
Stochastic Data Acquisition for Answering Queries as
Time Goes by

Zheng Li
University of Massachusetts, Lowell

zli@cs.uml.edu

Tingjian Ge
University of Massachusetts, Lowell

ge@cs.uml.edu

ABSTRACT
Data and actions are tightly coupled. On one hand, data
analysis results trigger decision making and actions. On the
other hand, the action of acquiring data is the very first
step in the whole data processing pipeline. Data acquisi-
tion almost always has some costs, which could be either
monetary costs or computing resource costs such as sensor
battery power, network transfers, or I/O costs. Using out-
dated data to answer queries can avoid the data acquisition
costs, but there is a penalty of potentially inaccurate results.
Given a sequence of incoming queries over time, we study the
problem of sequential decision making on when to acquire
data and when to use existing versions to answer each query.
We propose two approaches to solve this problem using re-
inforcement learning and tailored locality-sensitive hashing.
A systematic empirical study using two real-world datasets
shows that our approaches are effective and efficient.

1. INTRODUCTION
The importance of actions has long been realized—as Aris-

totle contemplated: “But how does it happen that thinking is
sometimes accompanied by action and sometimes not, some-
times by motion, and sometimes not?” [20]. Data and ac-
tions are often tightly coupled. On one hand, data analysis
results trigger decision making and actions. On the other
hand, the action of acquiring (and sometimes cleaning) data
is the very first step in the whole data processing pipeline [8].
Data acquisition almost always has some costs, which could
be either monetary costs or computing resource costs such
as sensor battery power, network transfers, or I/O costs. At
the same time, big data often have inherent redundancy or
continuity [8]. For instance, a stream of observing sensory
data is a time series which typically exhibits correlations in
time and/or space and changes gradually.

Example 1. Consider a dynamic traffic routing service
provider. Significant efforts are required to obtain real-time
traffic information of each road. The service provider may
pay a third party for selectively acquiring traffic updates at

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 3
Copyright 2016 VLDB Endowment 2150-8097/16/11.

Figure 1: The sequential data acquisition problem.

specific road segments (as in a data market [17, 3, 1]). Such
data is valuable for the business of providing traffic routing
(e.g., from address A to address B) based on the current road
delays. This is illustrated in Figure 1, where all data updates
(changes in delays of various roads) naturally occur in the
the data source S while the query processor P accesses a data
store D, which has a copy of all data items in S but possibly
outdated. Upon a query, P decides whether to pay the cost
of re-acquiring the needed data items from the data source
(with the risk of those data items actually unchanged), or to
simply use the current version of data items to answer the
query (with the risk of outdated answer). The main idea of
our work is to statistically estimate (1) whether a data item
is likely outdated and affects a query result significantly, and
(2) whether it is likely to be used often in the near future. A
long-term optimization based on such statistical information
is performed to guide the data acquisition decisions.

Likewise, data acquisition in sensor networks (e.g., for
structural health monitoring, gas leak detection, and vol-
cano monitoring) is known to be expensive and consume sig-
nificant battery power [12]. Similar decisions are required on
whether to acquire data updates before answering a query.
More generally, the cost of acquiring the data for query an-
swering also includes long network or I/O delays. For sensor
networks, like in Example 1, S is the environment being ob-
served, and updates to S (e.g., temperature changes) hap-
pen by the nature of the environment, while D represents
the sensor readings P chooses to acquire from S, by paying
data acquisition costs such as battery power.

As another use case, a member of our research group is
working with a nonprofit organization on a project where a
server program continuously handles the requests of client
programs (mobile phones, web services, and other applica-
tion programs) by requesting continuous weather forecast
and alert streaming data over the Internet from the Na-
tional Oceanic and Atmospheric Administration (NOAA)’s
National Weather Service (NWS) ([4] and [6]). The server
program needs to process the selectively retrieved data (e.g.,
based on regions, as query predicates) from NWS into the
format required by a specific client program. NWS con-

277

stantly updates its weather forecasts and alerts of all regions
of the U.S. in its source database (S). The server program
(P) must cache its retrieved data (D), as it is impossible
for it to keep up with the speed of requests and fetch data
from NWS over the Internet for each request, and interpret
it (i.e., paying data acquisition cost). Furthermore, differ-
ent client programs/queries have different requirements on
how up-to-date the forecasts or alerts are—some mission-
critical programs may have very rigid requirement on up-
to-date weather information, while other programs do not
have to pay the high cost of data acquisition and can live
with slightly outdated data, and so on. Thus, the server
may have multiple “service levels” (policies), i.e., multiple
utility functions that vary on the relative weight between
data acquisition cost and inaccurate query result cost.

As the queries are revealed to the data processor P in an
online manner, the data acquisition decisions are sequential,
but not isolated among queries. For example, suppose the
travel delay of a particular road segment r in Example 1
has a probability of 0.2 to be updated from one query to
the next, and that two consecutive queries q1 and q2 both
require r. Then the action of acquiring r for q1 will likely
benefit q2 as well. Without acquiring r again for q2, with
probability 0.8 it is still up-to-date. Therefore, our goal is to
find the long-term optimal policy which determines the ac-
tion of either acquiring data from S for a query (and update
D) or merely using the current version in D to answer the
query. The query sequence can be infinite. In essence, the
current decisions can have both short-term and long-term
effects; the best choice now depends on future situations as
well as the actions on them.

1.1 Our Contributions
We propose to study this novel problem described above,

defined as a sequential data acquisition problem in Section 2.
Our general approach is to use a machine learning technique
called reinforcement learning [22]. We first use a mathemat-
ical framework called Partially Observable Markov Decision
Process (POMDP) [16], which characterizes system states,
actions (acquiring data or not), and rewards. The model
parameters, including state transition probabilities, encode
the statistical information that we can learn offline based on
recent query processing. Our framework is fairly extensible
and incorporates factors such as: (1) each data block may
have a different update rate, (2) a query may read an arbi-
trary subset of data blocks, and (3) we may add new actions
and budget constraints for data acquisition.

For a practical system, the number of POMDP states as
modeled above is too large to be feasible for any existing
POMDP solver to solve the model. We thus devise an al-
gorithm that coalesces the states and observations in our
POMDP into a significantly smaller space, resorting to two
means of hash functions—both of which are of the nature
of Locality Sensitive Hashing (LSH) [19]. The POMDP on
this smaller state space can then be efficiently solved. We
analyze the accuracy of the resulting model and find exper-
imentally in Section 8 that it is very effective.

An overhead of the above approach is that we have to learn
the parameters of POMDP first. However, this learning can
be offline and the POMDP solver pre-computes a policy
once, which is used for a long time. At runtime, looking up
the policy for data acquisition decisions is instantaneous and
negligible compared to query processing. Nonetheless, when

the data update and query trends change, we have to learn
these functions again. Hence, we propose a second approach
based on the model-free Q-learning [15], which dynamically
maintains an optimal policy (to acquire data or not), bal-
ancing between exploiting the existing policy and exploring
new data-update/query trends to adjust the policy.

Somewhat similar to our work is adaptive data caching by
Olston et al. [21]. The idea is that the data source server
obtains every data item update, but an update is only re-
freshed to a cache sometimes. The cache contains an inter-
val for a value (thus approximate), and a cache refreshment
is triggered in two ways: value-initiated refresh (when the
server finds that the actual value drifts away from the set
precision interval), and query-initiated refresh (when the set
precision does not meet query accuracy requirement). The
goal of [21] is to optimize the setting of cached value preci-
sion intervals so as to minimize the cache refreshment. Our
work is fundamentally different in that we do not have a
“server” that obtains every data update and decides if an
update needs to be refreshed to a cache. We are about se-
lective data acquisition.

In addition, Deshpande et al. [12] study data acquisition
in sensor networks. However, as in all previous work in data
acquisition, [12] does not do sequential planning as we do
based on two statistical estimations: (1) whether a value
is likely outdated and significantly affects query result, and
(2) whether a data item is likely used often in queries in
the near future. Our experiments in Section 8 show that
our selective data acquisition significantly outperforms the
baseline approach that does not do statistical estimation and
sequential planning. Nonetheless, the main contributions of
[12] include a detailed cost model for various components of
data acquisition specific to sensor networks, which we do not
have. Instead, we propose a general framework for various
data acquisition tasks, into which a data acquisition cost
model as in [12] can be integrated. We survey other related
work in Section 9. Our contributions are summarized below:

• We propose to study the sequential data acquisition
problem common in arising applications (Section 2).

• We use reinforcement learning and the POMDP model
for the first approach to this problem (Section 3).

• Coalescing the states in POMDP with two means of lo-
cality sensitive hashing, we make the solution feasible
for realistic data systems (Sections 4 and 5).

• We propose a second approach using the model-free Q-
learning to avoid the overhead of re-learning of model
parameters for dynamic environments (Section 6).

• We extend both approaches to solve a practical variant
of the problem, where we have a constraint on the
maximum budget in a sliding window (Section 7).

• We perform a systematic experimental evaluation us-
ing two real-world datasets (Section 8).

2. PROBLEM STATEMENT
2.1 Problem Formulation

Figure 1 illustrates the setting. A data source S contains a
set of n data blocks b1, ..., bn, which are constantly updated
at various rates. A data store D maintains a copy of the
data blocks acquired by a query processor P, who uses D to
answer queries. A query q received by P accesses a set of
data blocks R; we say that q requires R, or q references R.

278

To answer a query q that requires a set R of blocks, P

decides in an online manner whether to use the current ver-
sions of data blocks in D, or to acquire the most recent
versions of blocks in R from S (and update D) by paying a
cost cd(R), which is called the data cost. If P decides not to
pay the data cost, and the version in D is outdated, there is
a query result penalty cost cq(R, q) for its inaccuracy. Let a
policy be an oracle that tells what next action for P to take,
given P’s current action and the distribution of states P is
believed to be in.

Definition 1. (Sequential Data Acquisition Problem)
An infinite sequence of queries are revealed to a query pro-
cessor P in an online manner. Upon receiving each query q,
P decides, also in an online fashion, whether or not to ac-
quire the data blocks R required by q from the data source
S. The sequential data acquisition problem for P is to find
an optimal policy π∗ so as to minimize the long term costs,
which include both data costs and query result penalty costs,
for answering the sequence of queries.

The notion of “long term costs” will be made more precise
in Section 2.2 below (i.e., expected discounted sum of costs).
Analogous to DBMS blocks/pages, in this work, we assume
simple equal-size partitioning of blocks. For instance, in Ex-
ample 1, the sequence of data from each road can be treated
as a block; data tuples from each sensor in a sensor network
are a block. More sophisticated block partitioning is beyond
the scope of this paper. In addition, in these applications,
typically there are one or a few highly dynamic attributes
(which are to be kept track of), while other attributes (e.g.,
locations) are relatively stable/static. An example is the
multidimensional array model which is the most common
data model in scientific databases, where the dimension at-
tributes are usually static and in the clear. Most, if not all,
queries have predicates over ranges of the dimensions. The
block partitions should be based on stable/static attributes.
R can be easily determined if there is a predicate over

block-partitioning attributes. In the (arguably rare) event
that either (E1) there are predicates on static attributes,
but none of these attributes is aligned with block partitions,
or (E2) there are no predicates on static attributes, then we
use a simple two-step process. In the first step, we execute
the query using the existing data (without acquisition), and
get a version of qualified/required set of blocks R. In the
second step, we use R to determine the action of whether to
acquire the data in R (and re-run the query) or to just stop
there (returning the result from the first step). Note that in
the event of E2 above, R may be approximate (a precise R
would include all blocks of the table, as there is no predicate
on stable attributes).

2.2 Preliminaries
POMDP. Markov Decision Processes (MDPs) provide a

mathematical framework for modeling decision making in
situations where outcomes are partly random and partly
under the control of a decision maker [22]. MDPs are an
extension of Markov chains; the difference is the addition of
actions (allowing choice) and rewards (giving motivation).
Figure 2 shows an example of a simple MDP with three
states s0, s1, s2 and two actions a0, a1. A yellow squiggle
arrow shows the reward associated with the corresponding
transition black edge. Formally, an MDP is defined as a
tuple (S,A, T,R), where S is a set of states, A is a set of
actions, T is the transition function T (s, a, s′) = Pr[st+1 =

Figure 2: A simple MDP with 3 states and 2 actions.

s′ | st = s, at = a] (where st and at denote the state and
action at time t, resp.), and R(s, a) is the reward for execut-
ing action a in state s. The core problem of MDPs is to find
a policy for the decision maker: a function π that specifies
the action π(s) that the decision maker will choose when in
state s. The goal is to choose a policy π that will maximize
some cumulative function of the random rewards, typically
the expected discounted sum over a potentially infinite hori-
zon:

∑∞
t=0 γ

tR(st, π(st)), where γ is called a discount factor
and satisfies 0 ≤ γ < 1. The larger the discount factor
(closer to 1), the more effect future rewards have on current
decision making. This is equivalent to minimizing expected
discounted sum of costs as in Definition 1.

In MDP, we assume that the decision maker knows the
environment state exactly ; in other words, the environment
state must be fully observable. However, this assumption of-
ten does not hold in reality. A Partially Observable Markov
Decision Process (POMDP) is for this problem. In addition
to S, A, T , R, a POMDP has two extra elements: a set
of observations Ω and an observation function O(a, s′, o) =
Pr[ot+1 = o | at = a, st+1 = s′]. There are a number of tools
for solving a POMDP model. We need to first define and
learn the S, A, T , R, Ω, and O elements, and provide them
to a POMDP solver, which in turn computes the optimal
policy. At runtime, when each query comes in, we interact
with a program and feed our observation to it. Accordingly,
the program consults the computed policy and notifies us
the next action. This step at runtime is instantaneous as
the policy is pre-computed only once. We refer the reader
to [22, 16] for the details of POMDP.

Locality-sensitive hashing. Locality-sensitive hashing
(LSH) is a method of performing probabilistic dimension re-
duction of high-dimensional data [19]. The idea is to hash
the input items so that similar items are mapped to the
same buckets with high probability. A key element is defin-
ing “similarity”. One metric we use is set similarity. In par-
ticular, the Jaccard similarity coefficient between two sets

A and B is defined as J(A,B) = |A∩B|
|A∪B| , which is a value

in [0,1] and measures the similarity of two sets (e.g., when
A = B, J(A,B) = 1). The Jaccard distance is 1− J(A,B).
MinHash is a LSH mechanism based on this metric [10]. Our
goal is to hash a set of elements E. A simple version of Min-
Hash is to start with k independent conventional (random)
hash functions h1, ..., hk. Then the MinHash value for the
whole set E is the concatenation of k minimum hash values:
mine∈Eh1(e), ...,mine∈Ehk(e).

Q-learning. As surveyed by Kaelbling et al. [15], there
are mainly three types of model-free approaches in the liter-
ature: (1) Adaptive Heuristic Critic (AHC), (2) Q-learning,
and (3) Model-free learning with average reward. AHC ar-
chitectures are more difficult to work with than Q-learning
on a practical level [15]. It can be hard to get the relative

279

learning rates right in AHC. In addition, Q-learning is explo-
ration insensitive; i.e., it will always converge to the optimal
policy regardless of the details of the exploration strategy.
Finally, type (3) above, which uses an average reward in-
stead of a time-discounted reward, does not always produce
bias-optimal policies [15]. For all these reasons, Q-learning
is the most popular and the most effective model-free rein-
forcement learning algorithm, and is our choice.

In Q-learning, a decision maker learns an action-value
function, or Q-function Q(s, a), giving the expected util-
ity of taking a given action a in a given state s and fol-
lowing the optimal policy thereafter. The basic idea of Q-
learning is to iteratively update the Q(s, a) values based on
Q(s, a) ← Q(s, a) + α(R(s) + γmaxa′Q(s′, a′) − Q(s, a)).
Here, 0 < α ≤ 1 is called the learning rate, which dictates
how fast Q(s, a) is adjusted. R(s) is the immediate reward
of this step at state s. Like POMDP, 0 ≤ γ < 1 is the
discount factor, trading off the importance of sooner versus
later rewards. Thus, R(s) + γmaxa′Q(s′, a′) is the new es-
timate of Q(s, a), i.e., the total expected rewards from state
s onwards, where s′ and a′ are the next state and action.
The difference of this new estimate from the previous one,
Q(s, a), is used to adjust it, subject to the learning rate.

3. FROM DATA TO MODEL TO ACTION
We present a basic approach that maps our problem to a

POMDP. The challenges include: (1) each data block in S
may have a different update rate (unknown to P), which may
change over time; (2) each query may require an arbitrary
subset of data blocks. To cope with (1), we make the update
rate part of the POMDP state of a data block bi. The
key idea is that through observations—the data source S
can provide simple statistics such as the number of updates
to bi recently—P estimates the current update rate of bi.
This in turn affects the transition probability on whether
bi is up-to-date in D from one decision point to the next.
Therefore, the dynamicity of update rate immediately takes
effect through POMDP’s state transition function, and the
mechanism is encoded in the POMDP model.

Another novelty is that we incorporate the queries as part
of the state of POMDP, in response to (2) above. Whether
each data block bi is used in the current query is treated as
part of the state. The state transition function will thus en-
code the data block access correlation in the query sequence.
This information is significant. For example, due to “local-
ity of reference” [11], it is very likely that a data block bi is
referenced many times in a short amount of time (e.g., traffic
on a particular road segment during rush hour is queried fre-
quently). The optimal policy of a POMDP would probably
acquire bi once, knowing that it will be used by subsequent
queries many times before its next update. We now describe
each component of the POMDP model.

State Set. Every state in the state set S consists of the
information of each data block bi, denoted as {(ui, pi, ri) |
1 ≤ i ≤ n}, where ui is a Boolean indicating whether bi in D
is currently up to date, pi is the update probability (from one
decision-point/query to the next), and ri signifies whether
bi is required in the current query. We discretize pi into a
number of levels (e.g., five levels pi = 1 to 5, corresponding
to five buckets between 0 and 1). Note that P does not know
the true update probabilities at S, but can only estimate pi
from observations, which will be discussed shortly. ui is
a hidden random variable which can be estimated from pi.

This is because we do not know whether a block has changed
until someone acquires it; someone must pay the cost even
if it turns out to be unchanged. In Example 1, someone
has to pay the effort to observe/report the traffic of a road.
In sensor networks, S is the environment and power must
be consumed to acquire a reading before knowing it has
changed or not. In the NWS example, network cost must
be paid to get updates, if any. The system has to account
for the data acquisition cost regardless (P benefits from the
data and pays for it). Note that even if ui were known for
some application, our general framework would still work in
that special case. More delicate cost accounting strategies
are a topic of future study.

Action Set. The action setA contains two values {acquire,
skip}, denoting to acquire the currently required data blocks,
or to skip the acquisition and use the existing versions in D
for query processing, respectively. A subtle point here is
that, in our model, an action (to acquire or to skip) in the
optimal policy depends on the data and query, since the
system state s contains the information on each block (in
particular, the ones required by the current query and their
freshness). More importantly, we can include in the system
state s whichever factors we deem important for the action.
For example, we can put query type in s, and our framework
works in the same manner. We can have actions with a finer
granularity too. For instance, we can have an action that
says “acquire top-k required data blocks that are outdated,
ranked in descending order of their update probability”. Yet
another extension is discussed and implemented in Section
7. These indicate good extensibility of the framework.

Stochastic Transition Function. Next we look at the
stochastic transition function T (s, a, s′) = Pr[st+1 = s′ |
st = s, at = a]. Let s = {(ui, pi, ri)} and s′ = {(u′i, p′i, r′i)}.
The transition function T describes the connections among
states and actions. For example, when the action a = skip,
T (s, a, s′) = 0 if ui = false and u′i = true for some i. This
is because bi cannot turn from outdated to up-to-date when
the action is skip. On the other hand, the probability of
transitioning from ui = true to u′i = false is simply pi
(update probability). When a = acquire, we must have
u′i = true if bi is referenced in the query. We discuss how to
obtain the complete T function in Section 5.

Reward Function. The reward function R(s, a) is the
reward for executing action a in state s. The reward in
our model is the negative value of two costs: (1) the cost
cd(R) for acquiring referenced data blocks R if the action
a = acquire, or (2) the query result inaccuracy cost cq(R, q)
for answering the current query q with outdated data blocks
if the action a = skip. As the decision-maker, there is a
choice between the two types of cost that one has to make:
either to pay the cost to acquire the data, or to (potentially)
pay the cost of getting inaccurate results. For someone who
has to choose, the “preference” has to be somehow quantified
in a uniform manner. This is common in AI and economics,
where it is also called a utility function [22]. How to combine
the two costs is application dependent. For example, as a
simple setting of preference which is used in our experiments,
we assume that acquiring f (0 < f < 1) fraction of all data
blocks is equivalent in cost to the current query’s result po-
tentially being inaccurate by f fraction also. Certainly any
other preference balance point within the spectrum can be
easily adopted too. As such, any fraction of query inaccu-
racy can be converted to an equivalent cost of the number of

280

blocks to be acquired, and the reward is the negative value
of the sum of these two costs.

Observation Set. We discuss the set of observations Ω
in our POMDP model. An observation o consists of two
parts: (1) the set of required data blocks in the next query,
and (2) the estimated update probabilities of each data block
required by the current query, if the action a = acquire. If
the action a = skip, part (2) is empty.

These two parts are exactly what one can observe from
the system, and what chains one state s with the next state
s′. Part (1) can be observed as discussed in Section 2.1.
We now show part (2). There are multiple ways to learn a
block’s update probability (e.g., based on historical data);
one way is as follows. It is easy to keep the timestamps of
the last c updates for each data block at S, as metadata (for
a small c). When a data block bi is acquired by P, we can
estimate its update rate (i.e., number of updates per unit
time) as θi = c

t0−tc
, where t0 is the current time, and tc is

the timestamp of the c’th to last update. Alternatively, θi
can be estimated from the amount of change between two
acquisitions of bi. Since the query processor P knows the
timestamp of every query, it is also easy to estimate the
query rate θ (i.e., number of queries per unit time—to any
data blocks). Then we can estimate the update probability
(i.e., the probability of being updated between two consec-
utive queries) for this data block as follows.

Theorem 1. A maximum likelihood estimate of the up-
date probability pi of a data block bi is pi = min(θi

θ
, 1),

where θi is the update rate of bi and θ is the current query
rate (to any data blocks).

Proof. Consider the scenario that during time interval
t0 - tc we observe θ(t0 − tc) new queries (to any blocks)
and c = θi(t0 − tc) new updates to bi. First consider the
case θi < θ. Suppose we are given the parameter pi, i.e.,
updates to bi currently arrive randomly with probability
pi between two queries (which may vary later). Then the
number of new updates N follows a binomial distribution
B(θ(t0 − tc), pi). Thus, the likelihood function is L(pi|N =

c) =
(θ(t0−tc)
θi(t0−tc)

)
p
θi(t0−tc)
i (1−pi)θ(t0−tc)−θi(t0−tc). To get the

maximum of the likelihood function, we take the log of it and

let: ∂lnL
∂pi

= θi(t0−tc)
pi

− θ(t0−tc)−θi(t0−tc)
1−pi

= 0, which gives us

the maximum likelihood estimate of p̂i = θi
θ

. Clearly this
probability cannot be greater than 1 when θi > θ.

In practice we expect usually θi < θ, for θi is the update
rate of one particular data block bi while θ is the query rate
of the whole system, which makes the estimate pi < 1.

Observation Function. The observation function is
O(a, s′, o) = Pr[ot+1 = o | at = a, st+1 = s′], which en-
codes the connection between observed evidence and the
next state, given the action. The next state s′ clearly needs
to be consistent with the observation o. Recall that the ob-
servation only contains ri’s and possibly some blocks’ pi’s
and ui’s (if the action is acquire); thus we cannot determin-
istically observe the next state, but only estimate a distri-
bution of states (called belief state).

4. REDUCED MODEL
A POMDP model constructed in Section 3 can be too

large to be solved efficiently. The state-of-the-art solver can
only solve a POMDP of no more than a few thousands of

states in a reasonable amount of time [23]. We now devise
a novel method to first reduce the states and observations,
and then build the POMDP model on top of them.

Observations and intuitions. The main idea of our
state and observation reduction is as follows. The system
states presented in Section 3 have fine granularities. The so-
lution is not scalable. For example, there can be 20n states,
where n is the number of blocks, when each block has 20
states (2, 5, and 2 possible values for ui, pi, and ri, respec-
tively). Moreover, we treat each data block equally when
determining the states, i.e., each block maps to the same
number of random variables.

We first observe that the fine granularities may be unnec-
essary since similar system states probably possess the same
optimal actions. The notion of similarity will be made clear
shortly. Secondly, the states of the data blocks required
by the current query are more important than other blocks
when deciding the action for the current query, although the
states of other blocks do play a role in the overall policy as
we try to optimize the long-term rewards for data blocks
with update and query correlations.

The general technique we use is called locality-sensitive
hashing (LSH) [19], with which we can hash similar states
to the same new state. Thus, the number of new states
can be kept manageable. However, we cannot simply use
an existing method based on a single distance metric. This
is because our state space is complex, and we combine set-
similarity based LSH and Hamming-distance based LSH for
the reduction, as detailed below.

The algorithm. The set of data blocks R required by
the current query may be a very small portion of all data
blocks. Hence, if R is treated in the same manner as other
blocks, an approximation can easily lose significant informa-
tion from R. However, R is arguably more important as it
directly contains information about the data blocks being
considered for acquisition. Thus, we use different hash re-
duction techniques for (1) R and (2) all blocks in general,
and the final reduced state value is the concatenation of the
two parts. Part (1) contains the (ui, pi) information of the
data blocks R referenced by the current query. Since this is
a set, we use set similarity based LSH (i.e., MinHash). Part
(2) has a fixed number of bits (over all n data blocks), for
which we use Hamming distance based LSH.

We also need to reduce an observation, which includes the
data blocks referenced by the next query and the pi values of
data blocks referenced by the current query (if the action is
acquire). As this information can also be regarded as a set,
similar to part (1) of a state, we use set similarity based hash
reduction. The algorithm is presented as CoalesceStates.

We start with creating part (1) of the reduced state value.
Lines 1-6 construct a set R that contains the (ui, pi) of all
blocks required by the current query. ui is a Boolean value
and we directly add (i, ui) into the set (line 4). pi is an
integer level (e.g., one of 5 levels 1 to 5), for which we add
(i, 1), ..., (i, pi) into R. This is so that closer pi values have
less difference in the set R. In lines 7-12, we get the min-
imum hash values (over all elements of set R) of k hash
functions. An element of R is represented in a binary string
before it is hashed. We use a universal hash function family
ha,b(x) = ((ax + b)mod p)modm [25] (where p is a large
prime, a, b < p are random integers, and m is the number
of hash bins). The selection of k has to do with Theorem
2 below (we use k = 3 by default). This is the MinHash

281

[10] that happens to be consistent with the Jaccard similar-
ity coefficients. In line 13, we hash the concatenation of k
minimum hash values above and reduce them into l1 bits,
which is part (1) of the new state value σ.

Algorithm 1: CoalesceStates(s, o)

Input: s: a state in the original POMDP model,
o: an observation
Output: coalesced and reduced state σ and observation ω
/* Construct a set for information of referenced

blocks in s */
1 R← ∅
2 for each data block bi ∈ D do
3 if ri = true in s then
4 R← R ∪ (i, ui)
5 for j ← 1 to pi do
6 R← R ∪ (i, j)

7 for i← 1 to k do
8 min[i]←MAX INTEGER

9 for each element e ∈ R do
10 for i← 1 to k do
11 if min[i] > hi(e) then
12 min[i]← hi(e)

13 σ[1..l1]← h(min[1]...min[k]) mod 2l1

14 B ← an empty bit vector
15 for each data block bi ∈ D // n blocks in total
16 do
17 add ui to B
18 for each probability level j do
19 if j ≤ pi then
20 add 1 to B
21 else
22 add 0 to B

23 for i← 1 to l2 do
24 σ[l1 + i]← uniformly random bit from B

25 R← ∅ // now coalesce observation o into ω
26 for each required data block bi in o do
27 R← R ∪ (i)

28 for each block bi and its observed pi in o do
29 for j ← 1 to pi do
30 R← R ∪ (i, j)

31 do lines 7-12

32 ω ← h(min[1]...min[k]) mod 2lω

33 return σ and ω

Lines 14-24 create the l2-bit part (2) of the new state. We
first create a bit vector in which each block has the same
number of bits. Then we get l2 uniformly random bits from
this bit vector, forming part (2) of the new state value σ.
Lines 25-32 coalesce the observation o into a smaller (lω-bit)
value ω in a similar fashion as part (1) of the state value.
The difference is that we need to include information on
which data blocks are required in the next query, and the
observed update probability levels for blocks in the current
query (if any). The latter (lines 28-30) is applicable if the
action is acquire. Note that the k+1 hash functions in lines
11-13 and the random bit choices in line 24 must be kept
the same amongst all invocations (i.e., all input states and
observations) of CoalesceStates. In this way, we have a
consistent coalescence for all states and observations.

Example 2. Suppose there are 5 data blocks b1, ..., b5,
and the current state—with format (ui, pi, ri)—is b1(F, 4, T),

b2(T, 2, F), b3(T, 1, T), b4(T, 1, F), b5(F, 5, F). That is, b1
and b3 are referenced by the current query (ri = T); b1 is
not up-to-date (u1 = F) and its update probability level
p1 = 4. In CoalesceStates, we first construct set R
(part 1) by adding information about b1 and b3 (lines 3-
6): {(1, F), (1, 1), (1, 2), (1, 3), (1, 4), (3, T), (3, 1)}. Suppose
k = 3 and we apply the hash functions to each element
in R (lines 7-12) and get min[1] = 0101, min[2] = 1000,
min[3] = 0100. Then we get the first l1 (say 5) bits of the
coalesced state by h(min[1]min[2]min[3]) mod 25 = 10100.
Now we construct part (2) by iterating through each data
block and constructing a bit vector: for b1 we get 011110,
for b2 we get 111000, for b3 we get 110000, etc. Next we
randomly pick l2 (say 3) bits 011 from this bit vector and
append them to the first 5 bits we have constructed for part
(1). Then the coalesced state σ = 10100011.

Theorem 2. In the CoalesceStates algorithm, consider
two original POMDP states s1 and s2 that are dissimilar in
that (1) their required-data-block-set state information R1

and R2 (lines 1-6) have a Jaccard distance at least 1 − η,
and (2) their all-block information has a Hamming distance
at least (1 − θ)|B|, where |B| is the total number of bits in
the all-block information B (lines 14-22). Then the probabil-
ity that s1 and s2 are coalesced to the same state is at most

(ηk + 1−ηk

2l1
)θl2 , where k, l1, and l2 are as described above.

Proof. Through separate invocations of CoalesceStates,
s1 and s2 produce R1 and R2 in lines 1-6. For each of the
k hash functions, the probability that R1 and R2 have the
same minimum hash value is exactly their Jaccard similarity
|R1∩R2|
|R1∪R2|

, following the MinHash principle [10]. In line 13, in

order for the part (1) of s1 and s2 to generate the same value
σ[1..l1], either (1) all k minimum hash values are the same
between R1 and R2, denoted as event Ea, or (2) Ea does not
occur, but all l1 bits happen to be the same by chance, de-

noted as event Eb. From above, Pr[Ea ∪Eb] ≤ ηk + (1−ηk)
2l1

.

Finally, for part (2) of s1 and s2 to generate the same value
in lines 23-24, all l2 bits must be the same, which has prob-
ability θl2 . The theorem follows.

LSH reduction maps multiple original POMDP states into
one. Let the original POMDP solution be an optimal pol-
icy π∗0 that gives the optimal action at each state. Let the
reduced POMDP solution be an optimal policy π∗r that also
gives the optimal action at each coalesced state. Thus, the
only power loss of the reduced model is due to the func-
tion mapping of states—when two original states s1 and s2
have different actions in π∗0 , but the coalescing maps them
to the same state σ, forcing them to have the same action in
π∗r . Theorem 2 exactly targets this scenario, and shows that
dissimilar states in the original POMDP have exponentially
low probability to be coalesced into the same state. That is,
given two original states s1 and s2 above, by slightly (lin-
early) increasing k or l1 or l2, the probability that s1 and s2
are coalesced to the same state decreases exponentially fast.

5. LEARNING THE REDUCED MODEL
To use a POMDP for solving the data acquisition problem,

we first need to obtain its parameters, namely the stochastic
transition function T, the observation function O, and the
reward function R. We discuss how to learn the parameters
for the reduced model after the state and observation coales-
cence. Once these parameters are learned, we feed them into

282

the POMDP solver which outputs an optimal “policy”. This
is done only once. Then at runtime, as each query comes in,
we obtain the observation and feed it to a program, which
looks up the policy and instantaneously advises us on the
optimal action to take. We learn the T , O, and R functions
in two possible ways: in a real run with an arbitrary existing
policy, or by simulation. In fact, these two ways can be run
at the same time in parallel if one would like to learn faster
than only using real-time queries. Our learning algorithm
LearnParameters efficiently fills in the empirical proba-
bility distributions for the reduced states and observations.

Algorithm 2: LearnParameters(s0, real run)

Input: s0: an initial state in the original POMDP model,
real run: whether this is based on a real run
Output: T (σ, a, σ′): the state transition function
R(σ, a): the reward function
O(a, σ′, ω): the observation function

1 s← s0
2 for m← 1 to α do
3 for j ← 1 to α and each act← {acquire, skip} do
4 s′ ← s
5 if real run then
6 set s′.ri same as o.ri
7 else
8 set s′.ri based on a query model

9 if act = acquire then
10 for each i ∈ {i|s.ri} do
11 set s′.ui to be true
12 if real run then
13 set s′.pi same as o.pi
14 else
15 update s′.pi based on an update model

16 for each s′.ui not set in line 11 do
17 set s′.ui ← false with probability s′.pi

18 coalesce s, o, and s′ to σ, ω, and σ′, respectively

19 increment the counter for P̂ (σ′|σ, act)
20 increment the counter for P̂ (ω|σ′, act)
21 if act = acquire then
22 R(σ, act)← R(σ, act)− cd({i|s.ri})
23 else
24 R(σ, act)← R(σ, act)− cq(s, q)

25 s← s′

The loop in lines 2-25 iterates through possible starting
state s (with an arbitrary initial s0) as in the transition
function T (s, a, s′). The loop in lines 3-24 explores the space
of all possible ending states s′ under each action (acquire
and skip). Our goal is to learn the empirical probability
distributions in lines 19-20 (which correspond to T (σ, a, σ′)
and O(a, σ′, ω), resp.), as well as the average reward value
based on lines 21-24. The number of loop rounds parameter
α in lines 2-3 signifies a tradeoff between the time needed for
learning and the accuracy of the functions learned. Using
standard statistics (e.g., [9]), it is easy to determine a good
value of α that gives tight confidence intervals, since the
counter value of each bucket of the distribution follows a
Binomial distribution. For example, if the reduced state
space size is 256, then an α value of 2,000 (which is the
default we use in experiments) will give a good accuracy,
while the whole algorithm is still efficient. In addition, we
use add-one smoothing [22] when learning P̂ (σ′|σ, act) and

P̂ (ω|σ′, act), and we need to divide the R(σ, act) final values
by a total count to get the average rewards.

In line 6, o.ri’s in the observation indicate which blocks
are required by the next query; hence we set s′.ri’s to be
the same. If this is not a real run, in line 8, we randomly
set s′.ri’s based on a query model, which essentially specifies
the distributions of data blocks being required by each query.
For example, a simple query model just includes the refer-
ence probability of each data block. Then s′.ri is a sample
from the distribution. Line 11 marks all blocks referenced
by the current query as up-to-date if the current action is
acquire. We also set the update probability level s′.pi to be
consistent with the observation if it is a real run (line 13).
If it is not a real run (line 15), we set s′.pi based on an up-
date model, which specifies a block’s pi change distribution
in an observation. For example, a simple one is a uniform
distribution with values chosen from the current pi and its
two adjacent values. Line 17 sets s′.ui (that is previously
true) to false with probability s′.pi. This is exactly how the
dynamically learned update probability pi influences the es-
timation of up-to-date status ui of a block.

Line 18 calls CoalesceStates in Section 4, and lines 19-
20 increment the counters that are set up for the empirical
probability distributions as discussed earlier. With R(σ, act)
initialized as 0, lines 21-24 sum up the rewards, which are the
negative values of two types of cost: the cost of acquiring the
referenced data blocks cd({i|s.ri}) in line 22 or, if the action
is skip, the query result error cost cq(s, q) in line 24. Since
this is the offline learning phase which occurs infrequently,
for cq(s, q), the algorithm actually acquires the data to figure
out the ground-truth result and gets the error, from which
it gets the reward, as discussed in Section 3.

6. A MODEL-FREE APPROACH
We study a different approach than POMDP for the data

acquisition problem, using a model-free reinforcement learn-
ing method called Q-learning [15]. We do not need to learn
the T , R, and O functions as in Section 5 for POMDP. Hence
it is easier to adapt to dynamic data update/query trends,
without learning and re-learning the parameter functions.

State Set. Q-learning requires a fully observable environ-
ment. Our POMDP model has (ui, pi, ri) for each block in
a state, where ui is hidden. Thus, we change a block’s state
information to (mi, ri), where mi describes “the expected
number of updates to bi since the previously observed up-
date time”. Clearly, mi can be obtained from the last ob-
served update time ti and update rate θi (as in Theorem 1).
Specifically, the expected number of updates µi is equal to
(t0 − ti)θi, where t0 is the current time. Since µi itself may
have many values, we partition it into ranges, and assign the
range index to mi. For example, mi = 1 to 4 for µi ∈ [0, 1),
[1, 3), [3, 6), and [6,∞), respectively.

The major idea of ModelFreeAcquisition is to first co-
alesce the original states described above into reduced states
in a similar manner as Section 4, and then use Q-learning,
which incrementally builds a table Q[σ, a] that describes the
best rewards (Q value) and action a for state σ.

In line 1, we initialize the Q[σ, a] array to all 0’s, where σ
is a reduced state, a is an action at that state, and Q[σ, a] is
the target value of doing action a in state σ—including the
discounted rewards from all subsequent states under optimal
actions. This is basically a dynamic programming approach:
we incrementally and iteratively update the Q values.

283

Algorithm 3: ModelFreeAcquisition(qstream)

Input: qstream: a query stream to D
Output: a sequence of decisions on data acquisition

1 initialize Q[σ, a] to all 0’s
2 σ ← null
3 for each q ∈ qstream do
4 R← ∅
5 for each i ∈ {i|ri = true for q} do
6 update mi based on ti and θi
7 for j ← 1 to mi do
8 R← R ∪ (i, j)

9 hash R to σ′[1..l1] as in lines 7-13 of CoalesceStates
10 for k ← 1 to l2 do
11 j ← random(0, 4n)
12 i← j/4; m← j%4
13 update mi based on ti and θi
14 σ′[l1 + k]← (m < mi) ? 1 : 0

15 if σ 6= null then
16 increment n[σ, a]
17 Q[σ, a]←

Q[σ, a] + α(n[σ, a])(r + γmaxa′Q[σ′, a′]−Q[σ, a])

18 σ, a, r ← σ′, argmaxa′f(Q[σ′, a′], n[σ′, a′]), r′

19 use action a for q

Lines 4-9 create an l1-bit MinHash σ′[1..l1] for the original
state information mi in each block in R. Then analogous
to CoalesceStates, we add l2 bits chosen uniformly at
random from the state of all blocks. In line 11, we choose a
bit uniformly at random from 4n bits. Here we assume each
of the n data blocks takes up four bits for the four mi ranges
(any other number of ranges could be used here). Then i
and m in line 12 are the data block index and a random bit
in mi, respectively. Line 14 sets one bit in σ′ to 1 if m < mi

(or else 0). Effectively, this is equivalent to treating mi as in
unary, padded with 0 to the right. For instance, if mi = 2, it
chooses a random bit from 1100 (m’th bit from left). In line
16, we increment the count of visiting state σ with action
a. Recall that σ, a is the previous state and action of σ′, a′.
In line 17, we adjust the previous estimate of Q[σ, a] due
to the update of Q[σ′, a′]. Line 17 gives the adjustment
of Q[σ, a] based on the current estimate of the next state’s
optimal action’s Q value. The 0 < γ < 1 in line 17 is the
discount factor for future rewards, while r is the immediate
reward received at this state σ under the current action a.
Then r+ γmaxa′Q[σ′, a′] is the updated estimate of Q[σ, a]
based on the best action a′ and Q value presently selected
for the next state σ′. The α(n[σ, a]) is the learning rate
function, which decreases as the number of times a state
has been visited (n[σ, a]) increases [22]. Like [22], we use
α(n[σ, a]) = 60/(59 + n[σ, a]). Essentially line 17 adjusts
the Q[σ, a] estimate according to the learning rate function,
which ensures that Q[σ, a] will converge to the correct value.

The f(Q[σ′, a′], n[σ′, a′]) function in line 18 is called the
exploration function [22], which determines how greed (pref-
erence for high values of Q) is traded off against curios-
ity (preference for low values of n—actions that have not
been tried often). f should be increasing in Q and decreas-
ing in n. Similar to [22], we use: f(Q[σ′, a′], n[σ′, a′]) ={

0 if n[σ′, a′] < 5

Q[σ′, a′] otherwise
. This has the effect of trying

each action-state pair at least five times, since our Q val-
ues are always non-positive (negative value of costs). Lines

Figure 3: The Q and n tables before and after an itera-
tion of update, shown in (a) and (b), respectively.

18-19 set the current state, best action chosen, and imme-
diate reward and take this action for the current query q.
Finally, the algorithm loops back to take the next query,
and the process of dynamically updating Q table proceeds
in the same fashion.

Example 3. Suppose ModelFreeAcquisition has run
for a while, and at the moment we have a snapshot of Q
and n tables in Figure 3(a). At this iteration, we calculate
the state σ′ = 1. In line 18, we set σ = 1, and set ac-
tion a based on which a′ gives the maximum f value. Since
f(Q[1, acquire], n[1, acquire]) = 0 and f(Q[1, skip], n[1, skip]) =
−50, we have a← acquire in line 18, and the current query
is answered with action “acquire′′ in line 19. We then go
to the next iteration, and suppose this time we get σ′ = 3
after lines 4-14. Now in line 16, we increment n[1, acquire]
from 4 to 5 as shown in Figure 3(b). In line 17, we up-
date Q[1, acquire] to be −7 + 60

64
[−3 + 0.95×maxa′Q[3, a′]−

(−7)] = −12.2, where maxa′Q[3, a′] = −10, as indicated in
the dashed circle in Figure 3(a). The updated Q value is also
shown in the circle in Figure 3(b).

7. BUDGET CONSTRAINTS
We consider a budget rate constraint on how fast one can

spend resources. That is, the query processor P must not
pay more than B dollars in any window of size w (either
time windows or count windows based on the number of
queries). This is a practical problem. For example, there
can be a practical constraint on how much money one can
spend on data acquisition in a data market. Similarly, in
sensor networks or other networked environments, due to
hardware limits (e.g., sensor power consumption or network
transmission rates), there may be a constraint on how fast
data can be acquired.

It turns out that both POMDP and Q-learning can be
easily modified to solve this problem. The key idea is that
we use a small number of bits (e.g., 2) in the reduced state
to keep track of the spending level (i.e., money spent in the
current window). One of the spending levels is “no money
left for the current window” (corresponding to the state that
the “acquire” action is disallowed), and other spending levels
correspond to different amounts (intervals) of money left.
Let the maximum budget be B per window. For example,
suppose there are 4 spending levels. For a state σ, denote the
average cost of a query as |q|. Typically B � |q|. Then the
four spending levels correspond to the expense in the current

window being [0, B−|q|
3

), [B−|q|
3

, 2(B−|q|)
3

), [2(B−|q|)
3

, B − |q|),
and [B − |q|, B], respectively, where the last spending level
disallows acquire as that would be over the budget. The
modification to the POMDP approach is as follows:

284

(1) Append β bits (e.g., β = 2) to a reduced state σ and
a reduced observation ω. The added bits keep track of 2β

possible budget levels for the current window.
(2) During both LearnParameters (either a real run or

simulation) and the online execution of the POMDP model,
we maintain the exact amount of money (cost) spent for
acquiring data in the current window, and translate it into
the spending levels in reduced observations and states.

The above changes to the algorithms essentially “encode”
the budget constraint into the POMDP model, and hence
the solution will optimize the target function subject to the
constraint. Likewise, we can modify ModelFreeAcquisi-
tion in the same manner to handle a budget constraint.

8. EXPERIMENTS
8.1 Datasets and Setup

We use two real-world datasets: (1) Traffic dataset. It
is produced by loop detector sensors located on major high-
ways of the Greater Toronto Area [5]. The data is collected
over time, with each sensor continuously outputting events.
Each event contains information about the number of cars
detected during the current interval, the average speed, and
the occupancy rate, etc. (2) Mobility dataset. It in-
cludes a set of continuous traces compiled in 2007 [7]. The
traces contain battery usage data for laptops. Apart from
battery-usage data, the traces also contain data on whether
the machine was on AC, Internet connectivity, CPU utiliza-
tion, disk space, and idle time for the laptop users, etc.

In Traffic data, we treat the sequence of data from each
sensor as a block, while in the Mobility data, the sequence
from each laptop is a block. For both datasets, there are
some data collecting costs: the infrastructure for loop de-
tector sensors can be expensive to set up and maintain;
collecting real-time mobile device data from users can be
disturbing and should be kept to minimum. We use the fol-
lowing queries: Q1 (Traffic data) The current travel speeds
of a set of roads; Q2 (Mobility data) The remaining battery
capacity of a set of laptops; Q3 (Mobility data - aggregate)
The average remaining battery of a set of laptops; Q4 (Traf-
fic data - join) The fraction of time in which two roads have
close travel speeds (±10km/h) within three hours in their
respective sequences; Q5 (Traffic data - aggregate) The total
numbers of vehicles per hour for each region; Q6 (Mobility
data - join & aggregate) The maximum difference of remain-
ing battery capacity of any two laptops; Q7 (Traffic data -
subquery) The speeds of the roads which are higher than the
average speed of all roads; Q8 (Mobility data - aggregate)
The maximum idle time of the laptops whose ID ’s are in a
certain range. Q1, Q4, Q5, and Q7 are for the Traffic dataset
while Q2, Q3, Q6, and Q8 are for the Mobility dataset.

For POMDP solver, we use a state-of-the-art one [2] that
implements the SARSOP algorithm [18]. We modify the
POMDP simulator code from [2] such that, upon taking an
action suggested by the simulator: (1) our program follows
the action to either acquire data or use the existing data in
D to answer the query; (2) our program informs the simu-
lator of a new observation. Accordingly, the simulator will
compute the belief state and advise us on the next action.
This process continues. The POMDP solver and simula-
tor [2] are implemented in C++; so is our modification to
the simulator as described above. We implement all our al-
gorithms described in this paper in Java, and use JNI to
communicate with the POMDP simulator. All experiments

are performed on a machine with an Intel Core i7 2.50 GHz
processor and an 8GB memory, running Ubuntu Linux.

8.2 Experimental Results
POMDP approach. The first step is to learn the func-

tions T, O, and R. We measure the learning time under
different parameters. All results are based on the average of
at least five runs. In Figure 4, we vary the number of blocks
from 100 up to 100,000, while fixing the parameters l1 = 5,
l2 = 3, and lω = 5 (l1 and l2 are the lengths of the two parts
of a reduced state, and lωis the length of a reduced observa-
tion). Note that each data block corresponds to a number
of data sequences. Hence, the number of blocks need not be
large while the data volume is very large.

We use the default parameters l1 = lω = 5 and l2 = 3. We
use a simulated run for Figure 4 since this does not change
the learning time and since we need to vary n. To study
how well our approaches adapt to the dynamic fluctuations
of update rates at different blocks, we let each data block’s
update probability pi be randomly chosen from [0,1] every
two seconds. The query model reflects the locality of refer-
ence: when a query accesses a range of data blocks, query
i has probability 0.5 to start from a random block b used
in query i − 1, and query i references a contiguous chunk
of blocks centered around block b with a random size. We
will also vary this correlation probability and study its im-
pact on the resulting policy in a later experiment (Figure 8).
Figure 4 shows the learning times under various numbers of
blocks. For instance, when the number of blocks is 105, the
learning time is 32 seconds. This is consistent with the fact
that LearnParameters time is proportional to the average
number of referenced blocks in a query.

We then measure the learning time by varying l1 from
3 to 8, shown in Figure 5. For both datasets, the learn-
ing time increases exponentially with l1. This is because
l1 is the number of bits, and the reduced state space size
increases exponentially with l1. The whole learning time is
proportional to the reduced state space size. This works in
practice as l1 is a small number, and the learning is offline
and infrequent. After learning the parameters, we feed them
to the POMDP solver, which typically requires a long time
to converge to an exact solution. However, it is an anytime
algorithm; we can stop it any time and it will output a pol-
icy with an upper bound UB and a lower bound LB of the
target long-term reward (we use a discount factor γ = 0.95).
We say that the precision gap of the solver at this moment

is |UB−LB||UB| . When the precision gap is 0, the solution is

exact; a value farther away from 0 indicates a less accurate
solution. In all parameter settings of our experiments, we
let the solver run for 3 minutes, and find that the precision
gap is no more than 0.04. In subsequent experiments, we
will evaluate the effectiveness of these output policies.

In Figure 6, we first examine the query result accuracy for
the various types of queries Q1 to Q8 (described in Section
8.1), following the POMDP policy as well as the model free
Q-learning approach (more results on Q-learning will be de-
tailed later). The y-axis shows the average relative error
|actual value−true value

true value
|, where actual value is from our al-

gorithms and true value is the ground-truth result using all
data from datasets. Q1, Q4, Q5, and Q7 are for the Traf-
fic dataset while Q2, Q3, Q6, and Q8 are for the Mobility
dataset. Figure 6 shows that they all have very small er-
rors no more than 0.025. Model free Q-learning has slightly

285

Number of blocks ×10
4

0 2 4 6 8 10

L
e

a
rn

in
g

 t
im

e
 (

s
e

c
)

5

10

15

20

25

30

35

l
1

3 4 5 6 7 8

L
e

a
rn

in
g

 t
im

e
 (

s
e

c
)

0

50

100

150

200

250

300

350

400

450

Traffic
Mobility

Query
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

E
rr

o
r

0

0.005

0.01

0.015

0.02

0.025
POMDP
Model free

k
2 2.5 3 3.5 4 4.5 5

C
o

s
t

ra
ti
o

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

POMDP w/o reduction
POMDP w/ reduction
MF w/o reduction
MF w/ reduction

Fig. 4 Learning time vs blocks Fig. 5 Learning time vs l1 Fig. 6 Accuracy of queries Fig. 7 Cost ratio vs reduction

greater errors as it makes no assumption about the model
or the solution (and its advantage is the quicker adaptiv-
ity to changes). Q3 has the smallest error because it is a
sum/average query over many data items and the errors (if
any) in individual data items are reduced (or canceled out)
when they are added together.

To study the effectiveness of the policies generated from
our models, we first define a baseline. It examines the cost
of action “acquire” vs. “skip” over the true state of the
system and chooses the one with a smaller cost. Note that
the baseline is given more power than the actual query pro-
cessor since it knows the true state (i.e., the query result
error with current data and hence the true cost), just for
experiments. Hence, the baseline is an idealized policy with
auxiliary information. However, it does not do sequential
planning over all queries, which is the distinctive goal of
our work. The baseline establishes a common ground for us
to compare different approaches (POMDP and model-free),
and various parameter settings. We also compare with two
generally weaker, more näıve baselines in some following ex-
periments (Figures 9 and 10). As discussed earlier, the costs
(i.e., negative values of rewards) consist of two parts, the
data acquisition cost and the query result error cost, which
we always know in our controlled experiments. We calculate
the ratio of the cost of running the policy output from our
model and that of a baseline policy.

In Theorem 2 and the subsequent discussion, we analyze
that the power loss (i.e., error) due to our state reduction
can be made exponentially small with respect to k (number
of hash functions), l1, and l2. We now experimentally verify
this point. When the problem size, the number of blocks n,
is very small, we can afford to use POMDP and Q-learning
without the state reduction. In Figure 7, we show the cost
ratios (w.r.t. the baseline with auxiliary information) of
both the POMDP and model-free (MF) approaches with
and without the state reduction for n = 3 using the Traf-
fic dataset (the Mobility dataset shows similar results). We
vary the parameter k between 2 and 5, while keeping other
parameters at default values. We can see that as k increases,
the cost ratio with reduction approaches that without reduc-
tion precipitously, for both POMDP and MF (we examine
MF more in later experiments). In general, the reduction
performs well; we use as default k = 3 and study l1 and l2
in subsequent experiments.

We next study the effect of varying query sequence. We
have mentioned earlier that, by default, we use an adjacent-
query block correlation probability pc = 0.5, and queries are
chosen uniformly at random from the templates Q1 to Q8.
We now vary these parameters. For the query sequence,
a key insight is that what affects data acquisition decision
is each query’s result sensitivity to data updates. This is

because lower sensitivity of query result to data perturba-
tion/updates will cause our models to acquire data less of-
ten, and hence the overall cost is smaller. The result in Fig-
ure 6 gives evidence of the sensitivities of each query to up-
dates. The smaller the error is, the less sensitive that query
is to updates (intuitively, recall that our reward/utility func-
tion “balances” between the data acquisition cost and result
accuracy cost). Thus, in addition to the random order, we
also examine queries issued in ascending sensitivity order
(and an ascending cycle repeats after the maximum sensi-
tivity query has been issued); we examine queries in descend-
ing sensitivity order too. Figure 8 shows the result for the
POMDP and model-free (MF) approaches with pc varying
between 0.1 and 0.9, for the Mobility dataset (the result of
the Traffic dataset has a similar trend). First, we can see
that as pc increases, the advantage of our approaches is more
significant. The reason is that more correlation of queries
benefits more from our model’s sequential planning which is
not in the baseline. Second, our approaches perform slightly
better under ascending or descending query sensitivity or-
ders than random order, especially for high pc. Again, this
is because more regularity in the query sequence will show
the advantage of sequential planning. Thus, in what follows,
we only report the results with random order. Finally, re-
gardless of input query sequence properties, our stochastic
model optimizes a mathematical function and achieves the
best it can of the situation.

Next, in Figure 9, we report the cost ratio for the policies
produced by the POMDP models constructed under differ-
ent l1 values over the baseline with auxiliary information
as described above (denoted as b∗ in Figure 9), as well as
two other generally weaker baselines (denoted as b1 and b2).
These two new baselines do not know the ground truth of
query result errors. They have to estimate the number of
outdated blocks among the required ones R for the query
and make the decision. In b1, if the expected number of
outdated blocks in R is more than the expected number of
up-to-date ones, we acquire R. In b2, we make such decision
for each block in R independently: if its probability of being
outdated is greater than 0.5, we acquire it. Likewise in Fig-
ure 10, we vary l2 from 0 to 4 bits (while using the default
l1 = lω = 5). First, we see that b∗ performs better than
b1 and b2 (i.e., it has lower cost, hence higher cost ratios
for our models). This is because b∗ makes more informed
decisions with the ground-truth information of query result
errors and costs. b2 performs better than b1 because it per-
forms actions with a finer granularity by treating each block
individually. From now on, for clarity, we only discuss the
results w.r.t. the baseline with auxiliary information b∗.

In Figure 9, for both datasets, the cost ratio decreases
from around 0.38 to around 0.2 as l1 increases from 3 to

286

Correlation probability
0 0.2 0.4 0.6 0.8 1

C
o
s
t
ra

ti
o

0.2

0.25

0.3

0.35

0.4

0.45

POMDP rand.
POMDP asc.
POMDP dsc.
MF rand.
MF asc.
MF dsc.

l
1

3 4 5 6 7

C
o
s
t
ra

ti
o

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Traffic b*
Traffic b1
Traffic b2
Mobility b*
Mobility b1
Mobility b2

l
2

0 1 2 3 4

C
o
s
t
ra

ti
o

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Traffic b*
Traffic b1
Traffic b2
Mobility b*
Mobility b1
Mobility b2

Number of queries
0 2000 4000 6000 8000 10000

C
o
s
t
ra

ti
o

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Traffic
Mobility

Fig. 8 Query sequence variations Fig. 9 Cost ratio vs. l1 Fig. 10 Cost ratio vs. l2 Fig. 11 Model-free, cost ratio

l
1

3 4 5 6 7

C
o

s
t

ra
ti
o

0.15

0.2

0.25

0.3

0.35

0.4

0.45

POMDP

Model free

l
1

3 4 5 6 7

C
o

s
t

ra
ti
o

0.2

0.25

0.3

0.35

0.4

0.45

0.5

POMDP

Model free

l
2

0 1 2 3 4

C
o

s
t

ra
ti
o

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

POMDP

Model free

l
2

0 1 2 3 4

C
o

s
t

ra
ti
o

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

POMDP

Model free

Fig. 12 Traffic dataset Fig. 13 Mobility dataset Fig. 14 Traffic dataset Fig. 15 Mobility dataset

7. This is because a greater l1 results in more states in
the model, which makes the action policy more fine-grained
and accurate. Of course, the tradeoff for greater l1 is longer
times for learning and solving the model. Note that look-
ing up a POMDP policy for the action to take is instanta-
neous (similar to the baseline) and insignificant (compared
to answering queries). The same is true for the model-free
Q-learning. Thus we do not need to report their execu-
tion times. Figure 9 shows that POMDP combined with
LSH is effective. In Figure 10, the cost ratio decreases as
l2 increases. This demonstrates that the second part of the
reduced state, the locality sensitive hashing of the “big envi-
ronment” (all blocks in general) is indeed necessary—having
0 bit l2 only gives a cost ratio of over 0.6. On the other hand,
interestingly, the curve levels off at some point. l2 = 3 and
l2 = 4 have very close cost ratios. This is because the in-
formation (on blocks used in the current query) in part 1 of
the reduced state (l1 bits) has a more direct and crucial role
in the optimal policy, while part 2 of the reduced state has
some impact on the policy in the long term.

Model-free approach and budget constraints. We
now examine our model-free Q-learning approach, which
does not have offline learning, but does have an initial “warm-
up” period, in which the Q-table values gradually converge
to the optimal. In Figure 11, we measure the cost ratio (com-
pared to the baseline), as the number of queries increases.
This experiment clearly shows the warm-up period. For the
Traffic data, after about 2,000 queries, the cost ratio levels
off at the optimal value, while the warm-up period is around
1,000 queries for the Mobility data. It is thus interesting
to compare the cost ratio of Q-learning after the warm-up
with that of the POMDP. Figure 12 shows the result for the
Traffic data under various l1’s. The POMDP’s cost ratio
is slightly less than the model-free’s. Similarly, the result
of the Mobility data is shown in Figure 13, where the cost
ratio difference is more noticeable. We then compare their
cost ratios under different l2’s. The results are shown in
Figures 14 and 15 for the two datasets respectively. Like in
POMDP, the second part of the reduced state (LSH of the

Maximum budget
200 400 600 800 1000

C
o

s
t

ra
ti
o

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Traffic
Traffic no constraint
Mobility
Mobility no constraint

Maximum budget
200 400 600 800 1000

C
o

s
t

ra
ti
o

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Traffic
Traffic no constraint
Mobility
Mobility no constraint

Fig. 16 Budget & Q-learning Fig. 17 Budget & POMDP

all-block environment) also plays a role in the model-free
approach for the optimization of long-term rewards. Fig-
ures 12-15 show that, overall, our first approach’s policy is
slightly more effective than our second approach.

We finally study budget constraints. First we examine
the Q-learning approach, and vary the maximum budget in
the range of 200 to 1,000 (using parameters β = 2 bits and
w = 10 queries). The results are shown in Figure 16. For
comparison, we also draw two horizontal constant lines in
the figure to show the cost ratios without any constraints
on maximum budgets. As the maximum budget increases,
the cost ratio of our algorithm decreases, eventually staying
at the level of the cost ratio without any constraints. This
is because, while the budget constraint may reduce part 1
of the costs (acquiring data), it would increase part 2 of the
costs (penalty for outdated data) even more. The optimal
solution without the constraint cannot be worse than the
optimal solution with the constraint. The result for POMDP
is in Figure 17, where the impact to the solution with budget
constraints is the same. Another interesting fact evident in
both figures is that the curves for the Mobility dataset level
off to the lowest cost ratio faster (at the maximum budget
value around 600) than the Traffic dataset. This indicates
that the optimal policy for Mobility data without constraints
has a lower maximum expense (on acquiring data) in the
sliding windows.

Summary. The experimental results show that our ap-
proach of using POMDP combined with LSH requires a rea-

287

sonably short time for learning parameters and for solving
the POMDP model under practical parameter settings. The
resulting policy from this approach is also effective. Both
parts of the reduced state are necessary for the effectiveness
of the resulting policy, with the first part (l1 bits) being
more crucial. The model-free approach has the advantage
of its simplicity and no overhead for learning and solving a
model, although it does have a warm-up period for it to be
effective. The final solution of approach 1 is slightly more
effective than that of approach 2. Finally, both approaches
can be easily modified to handle additional constraints such
as maximum budgets, due to the good extensibility.

9. OTHER RELATED WORK
The most closely related work ([21] and [12]) is discussed

in Section 1; we survey other work here. To our knowledge,
sequential data acquisition problem has not been studied
before. The cost of data acquisition has been long realized,
e.g., in data market work in both academia [17] and industry
[3, 1]. Feder et al. [14] study the problem of computing the
k’th smallest value among uncertain variables X1, ..., Xn,
which are guaranteed to be in specified intervals. It is possi-
ble to query the precise value of Xj at a cost cj (1 ≤ j ≤ n).
The goal is to pin down the k’th smallest value to within a
precision σ at a minimum cost. By contrast, our work aims
at general query types rather than the specific k’th smallest
value; more importantly, we study decision making over a
sequence of queries instead of just one query.

Fan et al. [13] study the problem of determining data cur-
rency. They assume a database has multiple versions of a
tuple, but there are no valid timestamps. The problem is to
determine which tuple has the most current attribute value.
They give a number of complexity results in the presence
of copy relationships among data sources. This is a differ-
ent problem than ours. POMDP and Q-learning have been
used in diverse areas. In [23], POMDP is used in collision
avoidance for unmanned aircrafts. As reported in [23], the
state-of-the-art POMDP solver can only solve POMDP with
the number of states up to a few thousands to generate ac-
ceptable policies in a reasonable amount of time. Thus, to
scale up, we propose the additional usage of LSH.

10. CONCLUSIONS AND FUTURE WORK
We formalize the sequential data acquisition problem mo-

tivated by many applications. We use two approaches of
reinforcement learning in a novel way, each of which has
its advantages. To make the solution scalable, we use tai-
lored locality sensitive hashing. Our solution framework is
also fairly extensible to incorporate additional constraints
and cost/action models. Our comprehensive experiments
demonstrate the feasibility and effectiveness of our approaches.
The model-free approach adapts to dynamic environments.
For the POMDP approach, we may incorporate in the state
set crucial dynamic parameters such as update rates as we
already do; then the remaining model/policy is relatively
stable, and we can re-learn the model every once in a long
while. Or we can treat it as a multi-armed bandit [24] ex-
ploitation vs. exploration problem (i.e., using existing policy
vs. learning a new policy), and use the adaptive epsilon-
greedy solution there. We plan to study this in the future.

Acknowledgment. This work was supported in part by
the NSF, under the grants IIS-1149417, IIS-1319600, and
IIS-1633271.

11. REFERENCES
[1] Aggdata. http://www.aggdata.com/.

[2] APPL POMDP solver download page
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/.

[3] Azure data market. https://datamarket.azure.com/.

[4] http://graphical.weather.gov/xml/.

[5] http://msrg.org/datasets/traffic.

[6] https://alerts.weather.gov/.

[7] http://traces.cs.umass.edu/index.php/power/power.

[8] D. Agrawal and others (21 authors). Challenges and
Opportunities with Big Data. 2012.
http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf.

[9] C. M. Bishop. Pattern recognition and machine
learning. Springer, 2006.

[10] A. Broder, M. Charikar, A. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. J. of Computer & Sys. Sciences, 2000.

[11] P. J. Denning. The locality principle. Communications
of the ACM, 2005.

[12] A. Deshpande, C. Guestrin, S. R. Madden, J. M.
Hellerstein, and W. Hong. Model-driven data
acquisition in sensor networks. In VLDB, 2004.

[13] W. Fan, F. Geerts, and J. Wijsen. Determining the
currency of data. ACM Trans. Database Syst., 2012.

[14] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and
J. Widom. Computing the median with uncertainty.
In ACM STOC, 2000.

[15] L. Kaelbling et al. Reinforcement learning: A survey.
J. of Artificial Intelligence Research, 1996.

[16] L. Kaelbling et al. Planning and acting in partially
observable stochastic domains. Artificial Intelligence,
1998.

[17] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Toward practical query pricing with
QueryMarket. In SIGMOD, 2013.

[18] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP:
Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In
Robotics: Science and Systems, 2008.

[19] J. Leskovec, A. Rajaraman, and J. Ullman. Mining of
Massive Datasets. Cambridge University Press, 2014.

[20] M. C. Nussbaum et al. Aristotle’s De Motu
Animalium: Text with translation, commentary, and
interpretive essays. Princeton University Press, 1985.

[21] C. Olston, B. T. Loo, and J. Widom. Adaptive
precision setting for cached approximate values. ACM
SIGMOD Record, 2001.

[22] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2003.

[23] S. Temizer et al. Collision avoidance for unmanned
aircraft using Markov decision processes. In AIAA
Guidance, Navigation, and Control Conference, 2010.

[24] R. Weber. On the Gittins index for multiarmed
bandits. Annals of Applied Probability, 1992.

[25] P. Woelfel. Efficient strongly universal and optimally
universal hashing. In Mathematical Foundation of
Computer Science. 1999.

288

