (5-10% overhead)

than our approach with the TPC-C and TPC-C spread work-
loads. As mentioned in Section 6.2, TPC-C transactions
update most of the records they read. This type of access
pattern does not benefit from multiversioning during replay,

2Similar to previous experiments, this trace is captured after
the primary has been warmed up for 30 seconds.

8 16 24 32
Number of Cores

0

10

20

30

40

T
im

e
to

 re
pl

ay
 (s

ec
on

ds
)

Primary
TPC-C
TPC-C+

Calvin TPC-C
Calvin TPC-C+

8 16 24 32
Number of Cores

0

10

20

30

40

T
im

e
to

 re
pl

ay
 (s

ec
on

ds
)

Primary
TPC-C Spread
TPC-C+ Spread

Calvin TPC-C Spread
Calvin TPC-C+ Spread

Figure 5: Concurrent Replay Performance

since most versions will be read only once before being up-
dated. For TPC-C+ workloads however, the CreditCheck
transaction performs many reads without updating these
values. As a result, a single-versioned system like Calvin
suffers from write-after-read dependencies, leading to higher
overheads for TPC-C+ (up to 50%) compared to our ap-
proach. For the challenging spread workloads, Calvin con-
sistently fails to complete the replay within 30s.

6.4.1 Epoch Length
Our approach replicates transactions at epoch granular-

ity. Thus, a failure on the primary risks losing transactions
in the current epoch. The epoch length represents a trade-
off between performance and data loss, since shorter epochs
lose less data but may have a performance impact on the pri-
mary and the backup. We use ERMIA’s epoch manager to
implement our epochs; our default epoch length is 1 second.
We measure throughput on the primary and the backup

while varying the epoch length. We use the TPC-C and
TPC-C Spread workloads with 32 cores because this setup
is performance sensitive and should show the largest impact.
We find that ERMIA’s performance is relatively stable when
the epoch length is larger than 100 ms. At 50ms epoch
length, the primary throughput decreases by roughly 15%
due to the cost of epoch processing.
We also measured the replay time with different epoch

lengths, and found that it is similar to the numbers shown
in Figure 5. This suggests that the cost of epoch processing
has a more significant impact on the primary than on the
backup.

6.4.2 Version Array Vs. Linked List
Existing multi-version databases use a linked list for track-

ing versions because it allows scalable, lock-free access (e.g.,
removal during aborts). However, this imposes a non-trivial
cost for traversing pointers when the linked list is long [7].
As described in Section 4.5, we track row versions using

a sorted array, which allows using binary search for finding
a given version. In our case, the array is created during

2034

2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 1 0 2 1 1 2 1 2 2 1 3

Number of Versions Accessed

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5
N

um
be

r o
f K

ey
 A

cc
es

se
d

× 1 0 8

Number of Versions Accessed on Read
Number of Versions Accessed on Write

Figure 6: Link List Versions

replay initialization, and can be accessed lock free during
replay. We also do not need to handle aborts.
Here, we evaluate the cost of using a linked list imple-

mentation by measuring the replay time for the 30-second
TPC-C and TPC-Spread traces with different epoch lengths.
With a 50 ms epoch size, the TPC-C replay time is 30.3 sec-
onds (backup about to keep up), and the TPC-C Spread
replay time is 29.4 seconds (backup can keep up). When
the epoch size is 100 ms or more, the replay cannot keep
up with the primary. The slowdown (vs. using an ar-
ray) for TPC-C ranges from 24% (100 ms epoch) to 2.9x
(750 ms epoch). The slowdown for TPC-C Spread ranges
from 71.5% (100 ms epoch) to 5.3x (750 ms epoch). How-
ever, since epoch lengths below 100 ms impact primary per-
formance, and epoch lengths above 100 ms impact backup
performance, we conclude that version arrays are essential
for ensuring that the backup can keep up with peak primary
throughput.
The main reason for the slowdown is update hotspots [29]

in the TPC-C family. Figure 6 shows a histogram of the
number of key versions that are looked up in the linked list
when a key is accessed (note that X axis has log scale).
While most accesses are cheap (1 or 2 versions), a signif-
icant number of accesses skip over 4000 versions, because
some keys are updated frequently in TPC-C resulting in
long linked lists within an epoch. These accesses lead to
cascading slowdown for dependent transactions.

6.4.3 Memory Overhead
In this section, we measure the memory overhead imposed

by multi-versioning. When the backup database finishes re-
play and starts generating the ERMIA checkpoint file, we
collect the distribution of the number of versions for all keys.
The total number of keys in the database is roughly 110M
and the total number of versions is 164M. Thus the memory
overhead of multiversioning is roughly 48%. We find that
most keys (99.7%) only have 1 or 2 versions, however the
update hotspots in TPC-C lead to some keys having high
numbers of versions (e.g., 352 keys had 2048-65536 versions).

7. BUGS FOUND IN ERMIA
Our replay scheme is mainly designed for replication, but

it can also be used to catch corruption bugs in the primary
database. The concurrency scheme on the backup is differ-
ent from the primary and thus uncorrelated corruption bugs
can be detected with a simple checksum scheme. On the pri-
mary database, we add a checksum to each committed trans-
action. The checksum is calculated over the transaction’s
write set, containing keys and row data. On the backup, af-
ter replaying a transaction, we recalculate the checksum and

compare it with the primary’s checksum. A checksum mis-
match indicates a bug. This scheme imposes 12% overhead
on the primary performance, although a faster checksum will
help improve performance.
Using the checksum scheme, we have found and fixed 3

bugs in ERMIA’s concurrency control implementation. Two
of them are related to timestamp tracking in ERMIA’s SSI
and SSN implementation. We also find ERMIA’s phantom
protection protocol a significant flaw. ERMIA reuses Silo’s
phantom protection protocol, but Silo’s protocol only works
under a single-versioned database. All of these three bugs
are non-crashing concurrency bugs and can lead to a non-
serializable schedule. Without our system, it would have
been hard to identify them.

8. CONCLUSIONS
We have designed a primary-backup replication scheme for

providing fault tolerance for high-throughput, in-memory,
databases. Our approach uses deterministic record-replay
for replication. A key motivation for this work is to min-
imize the network traffic requirements due to logging. We
have shown that recording the keys in the write-set requires
15-20% of the network bandwidth needed by traditional log-
ging for OLTP workloads. The write-set keys can be used
to perform deterministic replay concurrently, using epoch-
based processing and a multi-version database. We have
shown that this approach allows the backup to scale as well
as ERMIA, a modern in-memory database that supports
heterogeneous workloads.

9. REFERENCES
[1] Arulraj, J., Perron, M., and Pavlo, A.

Write-behind logging. Proc. VLDB Endow. 10, 4
(Nov. 2016), 337–348.

[2] Berenson, H., Bernstein, P., Gray, J., Melton,
J., O’Neil, E., and O’Neil, P. A critique of ANSI
SQL isolation levels. In Proc. of the 1995 ACM
SIGMOD International Conference on Management of
Data (May 1995), SIGMOD ’95, pp. 1–10.

[3] Cahill, M. J., Röhm, U., and Fekete, A. D.
Serializable isolation for snapshot databases. ACM
Trans. Database Syst. 34, 4 (Dec. 2009), 20:1–20:42.

[4] Davis, J. pg_upgrade + streaming replication.
https://www.postgresql.org/message-id/
1332194822.1453.4.camel%40sussancws0025, Mar.
2012.

[5] Diaconu, C., Freedman, C., Ismert, E., Larson,
P.-A., Mittal, P., Stonecipher, R., Verma, N.,
and Zwilling, M. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proc. of the 2013
ACM SIGMOD International Conference on
Management of Data (2013), pp. 1243–1254.

[6] Dunlap, G. W., Lucchetti, D. G., Fetterman,
M. a., and Chen, P. M. Execution replay of
multiprocessor virtual machines. Proc. of the 4th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE’08) (Mar.
2008), 121–130.

[7] Faleiro, J. M., and Abadi, D. J. Rethinking
serializable multiversion concurrency control. Proc.
VLDB Endow. 8, 11 (July 2015), 1190–1201.

2035

[8] Faleiro, J. M., Abadi, D. J., and Hellerstein,
J. M. High performance transactions via early write
visibility. Proc. VLDB Endow. 10, 5 (2017).

[9] Fekete, A., Liarokapis, D., O’Neil, E., O’Neil,
P., and Shasha, D. Making snapshot isolation
serializable. ACM Trans. Database Syst. 30, 2 (June
2005), 492–528.

[10] GitLab Team, 2017. https://about.gitlab.com/
2017/02/01/gitlab-dot-com-database-incident/.

[11] Guo, Z., Wang, X., Tang, J., Liu, X., Xu, Z.,
Wu, M., Kaashoek, M. F., and Zhang, Z. R2:
An Application-Level Kernel for Record and Replay.
Operating Systems Design and Implementation (2008),
193–208.

[12] Harizopoulos, S., Abadi, D. J., Madden, S., and
Stonebraker, M. OLTP through the looking glass,
and what we found there. In Proc. of the 2008 ACM
SIGMOD International Conference on Management of
Data (2008), SIGMOD ’08, pp. 981–992.

[13] Hong, C., Zhou, D., Yang, M., Kuo, C., Zhang,
L., and Zhou, L. KuaFu: Closing the parallelism gap
in database replication. Proceedings - International
Conference on Data Engineering (2013), 1186–1195.

[14] Kallman, R., Kimura, H., Natkins, J., Pavlo,
A., Rasin, A., Zdonik, S., Jones, E. P. C.,
Madden, S., Stonebraker, M., Zhang, Y.,
Hugg, J., and Abadi, D. J. H-store: A
high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow. 1,
2 (Aug. 2008), 1496–1499.

[15] Kim, K., Wang, T., Johnson, R., and Pandis, I.
Ermia: Fast memory-optimized database system for
heterogeneous workloads. In Proceedings of the 2016
International Conference on Management of Data
(2016), SIGMOD ’16, pp. 1675–1687.

[16] Larson, P.-A., Blanas, S., Diaconu, C.,
Freedman, C., Patel, J. M., and Zwilling, M.
High-performance concurrency control mechanisms for
main-memory databases. Proc. VLDB Endow. 5, 4
(Dec. 2011), 298–309.

[17] Malviya, N., Weisberg, A., Madden, S., and
Stonebraker, M. Rethinking main memory OLTP
recovery. In Proc. of the IEEE 30th Intl. Conference
on Data Engineering (Mar. 2014), pp. 604–615.

[18] Mao, Y., Kohler, E., and Morris, R. T. Cache
craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM European Conference on
Computer Systems (2012), EuroSys ’12, pp. 183–196.

[19] McInnis, D. The Basics of DB2 Log Shipping. IBM
developerWorks (April 2003).
http://www.ibm.com/developerworks/data/library/
techarticle/0304mcinnis/0304mcinnis.html.

[20] Microsoft. About Log Shipping (SQL Server), May
2016. https://msdn.microsoft.com/en-
us/library/ms187103.aspx.

[21] Neumann, T., Mühlbauer, T., and Kemper, A.
Fast serializable multi-version concurrency control for
main-memory database systems. In Proc. of the 2015
ACM SIGMOD International Conference on
Management of Data (2015), SIGMOD ’15,
pp. 677–689.

[22] Oracle Corporation. MySQL 5.7 Reference
Manual, 2016. Chapter 18, https://dev.mysql.com/
doc/refman/5.7/en/replication.html.

[23] Percona Lab. TPC-C MySQL, 2016.
https://github.com/Percona-Lab/tpcc-mysql.

[24] The PostgreSQL Global Development Group.
PostgreSQL 9.5.4 Documentation, 2016. Chapter 25,
https://www.postgresql.org/docs/
current/static/warm-standby.html.

[25] The PostgreSQL Global Development Group.
PostgreSQL 9.5.6 Documentation, 2017. pg_upgrade,
https://www.postgresql.org/docs/9.5/static/pgupgrade.html.

[26] Saito, Y. Jockey: a user-space library for
record-replay debugging. Proceedings of the sixth
international symposium on Automated analysis
driven debugging (2005), 69–76.

[27] Thomson, A., and Abadi, D. J. The case for
determinism in database systems. Proceedings of the
VLDB Endowment 3, 1-2 (2010), 70–80.

[28] Thomson, A., Diamond, T., and Weng, S. Calvin:
fast distributed transactions for partitioned database
systems. In Sigmod ’12 (2012), pp. 1–12.

[29] Tözün, P., Pandis, I., Kaynak, C., Jevdjic, D.,
and Ailamaki, A. From A to E: Analyzing TPC’s
OLTP Benchmarks: The obsolete, the ubiquitous, the
unexplored. In Proc. of the 16th Intl. Conference on
Extending Database Technology (2013), pp. 17–28.

[30] Tu, S., Zheng, W., Kohler, E., Liskov, B., and
Madden, S. Speedy transactions in multicore
in-memory databases. In Proc. of the 24th ACM
Symposium on Operating Systems Principles (2013),
pp. 18–32.

[31] Uber Technologies Inc. Why uber engineering
switched from postgres to mysql, July 2016.

[32] Wang, T., Johnson, R., Fekete, A., and Pandis,
I. The Serial Safety Net: Efficient Concurrency
Control on Modern Hardware. Proceedings of the 11th
International Workshop on Data Management on New
Hardware (2015), 8:1—-8:8.

[33] Wu, Y., Guo, W., Chan, C.-Y., and Tan, K.-L.
Fast failure recovery for main-memory dbmss on
multicores. In Proceedings of the 2017 ACM
International Conference on Management of Data
(2017), SIGMOD ’17, pp. 267–281.

[34] Wu, Y., and Tan, K.-L. Scalable in-memory
transaction processing with HTM. In Proc. of the
2016 USENIX Annual Technical Conference (2016),
ATC ’16, pp. 365–377.

[35] Yao, C., Agrawal, D., Chen, G., Ooi, B. C., and
Wu, S. Adaptive logging: Optimizing logging and
recovery costs in distributed in-memory databases. In
Proc. of the 2016 Intl. Conference on Management of
Data (2016), SIGMOD ’16, pp. 1119–1134.

[36] Zheng, W., Tu, S., Kohler, E., and Liskov, B.
Fast databases with fast durability and recovery
through multicore parallelism. In 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 14) (2014), pp. 465–477.

2036

	Introduction
	Motivation
	Related Work
	Multi-Version Replay
	Record-Replay
	Transaction Model
	Overview of Approach
	Recording on the Primary
	Determining the Serial Order
	Batching Transactions in Epochs

	Replaying on the Backup
	Replay Initialization
	Replay
	Garbage Collection

	Implementation
	Recording on the Primary
	Obtaining Serial Order
	Batching Transactions in Epochs

	Replaying on the Backup
	Failover
	Read-Only Transactions

	Evaluation
	Workloads
	Network Traffic
	Primary Performance
	Performance Over Slow Network

	Replay Performance
	Epoch Length
	Version Array Vs. Linked List
	Memory Overhead

	Bugs Found in ERMIA
	Conclusions
	References

