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ABSTRACT
Subgraph enumeration aims to find all the subgraphs of a large data
graph that are isomorphic to a given pattern graph. As the subgraph
isomorphism operation is computationally intensive, researchers
have recently focused on solving this problem in distributed en-
vironments, such as MapReduce and Pregel. Among them, the
state-of-the-art algorithm, TwinTwigJoin, is proven to be instance
optimal based on a left-deep join framework. However, it is still not
scalable to large graphs because of the constraints in the left-deep
join framework and that each decomposed component (join unit)
must be a star. In this paper, we propose SEED - a scalable sub-
graph enumeration approach in the distributed environment. Com-
pared to TwinTwigJoin, SEED returns optimal solution in a gen-
eralized join framework without the constraints in TwinTwigJoin.
We use both star and clique as the join units, and design an effective
distributed graph storage mechanism to support such an extension.
We develop a comprehensive cost model, that estimates the num-
ber of matches of any given pattern graph by considering power-
law degree distribution in the data graph. We then generalize the
left-deep join framework and develop a dynamic-programming al-
gorithm to compute an optimal bushy join plan. We also consider
overlaps among the join units. Finally, we propose clique compres-
sion to further improve the algorithm by reducing the number of the
intermediate results. Extensive performance studies are conducted
on several real graphs, one containing billions of edges. The results
demonstrate that our algorithm outperforms all other state-of-the-
art algorithms by more than one order of magnitude.

1. INTRODUCTION
In this paper, we study subgraph enumeration, a fundamental

problem in graph analysis. Given an undirected, unlabeled data
graph G and a pattern graph P , subgraph enumeration aims to find
all subgraph instances of G that are isomorphic to P . Subgraph
enumeration is widely used in many applications. It is used in net-
work motif computing [24, 2] to facilitate the design of large net-
works from biochemistry, neurobiology, ecology, and bioinformat-
ics. It is used to compute the graphlet kernels for large graph com-
parison [29, 25], property generalization for biological networks
[23], and is considered to be a key operation for the synthesis of tar-
get structures in chemistry [26]. It can also be adopted to illustrate
the evolution of social networks [18] and to discover information
trends in recommendation networks [21].
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1.1 Motivation
Enumerating subgraphs in a large data graph, despite its varied

applications, is extremely challenging for two reasons: First, its
core operation, known as subgraph isomorphism, is computation-
ally hard. Second, the lack of label information often causes a large
number of intermediate results, that can be much larger than the
size of the data graph itself. As a result, existing centralized al-
gorithms [3, 10] are not scalable to large graphs, and researchers
have recently explored efficient subgraph enumeration algorithms
in distributed environments, such as MapReduce [7] and Pregel
[22]. Typically, there are two ways of solving subgraph enumer-
ation - the depth-first search and the join operation. Because the
former is hard to parallelize, people tend to use the join algorithm
to solve subgraph enumeration in the distributed context.

In MapReduce, the authors in [19] studied the StarJoin algo-
rithm, which first decomposes the pattern graph into a set of dis-
joint stars. Here, a star is a tree of depth one. Then StarJoin solves
subgraph enumeration by joining the matches of the decomposed
stars following a left-deep join framework. However, it is some-
times inefficient to process a star due to the generation of numerous
intermediate results. For example, a celebrity node with 1,000,000
neighbors in the social network would incur O(1018) matches of
a star of three edges, which would exhaust both the computation
and storage in any machine and become a huge bottleneck of the
algorithm. Aware of the deficiency of StarJoin, the authors pro-
posed the TwinTwigJoin algorithm [19], which inherits the left-
deep join framework from StarJoin, but processes TwinTwig- a
star of either one or two edges - instead of a general star. The au-
thors further proved the instance optimality of TwinTwigJoin, that
is, given a join that involves general stars (a StarJoin), we can al-
ways find an alternative TwinTwigJoin that draws no more cost
than the StarJoin.

In Pregel, Shao et al. [28] proposed PSgL that enumerates sub-
graphs via graph traversal opposed to join operation. The algorithm
applies a breadth-first-search strategy - that is, each time it picks up
an already-matched but not fully-expanded node v, and searches
the matches of its neighbors in order to generate finer-grained re-
sults. Essentially, PSgL is considered to be a StarJoin algorithm
[19] that processes the joins between the matches of the star rooted
on v and the partial subgraph instances obtained from the previ-
ous step. As a result, PSgL can not outperform TwinTwigJoin as
shown in [19].

As the state-of-the-art, TwinTwigJoin only guarantees optimal-
ity under two constraints: (1) each decomposed component (also
called join unit in this paper) is a star, and (2) the join structure is
left-deep. These constraints hamper its practicality in several re-
spects. First, TwinTwigJoin only mitigates but not resolves the
issues of StarJoin by using TwinTwig instead of star. For exam-
ple, the celebrity node of degree 1,000,000 still produces O(1012)
matches of a two-edge TwinTwig. Second, it takes TwinTwigJoin
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at least m
2

(m is the number of pattern edges) rounds to solve sub-
graph enumeration, making it inefficient to handle complex pattern
graph. Finally, the algorithm follows a left-deep join framework,
which may result in a sub-optimal solution [17]. Last but not least,
TwinTwigJoin bases the cost analysis on the Erdös-Rényi random
(ER) graph model [8], which can be biased considering that most
real-life graphs are power-law graphs.
1.2 Contributions

In this paper, we propose SEED, a Subgraph EnumEration
approach in Distributed environment, that handles the subgraph
enumeration in a general join framework without the above con-
straints. SEED can be implemented in a general-purpose dis-
tributed dataflow engine, such as MapReduce [7], Spark [33],
Dryad [16], and Myria [11]. For the ease of presentation, we de-
scribe the proposed algorithm in MapReduce in this paper. We
make the following contributions in this paper.

First, we generalize the graph storage in TwinTwigJoin by in-
troducing the star-clique-preserved (SCP) storage mechanism to
support both clique (a complete graph) and star as the join units
(Section 4). With clique as an alternative, we can make a better
choice other than star, where possible, and reduce the number of
execution rounds. Ultimately, this leads to a huge reduction of the
intermediate results. Although there exist other join units besides
star and clique, we show that it can hamper the scalability of the
algorithm to support these alternatives (details are in Section 4).

Second, we propose a comprehensive cost model to estimate the
cost of SEED in the distributed context (Section 5). We base the
cost analysis on the power-law random (PR) graph model [4] in-
stead of the ER model [19]. Considering that many real graphs are
power-law graphs, the PR model offers more realistic estimation
than the ER model.

Third, we develop a dynamic-programming algorithm to com-
pute an optimal bushy join plan (Section 6). In TwinTwigJoin, the
authors compute the left-deep join plan with space and time com-
plexities of O(2m) and O(dmax ·m · 2m) respectively, where m
is number of edges and dmax is the maximum degree in the pattern
graph. With the same space complexity and a slightly larger time
complexity O(3m), we arrive at optimality by solving the more
challenging bushy join plan. We also show that it is beneficial to
overlap edges among the join units. Given some practical relax-
ation, we compute an optimal join plan that overlaps the join units
with the same complexities as the non-overlapped case.

Fourth, we devise the clique-compression technique (Section 7),
which avoids computing and materializing partial results in large
cliques, and thus further improves the performance of SEED.

Finally, we conduct extensive performance studies in six real
graphs with different graph properties - the largest containing
billions of edges. Experimental results demonstrate that SEED
achieves high scalability, and outperforms the state-of-the-art al-
gorithms by more than one order of magnitude in all datasets.

2. PRELIMINARIES
Given a graph g, we use V (g) and E(g) to denote the set of

nodes and edges of g. For a node µ ∈ V (g), denoteN (µ) as the set
of neighbors, and d(µ) = |N (µ)| as the degree of µ. A subgraph
g′ of g, denoted g′ ⊆ g, is a graph that satisfies V (g′) ⊆ V (g) and
E(g′) ⊆ E(g).

A data graph G is an undirected and unlabeled graph. Let
|V (G)| = N , |E(G)| = M (assume M > N ), and V (G) =
{u1, u2, . . . , uN} be the set of data nodes. We define the follow-
ing total order among the data nodes as:

Definition 1. (Node Order) For any two nodes ui and uj in
V (G), ui ≺ uj if and only if one of the two conditions holds:

• d(ui) < d(uj),
• d(ui) = d(uj) and id(ui) < id(uj),
where id(u) is the unique identity of node u ∈ V (G).

A pattern graph P is an undirected, unlabeled and connected
graph. We let |V (P )| = n, |E(P )| = m, and V (P ) =
{v1, v2, . . . , vn} be the set of pattern nodes. We use P = P ′ ∪P ′′
to denote the merge of two pattern graphs, where V (P ) = V (P ′)∪
V (P ′′) and E(P ) = E(P1) ∪ E(P2).

Definition 2. (Match) Given a pattern graph P and a data graph
G, a match f of P in G is a mapping from V (P ) to V (G), such
that the following two conditions hold:
• (Conflict Freedom) For any pair of nodes vi ∈ V (P ) and vj ∈
V (P ) (i 6= j), f(vi) 6= f(vj).
• (Structure Preservation) For any edge (vi, vj) ∈ E(P ), (f(vi),
f(vj)) ∈ E(G).

We use f = (uk1 , uk2 , . . . , ukn), to denote the match f , i.e., f(vi)
= uki for any 1 ≤ i ≤ n.

We say two graph gi and gj are isomorphic if and only if there
exists a match of gi in gj , and |V (gi)| = |V (gj)|, |E(gi)| =
|E(gj)|. The task of Subgraph enumeration is to enumerate all
g ∈ G such that g is isomorphic to P .

Remark 1. An automorphism of P is an isomorphism from P
to itself. Suppose there are A automorphisms of the pattern graph.
If the number of enumerated subgraphs is s, then the number of
matches of P in G is A × s. Therefore, if P has only one auto-
morphism, the problem of subgraph enumeration is equivalent to
enumerating all matches (Definiton 2). Otherwise, there will be
duplicate enumeration. In this paper, for the ease of analysis, we
will assume that the pattern graph P has only one automorphism,
and focus on enumerating all matches of P in G. When P has
more than one automorphism, we apply the symmetry-breaking
technique [10] to avoid duplicate. Specifically, we assign a par-
tial order (denoted as <) among some pairs of nodes in the pattern
graph P to break symmetry using the technique in [10], then we en-
force an Order-Preservation constraint in the match (Definiton 2):

(Order Preservation) For any pair of nodes vi, vj ∈ V (P ), if
vi < vj , then f(vi) ≺ f(vj).

As this is not the main focus of this paper, we refer the reader to
our technical report [20] for more details.

We useRG(P ) to denote the matches of P inG, or simplyR(P )
when the context is clear. Since a match is a one-to-one mapping
from the pattern nodes to the data nodes, we regard R(P ) as a
relation table with V (P ) as its attributes.

1v

2v
3v

4v 1u

2u 3u

4u
5u

6u

Figure 1: Pattern Graph P (Left) and Data Graph G (Right).

Example 1. Figure 1 shows a pattern graph P , and a data graph
G. Figure 1 shows a pattern graph P , and a data graph G.
There are three matches of P in G, which are (u1, u2, u5, u3),
(u4, u2, u3, u5), and (u6, u3, u2, u5). The partial orders on the
pattern graph for symmetry breaking are v1 < v3 and v2 < v4. We
can check that, for example, (u1, u2, u5, u3) satisfies the Order-
Preservation constraint as u1 ≺ u5 and u2 ≺ u3 according to
Definiton 1.

Problem Statement. Given a data graphG stored in the distributed
file system, and a pattern graph P , the purpose of this work is to
enumerate all matches of P in G (based on Definiton 2) in the
distributed environment.
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Remark 2. For simplicity, we discuss the algorithm in MapRe-
duce. However, all techniques proposed in this paper are platform-
independent, so it is seamless to implement the algorithm in any
general-purpose distributed dataflow engine, such as Spark [33],
Dryad [16] and Myria [11].

Power-Law Random (PR) Graph Model. We model the data
graph (N nodes and M edges) as a power-law random (PR) graph
according to [4], which is denoted as G. Corresponding to the
set of data nodes, we consider a non-decreasing degree sequence
{w1, w2, . . . , wN} that satisfies power-law distribution, that is, the
number of nodes with a certain degree x is proportional to x−β ,
where β is the power-law exponent 1. For any pair of nodes ui and
uj in a PR graph, the edge between ui and uj is independently
assigned with probability

Pri,j = wiwjρ,

where ρ = 1/ΣNi=1wi. It is easy to verify that the E[d(ui)] = wi
for any 1 ≤ i ≤ N (E[·] computes the expected value). We de-
fine the average degree as w = (ΣNi=1wi)/N , and the expected
maximum degree as wmax. In case that Pri,j ≤ 1 holds, we re-
quire wmax ≤

√
wN [31]. As shown in [19], in real-life graphs,

although there are nodes with degree larger than
√
wN , the in-

termediate results from these nodes are not the dominant parts in
subgraph enumeration. In this work, if not otherwise specified, we
simply let wmax =

√
wN . Given β, w, N and wmax, a degree

sequence can be generated using the method in [31].
In this paper, we estimate the result size based on the PR model

in order to evaluate the graph storage mechanism (Section 4) and
the cost of the algorithm (Section 5). In the computation, we relax
the Conflict-Freedom condition of a match (Definiton 2) to allow
duplicate nodes and self-loops for ease of analysis, hence the result
size calculated is an upper bound of the actual value.

Summary of Notations. Table 1 summarizes the notations fre-
quently used in this paper.

Notations Description
V (g), E(g) The set of nodes and edges of a graph g
N (µ), d(µ) The set of neighbor nodes and the degree of µ ∈ V (g)

G The data graph
N,M The number of nodes and edges in the data graph
u, ui An arbitrary data node and the data node with id i
P The pattern graph
n,m The number of nodes and edges in the pattern graph
v, vi An arbitrary pattern node and the patter node with id i
Pi The i[-th] partial pattern, Pi ⊆ P

P li , P
r
i The left and right join patterns while processing Pi

f A match of P in G
RG(P ), R(P ) The relation of the matches of P in G

Φ(G) The storage mechanism of G
Gu The local graph of u ∈ V (G), where Gu ∈ Φ(G)
G A power-law random (PR) graph
β The power-law exponent of G
wi The expected degree of ui in G

Table 1: Notations frequently used in this paper.

3. ALGORITHM OVERVIEW
In this section, we generalize the algorithm framework for

subgraph enumeration, based on which we can describe the
TwinTwigJoin algorithm [19] and SEED algorithm.

3.1 Algorithm Framework
We solve the subgraph enumeration in a decomposition-and-join

manner. Specifically, we first decompose the pattern graph into a
1If not specially mentioned, β is set to 2 < β < 3 in this paper, a
typical setting of β for real-life graphs [5, 6].

set of structures, called join unit, then we join the matches of these
join units to get the results.

Graph Storage. To determine what structure can be the join
unit, we first introduce the graph storage mechanism, which is de-
fined as Φ(G) = {Gu |u ∈ V (G)}, where Gu ⊆ G is a con-
nected subgraph of G with u ∈ V (Gu), and it must satisfy that⋃
u∈V (G) E(Gu) = E(G). Each Gu is called the local graph of

u. Specifically, the data graphG is maintained in the distributed file
system in the form of key-value pairs (u;Gu) for each u ∈ V (G)
according to Φ(G). We then define the join unit as:

Definition 3. (Join Unit) Given a data graph G and the graph
storage Φ(G) = {Gu | u ∈ V (G)}, a connected structure p is a
join unit w.r.t. Φ(G), if and only if

RG(p) =
⋃

Gu∈Φ(G)

RGu (p).

In other words, a join unit is a structure whose matches can be
enumerated independently in each local graph Gu ∈ Φ(G). We
further define pattern decomposition as:

Definition 4. (Pattern Decomposition) Given a graph storage
Φ(G), a pattern decomposition is denoted as D = {p0, p1, . . . ,
pt}, where pi ∈ P (0 ≤ i ≤ t) is a join unit w.r.t. Φ(G) and
P = p0 ∪ p1 ∪ · · · ∪ pt.

Join Plan. Given the decomposition D = {p0, p1, . . . , pt} of P ,
we solve the subgraph enumeration using the following join:

R(P ) = R(p0) 1 R(p1) 1 · · · 1 R(pt). (1)

A join plan determines an order to solve the above join, and it
processes t rounds of two-way joins. We denote Pi as the i[-th]
partial pattern whose results are produced in the i[-th] round of the
join plan. Obviously, we have Pt = P . The join plan is usually
presented in a tree structure, where the leaf nodes are (the matches
of) the join units, the internal nodes are the partial patterns.

A join tree uniquely specifies a join plan, and we use join tree
and join plan interchangeably. If all internal nodes of the join tree
have at least one join unit as its child, the tree is called a left-deep
tree 2. Otherwise it is called a bushy tree [15]. Note that a left-deep
tree is also a bushy tree.

Example 2. Consider the pattern graph P and the decomposi-
tion D(P ) = {q0, q1, q2, q3} in the left part of Figure 2. Here we
use the triangle (3-clique) as the join unit. We present a left-deep
tree E1 and a bushy tree E2 to solve R(P ) = R(p0) 1 R(p1) 1

R(p2) 1 R(p3). They both process three rounds. We denote P ldi
and P bi as the i[-th] partial patterns in the left-deep tree and the
bushy tree, respectively. For example, in the first round of the left-
deep tree, we process R(P ld1 ) = R(p0) 1 R(p1) to produce the
matches of the partial pattern P ld1 . Observe that in the left-deep
tree, each internal tree node (Rld1 , Rld2 and R(P )) has a join unit as
its child, while in the bushy tree, neither children of R(P ) are join
units.
Execution Plan. An execution plan of subgraph enumeration task,
denoted as E = (D, J), contains two parts - a pattern decomposi-
tionD and a join plan J . Consider an execution space Σ and a cost
function C defined over Σ. We formulate the problem of optimal
execution plan for solving subgraph enumeration as follows:

Definition 5. (Optimal Execution Plan) An optimal execution
plan for solving subgraph enumeration is an execution plan Eo =
(Do, Jo) ∈ Σ to enumerate P in G using Equation 1, such that,

C(Eo) is minimized.
2More accurately, it is the deep tree, which is further classified into
the left-deep and right-deep tree. As it is insignificant to distinguish
them in this paper, we simply refer to the deep tree as left-deep tree.
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Figure 2: Different Join Trees.
3.2 TwinTwigJoin

We briefly introduce the TwinTwigJoin algorithm by showing
its storage mechanism and the left-deep join framework.

Graph Storage. We denote the storage mechanism used in
TwinTwigJoin as Φ0(G) = {G0

u | u ∈ V (G)}, where V (G0
u) =

{u} ∪ N (u) and E(G0
u) = {(u, u′)|u′ ∈ N (u)} [19]. A star can

be the join unit w.r.t. Φ0(G), as the matched stars can be indepen-
dently generated by enumerating the node combinations in N (u)
for each u ∈ V (G). Aware that a star with many edges can in-
cur enormous cost, TwinTwigJoin utilizes TwinTwig, a star with
either one or two edges, as the join unit.

Left-deep Join. After decomposing the pattern graph into a set
of TwinTwigs, TwinTwigJoin solves Equation 1 using a left-deep
join structure, which processes t rounds of joins, and the following
join is executed in the i[-th] round:

R(Pi) = R(Pi−1) 1 R(pi),

where P0 = p0. In order to approach optimality, TwinTwigJoin
exhaustively traverses all possible left-deep join plans, evaluates
the cost of each plan based on the ER model, and returns the one
with the minimum cost.

In Figure 2, we show the optimal execution plan E3 of
TwinTwigJoin for the given P , which includes the TwinTwig de-
composition Dtt(P ) and the optimal left-deep join plan.

Drawbacks. There are three major drawbacks of the
TwinTwigJoin algorithm. First, the simple graph storage mech-
anism only supports star as the join unit, which can result in
severe performance bottlenecks. Although TwinTwigJoin uses
TwinTwig as a substitution, the issues are only mitigated but not
evaded, especially when handling nodes with very large degree.
Second, TwinTwigJoin must process at least m

2
rounds, which

limits its utilization for complex pattern graph. Finally, the left-
deep join framework may produce sub-optimal solution as it only
searches for “optimality” among the left-deep joins [17].

3.3 SEED
SEED tackles the issues of TwinTwigJoin by introducing the

SCP graph storage mechanism and the optimal bushy join struc-
ture.

SCP Graph Storage. According to Definiton 3, the storage mech-
anism Φ(G) determines the join unit. We say Φ(G) is p-preserved
if p can be a join unit w.r.t. Φ(G). In particular, we define the
Star-Clique-Preserved (SCP) storage mechanism as:

Definition 6. (SCP storage mechanism) Φ(G) = {Gu | u ∈
V (G)} is an SCP storage mechanism, if both star and clique can
be the join units w.r.t. Φ(G).

The storage mechanism Φ0(G) used in TwinTwigJoin is not an
SCP storage mechanism, as clique can not be used as the join unit.

Algorithm 1: SEED( data graph G, pattern graph P )

Input : G : The data graph, stored as Φ(G) = {Gu | u ∈ V (G)},
P : The pattern graph.

Output : R(P ): All Matches of P in G.
1 Eo ← computeExecutionPlan(G,P ); (Algorithm 2)
2 for i = 1 to t do
3 R(Pi)← R(P li ) 1 R(P ri ) according to Eo (using mapi and

reducei);
4 return R(Pt);

5 function mapi( key: ∅; value: Either a match f ∈ R(P li ),
h ∈ R(P ri ) or Gu ∈ Φ(G) )

6 Vk = {vk1 , vk2 , . . . , vks} ← V (P li ) ∩ V (P ri );
7 if P li is a join unit then genJoinUnit(P li , Gu, Vk);
8 else output ((f(vk1 ), f(vk2 ), . . . , f(vks )); f);
9 if P ri is a join unit then genJoinUnit(P ri , Gu, Vk);

10 else output ((h(vk1 ), h(vk2 ), . . . , h(vks ));h);

11 function genJoinUnit(p,Gu, Vk = {vk1 , vk2 , . . . , vks})
12 RGu (p)← all matches of p in Gu;
13 forall the match f ∈ RGu (p) do
14 output ((f(vk1 ), f(vk2 ), . . . , f(vks )); f);

15 function reducei( key:r = (uk1 , uk2 , . . . , uks ); value: F = {f1,
f2, . . . }, H = {h1, h2, . . . } )

16 forall the (f, h) ∈ (F ×H) s.t. (f − r) ∩ (h− r) = ∅ do
17 output (∅; f ∪ h);

With clique as an alternative, we can avoid processing star where
possible, which not only saves the cost in a single run, but reduces
the rounds of execution as a whole. For example, the plans E1 and
E3 shown in Figure 2 are both left-deep joins, but E1 uses triangles,
while E3 uses TwinTwigs as the join units. Intuitively, we expect
that E1 draws smaller cost as the result size of a triangle is much
smaller than that of a two-edge TwinTwig. In addition, E1 is one
round less than E3. We will detail the SCP storage mechanism in
Section 4.

Bushy Join. SEED solves Equation 1 by exploiting the bushy join
structure. Specifically, the following join is processed in the i[-th]
round:

R(Pi) = R(P li ) 1 R(P ri ), (2)

where P li and P ri are called the left and right join patterns regarding
Pi, respectively. The left (or right) join pattern can be either a join
unit, or a partial pattern processed in an earlier round. Take the
execution plan E2 in Figure 2 as an example. In the first round,
P1 uses two join units p0 and p1 as the left and right join patterns,
while in the third round, P uses two partial patterns P b1 and P b2 .

Compared to TwinTwigJoin, SEED searches the optimal so-
lution among the bushy joins, which covers the whole searching
space, and thus guarantees the optimality of the solution.
Algorithm. We show the algorithm of SEED in Algorithm 1.
Given the pattern graph P , we first compute the optimal execution
plan Eo in line 1 using Algorithm 2 (details in Section 6). Accord-
ing to the optimal execution plan Eo, the i[-th] join in Equation 2 is
processed using MapReduce via mapi and reducei (line 3). We ap-
ply the same reducei as in TwinTwigJoin, thus we focus on mapi

here.
The function mapi is shown in lines 5-10. The inputs of mapi

are either a match f ∈ R(P li ), a match h ∈ R(P ri ) or (u;Gu)
for all Gu ∈ Φ(G) if we are dealing with a join unit (line 5). We
first calculate the join key {vk1 , vk2 , . . . , vks} using V (P li ) ∩
V (P ri ) (line 6). Then we compute the matches of P li and P ri . Take
P li for example. We know whether P li is a join unit in current
round according to the execution plan. If P li is a join unit, we
invoke genJoinUnit (P li , Gu, Vk) (line 7) to compute the matches
of P li in Gu for each Gu ∈ Φ(G) (lines 12-14). Note that we
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fully compute R(P li ) by merging RGu(P li ) for all Gu ∈ Φ(G)
according to Definiton 3. If P li is not a join unit, the matches of
P li must have been computed in previous round. Then we directly
fetch the partial results and output them with the join key (line 8).

Challenges. To pursuit the optimality for SEED, we have to ad-
dress multiple key challenges. Specifically,
• It is non-trivial to develop an effective SCP graph storage mech-

anism. In order to use clique as join unit, we have to introduce
extra edges to the simple local graph used in TwinTwigJoin.
However, the size of each local graph should not be too large for
scalability consideration.
• A well-defined cost function is required to estimate the cost of

each execution plan. In the subgraph enumeration problem, the
tuples that participate in the joins are the matches of certain pat-
tern graph, whose size is difficult to estimate, especially in a
power-law graph.
• It is in general computationally intractable to compute an optimal

join plan [17]. In TwinTwigJoin, an easier-solving left-deep join
is applied, which may render sub-optimal solution. In this work,
we target on the optimal bushy join plan - a much harder task
given the larger searching space [15].

4. BEYOND STARS: SCP STORAGE
In this section, we will propose an effective SCP storage mecha-

nism, in which each local graph introduces a small number of extra
edges to the local graph used in TwinTwigJoin. We leverage the
PR model for analysis. Denote w̃ as the second-order average de-
gree, which can be computeed as [4]:

w̃ = (

N∑
i=1

w2
i )/(

N∑
i=1

wi) = Ψwβ−2w3−β
max,

where Ψ = (β−2)β−1

(3−β)(β−1)β−2 .

As we mentioned earlier, the storage mechanism - Φ0(G) - used
in TwinTwigJoin is not an SCP storage mechanism. In the fol-
lowing, we will explore two SCP storage mechanisms - Φ1(G)
and Φ2(G), in which the local graphs are denoted as G1

u and G2
u

for u ∈ V (G), respectively. In order to use clique as the join
unit, both mechanisms introduce extra edges to each local graph in
Φ0(G). Denote ∆

(i)
u = E[|E(Giu)| − |E(G0

u)|] as the expected
number of extra edges introduced by Φi(G) to G0

u for i ∈ {1, 2},
and let ∆

(i)
max = maxu∈V (G){∆(i)

u }.

SCP Graph Storage. Let Φ1(G) = {G1
u | u ∈ V (G)}, where

V (G1
u) = V (G0

u) and E(G1
u) = E(G0

u) ∪ {(u′, u′′) |u′, u′′ ∈
N (u) ∧ (u′, u′′) ∈ E(G)}. We divide the edges of each G1

u into
two parts, the neighbor edges E(G0

u), and the triangle edges that
close triangles with the neighbor edges. Clearly the triangle edges
are extra edges introduced by Φ1(G). The following lemma shows
that Φ1(G) is an SCP storage mechanism.

LEMMA 1. Given the storage mechanism Φ1(G) = {G1
u | u ∈

V (G)}, p is a join unit w.r.t. Φ1(G) if p is a star or a clique. 3

Despite Φ1(G) is an SCP storage mechanism, it can introduce a
large number of extra edges to a certain local graph in Φ0(G), as
shown in the following lemma.

LEMMA 2. Given a PR graph G, and the node ui ∈ V (G), we
have

∆
(1)
ui = Ψ2wβ−2N2−βw2

i , and

∆
(1)
max = Ψ2wβ−1N3−β .

3Omitted proofs and full proofs of proof sketches can be found in
the technical report [20].

Lemma 2 shows that the number of extra edges introduced by
G1
ui is nearly proportional to w2

i , which can cause severe workload
skew, and thus hamper the scalability of the algorithm.

Compact SCP Graph Storage. Targeting the issues of Φ1(G),
we consider a more compact storage mechanism by leveraging
the node order. Specifically, we define Φ2(G) = {G2

u | u ∈
V (G)}, where V (G2

u) = V (G0
u) and E(G2

u) = E(G0
u) ∪

{(u′, u′′) | (u′, u′′) ∈ E(G) ∧ u ≺ u′ ∧ u ≺ u′′}. Compared
to G1

u, G2
u only involves the triangle edge when u is the minimum

node in the triangle. It is clear that G0
u ⊆ G2

u ⊆ G1
u. Next, we

show that Φ2(G) is also an SCP storage mechanism.

LEMMA 3. Given the storage mechanism Φ2(G) = {G2
u | u ∈

V (G)}, p is a join unit w.r.t. Φ2(G) if and only if p is a star or a
clique.

The next lemma shows that Φ2(G) brings in much less extra
edges than Φ1(G) does to each G0

u ∈ Φ0(G).

LEMMA 4. Given a PR graph G and a node ui ∈ V (G), we
have

∆
(2)
ui ≤ ∆

(2)
max ≤ [(3− β)(4− β)

− 4−β
3−β ]2Ψ2wβ−1N3−β .

In Lemma 4, we give an upper bound of ∆
(2)
ui , while its value is

often much smaller. Apparently, ∆
(2)
ui = 0 when d(ui) = 1 and

d(ui) = maxu∈V (G) d(u). In general, we show that ∆
(2)
max is

much smaller than ∆
(1)
max. In the PR graph, we set w = 50, N =

1,000,000 and vary β = 2.1, 2.3, 2.5, 2.7, 2.9, and then compare
∆

(1)
max and ∆

(2)
max in Table 2. It is clear that ∆

(2)
max � ∆

(1)
max in

all cases. In the technical report, we further compared ∆
(1)
u with

∆
(2)
u for each data node u using synthetic and real datasets, and

the experimental results demonstrate that ∆
(2)
u � ∆

(1)
u for all data

nodes except those with very small degree in all datasets.

∆max β = 2.1 β = 2.3 β = 2.5 β = 2.7 β = 2.9

∆
(1)
max 141,939 195,260 117,851 76,685 141,797

∆
(2)
max 7,652 7,652 2,586 710 174

Table 2: The number of extra edges introduced by G1
u and G2

u.

Discussion. It is possible to find a different storage mechanism
to support more join units. However, in order to do so, we need
to involve more edges in each local graph according to Lemma 3,
which makes it hard to bound the size of each local graph, and can
hence hamper the scalability of the algorithm. Considering such a
tradeoff, we adopt Φ2(G) as the storage mechanism in this paper,
which only supports clique and star as the join units. We will make
detailed discussions in the technical report [20]. In the following,
we will refer to Φ2(G) (resp. G2

u) simply as Φ(G) (resp. Gu) if
not otherwise specified.

Implementation Details. Given a data graph G, we implement
Φ(G) by constructing Gu for each u ∈ V (G). Specifically, we
first aggregate the neighbor edges of each u to Gu. Then we ap-
ply existing methods such as [19, 14, 1] to compute triangles. For
each triangle (u1, u2, u3) with u1 ≺ v2 ≺ v3, we add (u2, u3)
to Gu1 as the triangle edge. Given Gu for each u ∈ V (G), we
can compute the matches of any star or clique using an in-memory
algorithm. The overheads of constructing Φ(G), as shown in the
experiment, are relatively small considering the big performance
gains of using clique as the join unit.

5. COST ANALYSIS
We follow the cost model in TwinTwigJoin by summarizing the

map dataM (the input and output data of the mapper), shuffle data
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S (the data transferred from mapper to reducer) and reduce dataR
(the input and output data of reducer) in each round of Algorithm 1.
These data include the communication I/O among machines and the
disk I/O of reading and writing the partial results, which dominate
the cost in MapReduce [19]. Considering that most real-life graphs
are power-law graphs, we further contribute to estimate the number
of matches of a pattern graph based on the PR model instead of
the ER model [19], and we show that the PR model delivers more
realistic estimation.

To show how we compute the cost, we first consider an arbitrary
join R(Pβ) = R(p) 1 R(Pα), where p is a join unit and Pα, Pβ
are two partial patterns. Let M(P ), S(P ) and R(P ) denote the
map data, shuffle data and reduce data regarding a certain graph P .
According to Algorithm 1, we have:
• The mapper handles the partial pattern Pα and the join unit p in

different ways. For Pα, the mapper takes the matches R(Pα) as
inputs and directly outputs them with the join key. Therefore,
M(Pα) = 2R(Pα). As for the join unit p, the mapper first
reads Gu for each data node u to compute R(p), then outputs
the results. Denote ∆(G) as the set of triangles in G, and it
is clear that

∑
u∈V (G) E(Gu) = ∆(G). Therefore, M(p) =

∆(G) +R(p).
• The shuffle transfers the mapper’s outputs to the corresponding

reducer. Therefore, the shuffle data is also the mapper’s output
data, and we have S(Pα) = R(Pα) and S(p) = R(p).
• The reducer takesR(Pα) andR(p) as inputs to computeR(Pβ).

Apparently, the input data are R(Pα) = R(Pα) and R(p) =
R(p), and the output data areR(Pβ) = R(Pβ).
Summarizing the above, the cost for processing the join unit p in

a certain join is:

T (p) = |M(p)|+ |S(p)|+ |R(p)| = |∆(G)|+ 3|R(p)| (3)

and the cost for processing the partial pattern Pα is:

T (Pα) = |M(Pα)|+ |S(Pα)|+ |R(Pα)| = 5|R(Pα)| (4)

Note that R(Pα) must have been generated in earlier round, while
the cost to outputR(Pα) is involved in T (Pα) for consistency, and
R(Pβ) will be accordingly computed in T (Pβ).

Given an execution plan E = (D, J), where D =
{p0, p1, . . . , pt}, it is processed using t rounds of joins, and in the
i[-th] round the partial results R(Pi) are generated. We compute
the cost by putting all costs of processing pi and Pi together as:

C(E) =

t∑
i=0

T (pi) +

t−1∑
i=1

T (Pi), (5)

where T (pi) and T (Pi) are computed via Equation 3 and Equa-
tion 4, respectively.

Remark 3. We present the cost model using MapReduce for
easy understanding. Nevertheless, the cost model can be applied
to other platforms such as Spark, Myria and Dryad with poten-
tial modifications. For example, Spark can maintain the intermedi-
ate results in the main memory between two successive iterations.
Therefore, we do not need to consider the cost of accessing these
data on the disk, which corresponds to the map data and reduce
data in MapReduce. Myria and Dryad are essentially distributed
join systems, in which the data flows of join processing are similar
to those of MapReduce, and thus we do not need to modify the cost
model for both systems.

5.1 Result-Size Estimation
In order to compute the cost, we need to estimate |R(P )| for a

certain P in Equation 3 and Equation 4. It is obvious that all partial
patterns in Algorithm 1 are connected. Given a connected pattern

graph P , we next show how to estimate |RG(P )| in the PR graph
G.

Suppose P is constructed from an edge by extending one edge
step by step, and P (1) and P (2) are two consecutive patterns ob-
tained along the process. More specifically, given v ∈ V (P (1))

and v′ ∈ V (P (2)) where (v, v′) 6∈ E(P (1)), P (2) is obtained by
adding the edge (v, v′) to P (1). We let δ and δ′ be the degrees of v
and v′ in P (1), respectively. Here, if v′ 6∈ V (P (1)), δ′ = 0. Given
a match f of P (1), we let f(v) = u. We then extend f to generate
the match f ′ of P (2) by locating another node u′ ∈ V (G) where
(u, u′) ∈ E(G) and f ′(v′) = u′. Suppose there are by expectation
γ matches of P (2) that can be extended from one certain match of
P (1), we have:

|RG(P (2))| = γ|RG(P (1))|

The value of γ depends on how the edge is extended from P (1)

to form P (2). There are two cases, namely, v′ 6∈ V (P (1)) and
v′ ∈ V (P (1)), which are respectively discussed in the following.

(Case 1). v′ 6∈ V (P (1)). In this case, a new node v′ is introduced
to extend the edge (v, v′). We have:

γ =
ΣNi=1w

δ+1
i

ΣNi=1w
δ
i

(6)

(Case 2). v′ ∈ V (P (1)). In this case, a new edge is added between
two existing nodes in P (1). We have:

γ = ρ×
ΣNi=1w

δ+1
i

ΣNi=1w
δ
i

×
ΣNj=1w

δ′+1
j

ΣNj=1w
δ′
j

(7)

The derivations of Equation 6 and Equation 7 are lengthy, hence
have been included in the technical report [20].

Given Equation 6 and Equation 7, we compute |RG(P )| for any
connected pattern graph P as follows. First, we run Depth-First-
Search (DFS) over P to obtain the DFS-tree. Then, starting from
an edge e with |RG(e)| = 2M , we apply Equation 6 iteratively
to compute the size of the tree. Finally, we apply Equation 7 iter-
atively as we extend the non-tree edges. Note that, given a graph
G, the γ calculated by Equation 6 or Equation 7 only depends on δ
and δ′, thus can be precomputed.

|RG(P )| β = 2.1 β = 2.3 β = 2.5 β = 2.7 β = 2.9

|RG(P ld2 )| 67618.5 14632.5 1993.0 610.2 83.4
|RG(P b2 )| 230.2 69.5 16.3 6.2 1.5

Table 3: The number of the matches of P ld2 and P b2 in the PR graph
(in billions).

Remark 4. The plans E1 and E2 shown in Figure 2 are actually
the optimal execution plans computed using the ER model and the
PR model, respectively. Observe that E1 differs from the E2 in
the second round where P ld2 is processed instead of P b2 . Gen-
erally, we have |R(P ld2 )| < |R(P b2 )| in the ER model [19], but
|R(P ld2 )| � |R(P b2 )| in the PR model. As a result, E1 and E2
are returned as the optimal plans regarding the ER model and PR
model, respectively. Next we consider an ER graph < and a PR
graph G with N = 1,000,000 and M = 25,000,000, and compute
|R(P ld2 )| and |R(P b2 )| in both graphs for a comparison. Accord-
ing to [19], we have |R<(P ld2 )| = 0.78, and |R<(P b2 )| = 312.
Then we compute |RG(P ld2 )| and |RG(P b2 )| using the proposed
method, and show the results with various power-law exponents
in Table 3. It is clear to see that |RG(P ld2 )| � |RG(P b2 )| in all
cases. In Section 8, we further experimented using real-life graphs,
which confirms that the PR model offers more realistic estimation
and consequently renders better execution plan.
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6. EXECUTION PLAN
In this section, we introduce the algorithm that computes the

optimal execution plan. Rather than following the left-deep join
framework [19], we propose a dynamic-programming algorithm to
compute the optimal bushy join plan. We further consider overlaps
among the join units. To show the basic idea, we first introduce the
non-overlapped case.

6.1 Non-overlapped Case
Definition 7. (Partial Execution) A partial execution, denoted

EPα , is an execution plan that computes the partial pattern Pα ⊆ P .
Given a partial pattern Pα ⊆ P , the optimal partial execution

plan of Pα satisfies:

C(EPα ) =

 0, Pα is a join unit,
min

P lα⊂Pα
{C(EP lα ) + T (P lα) + C(EPrα ) + T (P rα)}, otherwise.

(8)
where P rα = Pα \ P lα, T (P lα) and T (P rα) are computed via

Equation 3 or Equation 4 depending on whether they are join units
or partial patterns. The optimal partial execution EPα is com-
puted by minimizing the sum of the cost of EP lα and EPrα , and the
cost of processing the join R(Pα) = R(P lα) 1 R(P rα) (that is
T (P lα) + T (P rα)). Note that C(EPα) = 0 if Pα is a join unit, as
we do not need to compute R(Pα) using joins.

We use a hash map H to maintain the so far best partial exe-
cution for each Pα ⊆ P . The entry of the hash map for Pα has
the form (Pα, T , C, P lα, P rα), where T is an auxiliary cost com-
puted via either Equation 3 or Equation 4, C is the so far best cost
C(EPα) while evaluating Pα, P lα is the left-join pattern when the
current best cost is obtained, and P rα = Pα \ P lα, as no overlap
is considered. The hash map is indexed by Pα, so that we can
access one specific item I for a certain Pα via HPα(I), where
I ∈ {T , C, P lα, P rα}.

Algorithm 2: computeExecutionPlan(data graph G, pattern
graph P )

Input : The data graph G and the pattern graph P
Output : The optimal execution plan w.r.t. P .

1 forall the Pα ⊆ P , s.t. Pα is connected do
2 H ← H∪ (Pα, T (Pα),∞, ∅, ∅);

3 for s = 1 . . .m, where m = |E(P )| do
4 forall the Pα ⊂ P s.t. Pα is connected and |E(Pα)| = s do
5 if Pα is a join unit then
6 HPα (C) = 0;

7 else
8 forall the P lα ⊂ Pα s.t. P lα and P rα = Pα \ P lα are

connected do
9 C ← HP lα (C) +HP lα (T ) +HPrα (C) +HPrα (T );

if C < HPα (C) then
10 HPα (C)← C;
11 HPα (P lα)← P lα; HPα (P rα)← P rα;

12 Compute the optimal execution plan Eo viaH;
13 return Eo;

The algorithm to compute the optimal execution plan is shown
in Algorithm 2. In line 2, We initialize an entry in the hash map for
each connected Pα ⊆ P that is potentially a partial pattern (line 2).
Note that we precompute T (Pα) for each Pα. To find the opti-
mal execution plan for P , we need to accordingly find the optimal
partial execution plans for all P ’s subgraphs, in non-decreasing or-
der of their sizes. The algorithm performs three nested loops. The

first loop in line 3 confines the size of the partial patterns to s, and
the second loop enumerates all possible partial patterns with size s
(line 4). If the current partial pattern Pα is a join unit, we simply
set the corresponding cost to 0 (line 6). Otherwise, the third loop is
triggered to update the optimal execution plan for Pα (line 8). We
enumerate all P lα (and P rα = Pα \ P lα), and for each P lα where
P lα and P rα are both connected, we compute C(EPα) via Equa-
tion 8 (line 9). In this way, we finally find the P lα to minimize
C(EPα), and update the entry of Pα by settingHPα(C),HPα(P lα)
andHPα(P rα) correspondingly (line 10-11). After all the entries in
the hash map are computed, we first look up the entry for P to lo-
cate the P lα and P rα and repeat the procedure recursively on P lα and
P rα until P lα = ∅. In this way, we compute the optimal execution
plan (line 12).

LEMMA 5. The space complexity and time complexity of Algo-
rithm 2 are O(2m) and O(3m), respectively.

Discussion. In practice, the processing time for Algorithm 2 is
much smaller than O(3m) since we require that all partial patterns
are connected.

6.2 Overlapped Case
The following lemma inspires us to consider overlaps among the

join units.

LEMMA 6. Given a pattern graph P , and another pattern
graph P+, where P+ = P ∪ {(v, v′)}, v, v′ ∈ V (P ) and
(v, v′) 6∈ E(P ), we have:

|R(P+)| ≤ |R(P )|.

Example 3. Observe that there are overlaps among the join units
in Figure 2. For example, we have E(p0)∩E(p1) = {(v1, v3)} in
the bushy tree E2. Let p−1 = p1 \ (v1, v3). In the non-overlapped
case, we will execute R(P ′1) = R(p0) 1 R(p−1 ) instead. Clearly,
|R(p1)| ≤ |R(p−1 )| according to Lemma 6, and hence the plan
with overlaps is better.

A naive solution to allow the join units to overlap and still
guarantee the optimality in Algorithm 2 is: when we evaluate
P rα = Pα \ P lα in line 8, we further enumerate all possible P r∗α ,
where P r∗α are all connected structures formed by adding any sub-
set ofE(P lα) to P rα. As a result, the time complexity is of the order:

m∑
s=1

(m
s

)
·
s∑
t=1

(s
t

)
2t = 4m.

All or Nothing. The time complexity of computing the optimal ex-
ecution in the overlapped case can be reduced toO(3m) with some
practical relaxation. Given a partial pattern Pα, and its left-join
(resp. right-join) pattern P lα (resp. P rα) (P ′l and P rα may overlap),
we define the redundant node as:

Definition 8. (Redundant Node) A node vr ∈ V (P lα)∩V (P rα)
is a redundant node w.r.t. Pα = P lα ∪P rα, if Pα = (P lα \ vr)∪P rα
or Pα = P lα ∪ (P rα \ vr).

In other words, the removal of a redundant node from either P lα or
P rα does not affect the join results. Denote Vr as a set of redundant
nodes w.r.t. Pα = P lα ∪ P rα. We further define the cut nodes Vc
and the cut edges Ec as follows:

Vc(P
l
α, P

r
α) = (V (P lα) ∩ V (P rα)) \ Vr

Ec(P
l
α, P

r
α) = {(v, v′) | (v, v′) ∈ E(Pα) ∧ v, v′ ∈ Vc(P lα, P rα)}.

Example 4. In Figure 3, we show a partial pattern Pα and its
left-join (resp. right-join) pattern P lα (resp. P rα). Clearly, v4

is a redundant node since Pα = P lα ∪ (P rα \ v4), and we have
Vc(P

l
α, P

r
α) = {v2, v3} and Ec(P lα, P rα) = {(v2, v3)}.
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Figure 3: The redundant node, cut nodes and cut edges.

Based on the cut edges, we introduce an all-or-nothing strat-
egy, which reduces the time complexity to O(3m). Specifically,
when we evaluate P rα = Pα \ P lα in Algorithm 2 (line 8), in-
stead of enumerating P r∗α by considering all subsets of E(P lα) in
the naive solution, we only consider adding all the cut edges w.r.t.
Pα = P lα ∪ P rα, or none of them. We show that the all-or-nothing
strategy returns an execution plan that is almost as good as the naive
solution.

Denote Eo = {Do, Jo} as the optimal execution plan obtained
by the naive solution and E ′o as the best execution plan obtained
by the all-or-nothing strategy. Suppose in the i[-th] round of the
execution plan Eo, the following join is processed:

R(Pi) = R(P li ) 1 R(P ri ), ∀1 ≤ i ≤ |Do| − 1.

We then construct an intermediate execution plan Ẽ by replacing
each of the above join as R(Pi) = R(P li ) 1 R(P̃ ri ), where P̃ ri =

P ri ∪ {e1, e2, . . . , es}, and each ei ∈ Ec(P li , P ri ) ∧ ei 6∈ E(P ri ).
In other words, the alternative right-join pattern P̃ ri is obtained by
adding all the cut edges to P ri . It is trivial when P̃ ri = P ri . Oth-
erwise, we first generate R(P̃ ri ) by performing the joins R(P ri ) 1
R(e1) 1 · · · 1 R(er) sequentially, and each join handles a cut
edge. Then we execute the join R(Pi) = R(P li ) 1 R(P̃ ri ).

Leveraging the intermediate execution plan Ẽ , we prove that E ′o
(the best execution plan computed by “all-or-nothing” strategy) has
the cost of the same order as Eo (the optimal solution). We first
prove C(Ẽ) = Θ(C(Eo)).

LEMMA 7. If C(Eo) ≥ Θ(M), then C(Ẽ) = Θ(C(Eo)).

Proof Sketch: We divide Ẽ into two parts. For 1 ≤ i ≤ t, the first
part, denoted as Ẽ1, performs the join R(Pi) = R(P li ) 1 R(P̃ ri );
the second part, denoted as Ẽ2, handles the generation ofR(P̃ ri ) by
joining the cut edges to R(P ri ). Clearly, C(Ẽ) = C(Ẽ1) + C(Ẽ2).
According to Lemma 6, we have:

|R(P̃ ri )| ≤ |R(P ri )|. (9)

Using this fact, we can respectively prove that C(Ẽ1) ≤ Θ(C(Eo))
and C(Ẽ2) ≤ Θ(C(E0)), and thus C(Ẽ) ≤ Θ(C(Eo)). On the other
hand, C(Ẽ) > C(Eo). Therefore, this lemma holds. 2

We then show C(E ′o) ≤ C(Ẽ) under some practical relaxations.

LEMMA 8. If there is no redundant node w.r.t. Pi = P li ∪ P ri
for all 1 ≤ i ≤ |Do| − 1 in Eo = (Do, Jo), then C(E ′o) ≤ C(Ẽ).

Proof Sketch: Given Pi = P li ∪ P ri for some 1 ≤ i ≤ |Do| −
1 in Eo, we denote P̃ ri = P ri ∪ Ec(P li , P ri ), and P̃ r∗i = (Pi \
P li ) ∪ Ec(P li , (Pi \ P li )). We know that Ẽ will process the join
R(Pi) = R(P li ) 1 R(P̃ ri ). We then claim that Ẽ must be within
the searching space of the all-or-nothing strategy. Given P li while
computing Pi, the all-or-nothing strategy will consider P̃ r∗i as the
right-join pattern via the “all” strategy. It suffices to prove the claim
by showing that P̃ ri = P̃ r∗i .

As Ẽ must be within the searching space of the all-or-nothing
strategy, and E ′o is the optimal solution in the space, it is immediate
that C(E ′o) ≤ C(Ẽ). 2

THEOREM 1. If C(Eo) ≥ Θ(M) and there is no redundant
node w.r.t. Pi = P li ∪ P ri for all 1 ≤ i ≤ |Do| − 1 in
Eo = (Do, Jo), then C(E ′o) = Θ(C(Eo))

PROOF. With Lemma 7 and Lemma 8, Theorem 1 holds.

Discussion. We show that the two conditions in Theorem 1 are
practically reasonable. First, C(Eo) ≥ Θ(M). Actually, the cost of
the execution is often far larger than the size of the data graph. Sec-
ond, no redundant node is involved. In practice, the involvements
of redundant nodes usually result in more iterations, while the gain
of such redundancies is rather limited.

7. CLIQUE COMPRESSION
To start this section, let us consider a motivating example.

Example 5. We find a large clique with 943 nodes in the uk
dataset used in our experiment in Table 5, which alone contributes
to
(

943
5

)
≈ 6 × 1012 matches of a 5-clique, and causes huge bur-

den on storage and communication. Alternatively, we can encode
all these matches using the nodes of the large clique itself, and this
costs linear space to the number of nodes in the clique.

This example motivates us to consider clique compression, aim-
ing at reducing the cost of transferring and maintaining the interme-
diate results. In order to do so, we compute a set of non-overlapped
(by nodes) cliques in the data graph G as a preprocessing step.
In query processing, when a k-clique pk is considered as a join
unit, instead of computing all the matches of pk directly, we repre-
sent the matches in a compressed way, and we also try to maintain
the compressed matches in further joins. In the following, we first
show how to precompute the non-overlapped cliques, followed by
discussing the way of compressing the matches of pk. Finally, we
introduce how to process joins with the compressed results.

Clique Precomputation. As a preprocessing step, we compute a
set of non-overlapped cliques S = {K1,K2, . . . ,Ks} in the data
graph G. We introduce the greedy algorithm to compute S in the
following. Each time we select a node u with the largest degree
from G, compute a maximal clique containing u in G, add the
clique into S if its size is larger than a threshold (e.g., 50) and re-
move it from G. We repeat the process until all nodes are removed
from G. After computing S, we index all the cliques on each ma-
chine in the cluster (e.g. using “Distributed Cache” in MapReduce
[32]). Specifically, we maintain a mapM in each machine, so that
we can useM(u) to determine the clique that a node u (u ∈ v(G))
belongs to in constant time. LetM(u) = ∅ if u does not belong
to any clique in S or S = ∅. The space used to index the cliques
is small since we only need to index the nodes in each clique. We
will show in the experiment that the overheads of clique precom-
putation are relatively small, and it does improve the performance
of SEED, especially when the data graph contains large cliques.

Online Clique Compression. During query processing, suppose
a k-clique pk is involved in the join, we compress the matches of
pk as follows. In each local graph G2

u, we divide the nodes in
V (G2

u) into two parts, namely, the clique nodes V cu and the non-
clique nodes V nu . Here V cu = {u′|u′ ∈ V (G2

u),M(u′) =M(u)}
is the set of nodes in G2

u that belong to the same clique with
u in S, and V nu = V (G2

u) \ V cu . Specifically, let V cu = ∅
and V nu = V (Gu) when M(u) = ∅. With the two differ-
ent types of nodes, a compressed match, which represents mul-
tiple matches of the k-clique, is denoted as (fc, fn), where
fc = (fc.V, fc.U) = ({vc1, vc2, . . . , vcs}, {uc1, uc2, . . . , uct}) is
the compressed part of the match and fn = (fn.V, fn.U) =
({vn1 , vn2 , . . . , vnk−s}, {un1 , un2 , . . . , unk−s}) is the non-compressed
part. We also regard fn as a partial match, where fn(vni ) = uni
for each vni ∈ fn.V and uni ∈ fn.U . Here, the following
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Algorithm 3: mapi( key: ∅; value: either compressed matches
(fc, fn) ∈ R(P li ) and (hc, hn) ∈ R(P ri ) or Gu ∈ Φ(G) )

1 Vjoin ← V (P li ) ∩ V (P ri );
2 if P li is a star then genJoinUnit(P li , Gu, Vjoin);
3 else if P li is a clique then genCompressedClique(P li , Gu, Vjoin);
4 else partialExpansion(fc, fn, Vjoin);
5 if P ri is a star then genJoinUnit(P ri , Gu, Vjoin);
6 else if P ri is a clique then genCompressedClique(P ri , Gu, Vjoin);
7 else partialExpansion(hc, hn, Vjoin);
8 function genCompressedClique(pk, Gu, Vjoin)
9 F ← compressedClique(pk, Gu);

10 foreach (fc, fn) ∈ F do
11 partialExpansion(fc, fn, Vjoin);

12 function partialExpansion(fc, fn, Vjoin)
13 V njoin = {vn1 , vn2 , . . . , vnp } ← fn.V ∩ Vjoin;
14 Unjoin ← {fn(vn1 ), fn(vn2 ), . . . , fn(vnp )};
15 V cjoin ← fc.V ∩ Vjoin;
16 foreach Ucjoin ⊆ fc.U s.t. |Ucjoin| = |V cjoin| do
17 key ← Ucjoin ∪ Unjoin;
18 fcout ← (fc.V \ V cjoin, fc.U \ Ucjoin);

19 fnout ← (fn.V ∪ V cjoin, fn.U ∪ Ucjoin);

20 output (key; (fcout, f
n
out));

four constraints must be satisfied4: (1) |fc.V | ≤ |fc.U |, (2)
fc.V ∪ fn.V = V (pk), (3) fn.U ⊆ V nu and fn.U = ∅ if
fn.V = ∅, otherwise the nodes in fn.U must form a clique in
G2
u, and (4) fc.U ⊆ V cu and every node in fc.U is adjacent to

all nodes in fn.U in G2
u if fn.U 6= ∅. In this way, a compressed

match (fc, fn) represents
(
t
s

)
matches of a k-clique, that is, the

k − s nodes fn.U = {un1 , un2 , . . . , unk−s} and every combination
of s nodes in fc.U = {uc1, uc2, . . . , uct} recover a match. The de-
tailed procedure to generate all compressed k-cliques from G2

u is
shown in our technical report.

Online Join Processing. With the clique compression technique,
we follow the framework in Algorithm 1 to process joins, but
replace each match f in Algorithm 1 as a compressed match
(fc, fn). Note that here we generalize the concept of “compressed
match”, which not only represents a compressed match of a k-
clique, but also the compressed join results produced in each round
(Details are in the technical report). For a non-compressed match,
we simply let fc.V = fc.U = ∅. The main challenge is that,
when a compressed match (fc, fn) is involved in a join, we do not
need to immediately recover all matches from (fc, fn). Instead we
try to maintain its compressed part fc as much as possible. We call
this process partial expansion. Given a compressed match (fc, fn),
suppose it is involved in a join with join attributes Vjoin, the pro-
cess of partial expansion is shown in lines 12-20 in Algorithm 3.
We first compute the non-clique join attributes V njoin and its corre-
sponding match Unjoin (lines 13-14). Then we compute V cjoin - the
set of join attributes that need to be expanded in the compressed
part fc (line 15). Line 16 enumerates all matches Ucjoin of V cjoin in
fc. For each Ucjoin, we output a key-value pair (line 20) where the
key is computed as Ucjoin ∪Unjoin (line 17) and the value is a com-
pressed match (fcout, f

n
out) by moving the original match of V cjoin

from fc to fn (line 18-19). The new mapi procedure is shown in
Algorithm 1 to replace mapi in Algorithm 1. For reducei, we fol-
low the same principle to process joins by keeping the compressed
part as much as possible. The detailed algorithm for reducei is
shown in the technique report.

4To remove duplicates, we should also ensure that u ∈ fn.U .
However, in this section, we remove the constraint for ease of dis-
cussion.

8. PERFORMANCE STUDIES
In this section, we show our experimental results. We rented a

cluster from Amazon of up to 15 computing nodes including one
master node and 14 slave nodes and we used 10 slave nodes by
default. The instance configurations of master and slave nodes are
listed in Table 4. We allocated a JVM heap space of 1524MB for
each mapper and 2848MB for each reducer, and we allowed at most
6 mappers and 6 reducers running concurrently in each machine.
We set the block size in HDFS to 128MB, the data replication factor
of HDFS to 3, the I/O sort size to 512MB.

Node Type Instance vCPU Memory Storage
master m3.xlarge 4 15GB 2× 40GB SSD
slave c3.4xlarge 16 30GB 2× 160GB SSD

Table 4: Amazon virtual instance configurations
Datasets. We tested six real-world data graphs (see Table 5).
Among them, lj, orkut and fs were downloaded from SNAP
(http://snap.stanford.edu), yt was downloaded from KONECT
(http://konect.uni-koblenz.de), and eu and uk was downloaded from
WEB (http://law.di.unimi.it). For each dataset, we list the number
of nodes and edges (in millions), and T (G) - the time of construct-
ing the SCP graph storage Φ2(G) (Section 4) and T (C) - the time
of enumerating large cliques in the data graph for clique compres-
sion (Section 7). The computations of SCP graph storage and the
large cliques are query independent, and thus are considered as pre-
processing steps.

dataset name N (mil) M (mil) T(G)(s) T(C)(s)
youtube yt 3.22 12.22 27 58
eu-2015 eu 0.86 16.14 41 129

live-journal lj 4.85 42.85 54 170
com-orkut orkut 3.07 117.19 185 345
uk-2002 uk 18.52 261.79 841 1270
friendster fs 65.61 1806.07 2331 368

Table 5: Datasets used in Experiments
Algorithms. We compared six algorithms:
• SEED: The baseline SEED algorithm implemented in MapRe-

duce with optimal bushy join plan (Section 6) and overlapping
join units (Section 6.2).
• SEED-LD: SEED but with the (best) left-deep join plan.
• SEED+O: SEED with clique-compression (Section 7).
• TT: The TwinTwigJoin algorithm with all optimizations [19].
• PSgL: The Pregel-based subgraph enumeration algorithm with

all optimizations proposed by Shao et al. [28].
All algorithms were compiled with Java 1.7. We implemented
SEED and all its variants, and TT with Hadoop 2.6.0. All algo-
rithms except PSgL ran on the Yarn framework. The authors of [28]
kindly provided the codes for PSgL, implemented with Hadoop
1.2.0 based on the old MapReduce framework. The performance
gap between Yarn and old MapReduce is very small, hence the
comparisons between PSgL and the other algorithms are fair. We
set the maximum running time to 3 hours. If a test did not stop
within the time limit, or failed due to out-of-memory exceptions
or other errors, we denoted the running time as INF. The time to
compute the join plan using Algorithm 2 is less than one second for
all test cases, and thus has been omitted from the total processing
time.

Queries. The seven queries denoted by q1 to q7 are illustrated in
Figure 4 with the number of edges varying from 4 to 10 and the
number of nodes varying from 4 to 6. We show the order of the
nodes for symmetry breaking (Remark 1) under each query graph.
Here, we have considered all queries (q1 − q4, q7) except triangle
from the state-of-the-art works [28, 19] for fair comparisons. Note
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Figure 4: Queries

M/R map1 red1 map2 red2 map3 Cost Time(s)
SEED 12.3 3.2 12.3 3.2 6.4 471.9 306

SEED-LD 12.3 3.2 15.5 6110.9 6123.9 31365.2 7658

Table 6: Cost comparisons while enumerating q5 on yt with
SEED and SEED-LD (in millions).
that triangle enumeration is used in this paper as a preprocessing
step to construct the SCP storage. We add the query q5 and q6 to
further demonstrate the advantages of our proposed techniques.

Auxiliary Experiments. We have presented the auxiliary experi-
ments in the technical report [20], including the local-graph statis-
tics (Section 4), the effect of overlapping join units (Section 6.2),
and the comparisons of MapReduce and Spark.

Exp-1: Bushy vs. Left-deep. We compare the performance of
SEED and SEED-LD using query q5 on yt to demonstrate the ad-
vantage of the bushy join plan. The plans E1 and E2 shown in
Figure 2 illustrate the optimal execution plans for SEED-LD and
SEED, respectively. Table 6 presents the experimental results, in
which we observe a much better performance of SEED, compared
to SEED-LD. We also show the output of mappers and reducers in
each stage and compute the cost using Equation 5. The output of
reduce3 is not shown, as it is the final result and excluded in the
cost. Clearly, SEED, with smaller cost, outperforms SEED-LD by
more than an order of magnitude. Here, we only show the results
on yt, as SEED-LD runs out of time on all other datasets.

As we mentioned in Remark 4, the plans E1 and E2 in Figure 2
are also the optimal execution plans computed using the ER model
and the PR model, respectively. In Table 6, the outputs of reduce2

of SEED and SEED-LD correspond to |R(P b2 )| and |R(P ld2 )|, and
it is obvious that |R(P ld2 )| � |R(P b2 )|. The results are consis-
tent with our analysis in Remark 4 that the PR model offers more
realistic cost estimation, which leads to better execution plan.

We chose q5 in this experiment because of two reasons: (1) its
optimal join plan is bushy; (2) the join plans computed using the
ER model and PR model are different.
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Figure 5: The effects of the proposed techniques.

Exp-2: The effects of the proposed techniques. To show the
effects of the proposed techniques, we evaluated the performance
of SEED+O, SEED, TT and PSgL by querying q4 and q6 on eu
and lj, and reported the results in Figure 5(a)-Figure 5(b). Ob-
serve that the baseline SEED already dominates the state-of-the-
art algorithms TT and PSgL. SEED processes q7 on eu and lj in
980 seconds and 1347 seconds, respectively, while neither TT nor
PSgL can terminate in the allowed time. SEED outperforms TT
and PSgL, benefiting from the SCP graph storage (Φ2(G)) that
supports clique as the join unit. Consequently, SEED processes q6

by joining the upper triangle and the bottom 4-clique in just one
single round, while TT and PSgL both process 3 rounds. Although
there are extra overheads constructing the new graph storage (see
T (G) in Table 5), SEED still performs much better than TT and
PSgL after considering these overheads. For example, SEED pro-
cesses q6 on lj in 54 + 1347 seconds, while TT runs 6968 seconds
and PSgL cannot even terminate.

SEED+O further improves SEED via clique compression (Sec-
tion 7). Observe that SEED+O runs faster than SEED in all tests,
especially in the process of q6 on eu, where SEED+O terminates
in 1003 seconds but SEED runs out of time. Note that the ef-
fect of clique compression is more notable on eu than that on lj.
The reason is that, to our best speculation, in a web graph like eu,
web pages within a domain tend to link each other to form large
cliques, while in a social network like lj, such a strong tie is rarely
formed; Obviously, larger clique in the data graph contributes to
better clique compression. Although we spend time enumerat-
ing and maintaining the large cliques (see T (C) in Table 5) for
clique compression, the technique does improve the performance
of SEED, and it will play an important role when the data graph
contains many large cliques (e.g. while processing q6 on eu). As
SEED+O beats SEED, we would only compare SEED+O, and ex-
clude the baseline SEED in the rest of the experiments.

We could also use other queries in this test, but q1, q2, q4 and q5
do not contain cliques of more than three nodes, and the process of
q6 already includes enumerating q3. Thus, we only use q6 and q7
here for clear comparisons. Next we would compare the algorithms
using all queries.

Exp-3: Test all queries. We compared SEED+O with TT and
PSgL - by enumerating all queries on yt and lj, and reported the re-
sults in Figure 6(a)-Figure 6(g). When enumerating q1, SEED+O
uses the same execution plan, and hence has the same performance
as TT, and they outperform PSgL. In all other queries, SEED+O
significantly outperforms TT, due to the use of clique as the join
unit. For example, SEED+O is over 30× faster than TT while pro-
cessing q2 on both yt and lj, and over 20× faster than TT while pro-
cessing q3 on lj. Moreover, SEED+O processes complex queries
such as q4, q5, q6 and q7 efficiently on both yt and lj. On the con-
trary, TT often runs out of time when querying on lj. PSgL can
only process q3 on yt and lj, and q7 on yt, and in these cases, PSgL
performs worse than TT. The reasons are two aspects. First, PSgL
can be seen as StarJoin, which is already proven to be worse than
TwinTwigJoin [19]. Second, the Pregel-based PSgL maintains all
intermediate results in the main memory, and the numerous inter-
mediate results produced in subgraph enumeration can exhaust the
memory. In conclusion, the proposed SEED+O algorithm signif-
icantly outperforms all existing algorithms, and TT also performs
better than PSgL. Next we would exclude PSgL from the experi-
ments, as it can only process simple queries on small datasets.

Exp-4: Vary Datasets. We compared SEED+O with TT by query-
ing q2 and q7 on all datasets in order to show the advantages of
SEED+O regarding different data properties. The results are shown
in Figure 7(a)-Figure 7(b). In all tests, SEED+O significantly out-
performs TT, with the performance gain varying from an order
of magnitude to over 50× (enumerating q2 on lj). Specifically,
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Figure 6: Test all queries.
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Figure 7: Vary Datasets.
SEED+O processes q2 on the two largest datasets - uk and lj, in
less than 20 minutes, while TT cannot terminate in the allowed
time. This experiment demonstrates that SEED+O scales better for
large data graphs due to the use of clique as the join unit, and the
optimal bushy join plan with overlapping join units.

Exp-5: Vary Graph Size. We extracted subgraphs of 20%, 40%,
60%, 80%, and 100% nodes from the original graph of fs, and
tested the algorithms using queries q2 and q7. The results are shown
in Figure 8(a) and Figure 8(b) respectively. The running time of
both algorithms increases as the size of the graph. When the graph
size is over 60%, TT fails to process q2 in the allowed time. The
test shows the high scalability of our SEED+O algorithm.

Exp-6: Vary Average Degree. We fixed the set of nodes and ran-
domly sampled 20%, 40%, 60%, 80%, and 100% edges from the
original graph fs to generate graphs with average degrees from 11
to 55, and tested the algorithms using queries q2 and q7. The re-
sults are shown in Figure 8(c) and Figure 8(d), respectively. In
Figure 8(d), SEED+O is 10, 15, 19 and 17 times faster than TT
when the average degree varies from 11 to 55, which shows the
advantage of SEED+O for dense data graphs.

Exp-7: Vary Slave Nodes. In this experiment, we varied the num-
ber of slave nodes from 6 to 14, and evaluated our algorithms on
the lj and orkut datasets using queries q2 and q7. The test results
are shown in Figure 9(a)-Figure 9(d) respectively. When the num-
ber of slave nodes increases, the running time of all algorithms de-
creases, and it drops more sharply when the number of slave nodes
is small. On the one hand, increasing the number of slave nodes
improves performance by sharing the workload; on the other hand,
it introduces extra communication costs from data transmissions
among the slave nodes. As shown in Figure 9(b), even when 14
slave nodes are deployed, SEED+O is the only algorithm that can
process q7 on lj.

9. RELATED WORK
Subgraph Matching. Most subgraph matching approaches work
in labeled context, where certain labels are assigned to nodes
(and/or edges). For example, Shang et al. [27] propose an algo-
rithm to search from nodes with infrequent labels in order to utilize
the filtering power as early as possible. Node labels in the neigh-
borhood are used to filter unexpected candidates in [13] and [34].
In [12], the authors observe that a good matching order can sig-
nificantly improve the performance of subgraph query. Subgraph
enumeration in a centralized environment is also studied in exact
and approximate settings. The exact solutions including [3] and
[10] are not scalable for handling large data graphs. The approxi-
mate solutions [2, 9, 35] only estimate the count, but do not locate
all the subgraph instances.

Subgraph Matching in Cloud. Many recent works have focused
on solving subgraph matching in the cloud. Zhao et al. [35] intro-
duced a parallel color coding method for subgraph counting. Sun
et al. [30] proposed a subgraph matching algorithm that uses node
filtering to handle labeled graphs in the Trinity memory cloud. Re-
cently, Shao et al. [28] developed PSgL to list subgraph instances in
Pregel, which can be seen as a StarJoin-like algorithm and already
proven to be worse than the TwinTwigJoin algorithm [19].

Subgraph Enumeration in MapReduce. Subgraph enumeration
in MapReduce has attracted a lot of interests. Afrati et al. [1] pro-
posed multiway join in MapReduce to handle subgraph enumera-
tion. The TwinTwigJoin algorithm was proposed in [19], which
has proven to be instance optimal in the left-deep-join framework.
However, using TwinTwig as the join unit is still inefficient when
processing large-degree nodes and the left-deep join plan may re-
sult in non-optimal solutions.

10. CONCLUSIONS
In this paper, we studied the subgraph enumeration problem,

considering that existing solutions did not scale well to large
graphs. We proposed SEED, a scalable distributed subgraph enu-
meration algorithm. Compared to TwinTwigJoin, SEED is fea-
tured with the following: (1) a novel SCP graph storage mechanism
that allows using cliques, in addition to stars, as the join unit; (2) a
comprehensive cost model based on the PR model; (3) a dynamic-
programming algorithm to compute the optimal bushy join plan
with overlapping join units; (4) the clique compression technique
that further improves the performance. We have conducted exten-
sive performance studies on real graphs with up to billions of edges,
which shows that SEED outperforms the state-of-the-art works by
over an order of magnitude.
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