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ABSTRACT
Semantic trajectory pattern mining is becoming more and
more important with the rapidly growing volumes of seman-
tically rich trajectory data. Extracting sequential patterns
in semantic trajectories plays a key role in understanding se-
mantic behaviour of human movement, which can widely be
used in many applications such as location-based advertis-
ing, road capacity optimisation, and urban planning. How-
ever, most of existing works on semantic trajectory pattern
mining focus on the entire spatial area, leading to missing
some locally significant patterns within a region. Based on
this motivation, this paper studies a regional semantic tra-
jectory pattern mining problem, aiming at identifying all the
regional sequential patterns in semantic trajectories. Specif-
ically, we propose a new density scheme to quantify the fre-
quency of a particular pattern in space, and thereby formu-
late a new mining problem of finding all the regions in which
such a pattern densely occurs. For the proposed problem,
we develop an efficient mining algorithm, called RegMiner
(Regional Semantic Trajectory Pattern Miner), which effec-
tively reveals movement patterns that are locally frequent
in such a region but not necessarily dominant in the entire
space. Our empirical study using real trajectory data shows
that RegMiner finds many interesting local patterns that
are hard to find by a state-of-the-art global pattern mining
scheme, and it also runs several orders of magnitude faster
than the global pattern mining algorithm.

1. INTRODUCTION
People may have different movement patterns in different

regions. For example, people in a downtown area may have
a movement pattern from work places (e.g., office) to enter-
tainment spots (e.g., pub), but a different pattern, e.g., from
attractions (e.g., museum) to accommodations (e.g., hotel)
will appear in a touristic area. Understanding this regional
human movement behaviour can help us improve the quality
of location-based services, focus on specific regions for ad-
vertising, and help determining where to place a new service
facility.
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Consider one is trying to find the best region to open a
new coffee shop. One option could be to choose a region
with few competitors (i.e., other coffee shops), or they can
select a region with many customer places (e.g., offices).
The optimal region, however, will be found by answering
the following question:

“which region is expected to have a maximum number of
customer visits at some coffee shop?”

Nowadays, we can answer this kind of question thanks to
the prevalence of trajectory data enriched with semantic in-
formation, called semantic trajectory [2], where each point
of a trajectory not only represents a particular location but
also has a semantic category such as coffee shop. Semantic
trajectory data has become highly available with the increas-
ing volume of geo-tagged data from many location-sharing
services such as Foursquare and Facebook Places.

Several approaches to mine sequential patterns in seman-
tic trajectories [2, 28, 29, 14] were recently proposed. They
commonly deal with the entire spatial region as a target
area to find globally frequent patterns by following the con-
ventional sequential pattern mining model [1]. Unfortu-
nately, these schemes cannot immediately answer the afore-
mentioned question as they very likely ignore local patterns
frequently occurring within a relatively small region.

Motivated by this challenge, we study the new mining
problem of finding all regional movement patterns in seman-
tic trajectories. Figure 1 demonstrates the aim of our prob-
lem that differs from those of existing mining schemes. For
example, the pattern 〈coffee → shopping mall〉 is the most
frequent movement pattern in the entire space. This, how-
ever, does not implies that the pattern is locally frequent in
any particular region of the area. In region R1, for instance,
〈coffee → shopping mall〉 occurs only once at 〈p6, p3〉. In-
deed, the most frequent pattern in R1 is 〈office → coffee〉
with 5 occurrences. We use the notion pRegion to refer to a
region like R1 where a particular pattern is locally frequent.
Given a set of semantic trajectories, our goal is to find all the
pRegions as well as their corresponding movement patterns.

The challenge of our problem is twofold. First, the prob-
lem itself is not easy to formally define. We need to clarify
how a region is defined and to what extent a pattern is fre-
quent in a region so that we can identify pRegions. It does
obviously not work to pick an arbitrary region and check
whether it is associated with a frequent movement pattern.

Furthermore, finding regional patterns essentially implies
that we have to consider every occurrence of a pattern, which
is quite different from the classic sequential pattern mining
model [1] that counts the number of pattern occurrences
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trajectory sequence of POIs sequence of categories

T1 〈p1, p10〉 〈c, s〉
T2 〈p1, p2, p8, p6, p3〉 〈c, s, o, c, s〉
T3 〈p5, p7, p8, p9〉 〈o, c, o, s〉
T4 〈p8, p7, p12〉 〈o, c, s〉
T5 〈p4, p3, p6, p10〉 〈o, s, c, s〉
T6 〈p5, p7, p12〉 〈o, c, s〉
T7 〈p11, p9〉 〈c, s〉
T8 〈p11, p12〉 〈c, s〉
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Figure 1: An example of semantic trajectories (in
different colors), T1, T2, ..., T8, where p1, p2, ..., p12 are
places of interest (POIs) and c, s, and o are cat-
egories of POIs representing coffee shop, shopping
mall, and office, respectively.

only across sequences. To simply illustrate, consider trajec-
tory T2 in Figure 1. If we take only one of two occurrences
of 〈c, s〉 in T2, either 〈p1, p2〉 or 〈p6, p3〉 must be discarded.
This may lead to underestimating the local frequency of
〈c, s〉 within either R1 or R2.

This naturally connects us to the second challenge of our
problem, that is, the problem is computationally hard. The
problem of enumerating maximal frequent subsequences is
already known as NP-hard [1, 26, 27]. In our problem, we
have to consider all occurrences of a pattern as well as the
spatial location where the pattern occurs, which makes the
problem even more challenging. Without a carefully de-
signed model, it is not feasible to analyse a large-scale se-
mantic trajectory data set.

To tackle the two challenges above, our main approach is
to formulate this pattern mining problem as a pattern-based
and density-based clustering problem. We first introduce a
new density model, called pDensity, that quantifies the pat-
tern frequency in space. We then define the pRegion with
respect to a pattern as a set of places of interest (POIs)
constituting a cluster of instances of the pattern according
to our pDensity metric. To obtain all the pRegions, we
find all the pDensity-based clusters for each pattern. Fur-
thermore, we propose a new type of patterns in sequences,
called compact sequential pattern, to avoid considering ex-
cessive occurrences of a pattern.

In addition to the problem formulation, we devise an ef-
ficient mining algorithm, called RegMiner, to find all the
pattern-based clusters using our pDensity measurement. The
essential idea of RegMiner is starting with promising cate-
gory sequences that are frequent enough to be able to have
some regional patterns and then performing the density-
based clustering for each such category sequence using our
spatial indexing scheme.

In summary, the contributions of this paper are as follows:

• We propose a novel mining problem of finding all the re-
gional sequential patterns in semantic trajectories. This
is the first study on understanding regional movement
behaviour using semantic trajectories.

• We devise the RegMiner algorithm for our mining prob-
lem. RegMiner thoroughly and efficiently finds all the
regional patterns in semantic trajectories.

• Moreover, we propose a new sequential pattern scheme
in sequences, called compact sequential pattern, together
with its solution algorithm.

• A thorough experimental study is performed using real
trajectory data sets. Experimental results show that
our problem setting can reveal many local patterns that
are hard to be discovered by a global pattern mining
scheme. Further the experiments show that RegMiner is
also highly efficient, compared to a state-of-the-art global
pattern mining algorithm in semantic trajectories.

The rest of the paper is organized as follows. Section 2
reviews the existing work related to our problem. Section
3 discusses our pRegion model and the formal setting of
the proposed problem. Section 4 presents the RegMiner
algorithm. All experimental results and case studies are
reported in Section 5, and we conclude in Section 6.

2. RELATED WORK
Trajectory pattern mining has been one of the most pop-

ular topics in the data mining community, and hence is
studied extensively. The conventional mining scheme of tra-
jectory data mainly aims at finding some spatio-temporal
patterns from a set of raw GPS records. Those spatio-
temporal patterns include frequent routes [4, 10, 5, 19],
clusters of common sub-trajectories [15, 17], frequently co-
locating moving objects [11, 13, 16, 22, 30], to name a few,
each of which itself has produced a branch of works as a sub
topic of trajectory pattern mining. A systematic review on
all those sub topics is beyond the scope of this paper, and
full survey articles are available [31, 9]. In the rest of this
section, we focus on the topic of semantic trajectory pat-
tern mining and regional co-location pattern mining that
are closely related to our mining model.

Semantic Trajectory Pattern Mining. With the high
availability of semantic trajectory data, there are a few re-
cent studies [2, 28, 29, 14] on mining sequential patterns
in semantic trajectories. Alvares et al. first proposed the
semantic trajectory data model, and presented a prepro-
cessing method to integrate semantic information with raw
trajectories [2]. They also discussed a simple solution using
some traditional sequence mining methods to mine frequent
sequences of important places without considering the spa-
tial aspect. Ying et al. specified this idea for the purpose
of location prediction by mining frequent sequences of se-
mantic categories [28]. Zhang et al. combined this problem
of mining semantic category sequences with the problem of
mining frequent spatial routes by dealing with groups of
similar POIs rather than individual POIs [29]. By extend-
ing the semantic trajectory data model, Kim et al. studied
a topical trajectory pattern mining problem where the goal
is not only finding transition patterns but also extracting
latent topics behind geo-tagged text messages [14].
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All of this group of works focus on extracting globally
frequent patterns in the entire data space, and none of them
addresses the problem of mining regional sequential patterns
in semantic trajectories.

Regional Co-location Pattern Mining. Our problem
is also related to the recent topic of mining regional co-
location patterns in spatio-temporal data, called the RCP
problem. This problem was first introduced by Eick et al.
[7] and further studied by others [20, 23, 18]. A motivating
example of RCP is finding all the regions where bars or pubs
are co-located with crime locations to see whether there is
a correlation between alcohol and crime. The ultimate goal
of the RCP problem is broadly similar to our mining prob-
lem in the sense that it is also about discovering regions
along with their regional co-location patterns. A significant
difference, however, is that RCP deals with a set of inde-
pendent spatio-temporal or spatial points rather than a set
of spatio-temporal sequences, i.e., trajectories. This line of
work consequently cannot address our problem that should
essentially consider the sequential aspect of spatio-temporal
trajectories.

3. THE pREGION MODEL
In this section, we introduce our pRegion model including

several new notions to define the regional movement pattern
in semantic trajectories, and formulate our mining problem.

3.1 Basic Settings
Consider a set of semantic trajectories, denoted by T =
{T1, T2, ..., T|T |}. Let P = {p1, p2, ..., p|P|} be a set of POIs,
and let C = {c1, c2, ..., c|C|} be a set of semantic categories,
where each p ∈ P is a 2D point associated with a category
c ∈ C, denoted by γ(p) = c. Following the existing defini-
tions [29, 14], we define the semantic trajectory as follows:

Definition 1. (Semantic trajectory) A semantic trajectory
T is a sequence of pairs of POI and a timestamp, denoted by
T = 〈(p1, t1), ..., (p`(T ), t`(T ))〉, where `(·) denotes the length
of a sequence, which is the number of elements.

For brevity, we use a simpler notation for a trajectory like
T = 〈p1, ..., p`(T )〉 omitting timestamps as long as the con-
text is clear. For the sequence of categories corresponding
to T , we denote it as γ(T ) = 〈γ(p1), ..., γ(p`(T ))〉.

To represent a semantic movement pattern in trajecto-
ries, we use the notion category sequence or just pattern
interchangeably in the paper.

Definition 2. (Category sequence) A category sequence is
a sequence of categories, denoted by S = 〈c1, c2, ..., c`(C)〉,
such that each ci ∈ C for i ∈ [1, `(S)].

We further say that a trajectory covers a category se-
quence or a pattern, described as:

Definition 3. Let T = 〈p1, ..., p`(T )〉 be a semantic trajec-
tory and S = 〈c1, c2, ..., c`(S)〉 be a category sequence. Then,
we say that T covers S iff. the category sequence of T , i.e.,
γ(T ), is a super sequence of S, denoted by γ(T ) w S, mean-
ing that there exist integers 1 ≤ j1 < j2 < · · · < j`(S) ≤ `(t)
such that γ(pj1) = c1, γ(pc2) = c2, ..., γ(pj`(S)

) = c`(S).

Example 1. Consider T3 = 〈p5, p7, p8, p9〉 in Figure 1. Its
length `(T3) is 4 and its category sequence γ(T3) is 〈o, c, o, s〉.
Given a category sequence S = 〈c, s〉, we say that T3 covers
S since γ(T3) w S.

Table 1: List of frequent symbols
Symbol Description

T = {T1, T2, ...} the set of semantic trajectories
P = {p1, p2, ...} the set of POIs
C = {c1, c2, ...} the set of categories
T = 〈p1, p2, ...〉 a semantic trajectory

γ(T ) = 〈γ(p1), γ(p2), ...〉 the category sequence of T
S = 〈c1, c2, ..〉 a category sequence or a pattern
r = T [s : e] a pRoute within T

`(T ), `(S), or `(r) the length of T , S, or r
w(r) the weight of r
I(S) the set of all pRoutes of S
sup(S) the support of S
Nh(r) the neighbourhood of r
N (r) the set of neighbour pRoutes of r
λ(r′, r) the contribution ratio of r′ to r
δ(r, S) the pDensity of r w.r.t. S
ε the neighbourhood size
σ the pDensity threshold

∆t the maximum transition time

Table 1 summarizes the frequently used symbols through-
out the paper.

3.2 Problem Formulation
The goal of our approach is to retrieve all regions in which

a particular movement pattern densely appears in space, i.e.,
retrieving all pRegions. Toward this goal, we first consider
what a region really means in semantic trajectories. It is
straightforward that a region in space is meaningful only
when it contains a particular set of POIs. Thus, we can
discretely define the region to be a set of POIs rather than
an area of arbitrary shape in space.

In addition, a pRegion is not just a set of POIs, but should
also be associated with a particular pattern that occurs fre-
quently within the pRegion. Intuitively, the set of POIs
defining a pRegion with respect to a pattern should satisfy
the following criteria: (1) All the POIs should participate in
covering the pattern, meaning that some of them together
belong to an occurrence of the pattern in a trajectory. (2)
There should be many occurrences of the pattern in trajec-
tories passing some of those POIs. (3) All the POIs should
be reasonably clustered in space.

Example 2. Based on the above criteria of a pRegion, the
set of POIs inR1 shown in Figure 1, i.e., {p3, p4, p5, p6, p7, p8},
can be understood as a pRegion with respect to pattern
〈o, c〉. All POIs of R1 participate in covering 〈o, c〉. Also,
there are 5 occurrences of 〈o, c〉 within the set of these POIs,
which can be seen to be ‘frequent ’ given a threshold. Finally,
the POIs are spatially clustered as none of the POIs is an
outlier in space.

3.2.1 pRoutes: Compact Sequential Patterns in Se-
mantic Trajectories

In order to define the pRegion, we first clarify the set of
POIs that can cover a particular pattern. To this end, we
need to examine where the pattern occurs in trajectories.
As mentioned in the introduction, it is inevitable to con-
sider multiple occurrences of a pattern within a trajectory
as well as across trajectories for the purpose of evaluating
some regions. Thus, we cannot just take one instance of the
pattern per trajectory as we do in the conventional sequen-
tial pattern mining model [1] because every instance has its
own importance where it occurs. At the same time, however,
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Figure 2: Trajectory T = 〈p1, ..., p9〉 and its two
pRoutes of pattern S = 〈c, o, s〉 shown in gray

it is neither feasible nor semantically meaningful to take the
complete set of all the pattern occurrences.

Consider the trajectory T = 〈p1, ..., p9〉 and its category
sequence γ(T ) = 〈c, c, s, o, s, s, c, o, s〉 in Figure 2. The total
number of occurrences of a pattern S = 〈c, o, s〉 in γ(T ) is 9,
but considering all 9 instances is obviously excessive in the
sense that there are only two o’s in γ(T ). Instead, it would
be more appropriate to take only two of all instances of S in
T . The question is which two occurrences should be selected
as significant ones in the context of movement patterns.

Our answer is to take pattern instances that are as com-
pact as possible, which we call compact sequential patterns.
In the case above, we choose two instances of S, namely
〈p2, p3, p4, p5〉 and 〈p7, p8, p9〉, that are the most compact
among 9 instances. The underlying principle is that the
more compactly the subsequence covers S, the better it re-
flects the movement behaviour represented by S. Intuitively,
a direct movement pattern from one category to another
category is most important, and a pattern is less significant
with respect to the transition between those two categories
when there are multiple stops in the middle.

To refer to an instance of such a compact sequential pat-
tern, we use the notion pRoute defined as follows:

Definition 4. (pRoute) Given a trajectory T and a pat-
tern S, a contiguous subsequence from the s-th POI to the
e-th POI of T , denoted by T [s : e], covering S is a pRoute of
S in T iff. (1) there is no other T [s′ : e′] covering S such that
T [s′ : e′] v T [s : e], i.e., s′ ≥ s and e′ ≤ e, and (2) the tran-
sition time between every two consecutive POIs of T [s : e]
is at most ∆t, i.e., for (pi, ti) ∈ T and (pi+1, ti+1) ∈ T such
that i ∈ [s, e− 1], ti+1 − ti ≤ ∆t, where ∆t is the maximum
transition time.

Note that we discard every transition whose time gap is too
large to be considered as a true movement. We denote the
set of all pRoutes of S in T as I(S). For brevity, hereafter,
we also use the symbol r to refer to an individual pRoute,
i.e., r = T [s : e].

Of course, not all pRoutes have the same amount of im-
portance with respect to their category pattern. In the ex-
ample above, pRoute T [7 : 9] should be considered more
significant than T [2 : 5] as the former more tightly covers
the pattern 〈c, o, s〉. Intuitively, the fewer POIs a pRoute
uses to cover the pattern, the more significant it is. To quan-
tify the significance of each pRoute, we define the weight of
each pRoute as follows:

Definition 5. (weight of pRoute) Let r be a pRoute of a
pattern S. Then, the weight of r, denoted by w(r) is:

w(r) =
1

1 + `(r)− `(S)

It is not difficult to see that w(r) is at most 1 for the tight-
est r, and gets smaller when it contains more stops in the
middle. We define the support of S, denoted by sup(S), as
the total weight of pRoutes in I(S), that is:

sup(S) =
∑

r∈I(S)

w(r).

Example 3. Consider trajectories and a pattern S = 〈o, s〉
in Figure 1. T3[3 : 4] is a pRoute of S, but T3[1 : 4] is not
since T3[3 : 4] v T3[1 : 4]. The set of all pRoutes of S, i.e.,
I(S) = {T2[3 : 5], T3[3 : 4], T4[1 : 3], T5[1 : 2], T6[1 : 3]} and
its support, i.e., sup(S) is 1/2 + 1 + 1/2 + 1 + 1/2 = 3.5.

Based on our version of the support definition, the com-
pact sequential pattern nicely satisfies the Apriori property,
which is essential to design an efficient sequential pattern
mining algorithm.

Theorem 1. Given two patterns S and S+, if S v S+,
then sup(S) ≥ sup(S+).

Proof. First of all, the weight of each pRoute cannot
increase as the pRoute grows. Also, every pRoute of S+ also
covers S as S v S+. Therefore, for each pRoute r+ ∈ I(S+),
there should be at least one (or more) compact sequential
pattern instance of S, i.e., pRoute of S, within r+, implying
that |I(S)| ≥ |I(S+)|.

3.2.2 pDensity: Semantic Pattern Density Model
For a pRegion, we now quantify to what extent the pattern

corresponding to the pRegion frequently occurs as well as to
what extent the POIs of the pRegion are spatially close to
each other. To this end, we introduce a new density model in
terms of both space and pattern frequency, called pDensity.

To define pDensity, we extend DBSCAN [8]. The essential
idea of DBSCAN is to focus on the ε-neighbourhood area for
each data point, where the ε-neighbourhood is defined as an
ε-radius circle centered at the point as shown in Figure 3(a).
DBSCAN quantifies the density basically for each data point
by counting all the points residing in the ε-neighbourhood
of the point, and the point is considered to be dense enough
if its ε-neighbourhood contains at least a certain number of
points.

In our problem, the pDensity can be quantified by count-
ing instances of a particular pattern, instead of counting
data points distributed in space. Therefore, the pDensity
should be defined for each instance of the pattern, that is,
a pRoute, not for each single POI.

For each pRoute of a pattern, we define the following
neighbourhood area:

Definition 6. (ε-neighbourhood of pRoute) Given a pat-
tern S, a pRoute r of S, and a distance parameter ε, the
ε-neighbourhood of r, denoted by Nh(r), is the bounding
area within distance ε from the polyline connecting all POIs
of r.

Figure 3(b) gives an example showing the ε-neighbourhood
of pRoute T2[1 : 4] of pattern 〈c, s, o〉 together with other
trajectories therein, where all pRoutes of 〈c, s, o〉 are under-
lined in the table.

Within the ε-neighbourhood of each pRoute r of a pat-
tern S, we basically count all the pRoutes of S to measure
the pDensity of r. However, counting pRoutes in the neigh-
bourhood is not as simple as counting points in DBSCAN

2076



p

ε

(a) ε-neighbourhood of point p in
DBSCAN

o

o

ε
s

o

s

s
o

c

T3

T2

T1

o

c

T4 trajectory sequence of categories

T1 〈o, c, s, o〉
T2 〈c, o, s, o, o〉
T3 〈c, s, o〉
T4 〈c, s, s, o〉

(b) ε-neighbourhood of pRoute T2[1 : 4] of pattern 〈c, s, o〉, where four
trajectories (in different colors), T1, ..., T4, are in the neighbourhood

Figure 3: Different definitions of the neighbourhood in DBSCAN and in our pDensity model

because there could be many pRoutes that are not fully in-
side the neighbourhood such as T1[2 : 4] in Figure 3(b). It
is not desired to discard all such pRoutes in that they still
somehow contribute to the pDensity of a nearby pRoute.
To determine which pRoutes should be considered, we de-
fine the following neighbour relationship between pRoutes.

Definition 7. (neighbour pRoute) Let r and r′ be two
pRoutes of S. Then, we say that r′ is a neighbour pRoute
of r, denoted by r′ ∈ N (r), iff. there is at least one POI of
r′ inside Nh(r).1

Thus, we do not consider any pRoutes just passing through
the neighbourhood without any stops as well as being too
far away from the neighbourhood. This is based on the
intuition that one has to at least visit a region during his
or her short trip matching with the corresponding pattern
in order for the trip to be somehow relevant to the region.
To compute the pDensity of r, we only take these neighbour
pRoutes in N (r).

Once again, not all neighbour pRoutes have the same
amount of importance. To quantify how much a pRoute
contributes to the pDensity of another pRoute having it as
a neighbour, we define the contribution ratio of each neigh-
bour pRoute as follows:

Definition 8. (contribution ratio) Let r and r′ be two
pRoutes of pattern S such that r′ ∈ N (r). Then, the con-
tribution ratio of r′ to the pDensity of r, denoted by λ(r′, r),
is:

λ(r′, r) =
`(r′ uNh(r))

`(r′)
,

where `(r′uNh(r)) denotes the number of POIs of r′ residing
in the Nh(r).

Finally, we are ready to define the pDensity as follows:

Definition 9. (pDensity) Let r be a pRoute of pattern
S. Then, the pDensity of r with respect to S, denoted by
δ(r, S), is computed by:

δ(r, S) =
`(S)

`(r)
·

∑
r′∈N (r)

λ(r′, r) · w(r′).

The first term `(S)
`(r)

is to give a penalty to a pRoute that

is longer than its corresponding pattern. By this penalty,
a longer pRoute should include more neighbour pRoutes in
its larger neighbourhood region in order to have a pDensity
value equal to that of a shorter one.

1Note that this neighbour relationship between pRoutes is
reflexive, but not symmetric, i.e., r′ ∈ N (r) ; r ∈ N (r′).
Thus, we can find a case where some POIs of r′ is inside
Nh(r), but no POIs of r reside in Nh(r′).

Example 4. In Figure 3(b), let us compute the pDensity
of T2[1 : 4] with respect to pattern 〈c, s, o〉, i.e., δ(T2[1 :
4], 〈c, s, o〉). There are four pRoutes in N (T2[1 : 4]), namely
T1[2 : 4], T2[1 : 4], T3[1 : 3], and T4[1 : 4], all of which cover
〈c, s, o〉 in a compact manner.

The weight of each pRoute is as follows: w(T1[2 : 4]) = 1,
w(T2[1 : 4]) = 1/2, w(T3[1 : 3]) = 1, and w(T1[1 : 4]) = 1/2.

The contribution ratio of pRoute T1[2 : 4] to δ(T2[1 :
4], 〈c, s, o〉), i.e., λ(T1[2 : 4], T2[1 : 4]), is 2/3, λ(T3[1 :
3], T2[1 : 4]) is 1, λ(T4[1 : 4], T2[1 : 4]) is 1, and obvi-
ously λ(T2[1 : 4], T2[1 : 4]) is also 1. Therefore, δ(T2[1 :
4], 〈c, s, o〉) = 3/4 · (2/3 · 1 + 1 · 1/2 + 1 · 1 + 1 · 1/2) = 2.

Semantically, this is identical to the case where two length-
3 pRoutes of 〈c, s, o〉 are fully inside the neighbourhood re-
gion.

3.2.3 pDensity-based Clustering Scheme
Based on the pDensity defined in the previous subsection,

we now formalize a density-based clustering scheme using
our pDensity measurement, and finally define the pRegion.

As for the clustering scheme, the overall idea is adopted
from DBSCAN [8] yet with a different density metric. Sim-
ilar to DBSCAN, we have two main parameters, namely ε
and σ, where ε bounds the size of the neighbourhood of each
pRoute and σ is the density threshold to determine whether
a pRoute is dense enough in terms of the pDensity. We first
define the dense pRoute as follows:

Definition 10. (dense pRoute) Given a density threshold
σ and a pRoute r of pattern S, r is a dense pRoute iff.
δ(r, S) ≥ σ.

Unlike the DBSCAN model dealing with points, our model
dealing with polylines needs a more strict version of clus-
tering scheme to prevent the free-riding effect. Thus, we
do not want to end up with too large clusters loosely con-
nected by many lengthy polylines. For this purpose, we de-
fine pDensity-reachable and pDensity-connected in a more
rigid way than their counterparts are defined in DBSCAN.

Definition 11. (pDensity-reachable) Given a dense pRoute
r, a pRoute r′ is pDensity-reachable from r iff. (1) r′ is also
a dense pRoute, and (2) either r′ ∈ N (r) or r′ ∈ N (r′′) such
that r′′ is pDensity-reachable from r.

Definition 12. (pDensity-connected) Two dense pRoutes
r1 and r2 are pDensity-connected iff. there exists a dense
pRoute r′ such that both r1 and r2 are pDensity-reachable
from r′.

Note that we connect only dense pRoutes and discard all
non-dense pRoutes as noises. The pDensity-connectivity is
still an equivalence relation, and therefore can partition a
set of pRoutes into multiple closed subsets.
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Based on the pDensity-connectivity, a pRegion corresponds
to a pDensity-based cluster of pRoutes, which is formally
defined as follows:

Definition 13. (pRegion) Given a set T of semantic tra-
jectories and a set P of underlying POIs of T , a pRegion
R ⊆ P with respect to pattern S is a set of POIs contained
in a maximal closed set M ⊆ I(S) of pRoutes such that any
two pRoutes in M are pDensity-connected.

3.2.4 Problem Statement
Combining all definitions together, our final problem state-

ment is as follows:

Definition 14. (Problem Definition) Given a set T of se-
mantic trajectories, and parameters ε, σ, and ∆t, the prob-
lem of mining regional semantic trajectory patterns is to find
all the pRegions with respect to ε, σ, and ∆t.

Each pRegion is automatically associated with a particular
pattern as we only take pRoutes of the same pattern when
performing the pDensity-based clustering.

4. ALGORITHM FOR MINING pREGIONS
In this section, we present the algorithm RegMiner that

efficiently mines all the pRegions, given a semantic trajec-
tory data set.

4.1 Solution Strategy
Finding all the pRegions takes two essential tasks. We

need to (1) systematically enumerate every subsequence of
semantic categories for the completeness of the result, and
(2) perform pDensity-based clustering over the set of pRoutes
corresponding to each category sequence.

The first task involves a huge set of candidate category
sequences. Instead of checking all possible sequences, we can
focus on promising ones by the following quick observation.

Lemma 1. Let S be a category sequence, i.e., a pattern.
Based on the compact sequential pattern model in Section
3.2.1, if sup(S) < σ, then there is neither any dense pRoute
nor any pRegion with respect to S.

Proof. This is obvious since, for any r ∈ I(S), δ(r, S) is
at most

∑
r∈I(S) w(r) = sup(S) by the definition.

By Lemma 1, it suffices to consider only compact sequential
patterns whose supports are at least σ.

The next task is, for each of the promising category se-
quences identified by the first task, to actually compute all
the pRegions with respect to the pattern. Let S be such
a category sequence, and then we first have to find the set
I(S) of all the pRoutes of S. Once we have I(S), all the
pRegions with respect to S can be obtained by performing
the pDensity-based clustering on I(S).

Based upon two tasks explained above, the pseudocode of
RegMiner is outlined in Algorithm 1. Before performing two
main tasks, RegMiner first splits each trajectory into mul-
tiple sub-trajectories so that each sub-trajectory can only
contain transitions within a time period less than the max-
imum transition time (Line 1). By doing so, we no longer
have to consider the timestamp of each trajectory in the rest
steps.

4.2 Algorithm RegMiner
We now present the algorithm RegMiner in detail by dis-

cussing each step of Algorithm 1.

ALGORITHM 1: RegMiner (T , P, C, ε, σ, ∆t)

Input: T := the set of semantic trajectories, P := the set of
POIs, C := the set of categories, ε := the
neighbourhood size parameter, σ := the pDensity
threshold, ∆t := the maximum transition time
between two POIs

Output: R := the set of pairs of a pRegion and a pattern
1 T∆t ← Split each T ∈ T into non-overlapping contiguous

sub-trajectories s.t. the transition time between every two
consecutive POIs of each sub-trajectory is at most ∆t;

2 Sσ ← Find all frequent category sequences whose support is
at least σ in T∆t;

3 foreach category sequence S ∈ Sσ do
4 I(S)← Find all pRoutes of S;
5 M← Perform pDensity-based clustering on I(S);
6 foreach pRoute cluster M ∈M do
7 P ← {all POIs in M};
8 Insert the pair (P, S) into R;

9 return R;

4.2.1 Mining Compact Sequential Patterns
To find promising category sequences, we need to solve

the following mining problem.

Definition 15. (Compact sequential pattern mining) Given
a set T of trajectories and a support threshold σ, extract
all the compact sequential patterns in the set of category
sequences of trajectories in T whose supports are at least σ.

To address this sub problem, we employ the idea of instance
growth, which was firstly introduced in the algorithm GS-
grow for the problem of mining frequent repetitive gapped
subsequences [6].

Repetitive gapped subsequences basically indicate non-
overlapping instances of a pattern within and across se-
quences. More specifically, two subsequences of a sequence
are said to be overlapping with respect to a pattern if they
share at least one common item that is used to cover the pat-
tern at the same position. For example, in the case of a cat-
egory sequence γ(T ) = 〈c, c, s, o, s, s, c, o, s〉 in Figure 2, we
can even say that T [1 : 9] and T [2 : 3] are non-overlapping
with respect to pattern 〈c, s〉 since T [1 : 9] can use the first
c and the ninth s to cover the pattern, none of which are
not shared by T [2 : 3] at the same position.

As explained in Section 3.2.1, these non-overlapping in-
stances differ from instances of our compact sequential pat-
tern, that is, pRoutes. In the context of semantic trajec-
tories, it is pointless to consider all the non-overlapping in-
stances, considering that T [1 : 9] becomes meaningless by
taking T [2 : 3] or T [7 : 9] in the example above. Therefore,
we need to modify the GSgrow algorithm so that all the
compact sequential patterns, instead of repetitive gapped
sequences, can be found.

Basically, the idea of instance growth is an extension of
the pattern growth strategy used in the PrefixSpan algorithm
[21]. We thus start with a short frequent pattern and grow
this pattern until no further frequent pattern can be gener-
ated using the pattern as a prefix by the Apriori property.
When growing a pattern, GSgrow extends each instance of
the pattern as long as the instance can be extended without
overlapping other instances previously extended.

Similarly, our strategy is also to grow each instance of
the pattern. In the meantime, we also check whether any
instances previously extended can become non-compact ones
by the instance being extended, and delete those non-compact
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instances. By accessing instances within a trajectory in
the ascending order of their starting positions (i.e., s’s in
T [s, e]’s), the entire process can be done without any addi-
tional overhead, compared to PrefixSpan and GSgrow .

Furthermore, to obtain pRegions for each promising pat-
tern S, we also need to compute I(S) (see Lines 3 in Algo-
rithm 1). This task can also be done during the process of
mining compact sequential patterns in a piggyback manner.

The following example presents how our algorithm, called
CompactGrow , works for mining compact sequential pat-
terns, and also shows how to retrieve all pRoutes for each
pattern.

Example 5. (CompactGrow) For the set T of semantic
trajectories shown in Figure 1 with σ = 3, compact sequen-
tial patterns whose support is at least σ can be mined as
follows:

Step 1: Find length-1 sequential patterns. For the
length-1 patterns, every instance itself is compact. There-
fore, we just scan T and count all occurrences of each cate-
gory instead of counting all sequences containing each item
in PrefixSpan. The results are:

sup(〈c〉) = 9, sup(〈s〉) = 10, sup(〈o〉) = 6,

all of which are frequent with regard to σ = 3.
Also, we maintain the set of pRoutes for each length-1

pattern. To take 〈o〉 as an example, the set of corresponding
pRoutes, i.e., I(〈o〉), is:

{T2[3 : 3], T3[1 : 1], T3[3 : 3], T4[1 : 1], T5[1 : 1], T6[1 : 1]}

This information can be obtained by one scan of T .

Step 2: Grow pRoutes for each length-1 pattern.
Next, for each length-1 pattern found in Step 1, we extend
each pRoute of the length-1 pattern to be the pRoute of
a length-2 pattern having the length-1 pattern as a prefix.
More specifically, for each pRoute Ti[s, e] of pattern 〈o〉 to
be a pRoute of pattern 〈o, s〉, we find the leftmost position
of category s after the e-th POI in γ(Ti). For all pRoutes
within the same trajectory like Ti[s1, e1], Ti[s2, e2], ..., we do
this in the ascending order of their starting positions. To
illustrate, consider pRoutes of 〈o〉 in T3, namely T3[1 : 1] and
T3[3 : 3]. We first access T3[1 : 1] and extend it to be T3[1 : 4]
as the leftmost position having s is 4 in T3, and then we also
extend T3[3 : 3] to be T3[3 : 4]. Importantly, at the moment
of extending T3[3 : 3] to be T3[3 : 4], we check whether the
preceding pRoute already extended, i.e., T3[1 : 4], including
the currently extended pRoute, i.e., T3[3 : 4]. In this case,
since T3[3 : 4] v T3[1 : 4], we discard T3[1 : 4] from the set
of pRoutes of 〈o, s〉. The resulting set I(〈o, s〉) is:

{T2[3 : 5], T3[3 : 4], T4[1 : 3], T5[1 : 2], T6[1 : 3]}

Also, the support of 〈o, s〉 is 3.5, still larger than σ.

Step 3: Keep growing pRoutes until the correspond-
ing pattern is not frequent. For the set of pRoutes of
each length-l pattern, we recursively do the same process,
that is, growing each pRoute to be a pRoute of a length-
(l + 1) pattern having the length-l pattern as a prefix. We
safely stop this process when the support of the length-l pat-
tern is smaller than σ since any pattern extended from the
length-l pattern cannot have a larger support value, thanks
to Theorem 1.

For example, since sup(〈s, o〉) = w({T2[2 : 3]}) = 1 < σ,
we no longer have to extend 〈s, o〉.

ALGORITHM 2: CompactGrow (T , σ)

Input: T and C := sets of semantic trajectories and
categories, σ := the support threshold

Output: the set of all compact sequential patterns having at
least σ support together with their corresponding
sets of pRoutes

1 Cσ ← frequent categories in C with at least σ occurrences in
T ;

2 foreach c ∈ Cσ do
3 S ← 〈c〉;
4 I(S)← {Ti[s : s]|Ti ∈ T ∧ s-th position of γ(Ti) is c};
5 Output S and I(S);
6 PrefixSpan (S, I(S));

7 Subroutine PrefixSpan (S, I(S))
Input: S := a pattern, I(S) := the set of pRoutes of S

8 foreach c ∈ Cσ do
9 S+ ← append c to S;

10 I(S+)← RouteGrow (c);

sup(S+) =
∑
t∈I(S+) w(t);

11 if sup(S+) ≥ σ then
12 Output S+ and I(S+);

13 PrefixSpan (S+, I(S+));

14 Subroutine RouteGrow (c)
Input: c := a category to be appended
Output: I(S+) := the set of pRoutes of the pattern S+

of appending c to S
15 I(S+)← ∅; sprev ← 0; eprev ← 0;
16 foreach Ti[s : e] ∈ I(S) in the ascending order of s do
17 e′ ← the leftmost position of c in γ(Ti) after e-th

POI;
18 if ∃ such e′ then
19 if Ti[sprev , eprev ] w Ti[s, e′] then
20 Delete Ti[sprev , eprev ] from I(S+);

21 Insert Ti[s, e
′] into I(S+);

22 sprev ← s, eprev ← e′;

23 return I(S+);

Algorithm 2 presents the details of our CompactGrow al-
gorithm. We first identify frequent length-1 patterns and re-
cursively call PrefixSpan for further growing patterns (Lines
1–6). When we grow pattern S by appending each cate-
gory c to S, we invoke RouteGrow to obtain the set of all
the pRoutes of the extended pattern, denoted by S+ (Lines
8–10). Whenever we grow each pRoute, if the previously
extended pRoute includes the pRoute currently extended,
we delete the previous one as it is no longer compact (Lines
19–20). Note that we do not have to check all the previous
pRoutes by accessing all the pRoutes in the same trajectory
in the ascending order of their starting positions. If the size
of the resulting set I(S+), that is, the support of S+, is not
less than σ, we output S+ together with I(S+) as one of
the frequent compact sequential patterns (Lines 11–13).

As mentioned earlier, the entire processing cost of Com-
pactGrow is no more than that of PrefixSpan that is known
as one of the most efficient algorithms for extracting sequen-
tial patterns in sequences.

4.2.2 pDensity-based Clustering on pRoutes
After identifying promising category sequences and their

corresponding pRoutes, we perform the pDensity-based clus-
tering on pRoutes of each of those sequences to find all
the corresponding pRegions, which yields the following sub
problem.
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Table 2: The statistics of data sets
Dataset UK NE

Number of POIs 54,278 168,625
Number of trajectories 4,893 13,489
Number of categories 414 427
Avg. transition time (mins) 5232.63 4417.55

Definition 16. (pDensity-based clustering problem) Given
the set I(S) of all pRoutes of a pattern S, and parameters
ε and σ, find all the pDensity-based clusters on I(S) with
respect to ε and σ.

Inspired by DBSCAN [8], this clustering problem can be
solved by the following steps.

1. Pick the pRoute r0 with the shortest length among un-
visited pRoutes in I(S) since it is likely to have a high
pDensity value due to a small penalty.

2. Mark r0 as visited and compute δ(r0, S) by retrieving all
neighbour pRoutes of r0, i.e., N (r0).

3. If δ(r0, S) ≥ σ, then construct a new pDensity-based
cluster M0 containing r0. Otherwise, discard r0 as a
noise and go to Step 1.

4. Expand M0 by checking all neighbour pRoutes in N (r0)
as follows: for each ri ∈ N (r0) marked as unvisited,
mark ri as visited and add ri into M0 if δ(ri, S) ≥ σ by
retrieving all pRoutes in N (ri).

5. If δ(ri, S) ≥ σ, recursively repeat Step 4 with N (ri) until
M0 can no longer be expanded.

6. Go to Step 1 if there still exists a pRoute marked as
unvisited in I(S).

The overall performance of this procedure heavily depends
on the task of retrieving neighbour pRoutes. To accelerate
this task, we employ a spatial index structure, such as the
R-tree [12], in the following manner.

We basically build a spatial index on the set of all POIs
contained in any pRoutes in I(S), denoted by P(S). For
each p ∈ P(S), we construct an inverted list of all the
pRoutes containing p, and associate the inverted list with p.
Then, for each r ∈ I(S), a range query on P(S) with Nh(r)
gives us all POIs, augmented with their inverted lists, that
are inside Nh(r). To compute the contribution ratio of each
neighbour pRoute of r, we can count how many times each
pRoute appears in all the inverted lists of POIs being re-
trieved. By doing so, we can retrieve all neighbour pRoutes
of r together with their contribution ratios.

The construction of inverted lists entails O(
∑
r∈I(S) `(r))

time. In the case of the priority R-tree [3], the indexing time
is O(|P(S)| log |P(S)|) and the window range query time is

O(
√
|P(S)|), which is known as the best possible efficiency

for a linear space index structure [3]. Therefore, by means
of this type of spatial index, we can find the complete set
of all the pRegions with respect to S in O(|I(S)|

√
|P(S)|+

|P(S)| log |P(S)|+
∑
r∈I(S) `(r)) time since we issue at most

O(|I(S)|) range queries for the retrieval of neighbour pRoutes.

5. EXPERIMENTS
In this section, we experimentally evaluate the perfor-

mance of RegMiner with the following two objectives. First,
we study interesting cases on regional human movement be-
haviours discovered by RegMiner using real data sets. Next,

we quantitatively compare the quality, the effectiveness, and
the efficiency of RegMiner to its competitors.

Our RegMiner algorithm is implemented in Java and all
the experiments are conducted on a PC running Linux (Ubuntu
16.04) equipped with an Intel Core i7 CPU 3.4GHz and
16GB memory.

5.1 Data Sets
We use two real data sets in our experiments, namely UK

and NE. Both of UK and NE are selected from the data
set of world-wide Foursquare check-ins released by Yang et
al. [24, 25]. Among more than 30 million check-ins and
3 million POIs over 77 countries in the data set, we take
check-ins and POIs whose GPS coordinates are within the
regions of the United Kingdom and the Northeastern United
States to generate the data sets, UK and NE, respectively.

With the set of selected check-ins and POIs, we group
and sort those check-ins by users, and thereby construct
semantic trajectories for each of the data set. When we
construct trajectories, we filter out noise by combining ev-
ery two consecutive check-ins whose categories and locations
are the same. To take trajectory T = 〈p1, p2, p3, p4, p5〉
and γ(T ) = 〈c, s, s, s, o〉 as example, we shrink T to be
〈p1, p2, p5〉 if p2, p3, and p4 lie in exactly the same location.
The statistics of the two resulting data sets are shown in
Table 2.

5.2 Case Study in London
Using the UK data set, we apply the RegMiner algorithm

to discover underlying regional movement patterns, partic-
ularly focusing on the area of London. We set the default
parameter values as follows: ∆t = 24 (hours), σ = 30, and
ε = 5 (km). These default values are determined by con-
sidering both the statistics of the UK data set and their
semantic meanings. 5 km for ε is a reasonably good value
to quantify how close two POIs should be to be within a
neighbourhood region. This is not too big but not too small
compared to the average length of 33 London boroughs, 6.95
km 2. For ∆t, our default value, 24 hours, does not allow
us to take movements with transition time longer than a
day. Again, this value is not too long semantically yet not
too small compared to the average transition time of the
UK data set, 87.21 hours. The default value of σ, 30, is
determined by our experimental results. Note that we thor-
oughly analyse the effect of varying all the parameter values
in Section 5.3.

We found 184 pRegions in total for the entire area of UK,
including 143 length-2 patterns, 27 length-3 patterns, and
14 length-4 or longer patterns. Among all the resulting pRe-
gions in UK, we show some interesting regional patterns ap-
pearing in London as presented in Figure 4. For the effective
presentation reflecting different density values of pRoutes,
we draw a heat map using the Google Map API3, where the
density of each pRoute is assigned to the weight values of
the relevant POIs. The detailed statistics for the regional
patterns are summarized in Table 3.

One of the most representative regional movement pat-
terns in London is the transition from a hotel to a coffee
shop (shown in Figure 4(a)). This pattern lies in a quite
broad area especially concentrating on the central area yet
covering many famous attractions as well. The region of the

2https://data.london.gov.uk
3https://developers.google.com/maps/
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(a) 〈hotel→ coffee shop〉 (b) 〈office→ coffee shop〉 (c) 〈office→ pub or bar〉 (d) 〈plaza→ landmark〉
Figure 4: Illustrating movement patterns and their pRegions in London

Table 3: The statistics of illustrating movement patterns in London
Pattern # pRoutes Support Avg. pDensity # dense pRoutes # pRegions

〈hotel→ coffee shop〉 134 91.91 32.24 78 1
〈office→ coffee shop〉 226 169.56 57.85 163 2
〈office→ pub〉 152 95.12 16.50 37 1
〈office→ bar〉 92 60.16 11.92 1 1

〈home→ grocery store〉 274 156.94 5.66 0 0
〈plaza→ landmark〉 52 33.50 21.55 21 1

transition from an office to a coffee shop (shown in Figure
4(b)) shows a similar coverage, but it is more focused on
the right center of the city where Soho and City of London
are located. This is sensible in that there are many com-
panies and work places located in this area. However, the
neighbourhood of Kensington containing many attractions
like Kensington Palace and Hyde Park is not densely cov-
ered by the pattern 〈office→ coffee shop〉 unlike the area of
〈hotel→ coffee shop〉.

Compared to 〈office → coffee shop〉, another interesting
movement pattern is the pattern 〈office → pub or bar〉 (see
Figure 4(c)). We can first observe that the overall density of
〈office → pub or bar〉 is much lower than that of 〈office →
coffee shop〉, yet is relatively more concentrated on the area
of Soho. Also, it seems that people are willing to cross the
River Thames when they go to a pub or a bar after work
as the dense pRoutes of 〈office→ pub or bar〉 are uniformly
distributed across the river. This is apparently not the case
in 〈office → coffee shop〉 whose pRegion is strongly biased
to the northern part of the river. Due to a similar reason,
there is no pRegion with respect to 〈office→ pub or bar→
office〉, but we found a pRegion of 〈office → coffee shop →
office〉 that occupies a small part of the pRegion of 〈office→
coffee shop〉.

We also observe that a globally frequent pattern does not
necessarily lead to its regional patterns. For example, the
pattern 〈home → grocery store〉 is highly frequent in the
entire space as its support value is 156.94, but it does not
yield any pRegions. This is intuitive in the sense that, even
though there are a good number of residences and grocery
stores, transitions between them are scattered all around the
city without involving any regional behaviours.

On the contrary, some globally insignificant patterns oc-
casionally have regional patterns. For instance, the sup-
port of 〈plaza → landmark〉 (shown in Figure 4(d)) is only
33.5 barely over σ = 30, but it shows quite dense regional
patterns. We found that the relevant region is the heart
of London for tourists, where Big Ben, London Eye, and
Buckingham Palace are located.

5.3 Quantitative Study
We now quantitatively study whether our RegMiner al-

gorithm is effective and efficient particularly compared to
the existing global pattern mining scheme in semantic tra-
jectories as well as a simple mining method using a grid
structure. We also examine how various parameter values
affect the performance of RegMiner.

5.3.1 Baselines
GridMiner. For quality comparison, we implement a
grid-based regional pattern mining algorithm, called Grid-
Miner, where all dense cells with high pattern frequency are
returned. Since it is too näıve to use a grid structure with
a fixed granularity, we apply a quadtree-based space parti-
tioning scheme to GridMiner. GridMiner takes the entire
space as a cell at the beginning, and check if there is any
dense pattern with respect to the cell. If so, the cell is recur-
sively divided into 4 sub cells (i.e., quadrants) and do the
same test for each sub cell.

The issue is how to estimate the density of each cell with
respect to a pattern S. Intuitively, we can imagine that
each cell consists of multiple ε-neighbourhood regions, and
the area of each ε-neighbourhood region can be modelled
as c · πε2 · `(S) for some constant factor c. Then, we can
estimate the density of a cell for pattern S as:

sup(S)× c · πε2 · `(S)

the area of the cell
.

Given a parameter value c, GridMiner finds all the cells
and their corresponding patterns whose estimated density
values are not less than σ. The case of c = 1 means we
consider each neighbourhood region as the compact union
of only `(S) ε-radius circles. This strict c value makes Grid-
Miner extremely ineffective to the point that no patterns
are found in most cases. When c gets larger, we also include
some intermediate areas for a transition between two POIs,
leading to more patterns returned. Thus, there is a trade-
off between the effectiveness and the quality controlled by
the c value. We set c to 600 in all experiments, which is
the value making the effectiveness of GridMiner (i.e., the
number of output patterns) close to that of RegMiner with
default values of the other parameters.
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Figure 5: Experimental results using UK with varying the pattern frequency threshold (σ) from 20 to 150
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Figure 6: Experimental results using NE with varying the pattern frequency threshold (σ) from 20 to 150

Splitter. We take another competitor, Splitter proposed
by Zhang et al. [29], by employing the authors’ implementa-
tion in Java. The Splitter algorithm is the state-of-the-art
algorithm for finding globally frequent sequential patterns
in semantic trajectories.

Even though Splitter is not designed for finding regional
patterns, it interestingly considers regional properties in the
sense that it groups POIs of the same category that are spa-
tially close to each other. More specifically, Splitter finds
all sequential patterns of such groups of POIs, called fine-
grained sequential patterns. Therefore, it is worthwhile test-
ing whether Splitter can be adapted to mine regional pat-
terns using a small support threshold.

5.3.2 Quantitative Metrics
Quality. For quality comparison between RegMiner and
GridMiner, we devise a new quality metric, called cirDen-
sity, which is intuitively the ratio of the number of pattern
occurrences to the area of the pRegion. To approximate the
area of an arbitrary shaped pRegion, we first compute the
smallest enclosing circle (SEC ) for the set of POIs in the
pRegion, and enlarge the diameter of the SEC by ε. Then
the cirDensity of a pRegion R is defined as:

the weighted number of pattern occurrences in R

the area of the ε-enlarged SEC of R (km2)
.

Note that the cirDensity actually evaluates our proposed
density metric (i.e., pDensity) that is always optimized by
RegMiner.

Efficiency and Effectiveness. For the efficiency test, we
measure the running time, and we follow the rules of Splitter
to evaluate the effectiveness of all competing algorithms,
that is, the more patterns, the more effective [29]. Note that
this rule is well matched with RegMiner and GridMiner as
we also want our resulting set as complete as possible [29].

5.3.3 Comparison on Quality, Efficiency, and Effec-
tiveness

Effect of the pattern frequency threshold (σ). We
first vary the pattern frequency threshold (σ) with default
values of the other parameters. Figures 5 and 6 show the
experimental results using UK and NE, respectively.

To give similar conditions to RegMiner and Splitter, we
use the fact that both RegMiner or Splitter first find glob-
ally frequent patterns regardless of the spatial aspect in its
own scheme, and then process the set of all instances (occur-
rences) for each globally frequent pattern to finally discover
its local (regional) patterns. Even though the meaning of
the support threshold in the two algorithms are not exactly
the same, we observe that both algorithms retrieve a similar
number of global patterns, i.e., frequent category sequences,
as shown in Figures 5(b) and 6(b). Thus, it can be seen
that both algorithms process a similar amount of workload
to ultimately find their final local patterns.

In both of the results using UK and NE, it is remark-
ably observed that RegMiner deals with even a larger set
of global patterns yet runs a lot faster than Splitter does.
Furthermore, RegMiner effectively discovers much more re-
gional patterns, using a reasonably small support threshold
such as 20. Splitter fails to capture any local patterns in
most of the cases using thresholds larger than 50. This is
probably due to the fact that Splitter counts only one occur-
rence for each pattern, which turns out to be inappropriate
for mining regional patterns as explained in Section 3.2.1.

When trying Splitter to return many local patterns by
decreasing the support threshold, we observe that Splitter
gets a few orders of magnitude slower than RegMiner, as
shown in Figures 5(a) and 6(a). In the case of σ = 20
using the NE data set Splitter does not even terminate in
several days. The main reason is that Splitter checks every
occurrence of a pattern in a trajectory even though it counts
only one of them. As explained in Section 3.2.1, the entire
search space of considering all possible occurrences could be
prohibitively huge for long patterns. By considering only
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Figure 7: Experimental results using UK with varying the maximum transition time (∆t hours) from 6 to 48
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Figure 8: Experimental results using NE with varying the maximum transition time (∆t hours) from 6 to 48

the significant occurrences, i.e, pRoutes, RegMiner achieves
the fairly high efficiency as well as the effectiveness.

In terms of the efficiency and the effectiveness, both Reg-
Miner and GridMiner show remarkable performance, com-
pared to Splitter. This is because GridMiner basically shares
the main idea with RegMiner, that is, taking only compact
sequential patterns, defining the density of a pattern with
respect to a region, and returning regional patterns based
on our density scheme. The drawback of GridMiner lies in
the quality comparison. In most cases, GridMiner turns out
to return less useful regions having a low cirDensity value,
as shown in Figures 5(d) and 6(d).
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Figure 9: Experimental results using UK with vary-
ing the neighbourhood size (ε kilometres) from 0.1
to 10
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Figure 10: Experimental results using NE with vary-
ing the neighbourhood size (ε kilometres) from 0.1
to 10

Effect of the maximum transition time (∆t). We
conduct the same experiments varying the maximum tran-
sition time (∆t). We also set the pattern frequency thresh-
old to 50 by default since it is the largest value enabling
Splitter to return at least some local patterns (i.e., the most
favourable value for speeding up Splitter). The correspond-
ing results are shown in Figures 7 and 8.

Once again, RegMiner and GridMiner are superior to
Splitter in terms of both the efficiency and the effective-
ness for the goal of mining regional patterns. Overall, all
the algorithms clearly show the increasing trend of execu-
tion time and the number of patterns when increasing ∆t
values. This is because a larger ∆t value allows more transi-
tions between POIs to be processed, leading to longer global
patterns and consequently longer final local patterns. Ap-
parently, we can observe that dealing with longer patterns
severely slows down Splitter, but RegMiner scales quite well
even with larger ∆t values, as shown in Figures 7(a) and
8(a). GridMiner again exposes its fundamental weakness
at the quality. In every case, the cirDensity of GridMiner
is a few times smaller than that of RegMiner, as shown in
Figures 7(d) and 8(d).

Effect of the Neighbourhood Size (ε). We finally ex-
amine how the size of the neighbourhood region (ε) affects
the performance of our algorithms, RegMiner and Grid-
Miner. As observed in Figures 9(a), 10(a), 9(b), and 10(b),
the lager the ε value, the longer the execution time and
the more pRegions we can find, in both UK and NE. The
numbers of global patterns obtained by RegMiner using UK
and NE remain 695 and 1922, respectively. It appears that
the efficiency and the effectiveness of GridMiner are slightly
better than those of RegMiner. However, it is important to
note that the quality of GridMiner becomes drastically low
when ε gets large, as shown in Figures 9(c) and 10(c) where
the cirDensity values on y-axis are in log scale.
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6. CONCLUSION
Understanding human movement behaviour using seman-

tic trajectories attracted the data mining community in re-
cent years. In this paper, we provide the first mining tool
for discovering significant regions showing particular move-
ment patterns. In order to effectively and efficiently grasp
regional movement patterns, we model this problem as a
practically solvable one by introducing new sub problems
like compact sequential pattern mining and pDensity-based
clustering, and thereby devise an efficient mining algorithm,
RegMiner. We apply our algorithm to real data sets, and
gain some geographic insights on regional movement be-
haviour in urban areas such as London. The extensive quan-
titative experimental results also show that our algorithm is
not only more effective with good quality but also far more
efficient than a state-of-the-art global mining algorithm on
semantic trajectories.

Although this work mainly deals with trajectories, we be-
lieve that our regional pattern mining framework can be ap-
plied to many different types of sequential data by adopting
a different neighbour relationship between pattern instances
other than the spatial closeness. For example, given the as-
sumption that we can collect a set of users’ web browsing
histories, mining regional patterns in the network of web
pages can help us to find some interesting groups of web
pages that are semantically similar and close to each other
in terms of a network distance metric.
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