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ABSTRACT

Distributed SPARQL engines promise to support very large
RDF datasets by utilizing shared-nothing computer clus-
ters. Some are based on distributed frameworks such as
MapReduce; others implement proprietary distributed pro-
cessing; and some rely on expensive preprocessing for data
partitioning. These systems exhibit a variety of trade-offs
that are not well-understood, due to the lack of any compre-
hensive quantitative and qualitative evaluation. In this pa-
per, we present a survey of 22 state-of-the-art systems that
cover the entire spectrum of distributed RDF data process-
ing and categorize them by several characteristics. Then,
we select 12 representative systems and perform extensive
experimental evaluation with respect to preprocessing cost,
query performance, scalability and workload adaptability,
using a variety of synthetic and real large datasets with up
to 4.3 billion triples. Our results provide valuable insights
for practitioners to understand the trade-offs for their usage
scenarios. Finally, we publish online our evaluation frame-
work, including all datasets and workloads, for researchers
to compare their novel systems against the existing ones.

1. INTRODUCTION

The Resource Description Framework (RDF) [8] is a ver-
satile data model that provides a simple way to express facts
in the semantic web. Many large public knowledge bases, in-
cluding UniProt [10], PubChemRDF [7], Bio2RDF [3] and
DBpedia [4] have billions of facts in RDF format. These
databases are usually interlinked, and are globally queried
using SPARQL [42].

As the volume of RDF data grows, the computational
complexity of indexing and querying large datasets becomes
challenging. Single-machine RDF systems, like RDF-3X [53]
and gStore [37], do not scale well to complex queries on
web-scale RDF data [29, 33]. To overcome this problem,
many distributed SPARQL query engines [29, 33, 47, 41,
32, 48, 30, 28, 36, 25, 46, 18, 15, 38, 16] have been intro-
duced. They utilize shared-nothing computing clusters and
are either built on top of distributed data processing frame-
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works, such as MapReduce, or implement proprietary dis-
tributed computation approaches. They partition the RDF
graph among multiple machines (a.k.a., workers) to han-
dle big datasets, and parallelize query execution to reduce
the running time. Answering queries typically involve pro-
cessing of local data at each worker, interleaved with data
exchange among workers. The main challenge of distributed
systems is scaling-out, which is affected by various factors
including data partitioning, load balancing, indexing, query
optimization and communication overhead.

Despite the plethora of distributed RDF systems and their
practical applications, there is limited information about
their comparative performance. Some published surveys
provide qualitative comparisons. For example, Sakr et al. [49]
present an overview of using the relational model for RDF
data. Svoboda et al. [52] classify state-of-the-art indexing
approaches for linked data. Kaoudi et al. [34] survey RDF
data management systems designed for the cloud. Ozsu [43]
provides a broader overview of existing centralized and dis-
tributed RDF engines and discusses querying techniques for
linked data. Finally, Ma et al. [40] survey techniques that
use relational and NoSQL databases to store large RDF
data. None of the aforementioned surveys contain any ex-
perimental evaluation.

Motivated by the lack of quantitative comparison, in this
paper we provide a comprehensive experimental evaluation
of state-of-the-art distributed RDF systems, using a vari-
ety of very large real datasets and query loads. We start
with an extensive survey that covers 22 relevant systems.
We describe the execution model and the graph partitioning
strategy of each system, discuss the similarities and differ-
ences and explain the various trade-offs. We also categorize
the systems based on the: (i) underlying implementation
framework (e.g., MapReduce, vertex-centric or proprietary
distributed processing); (ii) use of generic joins versus spe-
cialized graph exploration; (i) data replication strategy;
and (iv) adaptivity to query workload.

Then, we perform extensive experimental evaluation of
the following 12 representative systems: S2RDF [15], Ad-
Part [46], DREAM [38], Urika-GD [11], CliqueSquare [25],
S2X [51], TriAD [48], SHAPE [32], H-RDF-3X [29],
H2RDF+ [41], SHARD [47] and gStoreD [45]. We use all the
standard synthetic benchmarks (e.g., LUBM [6]) and a vari-
ety of very large real datasets (e.g., Bio2RDF [3]) with up to
4.3 billion triples, to stretch the systems to their limits. We
analyse the following metrics: (¢) Startup cost: it includes
the time overhead of data partitioning, indexing, replication
and loading to HDFS/memory, as well as the storage over-
head of replication; (i) Query efficiency: we utilize query
workloads with varying query complexities and selectivities,
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Figure 1: An example RDF graph. Each edge and
its associated vertices correspond to an RDF triple;
e.g., (Bill, worksFor, CS).

and report the execution time; (4i¢) Scalability to very large
datasets; and (iv) Adaptability to different workloads.

Our results suggest that specialized in-memory systems,
such as AdPart [46] or TriAD [48] provide the best perfor-
mance, assuming the data can fit in the cumulative mem-
ory of the computing cluster. If this condition is not sat-
isfied, MapReduce based systems (e.g., H2RDF+ [41]), are
an acceptable alternative. In contrast, the startup costs of
some systems (e.g., S2RDF [15]) or the excessive replica-
tion (e.g., DREAM [38]), severely limit their applicability
to large datasets. In an attempt to standardize the eval-
uation of future systems and assist practitioners to select
the appropriate solution for their data and applications, we
publish online all datasets, our evaluation methodology and
links to the systems.

The rest of the paper is organized as follows: Section 2
provides essential background on RDF and an overview of
single machine RDF stores. Section 3 contains a survey of
the 22 state-of-the-art distributed RDF systems, whereas
Section 4 presents the experimental evaluation of the se-
lected 12 systems. Finally, Section 5 concludes our findings.

2. BACKGROUND

RDF [8] is a standard data model and the core compo-
nent of the W3C Semantic Web. RDF datasets consist of
triples (subject, predicate, object), where the predicate
(P) represents a relationship between a subject (S) and an
object (O). RDF data can be viewed as a long relational ta-
ble with three columns, or as a directed labeled graph with
vertices reflecting the entities and edge labels as the pred-
icates. Figure 1 shows an example RDF graph of students
and professors in an academic network.

SPARQL [9] is the de-facto query language for RDF data.
In its simplest form, a.k.a. Basic Graph Pattern (BGP),
a SPARQL query consists of a set of RDF triple patterns;
some of the nodes in a pattern are variables that may ap-
pear in multiple patterns. For example, the query in Fig-
ure 2(a) returns all professors who work for CS with their
advisees. The query corresponds to the graph pattern in
Figure 2(b). The answer is the set of ordered bindings of
(?prof, ?stud) that render the query graph isomorphic to
subgraphs in the data. Assuming data are stored in a ta-
ble D(s,p,0), the query can be answered by first decom-
posing it into two subqueries: ¢1 = Tp=worksForro=cs(D)
and g2 = Op=advisor(D). The subqueries are answered in-
dependently by scanning table D; then, their intermedi-
ate results are joined on the subject and object attribute:
q1 ™g, .s=q2.0 2. By applying the query on the data of Fig-
ure 1, we get (?prof, ?stud) € {(James, Lisa), (Bill,
John), (Bill, Fred), (Bill, Lisa)}.

SELECT ?prof ?stud WHERE { worksFory [cs

?prof worksFor CS . ?prof
[7prof]
?stud advisor  ?prof . advisor
}
(a) SPARQL (b) Graph

Figure 2: A SPARQL query that finds CS professors
with their advisees.

2.1 Single-machine RDF stores

We discuss the storage models of single-machine RDF sys-
tems since several distributed systems [38, 32, 29] rely on
them for querying RDF data within a single partition.

Triple Table uses a single table with three columns cor-
responding to subject, predicate and object to store RDF
data. An index is created per column for faster join evalu-
ation. A query with several predicates corresponds to a set
of self-joins on the large triple table. This approach scales
poorly due to expensive self joins [26]. RDF-3X [53] and
Hexastore [23] reduce this cost by using a set of indices that
cover all possible permutations of S, P and O. These indices
are stored as clustered B+-trees and are compressed using
rigorous byte-level techniques. Aggregate indices, selectiv-
ity histograms and statistics about frequently accessed paths
are used to select the lowest-cost execution plan. Their op-
timizer use order-preserving merge-joins for most of the op-
erations and hash-joins for the last few ones.

Property table is a wider and flattened representation of
RDF data [54]. The dimensions of this table are determined
by the number of subjects and distinct predicates. Each cell
in the table contains the object value of the corresponding
subject and predicate. This representation has high stor-
age overhead when the number of unique predicates is large
due to its sparse representation. Moreover, it can not rep-
resent multi-valued attributes, i.e., a subject connected to
different objects using the same predicate. Jena2 [55] solves
this problem by introducing two alternative representations,
namely, the clustered property table and property-class ta-
bles. BitMat [20] proposes an alternative representation of
property tables that uses a compressed 3-dimensions bit-
matrix. Each dimension of the bit-matrix corresponds to
part of RDF triple; S, P and O. Each cell represents the
existence of an RDF triple defined by the S,P,O positions.
Queries are executed on the compressed data without ma-
terializing intermediate join results.

Vertical Partitioning is another representation for RDF
data proposed by SW-Store [24]. The triples table is ver-
tically partitioned into n tables, where n is the number of
distinct predicates. A two columns table is created for each
predicate where a row is a pair of subject-object values con-
nected through the predicate. Tables are sorted on the sub-
ject to render subject lookup and merge joins faster. This
approach stores multi-valued attributes as successive rows
and does not store NULL wvalues. It provides good per-
formance for queries with bounded predicates, however, it
requires scanning multiple tables to reconstruct information
related to a single entity.

3. DISTRIBUTED RDF SYSTEMS

Distributed RDF systems scale to large datasets by parti-
tioning the RDF graph among many compute nodes (work-
ers) and evaluating queries in a distributed fashion. Each
SPARQL query is decomposed into multiple subqueries,
which are then evaluated independently. Since the data is
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Table 1: Summary of state-of-the-art distributed RDF systems.

System Partitioning Strategy Execution Model Ma]}g){:.seec(lluce %zzgg Spse;;gaéléed Replication ANV‘?;SE:SS
AdPart [46] Subject Hash + workload adaptive  Distributed Semi-Join v’ v’ v’
AdPart-NA [46] Subject Hash Distributed Semi-Join v’

CliqueSquare [25] Hybrid (Hash + VP) MapReduce-based Join v’

DREAM [38] No partitioning; full replication RDF-3X [53] v’ v’

EAGRE [56] METIS MapReduce-based Join v’

gStoreD [45] Partitioning Agnostic gStore [37] v’ v’

H-RDF-3X [29] METIS RDF-3X [53] v’ v’ v’

H2RDF+ [41] H-Base partitioner (range) Centralized + MapReduce v’ v’

HadoopRDF [30] VP + predicate files on HDFS MapReduce Join v’

Partout [36] Workload-based fragmentation RDF-3X [53] v’ v’
PigSparql [14] Hash + Triple-based files SPARQL to PigLatin v’

S2RDF [15] Extended Vertical Partitioning SPARQL to SQL v’ v’

S2X [51] GraphX partitioning strategy Vertex-Centric BGP matching v’ v~

Sedge [57] Subject Hash Vertex-Centric BGP matching v’ v’

Sempala [50] VP SPARQL to SQL v’

SHAPE [32] Semantic Hash Partitioning RDF-3X [53] v’ v’ v’

SHARD [47] Hash MapReduce-based Join v’

TriAD [48] Hash-based Sharding Distributed Merge/Hash Joins v’

TriAD-SG [48] METIS + Horizontal Sharding Distributed Merge/Hash Joins v’ v

Trinity. RDF [33] Key-value store on graph Graph Exploration v’ v’

WARP [28] METIS on query workload RDF-3X [53] v’ N v’ v’
subOrgof advisor worksFor uGradFrom gradFrom workers such that each worker is responsible for a distinct set
HECHMigs MO--gpoe] EEIERECS Bl CcMu Bl CMU of triples. SHARD does not use indexing; consequently, dur-
=gy [Csa by [omeeyMICORY [ames)CVDY Eames) NI ing query evaluation it scans the entire dataset. SPARQL
ES MIT Fred Bill type_Grad John CMU s . .

e | @ b am | &l e m | T queries are executed as a sequence of MapReduce iterations.
HCI  CMU John HDFS Each iteration is responsible for a single subquery, while the

Figure 3: Vertical partitions of the data of Fig. 1.

distributed, nodes may need to exchange intermediate re-
sults during query evaluation; therefore queries with large
intermediate results incur high communication cost [48, 29].
To achieve acceptable response time, distributed systems at-
tempt to minimize communication cost and maximize par-
allelism. This is accomplished by efficient data partition-
ing that maximizes data locality; load balancing that avoids
stragglers; efficient join implementations; and the utiliza-
tion of native RDF indexing techniques to speedup joins
and index lookups. We summarize in Table 1 the various
features of existing distributed RDF systems. Note that
Replication in this table points to systems that explicitly
replicate RDF data, excluding HDF'S replication.

In this survey, we categorize distributed RDF manage-
ment systems along 2 dimensions based on their execution
model: (i) MapReduce and Graph-based systems: such sys-
tems rely on general purpose frameworks, i.e., Hadoop or
Spark, that offer seamless data distribution and paralleliza-
tion at the cost of flexibility. (i3) Specialized RDF systems:
are built specifically for SPARQL query evaluation by utiliz-
ing custom physical layouts, native RDF indexing, efficient
communication protocols and explicit replication. Within
the second category, we define three subcategories based
on the data partitioning scheme: lightweight, sophisticated
and workload-aware partitioning. Systems based on sophis-
ticated partitioning offer faster query execution at the cost
of startup time and storage requirements. Workload-aware
systems achieve faster query execution by adapting their
data partitioning to the entire query workload.

3.1 MapReduce and Graph Based Systems

SHARD [47] is a triple store implemented on top of MapRe-
duce [31]. The entire RDF dataset is stored in a single file
within HDFS [2], where each line represents all triples of a
single subject. The input dataset is hash-partitioned among
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results are continuously joined with subsequent iterations.
The final iteration is responsible for filtering the bounded
variables and removing redundant results.

HadoopRDF [30] also uses HDFS to store the RDF data
as flat files; replication and distribution is left to HDFS.
Unlike SHARD, HadoopRDF uses multiple files on HDF'S,
a file for each predicate which is similar to SW-Store’s [24]
vertical partitioning. HadoopRDF also splits each predicate
file into multiple smaller files based on explicit and implicit
type information. Initially, it divides the rdf:type file into
as many files as the number of distinct objects. Then, a
set of files are created for each type type_object. For exam-
ple, rdf:type in Figure 3 results in only one file (type_Grad)
because predicate type has only one object (Grad). Then,
HadoopRDF divides the remaining predicate files into mul-
tiple files based on the object type. It splits triples based
on the RDF class their object belongs to. For example,
triple (John, teacherOf, 0S) will be stored in a file named
teacherOf_Course. To retrieve this implicit type informa-
tion, it needs to join the predicate file with the type_* files.
HadoopRDF executes queries as a sequence of MapReduce
iterations. It contains a query optimizer to select the query
plan that minimizes the number of MapReduce iterations
and the size of intermediate results.

CliqueSquare [25] exploits the replication of HDFS to
maximize the efficiency of parallel joins and to reduce the
communication cost. To achieve this, CliqueSquare parti-
tions and stores the data in three different ways, by hash-
ing each triple on the subject, predicate and object. Fur-
thermore, it partitions the data within each machine into
smaller files by applying property-based grouping similar
to HadoopRDF'. The integration of HDFS replication and
partitioning enables CliqueSquare to perform all first-level
joins (i.e., subject-subject, subject-predicate, etc.) locally
on each machine. The CliqueSquare optimizer minimizes
the number of joins by generating relatively shallow plans
that use multi-way joins. It finds the possible clique decom-



positions of the query graph, where each clique corresponds
to a multi-way join, and then selects the decomposition with
the lowest cost. The resulting plan is executed as a sequence
of MapReduce iterations.

H2RDF+ [41] is a distributed RDF engine based on
MapReduce and Apache HBase [5]. It materializes all six
permutations of RDF triples using HBase tables, which are
sorted key-value maps. Data partitioning is left to HBase
that range-partitions tables based on keys. Maintaining
these indices offers several benefits: () all SPARQL triple
patterns can be answered efficiently by a single scan on the
corresponding index; (#i) merge join can be employed to ex-
ploit the precomputed ordering in these indices; and (#17) ev-
ery join between triple patterns is executed as merge-join.
H2RDF+ maintains a set of aggregated statistics to esti-
mate the selectivity of triple patterns, join results and join
cost. It uses a greedy algorithm that finds at each execution
step the join with the lowest cost. It uses multi-way merge
join for sorted data, and sort-merge join for unsorted inter-
mediate results. Simple queries are executed efficiently in a
centralized fashion, while complex queries with large inter-
mediate results are evaluated as a sequence of MapReduce
jobs. H2RDF+ utilizes lazy materialization to minimize the
size of the intermediate results.

S2X [51] exploits the inherited graph structure of RDF to
process SPARQL as graph-based computations on top of
GraphX. It uses the parallel vertex-centric model to evalu-
ate the BGP matching of SPARQL while other operators,
such as OPTIONAL and FILTER, are processed through Spark
RDD operators. BGP matching starts by distributing all
triple patterns to all graph vertices. Each vertex matches
its edge labels with the triple’s predicate. Graph vertices co-
operatively validate their triple candidacy with their direct
neighbours by exchanging messages. Then, the partial re-
sults are collected and incrementally merged. S2X uses two
string encoding types: hash and count-based. Hash-based
encoding utilizes a 64-bit hash function to encode subjects
and objects, while count-based assigns unique numeric val-
ues to them. S2X does not have a special RDF partitioner;
it uses GraphX 2D hashing, which hashes on the encoded
subject then hashes on the encoded object, to partition the
input graph among workers.

Sedge [57] proposes similar techniques for SPARQL query
execution on top of the vertex-centric processing model. The
entire graph is replicated several times and each replica is
partitioned differently. Each SPARQL query is executed
against the replica that minimizes communication. Sedge
does not provide automatic translation of SPARQL queries
to the vertex-centric model; a vertex-centric program has
to be written manually for each query, which is counter-
productive and requires prior knowledge about the data.

3.2 Specialized RDF Systems

3.2.1 Lightweight Partitioning

Trinity. RDF [33] is a distributed in-memory RDF engine
that can handle large datasets. It represents RDF data in a
graph form using adjacency lists, stored in the Trinity key-
value store [21]. The graph is hash-partitioned on vertex-id;
this is equivalent to partitioning the data twice, on subject
and object. Trinity.RDF uses graph exploration for query
evaluation. In every iteration, a single subquery is explored
starting from the valid bindings in all workers. For exam-
ple, Figure 4 shows how Trinity. RDF executes Qprof. Start-

?stud  ?prof

?stud | advisor |James /

| ?prof | worksFor ] Cs ‘

Lisa
oo [ el |
Final Answer

Figure 4: Trinity. RDF Graph Exploration Execu-
tion Plan for Q,..y using the data in Figure 2.

2stud | advisor | Bil

ing with the pattern (?prof, worksFor, CS), it explores the
neighbours of C'S connected via worksFor. It finds that the
possible binding for ?prof are James and Bill. In the next
iteration, it starts to explore from nodes James and Bill
via edge advisor, and generates the bindings for (?stud,
advisor, ?prof). Graph exploration avoids the generation
of redundant intermediate results. However, because explo-
ration only involves two vertices (source and target), Trin-
ity. RDF cannot prune invalid intermediate results without
carrying all their historical bindings. Hence, workers need
to ship candidate results to the master to finalize processing,
which is a potential bottleneck.

TriAD [48] employs lightweight hash partitioning based on
both subjects and objects. Since partitioning information
is encoded into the triples, TriAD has full locality aware-
ness of the data and processes large number of concurrent
joins without communication. It creates six in-memory ta-
bles on each machine, one for each permutation of subject,
predicate, object. The six SPO permutations are arranged
into two groups; subject-key indices (SPO, SOP, PSO), and
object-key indices (OSP, OPS, POS). Each of these indices is
then hash-partitioned among different machines and sorted
within each machine in lexicographic order. This enables
TriAD to perform efficient distributed merge-joins over the
different SPO indices. Multiple join operators are executed
concurrently by all workers, which communicate via asyn-
chronous message passing. At each compute node, TriAD
uses multiple-threads to evaluate multiple operators in the
query plan in parallel. TriAD shards one (both) relation(s)
when evaluating distributed merge (hash) joins, which does
not preserve the locality of intermediate results. This causes
TriAD to re-shard intermediate results if the sharding col-
umn of the previous join is not the current join column.
This cost is significant for large intermediate results with
multiple attributes.

AdPart-NA [46] employs lightweight partitioning that
hashes triples on subject. Each worker stores its local set
of triples using three in-memory data structures; P-index,
PS-index and PO-index. P-index returns the set triples
having the given predicate. Similarly, PS and PO indices
return the nodes connected to the given predicate-subject
or predicate-object, respectively. AdPart-NA exploits the
query structure and the hash-based data locality in order to
minimize the communication cost during query evaluation.
It capitalizes on the subject-based locality and the locality of
its intermediate results (pinning) to evaluate joins in paral-
lel without communication. Star queries joining on subjects
are processed in parallel by all workers. Whenever possi-
ble, intermediate results are hash-distributed among work-
ers instead of broadcasting to all workers. Figure 5 shows
how AdPart-NA evaluates Qpror by a single subject-object
join, assuming the following execution order: ¢i: (?prof,
worksFor, CS), g2: (?stud, advisor, ?prof). For such
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Figure 5: Adpart-NA Query Execution Plan for the

SPARQL query in Figure 2.

queries, AdPart-NA employs distributed semi-join. Each
worker scans its PO index to find all triples matching g1,
projects on join column ?prof, and exchanges it with the
other worker. Once the projected column is received, each
worker computes semi-join ¢1 X2prof g2 using its PO in-
dex. Specifically, wy probes p = advisor,o = Bill while
wsz probes p = advisor,o = James. Finally, each worker
computes q1 Xeprof g2.

DREAM ([38] utilizes data replication instead of partition-
ing by building a single database that is replicated to all
workers. It also avoids expensive intermediate data shuffling
and only exchanges small auxiliary data. Each machine uses
RDF-3X on its assigned data for statistics estimation and
query evaluation. DREAM decomposes each query into mul-
tiple, usually non-overlapping, subqueries where each sub-
query is answered by a single worker. Depending on the
query complexity, DREAM’s optimizer decides to run it ei-
ther in a centralized or in a distributed fashion. Although
DREAM does not incur any partitioning overhead, it ex-
hibits excessive replication and costly preprocessing because
of the centralized database construction.

gStoreD [45] is a distributed partitioning-agnostic system.
It does not decompose the input query which is sent as-is to
all workers. gStoreD starts the query evaluation by comput-
ing the partial local matches at each worker. This process
depends on a revised version of gStore [37], a single-machine
graph-based RDF engine. Then, gStoreD assembles the par-
tial matches to build the cross-partition results. gStoreD al-
lows for two modes of assembly; centralized and distributed.
The centralized assembly mode sends the partial results to
a centralized site, whereas distributed mode assembles them
in multiples sites in parallel.

3.2.2  Sophisticated Partitioning

H-RDF-3X [29] uses METIS [27], a balanced vertex par-
titioning method, to efficiently assign each graph node to
a single partition. Then, H-RDF-3X enforces the so-called
k-hop guarantee where, for any vertex v assigned to parti-
tion p, all vertices up to k-hops away and the corresponding
edges are replicated in p. This way any query within radius
k can be executed without communication. For example,
partitioning the graph in Figure 1 among two workers using
1-hop undirected guarantee yields the partitions shown in
Table 2. Each partition is stored and managed by a stan-
dalone centralized RDF-3X store; duplicate results are ex-
pected due to replication. For example, query @ =(?stud,
advisor, Bill) returns duplicate (Lisa, advisor, Bill) and
(Fred, advisor, Bill); one from each partition. To solve this
problem, H-RDF-3X introduces the notion of triple owner-
ship. For each vertex v assigned to partition p, H-RDF-3X
stores a new triple (v, is_owned, yes) at partition p. During
query evaluation an extra join is required for filtering out
duplicate results. Queries with radius larger than k are ex-

Table 2: 1-hop undirected guarantee partitioning of

the RDF in Figure 1. subject(s) and object(s) high-

lighted in blue are owned by W1; the rest belong to

W2. Replicated triples are highlighted in yellow.
W1

W2
subject predicate object subject predicate object
HPC subOrgOf MIT CS subOrgOf MIT
EE subOrgOf MIT HCI subOrgOf CMU
CHEM subOrgOf CMU Bill worksFor CS
James worksFor CS Bill gradFrom CMU
James uGradFrom CMU Bill uGradFrom CMU
James gradFrom MIT John type Grad
Lisa uGradFrom MIT John uGradFrom CMU
Lisa type Grad John advisor Bill
Lisa advisor James CHEM subOrgOf CMU
Lisa advisor Bill James uGradFrom CMU
Fred advisor Bill Lisa advisor Bill
John type Grad James worksFor CS
CS subOrgOf MIT Fred advisor Bill
[ cs

worksFor

¥
cmU |

- === Replicated Triple

Expanded partition

qudELqm:l

[Bir |

gradFrom

Baseline Partition

Figure 6: An example of semantic hash partitioning
with forward direction and £ = 1.

ecuted using expensive MapReduce joins. k must be small
(e.g., k < 2 in [29]) because replication increases exponen-
tially with k.

EAGRE [56] transforms the RDF data into an entity graph
by grouping triples based on the subject where each subject
is called an entity. Then, it groups entities with similar
properties into an entity class. EAGRE generates a com-
pressed entity graph containing only the entity classes and
their relationships which is then partitioned using METIS.
At each machine, entities belonging to the same class are
treated as high dimensional data indexed by a Space Fill-
ing Curve. This maintains an order preserving layout of the
data which fits well range and order by queries. EAGRE
aims at minimizing the I/O costs by a distributed schedul-
ing approach that reduces the total number of data blocks
to read for query evaluation. Similar to H-RDF-3X, EA-
GRE also suffers from the overhead of MapReduce joins for
queries that cannot be evaluated locally.

SHAPE [32] uses semantic hash partitioning to group ver-
tices based on URI hierarchy for the sake of increasing data
locality. It identifies groups of triples anchored at the same
subject or object and tries to place these grouped triples in
the same partition. Then, SHAPE applies its semantic hash-
ing technique in two phases: (i) baseline hash partitioning
and (4) k — hop expansion which adds to each partition all
triples whose shortest distance to any anchor of the partition
is at most k. Figure 6 shows an example for how to expand
a baseline partition in the forward direction with k£ = 1.
Each resulting partition is managed by a standalone RDF-
3X store. Similar to H-RDF-3X, SHAPE suffers from the
high overhead of MapReduce joins. It also requires an extra
join for filtering duplicate results. Furthermore, URI-based
grouping results in skewed partitioning if a large percentage
of vertices share prefixes.

TriAD-SG [48] is a variation of TriAD that uses METIS for
data partitioning. Edges that cross partitions are replicated,
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ugradFrom ugradFrom
gradFrom subOrgOf.type gradFrom
subOrgOf W2 W1 subOrgOf
worksFor X type
advisor ugradFrom,subOrgOf,worksFor,advisor advisor

Figure 7: A summary graph for the RDF in Figure 1.

resulting in 1—hop guarantee. It defines a summary graph
which includes a vertex for each partition; edges connect
vertices that share cross-partition edges. Figure 7 shows the
summary graph of the data in Figure 1. Queries in TriAD-
SG are evaluated against the summary graph first, in order
to prune partitions that do not contribute to query results.
Then, they are evaluated on the RDF data residing in the
partitions retrieved from the summary graph. Multiple join
operators are executed concurrently by all workers, which
communicate via an asynchronous message passing protocol.

S2RDF [15] is a SPARQL engine built on top of
Spark [39]. It proposes a relational partitioning tech-
nique for RDF data called Extended Vertical partitioning
(ExtVP). ExtVP extends the vertical partitioning approach
used by HadoopRDF to minimize the size of input data dur-
ing query evaluation. ExtVP uses semi-join reduction [44] to
minimize data skewness and eliminate dangling triples that
do not contribute to any join. For every two vertical par-
titions (see Figure 3), ExtVP pre-computes join reductions.
The results are materialized as tables in HDFS. Specifi-
cally, for two partitions P; and P, S2RDF pre-computes:
(i) subject-subject: Pi Xs—s P2, P2 Xs—s P1, (i) subject-
object: Pi Xs=o P2, P> Xs=o P1, and (#4) object-subject:
P1 Xo=s P2, P> Xo—s P1. The objective of this reduction is
to use the semi-join reduced tables for joins instead of the
base table since the reduced tables are much smaller, i.e.,
Ty }ig=p To = (T1 X A—B TQ) > (T1 XA=B Tz). S2RDF does
not run on Spark directly; it translates SPARQL queries into
SQL jobs which are then executed on top of Spark SQL [19].
S2RDF follows a similar approach to Sempala [50] and
PigSPARQL [14]. Sempala is a distributed RDF en-
gine that translates SPARQL into SQL which runs on top
of Apache Impala [35]. Similarly, PigSPARQL translates
SPARQL queries into Pig Latin [22] scripts on Apache Pig.

3.2.3 Workload-Aware Partitioning

Partout [36] is a workload-aware distributed RDF engine.
It relies on a given query workload to extract representative
triple patterns and uses them to partition the data into frag-
ments. Partout has two objectives: (i) collocate fragments
that are used together in queries; and (i) achieve load bal-
ancing among workers. Partout defines a load score for each
fragment and sorts fragments in descending order. For each
fragment, it calculates a benefit score for allocating it to each
machine. The benefit score takes into account both the ma-
chine utilization well as the fragment locality. Each worker
runs RDF-3X on its assigned fragments. Partout uses global
statistics to generate an initial query plan, which is then re-
fined by a cost model that considers data fragments and
their locations. The final query plan is executed in parallel
by all machines, where each machine sends the results to
other hosts in the pipeline.

WARP [28] uses a representative query workload to repli-
cate frequently accessed data by extending the n — hop guar-
antee method [29]. Given a user query, WARP determines
its center node and radius. If the query is within the n— hop
guarantee, WARP sends the query to all machines, which
evaluate the query in parallel. Otherwise, the query is de-
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composed into subqueries for which a distributed query eval-
uation plan is created. Subqueries are evaluated in parallel
by all machines and the results are sent to the master which
combines them using merge join.

AdPart [46] extends AdPart-NA with adaptive workload-
awareness, to cope with the dynamism of RDF workloads.
It monitors the query workload and incrementally redis-
tributes parts of the data that are frequently accessed by
hot patterns. By maintaining these patterns, many future
queries are evaluated without communication. The adaptiv-
ity of AdPart complements its good performance on queries
that can benefit from its hash-based data locality. Frequent
query patterns that are not favored by the initial partition-
ing (e.g., star joins on an object) are processed in parallel.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of 12 repre-
sentative distributed RDF systems using multiple real and
synthetic datasets. All datasets, workloads, and the detailed
results of our experiments are available online [1].

4.1 System Setup

Datasets: We use real and synthetic datasets of variable
sizes, summarized in Table 3. We utilize the LUBM [6] syn-
thetic data generator to create a dataset of 10,240 univer-
sities consisting of 1.36 billion triples. LUBM and its tem-
plate queries are widely used for testing most distributed
RDF engines [33, 41, 32, 48]. We also use WatDiv [12]
which is a recent benchmark that provides a wide spectrum
of queries with varying structural characteristics and selec-
tivity classes. We consider two versions of this synthetic
dataset: WatDiv with 109 million and WatDiv-1B with 1
billion triples. We also use two real datasets; YAGO2 [13]
and Bio2RDF [3]. YAGO?2 is derived from Wikipedia, Word-
Net and GeoNames containing 284 million triples. Bio2RDF
provides linked data for life sciences and contains around 4.3
billion triples connecting 24 different biological datasets.
Hardware Setup: All systems are deployed on a 12 ma-
chine cluster connected by a 10Gbps Ethernet switch. Each
machine has a 148GB RAM and two 2.1GHz AMD Opteron
6172 CPUs (12 cores each). The cluster runs a 64-bit Linux.
Hadoop and Spark configuration: We use Hadoop 1.2.1
and Spark 1.6.2 for MapReduce and Spark-based systems
and configure them to best utilize the available resources.
For Hadoop, we use 12 mappers per worker (a total of 144
mappers), while we configure Spark with 12 cores per worker
to achieve a total of 144 Spark cores. Note that we do
not use all 24 cores for Hadoop and Spark workers to al-
low for other background processes, such as HDFS threads
and Spark communicator threads.

Compared Systems: We evaluate the performance of
5 systems from the MapReduce and Graph-based cate-
gory and 7 from Specialized RDF systems. The 12 eval-
uated systems are: (i) AdPart [46], the current state-of-
the-art distributed RDF engine. (#) TriAD [48], a re-
cent efficient in-memory RDF system that uses lightweight
hash partitioning. ~We also consider TriAD-SG, which
uses graph summaries for join-ahead pruning. (7) Three
Hadoop-based systems which use lightweight partition-
ing: CliqueSquare [25], H2RDF+ [41] and SHARD [47].
(iv) SHAPE [32], a semantic hash partitioning approach for
RDF data. (v) H-RDF-3X [29], a system that uses METIS
for graph partitioning and applies the & — hop guarantee
scheme. We configure SHAPE with full level semantic hash



Table 3: Datasets; M: millions. #8S, #P, #0 denote number of distinct subjects, predicates and objects.

Dataset Triples (M) #S (M) #0 (M) #SNO (M) #P Size (GB) Al‘j‘gd/esgtr]gzv) (f‘;‘gt}isetg]g’z)
WatDiv 10023 50T 7.3 172 86 5 22.49/960.44 12.30/89.25
YAGO2 284.30 10.12 52.34 1.77 98 42 5,43/296293 28,()9/35,89
WatDiv-1B 1,002.16 52.12 179.09 46.95 86 149 23.60/2783.40 141.91/89.05
LUBM-10240 1,366.71 222.21 165.29 51.00 18 224 16,54/26000(}0 12,30/5,97
Bio2RDF 4287.59 552.08 1,075.58 49173 1714 506 8.64/21110.00  16.83/195.44

Table 4: Partitioning config. and replication ratio.

(a) Partitioning Config. (b) Initial Replication

H-RDF-3X SHAPE H-RDF-3X SHAPE DREAM
LUBM-10240 | 2 undirected 2 forward 19.5% 42.9% 1200%
WatDiv 3 undirected 3 undirected 1090% 0% 1200%
YAGO2 2 undirected 2 forward 73.7% 0% 1200%
Bio2RDF 2 undirected 2 undirected N/A N/A 1200%

partitioning and enable the type optimization. For H-RDF-
3X, we enable the type and high degree vertices optimiza-
tions. (vi) S2RDF [15], a SQL-based RDF engine on top of
Spark. (vii) S2X [51], an RDF engine on top of GraphX.
(vies) DREAM [38] which distributes the query execution
among fully-fledged unpartitioned data stores. (iz) Urika-
GD; a data analytics appliance which provides an RDF
triplestore and a SPARQL query engine. Urika-GD pro-
vides graph-optimized hardware with 2TB of global shared-
memory and 64 Threadstorm processors with 128 hardware
threads per processor. (z) gStoreD [45] a partitioning ag-
nostic approach for distributed SPARQL query processing.
Finally, as baselines, we also compare to two single-machine
engines; (z:) RDF-3X [53] and (wii) gStore [37]. These 12
systems were selected based on: (a) the availability of their
source codes, (b) they were successfully run on our cluster
and provided the correct results, and (c) they either achieve
the best performance in their category or introduce novel
approaches for distributed SPARQL query evaluation.
Configuration: We use the source codes provided by each
system’s authors and enable all optimizations. H-RDF-3X
and SHAPE were configured to partition each dataset such
that all queries are processable without communication (Ta-
ble 4(a)). To achieve this, we configure H-RDF-3X with
undirected guarantee, instead of forward guarantee. For
TriAD-SG, we use the same number of partitions reported
in [48] for LUBM-10240 and WatDiv. Determining the num-
ber of summary graph partitions requires empirical eval-
uation of some data workload or a representative sample.
Generating a representative sample from real data is tricky,
whereas empirical evaluation on the original data is costly.
Therefore, we do not evaluate TriAD-SG on Bio2RDF and
YAGO2. For experiments on individual queries, the query
performance is averaged over five runs for each system. The
query workloads in scalability and workload adaptivity ex-
periments are evaluated only once for each system.

4.2 Startup Overhead

Our first experiment measures the time it takes all sys-
tems for preparing the data prior to answering queries. In
Table 5, systems are only allowed 24 hours to complete pre-
processing. For a fair comparison, we include the overhead
of loading data into HDF'S for Hadoop and Spark-based sys-
tems; however, we exclude the string-to-id mapping time for
all systems.

Lightweight partitioning: The preprocessing phase of
systems under this category require the least time due
to their lightweight partitioning overhead. SHARD and
H2RDF+ employ random and range-based partitioning, re-
spectively, while CliqueSquare uses a combination of hash
and vertical partitioning. S2X depends on GraphX’s de-
fault partitioning strategy, however, its encoding techniques

Table 5: Preprocessing time (Minutes).

LUBM-10240 WatDiv YAGO2 Bio2RDF
Single Machine Systems
gStore >24h 108 166 >24h
RDF-3X 392 33 91 >24h
Distributed Systems

SHARD 72 9 17 143
H2RDF+ 152 9 22 387
CliqueSquare 167 10 19 N/A
S2X (Count) 48 3 9 158
S2X (Hash) 114 8 N/A N/A
S2RDF (VP) 84 13 25 >24h
S2RDF (ExtVP) 204 225 1,144 >24h
AdPart-NA 14 1.2 4 29
TriAD 72 4 11 75
TriAD-SG 737 63 N/A N/A
H-RDF-3X 939 285 199 >24h
SHAPE 263 79 251 >24h
gStoreD >24h 85 254 >24h
DREAM 427 36 98 >24h

may affect GraphX’s partitioning results. The hash-based
encoding has very long loading time and cannot load all
graphs, such as YAGO2. On the other hand, count-based
encoding has faster data loading in GraphX but is slightly
slower in query runtime. In our experiments, we only report
the best query evaluation results for S2X irrespective of the
encoding scheme since their performance do not vary signif-
icantly. MapReduce-based systems suffer from the overhead
of storing their data on HDFS first before they can start
their preprocessing phase. Both TriAD and AdPart-NA
use hash-based partitioning. However, TriAD is slower than
AdPart-NA because it sorts indices, gathers statistics and
partitions its data twice (on subject and object columns).

Sophisticated partitioning: The preprocessing overhead
of LUBM-10240 using RDF-3X is significant compared to
several distributed engines, whereas gStore failed to pre-
process this dataset within 24 hours. Both systems could
preprocess WatDiv-100 and YAGO?2 in a reasonable time as
these datasets are much smaller than LUBM-10240. How-
ever, they are still slower than several distributed systems
such as AdPart-NA and H2RDF+. Both single-machine
based systems failed to preprocess Bio2RDF within 24
hours. As Table 5 shows, systems that rely on METIS for
partitioning (i.e., H-RDF-3X and TriAD-SG) have signifi-
cant startup cost since METIS does not scale to large RDF
graphs [32]. To apply METIS, we had to remove all triples
connected to literals; otherwise, METIS will take several
days to partition LUBM-10240 and YAGO2. For LUBM-
10240, SHAPE incurs less preprocessing time compared to
METIS-based systems. However, SHAPE performs worse
for WatDiv and YAGO2 due to data imbalance, causing
some of its RDF-3X engines to take more time in data in-
dexing. Due to the uniform URI’s of YAGO2 and WatDiv,
SHAPE could not utilize its semantic hash partitioning and
placed the entire dataset in a single partition. Finally, both
SHAPE and H-RDF-3X did not finish partitioning Bio2RDF
and were terminated after 24 hours.

S2RDF has two preprocessing modes: VP and ExtVP. VP
mode partitions the RDF graph based on the triples pred-
icate, and stores each predicate in HDFS as a compressed
columnar storage format (parquet file). ExtVP mode builds
on top of VP. For every two VPs, ExtVP pre-computes its
join reductions and materializes the results as new parti-
tions (tables for Spark SQL) in HDFS. Hence, ExtVP in-
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Table 6: Runtime for LUBM-10240 queries (ms). SM: Single Machine, MR: MapReduce, and SS: Specialized
systems. S2X failed to execute all queries; gStore and gStoreD could not preprocess the data within 24 hours.

Complex Queries Simple Queries Geo-
LUBM-10240 L1 L2 L3 L7 L4 L5 L6 | Mean Query/h
SM RDF-3X 1,812,250 101,750 1,898,500 08,250 38 20 526 | 10,466 6
SHARD 413,720 187,310 N/A 469,340 358,200 116,620 209,800 261,362 N/A
H2RDF-+ 285,430 71,720 264,780 180,320 | 24,120 4,760 22,910 | 59,275 30
MR  CliqueSquare 125,020 71,010 80,010 224,040 90,010 24,000 37,010 74,488 39
S2RDF-VP 217,537 28,917 145,761 29,965 46,770 5,233 11,308 35,845 52
S2RDF-ExtVP 46,552 35,802 21,533 47,343 9,222 2,718 4,555 15,275 150
AdPart-NA 2,743 120 320 3,203 1 1 40 75 3,920
TriAD 6,023 1,519 2,387 17,586 6 4 114 369 912
TriAD-SG 5,392 1,774 4,636 21,567 9 5 10 333 755
Urika-GD 5,835 2,396 1,871 6,951 1,442 720 1,588 2,259 1,211
SS H-RDF-3X 7,004 2,640 7,957 7,175 1,635 1,586 1,965 3,412 841
H-RDF-3X (in-memory) 6,841 2,597 7,948 7,551 1,596 1,594 1,926 3,397 839
SHAPE 25,319 4,387 25,360 15,026 1,603 1,574 1,567 5,575 337
DREAM 13,031,410 98,263 2,358 4,700,381 18 14 10,755 | 12,110 1
DREAM (cached) 1,843,376 98,263 <1 83,053 18 14 468 911 12

curs significantly higher overhead, an order of magnitude
slower, compared to its VP version. The overhead incurred
by ExtVP depends on several factors including dataset size,
density and number of predicates. For example, the size of
YAGO2 is almost five times less than the size of LUBM-
10240, however, ExtVP requires almost an order of magni-
tude extra time to process YAGO. This behaviour is also
noticed with ExtVP on WatDiv in comparison to LUBM-
10240. This is mainly due to the sparsity and the lower
number of predicates in LUBM-10240 compared to YAGO
and WatDiv. In particular, ExtVP generates a total of
179 partitions (30,337 HDFS objects) for LUBM-10240 com-
pared to 2,221 partitions (319,662 HDFS objects) for Wat-
Div and 8,125 partitions (=~ 2 million HDFS objects) for
YAGO2. Due to this high overhead, S2RDF failed to pre-
process Bio2RDF dataset within 24 hours.

4.3 Initial Replication Cost

We only report the initial replication for H-RDF-3X,
SHAPE and DREAM (Table 4(b)) as other systems do not
explicitly apply replication. H-RDF-3X results in a 19.5%
replication for LUBM-10240 and a 73.7% for YAGO2. The
sparsity and uniformity of LUBM allow METIS to generate
a small edge cut between the different partitions of LUBM
which significantly reduces the cross partition replication
of H-RDF-3X. METIS, however, fails to reduce the graph
edge-cuts for WatDiv because of its dense nature. It caused
H-RDF-3X to replicate the whole partitions blindly using k-
hop guarantee resulting in a 1090% replication. SHAPE in-
curs 42.9% replication for LUBM due to its full level seman-
tic hash partitioning and type optimization. It also places
WatDiv and YAGO2 in a single partition since the URI’s of
both datasets are uniform. This results in a 0% replication
and causes SHAPE to be as slow as a single-machine RDF-
3X store for these two datasets. Similarly, DREAM indexes
the entire database on a single machine which is then repli-
cated to other workers. DREAM’s preprocessing overhead is
reasonable for small datasets (Table 5), however; it does not
scale for larger graphs where it requires more than a day to
build the Bio2RDF database. For our 12 machines cluster,
the replication ratio of DREAM is 1200% for all datasets.

4.4 Query Performance

4.4.1 LUBM dataset

In this experiment (see Table 6), we use the LUBM-10240
dataset and L1-L7 [20] queries. We classify those queries,
based on their structure and selectivity into simple and com-
plex. L4 and L5 are simple selective star queries. L6 is also

a simple query because it is highly selective. L1, .3 and L7
are complex queries with large intermediate results but very
few final results. Finally, L2 is a simple yet non-selective
star query that generates large final results.

RDF-3X (single-machine) performs well for simple queries
while it is significantly slower for complex queries. SHARD,
H2RDF+ and CliqueSquare suffer from the expensive over-
head of MapReduce joins; hence, their performance is sig-
nificantly worse than other systems. For selective sim-
ple queries, H2RDF+ avoids the overhead of MapReduce-
based joins by solving these queries in a centralized man-
ner which is an order of magnitude faster. The flat plans of
CliqueSquare significantly reduce the join overhead for com-
plex queries and achieve up to an order of magnitude better
performance. S2X fails to run all queries as it generates a
lot of intermediate results at the vertex level. Compared to
MapReduce systems, S2RDF-ExtVP shows significant per-
formance improvement due to its in-memory caching tech-
nique as well as the materialized join reduction tables. Note
that S2RDF requires loading multiple partitions into mem-
ory for each query before execution. For example, it loads 6
partitions (1,200 HDF'S object) to process L1 and L3.

SHAPE and H-RDF-3X perform better than MapReduce-
based systems because they do not require communica-
tion. H-RDF-3X performs better than SHAPE as it has
less replication. However, as both SHAPE and H-RDF-3X
use MapReduce for dispatching queries to workers, they still
suffer from the non-negligible overhead of MapReduce (1.5
sec on our cluster). Without this overhead, both systems
would perform well for simple selective queries. For complex
queries, these systems still perform reasonably well as they
run in parallel without any communication overhead. For
example, for query L7 which requires excessive communica-
tion, H-RDF-3X and SHAPE perform better than some of
the specialized systems, such as TriAD. With low hop guar-
antee, the preprocessing cost for SHAPE and H-RDF-3X can
be reduced at the cost of worse query performance because
of the MapReduce joins. Although SHAPE and H-RDF-3X
do not incur any communication, they still suffer from two
limitations: (i) managing the original and replicated data in
the same set of indices results in large and duplicate inter-
mediate results, rendering the cost of join evaluation higher
and (i) to filter out duplicate results, H-RDF-3X requires
an additional join with the ownership triple pattern. For
fairness, we also stored H-RDF-3X databases in a memory-
mounted partition; still, it did not affect the performance
significantly. As a result, we do not consider in-memory
H-RDF-3X in further experiments.
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Table 7: Query runtimes (ms) for WatDiv and YAGO2 datasets. SHARD and gStoreD crashed in several
queries while DREAM could not finish WatDiv queries within 24 hours.

WatDiv-100 (GeoMean) YAGO2

L1-L5 S1-S7 F1-F5 C1-C3 Y1 Y2 Y3 Y4 GeoMean Query/h

SM gStore 1,511 620 776 3,530 790 572 17,105 2,178 2,026 698
RDF-3X 157 181 355 1,656 154 639,750 3,588 357 3,350 22
SHARD N/A  N/A N/A N/A | 238,861 238,801 N/A N/A 238,861 N/A
H2RDF+ 5,441 8,679 18,457 65,786 10,962 12,349 43,868 35,517 21,430 140

MR, CliqueSquare 29,216 23,908 40,464 55,835 139,021 73,011 36,006 100,015 77,755 41
s2X 202,964 24.152 241,954 597.393 | 1,811,658 1,863.374 1,720,424 1,876.964  1,817.050 2
S2RDF-VP 2180 2,764 4,717 6,969 7,893 9.128 10,161 10,473 9.358 382
S2RDF-ExtVP 1,880  2.269 3.531 5,295 2,822 3.032 3,393 3.628 3.203 1,118
AdPart-NA 9 7 160 111 19 46 570 4 79 20,225
TriAD 4 15 45 170 16 1,568 220 18 100 7,903
Urika-GD 1,264 1,330 1,743 2,357 1,864 1,649 1,523 1,415 1,604 2,232

SS H-RDF-3X 1,662 1,693 1,778 1,929 1,690 246,081 1,933 1,720 6,098 57
SHAPE 1,870  1.824 1.836 2,723 1,824 665,514 1,823 1,871 8.022 21
gStoreD 732 203 15,949 8,482 N/A N/A N/A N/A N/A N/A
DREAM (cached) N/A  N/A N/A N/A 2,161 N/A 14,751 651 2,748 N/A

AdPart-NA and TriAD perform the best in the specialized
systems category. They are comparable for L4 and L5 due
to their high selectivity. AdPart-NA exploits its hash distri-
bution to solve L4 and L5 without communication. It also
solves L2 without communication but slower due to L.2’s low
selectivity. AdPart-NA is more than an order of magnitude
faster than TriAD and TriAD-SG for L2 because it reports
the results through a single scan followed by hash lookups by
utilizing hash indices and right deep tree plans. Compared
to AdPart-NA, TriAD solves L2 by using two distributed in-
dex scans (one for each base subquery) followed by a binary
search-based merge join that is only effective for selective
queries. TriAD-SG outperforms TriAD and AdPart-NA in
L6 as its pruning technique eliminates communication.

In DREAM, statistics are collected on a query-by-query
basis and then cached for future queries. This causes huge
performance difference between the first run of DREAM and
its subsequent runs. The number of machines that can be
utilized during query execution is bounded by the number
of join vertices; only a maximum of 3 workers for LUBM
queries. This explains its huge overhead when processing
complex queries, i.e., L1 and L7. For L3, the query planner
detects the empty result during statistics collection phase
and terminates the query execution early. DREAM executes
simple queries on a single machine by using RDF-3X.

4.4.2 WatDiv dataset

The WatDiv benchmark defines 20 query templates® clas-
sified into four categories: linear (L), star (S), snowflake (F)
and complex queries (C). Table 7 shows the geometric mean
of running 20 queries from each category on WatDiv-100M.

RDF-3X and gStore perform well for most queries, where
they are faster than several distributed systems including
S2X, CliqueSquare SHAPE and gStoreD. H2RDF+ and
CliqueSquare perform worse than most distributed systems
due to the overhead of MapReduce. H2RDF+ performs
much better than CliqueSquare. Even though the flat plans
of CliqueSquare reduce the number of MapReduce joins,
H2RDF+ uses a more efficient join implementation using
traditional RDF indices. Furthermore, H2RDF+ encodes
the URIs and literals of RDF data; hence it has lower over-
head than CliqueSquare when shuffling intermediate results.
S2X performs much worse due to the significant network
overhead of shuffling vertices with high memory footprint.
The performance of S2RDF, on the other hand, is close to
MapReduce-based systems on WatDiv dataset. Unlike the
results in LUBM-10240, S2RDF-ExtVP shows only a slight
improvement in comparison to S2RDF-VP.

http://db.uwaterloo.ca/watdiv/basic-testing.shtml

Even though SHAPE and H-RDF-3X use 3-hop undi-
rected guarantee replication, they do not outperform the
single-machine RDF-3X. gStoreD is only faster than its cen-
tralized version (gStore) for L and S queries. Its paralleliza-
tion overhead affected its performance on F and C queries.
AdPart-NA and TriAD, on the other hand, provide bet-
ter performance than all systems. TriAD performs better
than AdPart-NA for L. and F queries as it requires mul-
tiple subject-object joins. In contrast to AdPart, TriAD
utilizes subject-object locality to answer these joins without
communication. For complex queries with large diameters,
AdPart-NA performs better as a result of its locality aware-
ness. DREAM results are omitted because the overhead
of its statistics calculation is extremely high (more than 24
hours) due to the high number of triple patterns in WatDiv.

4.4.3 YAGO dataset

YAGO2 does not provide benchmark queries. Therefore,
we use the test queries (Y1-Y4) defined by AdPart to bench-
mark the performance of different systems (Table 7). Simi-
lar, to WatDiv dataset, H2RDF+ outperforms CliqueSquare
and SHARD due to the utilization of HBase indices and its
distributed implementation of merge and sort-merge joins.
Moreover, S2X is still the slowest system while S2RDF pro-
vides better performance compared to MapReduce-based
systems. Similar to the result in LUBM-10240, ExtVP
shows better performance compared to VP. gStoreD fails
to process all YAGO queries due to its parallelization over-
head. AdPart-NA solves most of the joins in Y1 and Y2
without communication, which explains the superior perfor-
mance of AdPart-NA compared to TriAD for Y1 and Y2, re-
spectively. On the other hand, Y3 requires an object-object
join on which AdPart-NA needs to broadcast the join col-
umn; therefore, it performs worse than TriAD.

4.4.4 Bio2RDF dataset

Bio2RDF dataset does not have benchmark queries; there-
fore, we used the test queries (B1-B5) which are extracted
from a real query log. The results of this experiment are
shown in Table 8. Note that S2X failed to execute all
Bio2RDF queries because of the huge amount of data it gen-
erates at its initial supersteps. Moreover, gStore, gStoreD,
RDF-3X, H-RDF-3X, SHAPE, S2RDF and DREAM could
not finish their preprocessing phase within 24 hours. The
fastest systems in this experiment are AdPart-NA and
TriAD while H2RDF+ and SHARD performed worse than
other systems due to the MapReduce overhead. TriAD out-
performs all other systems on queries B1, B2 and B3 since
these queries require subject-object or object-object joins
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Table 8: Query runtimes for Bio2RDF (ms). gStore, gStoreD, RDF-3X, H-RDF-3X, SHAPE, S2RDF and
DREAM could not finish the data preprocessing within 24 hours while S2X failed to execute all queries.

Bio2RDF B1 B2 B3 B4 B5 GeoMean Query/h
MR, SHARD 239,350 309,440 512,850 787,100 112,280 320,027 9
H2RDF+ 5,580 12,710 322,300 7,960 4,280 15,076 51
AdPart-NA 17 16 32 89 1 15 116,129
SS TriAD 4 4 5 N/A 2 4 N/A
Urika-GD 879 798 1,832 1,180 947 1,075 3,194
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Figure 8: (a,b) Data Scalability, and (c) Strong Scalability

which contradict the initial partitioning of AdPart-NA. B4 is
a complex query with 2-hop radius which AdPart-NA could
efficiently process while TriAD crashed. B5 is a simple star
query with only one triple pattern in which both AdPart-NA
and TriAD exhibit comparable performance.

4.5 Scalability

In this section, we select a system from each category
and test its data and strong scalability. More scalability
experiments are available in [1]. We use AdPart-NA as
a representative for specialized systems, SHAPE for sys-
tems that employ sophisticated partitioning, CliqueSquare
for MapReduce-based, S2X for graph-based and S2RDF for
sophisticated partitioning systems on Spark.

Data Scalability. In this experiment, we show how the
performance of different distributed systems change as we
increase the dataset size. Using LUBM, we generated 7
datasets ranging from 21 million triples to 1.3 billion triples;
LUBM-160, LUBM-320, LUBM-640, LUBM-1280, LUBM-
2560, LUBM-5120 and LUBM-10240. Similarly, we used
WatDiv data generator to create 5 datasets with sizes rang-
ing from 50 to 800 million triples. Figures 8(a) and 8(b)
show the throughput (queries per hour) of the selected
systems for both LUBM and WatDiv datasets. As ex-
pected, the throughput of most of the systems — exclud-
ing S2X — decrease slowly with the dataset size. AdPart-
NA achieves the best throughput followed by SHAPE and
S2RDF-ExtVP. Due to the scalability of MapReduce and
Spark, CliqueSquare and S2RDF scale well with the data
size. Similarly, SHAPE scales well as it does not incur com-
munication during query evaluation. On the other hand,
S2X does not scale because it generates a huge amount of
intermediate results during BGP matching that excessively
grows with larger datasets. Moreover, S2X could not evalu-
ate LUBM-10240 and WatDiv-800M queries.

Strong Scalability. In this experiment, we use a work-
load of 35 queries to demonstrate the strong scalability of
LUBM-10240 from 2 up to 16 machines. Strong Scalability
for WatDiv-1B dataset is available in [17]. Figure 8(c) shows
the time of each system as the number of machines increases.
SHAPE achieves the best speedup as it solves queries with-
out any communication overhead among machines. AdPart-
NA incurs higher processing and communication overheads
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on larger clusters; therefore, it becomes less scalable after
4 machines. Finally, S2RDF-ExtVP does not scale well on
larger cluster while CliqueSquare scales reasonably well as
we increase the number of machines.

4.6 Workload Adaptivity

In this section, we evaluate the performance of workload-
aware systems using SPARQL workloads on LUBM-10240
and WatDiv-1B. While Partout works for small datasets
and workloads, it took a significant amount of time to pre-
process the above datasets; it could not finish partitioning
LUBM-10240 and WatDiv-1B within a day even for small
workload sizes. Therefore, we only test the adaptivity of
AdPart against two representative systems: AdPart-NA and
S2RDF. AdPart-NA shows the best performance among spe-
cialized systems while S2RDF provides the best performance
compared to other MapReduce-based systems.
LUBM-10240 workload: Using the 14 LUBM benchmark
queries, a workload of 10K unique queries with different con-
stants and structures is generated. Then, we shuffle the
queries to generate a random workload for our experiments.
This workload covers a broad spectrum of query complex-
ities including simple selective queries, star queries as well
as queries with complex structures and low selectivity.
WatDiv-1B workload: This workload contains a 5K-
query from each query category (i.e., L, S, F and C) in
WatDiv, resulting in a total of 20K queries. To simulate a
change in the workload, queries of the same WatDiv-1B tem-
plate are run consecutively. Therefore, after every sequence
of 5K query executions, the type of queries changes.

Figure 9 shows the cumulative time as the execution
progresses for both datasets. Without adaptivity, the cu-
mulative time of both AdPart-NA and S2RDF increases
sharply. AdPart-NA finished all LUBM-10240 queries under
1.5 hours while S2RDF could only finish 1460 queries within
its 24 hours window (Figure 9(a)). Figure 9(b) also shows a
similar behaviour where AdPart-NA finished all of the 20K
queries of WatDiv-1B under 2 hours while S2RDF finished
only 5100 queries. AdPart, on the other hand, adapts to
the workload by redistributing frequently accessed data to
allow future queries to be executed in parallel and without
communication. Therefore, its performance becomes almost
constant after 2.5K queries in LUBM-10240 allowing the



workload to finish under 10 minutes. A similar behaviour is
observed in WatDiv-1B, where the cumulative time becomes
nearly constant after 10K queries and the workload com-
pletes in less than 15 minutes. In comparison to AdPart-NA,
AdPart is an order of magnitude faster in the LUBM-10240
workload and 6 times faster in the WatDiv-1B workload.

4.7 Experiments Summary

4.7.1 Experiences with Evaluated Systems

AdPart-NA and TriAD: provide the lowest query run-
time and startup overhead among all 12 distributed sys-
tems. However, they have huge memory overhead because
they store the whole RDF graph in memory. For example, to
query LUBM-10240, AdPart-NA and TriAD require 317GB
and 232GB of RAM, respectively. AdPart is a good choice
that reduces the end-to-end workload runtime by dynami-
cally adapting its data distribution as the workload changes.

DREAM and gStoreD: are both disk-based systems that
rely on existing single-machine engines; RDF-3X and gStore,
respectively. DREAM replicates the full RDF graph to all
workers, and incurs significant overhead for building and in-
dexing the entire database on a single machine. We could
not run gStoreD on LUBM-10240 and Bio2RDF as it re-
quires significant time for data preprocessing.

SHAPE and H-RDF-3X: significantly outperform
MapReduce-based systems at the cost of higher preprocess-
ing overheads. Semantic hash partitioning in SHAPE has
a lower startup cost compared to METIS in H-RDF-3X.
However, SHAPE only works for LUBM-10240 as it locates
YAGO2 and WatDiv datasets in a single machine which re-
sults in a poor query performance.

SHARD, H2RDF+ and CliqueSquare: SHARD runs
on all dataset but with slower query runtimes as it does
not use sophisticated RDF indices or complex query opti-
mizations. On the other hand, H2RDF+ uses specialized
RDF indices and better-distributed join algorithms which
allow it to significantly outperform SHARD. The optimizer
of CliqueSquare uses its flat plans optimization to signifi-
cantly reduce the join overhead of complex queries.

S2X and S2RDF: S2X has lightweight startup cost and
huge runtime overhead caused by the size of intermediate
results during BGP matching. As a result, it fails to run
queries on LUBM-10240 and Bio2RDF. On the other hand,
S2RDF has higher preprocessing overhead but shows signif-
icant performance improvement compared to MapReduce-
based systems. This efficiency is mainly driven by its in-
memory caching techniques and the materialization of dif-
ferent join reduction tables prior to query execution.

4.7.2 Discussion

Index Size. We noticed that the dataset size does not re-
flect the systems’ actual memory/disk usage. Each system
has its unique storage requirements which may exceed the
original size of the input data. Typically, distributed sys-
tems load the RDF graph through complex data structures
and sophisticated indexing; e.g. traditional SPO permuta-
tions. For example, to index WatDiv-1B (149GB), AdPart
and TriAD require 208GB and 165GB, respectively. Details
about the index sizes of various systems is available in [17].

Influence of Query Complexity. Simple queries; e.g.
LUBM (L4, L5 and L6) and WatDiv (star-shaped), require
few joins or have a minimal number of results. Therefore,
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several systems within the same category perform compa-
rably where even a centralized system may perform better
than several distributed systems. As queries require a larger
number of joins; e.g. LUBM (L1, L3 and L7) and WatDiv
(snowflake and complex), or generate larger amounts of in-
termediate and final results; e.g. LUBM (L2 and L7), the
advantage of distributed systems becomes visible. We no-
ticed that the optimizations of each system favor certain
query types. For example, CliqueSquare works well with
complex queries where its flat plans significantly reduce the
overhead of distributed joins. Likewise, AdPart works well
when queries do not contain object-object joins that contra-
dict its initial partitioning scheme.

Effect of Programming Language. We noticed that
the programming language used in the evaluated systems
does not significantly influence its performance. Rather,
how each system parallelizes its tasks, reduces the com-
munication cost and employs fewer synchronization barriers
is more important. All specialized systems are built using
C++; however, their diverging evaluation techniques result
in various query performance. For example, while TriAD
and AdPart-NA are both specialized in-memory systems,
their performance is different because of their employed op-
timization techniques; e.g., intermediate result pinning vs.
sharding and right-deep vs. bushy tree planning. The same
applies to Java-based MapReduce systems.

S. CONCLUSION

In this paper, we provide an experimental evaluation of
state-of-the-art distributed RDF systems. First, we classify
and present a brief overview of systems in each category.
Then using large-scale real and synthetic datasets, we ex-
tensively evaluated existing systems, through a wide range
of SPARQL queries, considering different performance fac-
tors including startup overhead, incurred replication, query
performance, and scalability.

We highlight the following limitations and possible future
research directions for optimizing distributed RDF systems:
() all existing systems focus exclusively on supporting BGP
SPARQL queries. Hence, they do not support evaluating im-
portant generic operators such as FILTER, LIMIT and OP-
TIONAL. (i) Several systems are highly optimized for spe-
cific datasets, e.g., LUBM, and do not perform well for other
datasets. (744) Most distributed systems do not support up-
dates, adding new triples would require several systems to
rebuild their indices, which is very expensive for large-scale
graphs. Finally, (4v) no partitioning algorithm suits all RDF
graphs and all query types. The complexity of sophisticated
partitioning schemes does not allow distributed RDF sys-
tems to process very large graphs in a timely manner. At the
same time, they do not always guarantee better performance
compared to lightweight partitioning. We believe that focus-
ing on the problem of matching partitioning strategies to



RDF graphs, instead of using a single partitioning strategy,
is a promising research direction.
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