
Effortless Data Exploration with zenvisage:
An Expressive and Interactive Visual Analytics System

Tarique Siddiqui1∗ Albert Kim2∗ John Lee1 Karrie Karahalios1,3 Aditya Parameswaran1

1University of Illinois, Urbana-Champaign (UIUC) 3Adobe Research 2MIT
{tsiddiq2,lee98,kkarahal,adityagp}@illinois.edu alkim@csail.mit.edu

ABSTRACT
Data visualization is by far the most commonly used mechanism to
explore and extract insights from datasets, especially by novice data
scientists. And yet, current visual analytics tools are rather limited
in their ability to operate on collections of visualizations—by com-
posing, filtering, comparing, and sorting them—to find those that
depict desired trends or patterns. The process of visual data ex-
ploration remains a tedious process of trial-and-error. We propose
zenvisage, a visual analytics platform for effortlessly finding de-
sired visual patterns from large datasets. We introduce zenvisage’s
general purpose visual exploration language, ZQL ("zee-quel") for
specifying the desired visual patterns, drawing from use-cases in a
variety of domains, including biology, mechanical engineering, cli-
mate science, and commerce. We formalize the expressiveness of
ZQL via a visual exploration algebra—an algebra on collections of
visualizations—and demonstrate that ZQL is as expressive as that
algebra. zenvisage exposes an interactive front-end that supports
the issuing of ZQL queries, and also supports interactions that are
“short-cuts” to certain commonly used ZQL queries. To execute
these queries, zenvisage uses a novel ZQL graph-based query opti-
mizer that leverages a suite of optimizations tailored to the goal of
processing collections of visualizations in certain pre-defined ways.
Lastly, a user survey and study demonstrates that data scientists are
able to effectively use zenvisage to eliminate error-prone and te-
dious exploration and directly identify desired visualizations.

1. INTRODUCTION
Interactive visualization tools, such as Tableau [4] and Spot-

fire [3], have paved the way for the democratization of data ex-
ploration and data science. These tools have witnessed an ever-
expanding user base—as a concrete example, Tableau’s revenues
last year were in the hundreds of millions of US Dollars and is ex-
pected to reach tens of billions soon [7]. Using such tools, or even
tools like Microsoft Excel, the standard data analysis recipe is as
follows: the data scientists load a dataset into the tool, select visu-
alizations to examine, study the results, and then repeat the process
until they find ones that match their desired pattern or need. Thus,
∗Both authors contributed equally to this work.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150-8097/16/12.

using this repeated process of manual examination, or trial-and-
error, data scientists are able to formulate and test hypothesis, and
derive insights. The key premise of this work is that to find desired
patterns in datasets, manual examination of each visualization in
a collection is simply unsustainable, especially on large, complex
datasets. Even on moderately sized datasets, a data scientist may
need to examine as many as tens of thousands of visualizations, all
to test a single hypothesis, a severe impediment to data exploration.

To illustrate, we describe the challenges of several collaborator
groups who have been hobbled by the ineffectiveness of current
data exploration tools:
Case Study 1: Engineering Data Analysis. Battery scientists at
Carnegie Mellon University perform visual exploration of datasets
of solvent properties to design better batteries. A specific task may
involve finding solvents with desired behavior: e.g., those whose
solvation energy of Li+ vs. the boiling point is a roughly increas-
ing trend. To do this using current tools, these scientists manually
examine the plot of Li+ solvation energy vs. boiling point for each
of the thousands of solvents, to find those that match the desired
pattern of a roughly increasing trend.
Case Study 2: Advertising Data Analysis. Advertisers at ad an-
alytics firm Turn, Inc., often examine their portfolio of advertise-
ments to see if their campaigns are performing as expected. For
instance, an advertiser may be interested in seeing if there are any
keywords that are behaving unusually with respect to other key-
words in Asia—for example, maybe most keywords have a specific
trend for click-through rates (CTR) over time, while a small num-
ber of them have a different trend. To do this using the current
tools available at Turn, the advertiser needs to manually examine
the plots of CTR over time for each keyword (thousands of such
plots), and remember what are the typical trends.
Case Study 3: Genomic Data Analysis. Clinical researchers at the
NIH-funded genomics center at UIUC and Mayo Clinic are inter-
ested in studying data from clinical trials. One such task involves
finding pairs of genes that visually explain the differences in clinical
trial outcomes (positive vs. negative)—visualized via a scatterplot
with the x- and y- axes each referring to a gene, and each outcome
depicted as a point in the scatterplot—with the positive outcomes
depicted in one color, and the negative ones as another. Current
tools require the researchers to generate and manually evaluate tens
of thousands of scatter plots of pairs of genes to determine whether
the outcomes can be clearly distinguished in the scatter plot.
Thus, in these examples, the recurring theme is the manual exam-
ination of a large number of generated visualizations for a specific
visual pattern. Indeed, we have found that in these scenarios, as
well as others that we have encountered via other collaborators—in
climate science, server monitoring, and mobile app analysis—data

457

exploration can be a tedious and time-consuming process with cur-
rent visualization tools.
Key Insight. The goal of this paper is to develop zenvisage, a
visual analytics system that can automate the search for desired
visual patterns. Our key insight in developing zenvisage is that
the data exploration needs in all of these scenarios can be captured
within a common set of operations on collections of visualizations.
These operations include: composing collections of visualizations,
filtering visualizations based on some conditions, comparing visu-
alizations, and sorting them based on some condition. The condi-
tions include similarity or dissimilarity to a specific pattern, “typ-
ical” or anomalous behavior, or the ability to provide explanatory
or discriminatory power. These operations and conditions form the
kernel of a new data exploration language, ZQL ("zee-quel"), that
forms the foundation upon which zenvisage is built.
Key Challenges. We encountered many challenges in building
the zenvisage visual analytics platform, a substantial advancement
over manually-intensive visualization tools like Tableau and Spot-
fire; these tools enable the examination of one visualization at a
time, without the ability to automatically identify relevant visual-
izations from a collection of visualizations.

First, there were many challenges in developing ZQL, the under-
lying query language for zenvisage. Unlike relational query lan-
guages that operate directly on data, ZQL operates on collections
of visualizations, which are themselves aggregate queries on data.
This leads to a number of challenges that are not addressed in a
relational query language context. For example, we had to develop
a natural way to users to specify a collection of visualizations to
operate on, without having to explicitly list them; even though the
criteria on which the visualizations were compared varied widely,
we had to develop a small number of general mechanisms that cap-
ture all of these criteria. Often, the visualizations that we oper-
ated on had to be modified in various ways—e.g., we might be
interested in visualizing the sales of a product whose profits have
been dropping—composing these visualizations from existing ones
is not straightforward. Lastly, drilling down into specific visualiza-
tions from a collection also required special care. Our ZQL lan-
guage is a synthesis of desiderata after discussions with data scien-
tists from a variety of domains, and has been under development for
the past two years. To further show that ZQL is complete under a
new visual exploration algebra that we develop involved additional
challenges.

Second, in terms of front-end development, zenvisage, as an in-
teractive analytics tool, needs to support the ability for users to
interactively specify ZQL queries—specifically, interactive short-
cuts for commonly used ZQL queries, as well as the ability to pose
extended ZQL queries for more complex needs. Identifying com-
mon interaction “idioms” for these needs took many months.

Third, an important challenge in building zenvisage is the back-
end that supports the execution of ZQL. A single ZQL query can
lead to the generation of 10,000s of visualizations—executing each
one independently as an aggregate query, would take several hours,
rendering the tool somewhat useless. zenvisage’s query optimizer
operates as a wrapper over any traditional relational database sys-
tem. This query optimizer compiles ZQL queries down to a di-
rected acyclic graph of operations on collections of visualizations,
followed with the optimizer using a combination of intelligent spec-
ulation and combination, to issue queries to the underlying database.
We also demonstrate that the underlying problem is NP-HARD.
Our query optimizer leads to substantial improvements over the
naive schemes adopted within relational database systems for multi-
query optimization.

2012 2013 2014 2015 2016
30
40
50
60
70

Sa
le

s
(m

ill
io

n
$)

Figure 1: Sales over year visualization for the product chair.

Outline. We first describe our query language for zenvisage, ZQL
(Section 2). We then describe the graph-based query translator and
optimizer for ZQL (Section 3). Next, our initial prototype of zen-
visage is presented (Section 4). We also describe our performance
experiments (Section 5), and present a user survey and study fo-
cused on evaluating the effectiveness and usability of zenvisage
(Section 6). Lastly, we describe how zenvisage differs from related
work (Section 7).

In our extended technical report [2], we provide additional de-
tails that we weren’t able to fit into the paper. In particular, we
formalize the notion of a visual exploration algebra, an analog of
relational algebra, describing a core set of capabilities for any lan-
guage that supports visual data exploration, and demonstrate that
ZQL is complete in that it subsumes these capabilities. We also
provide additional details of our query language.

2. QUERY LANGUAGE
zenvisage’s query language, ZQL, provides users with a power-

ful mechanism to operate on collections of visualizations. In fact,
ZQL treats visualizations as a first-class citizen, enabling users to
operate at a high level on collections of visualizations much like
one would operate on relational data with SQL. For example, a
user may want to filter out all visualizations where the visualiza-
tion shows a roughly decreasing trend from a collection, or a user
may want to create a collection of visualizations which are most
similar to a visualization of interest. Regardless of the query, ZQL
provides an intuitive, yet flexible specification mechanism for users
to express the desired patterns of interest (in other words, their ex-
ploration needs) using a small number of ZQL lines. Overall, ZQL
provides users the ability to compose collections of visualizations,
filter them, and sort and compare them in various ways.

ZQL draws heavy inspiration from the Query by Example (QBE)
language [33] and uses a similar table-based specification interface.
Although ZQL components are not fundamentally tied to the tab-
ular interface, we found that our end-users felt more at home with
it; many of them are non-programmers who are used to spreadsheet
tools like Microsoft Excel. Users may either directly write ZQL, or
they may use the zenvisage front-end, which supports interactions
that are transformed internally into ZQL.

We now provide a formal introduction to ZQL in the rest of this
section. We introduce many sample queries to make it easy to
follow along, and we use a relatable fictitious product sales-based
dataset throughout this paper in our query examples—we will re-
veal attributes of this dataset as we go along.

2.1 Formalization
For describing ZQL, we assume that we are operating on a single

relation or a star schema where the attributes are unique (barring
key-foreign key joins), allowing ZQL to seamlessly support natural
joins. In general, ZQL could be applied to arbitrary collections of
relations by letting the user precede an attribute A with the relation
name R, e.g., R.A. For ease of exposition, we focus on the single
relation case.

2.1.1 Overview
The concept of visualizations. We start by defining the notion of
a visualization. We use a sample visualization in Figure 1 to guide
our discussion. Of course, different visual analysis tasks may re-
quire different types of visualizations (instead of bar charts, we may
want scatter plots or trend lines), but across all types, a visualization

458

Table 1: Query for the bar chart of sales over year for the product
chair.

Name X Y Z Viz
*f1 ‘year’ ‘sales’ ‘product’.‘chair’ bar.(y=agg(‘sum’))

Table 2: Query for the bar chart of sales over year for each product.
Name X Y Z Viz

f1 ‘year’ ‘sales’ ‘product’. bar.(y=agg(‘sum’))

Table 3: ZQL query structure.
Name X Y Z Viz Process︷ ︸︸ ︷

Identifier
︷ ︸︸ ︷
Visualization Collection

︷ ︸︸ ︷
Operation

is defined by the following five main components: (i) the x-axis at-
tribute, (ii) the y-axis attribute, (iii) the subset of data used, (iv) the
type of visualization (e.g., bar chart, scatter plot), and (v) the bin-
ning and aggregation functions for the x- and y- axes.
Visualization collections in ZQL: ZQL has four columns to sup-
port the specification of visualizations that the five aforementioned
components map into: (i) X, (ii) Y, (iii) Z, and (iv) Viz.

Table 1 gives an example of a valid ZQL query that uses these
columns to specify a bar chart visualization of overall sales over
the years for the product chair (i.e., the visualization in Figure 1)—
ignore the Name column for now. The details for each of these
columns are presented subsequently. In short, the x-axis (X) is the
attribute year, the y-axis (Y) is the attribute sales, and the subset
of data (Z) is the product chair, while the type of visualization is a
bar chart (bar), and the binning and aggregation functions indicate
that the y axis is an aggregate (agg) — the sum of sales.

In addition to specifying a single visualization, users may often
want to retrieve multiple visualizations. ZQL supports this in two
ways. Users may use multiple rows, and specify one visualization
per row. The user may also specify a collection of visualizations
in a single row by iterating over a collection of values for one of
the X, Y, Z, and Viz columns. Table 2 gives an example of how
one may iterate over all products (using the notation * to indicate
that the attribute product can take on all possible values), returning
a separate sales bar chart for each product.
High-level structure of ZQL. Starting from these two examples,
we can now move onto the general structure of ZQL queries. Over-
all, each ZQL query consists of multiple rows, where each row op-
erates on collections of visualizations. Each row contains three sets
of columns, as depicted in Table 3: (i) the first column corresponds
to an identifier for the visualization collection, (ii) the second set
of columns defines the visualization collection, while (iii) the last
column corresponds to some operation on the visualization collec-
tion. All columns can be left empty if needed (in such cases, to save
space, for convenience, we do not display these columns in our pa-
per). For example, the last column may be empty if no operation is
to be performed, like it was in Table 1 and 2. We have already dis-
cussed (ii); now we will briefly discuss (i) and (iii), corresponding
to Name and Process respectively.
Identifiers and operations in ZQL. The Process column allows
the user to operate on the defined collections of visualizations, ap-
plying high-level filtering, sorting, and comparison. The Name col-
umn provides a way to label and combine specified collections of
visualizations, so users may refer to them in the Process column.
Thus, by repeatedly using the X, Y, Z, and Viz columns to com-
pose visualizations and the Process column to process those visu-
alizations, the user is able derive the exact set of visualizations she
is looking for. Note that the result of a ZQL query is the data used
to generate visualizations. The zenvisage front-end then uses this
data to render the visualizations for the user to peruse.

2.1.2 X, Y, and Z
The X and Y columns specify the attributes used for the x- and

Table 4: Query for the sales and profit bar charts for the product
chair (missing values are the same as that in Table 1)

Name X Y Z Viz
... ... {‘sales’, ‘profit’}

Table 5: Query for the sales and profit bar charts over years and
months for chairs (missing values are the same as in Table 1).

Name X Y Z Viz
... {‘year’, ‘month’} {‘sales’, ‘profit’}

Table 6: Query which returns the overall sales bar chart for the
chairs in US (all missing values are the same as that in Table 1).

Name X Y Z Z2 Viz
... ‘location’.‘US’ ...

y- axes. For example, Table 1 dictates that the returned visual-
ization should have ‘year’ for its x-axis and ‘sales’ for its y-axis.
As mentioned, the user may also specify a collection of values for
the X and Y columns if they wish to refer to a collection of visu-
alizations in one ZQL row. Table 4 refers the collection of both
sales-over-years and profit-over-years bar charts for the chair—the
missing values in this query (“...”) are the same as Table 1. As we
can see, a collection is constructed using {}. If the user wishes to
denote all possible values, the shorthand * symbol may be used,
as is shown by Table 2. In the case that multiple columns contain
collections, a Cartesian product is performed, and visualizations
for every combination of values is returned. For example, Table 5
would return the collection of visualizations with specifications:
{(X: ‘year’, Y: ‘sales’), (X: ‘year’, Y: ‘profit’), (X: ‘month’,
Y: ‘sales’), (X: ‘month’, Y: ‘profit’)}.

With the Z column, the user can select which subset of the data
they wish to construct their visualizations from. ZQL uses the
〈attribute〉.〈attribute-value〉 notation to denote the selection of data.
Consequently, the query in Table 1 declares that the user wishes
to retrieve the sales bar chart only for the chair product. Collec-
tions are allowed for both the attribute and the attribute value in
the Z column. Table 2 shows an example of using the * short-
hand to specify a collection of bar charts, one for each product. A
Z column which has a collection over attributes might look like:
{‘location’, ‘product’}.* (i.e., a visualization for every product
and a visualization for every location). In addition, the Z col-
umn allows users to specify predicate constraints using syntax like
‘weight’.[? < 10]; this specifies all items whose weight is less
than 10 lbs. To evaluate, the ? is replaced with the attribute and the
resulting expression is passed to SQL’s WHERE clause.

ZQL supports multiple constraints on different attributes through
the use of multiple Z columns. In addition to the basic Z column,
the user may choose to add Z2, Z3, ... columns depending on how
many constraints she requires. Table 6 gives an example of a query
which looks at sales plots for chairs only in the US. Note that Z
columns are combined using conjunctive semantics.

2.1.3 Viz
The Viz column decides the visualization type, binning, and ag-

gregation functions for the row. Elements in this column have the
format: 〈type〉.〈bin+aggr〉. All examples so far have been bar
charts with no binning and SUM aggregation for the y-axis, but
other variants are supported. The visualization types are derived
from the Grammar of Graphics [32] specification language, so all
plots from the geometric transformation layer of ggplot [31] (the
tool that implements Grammar of Graphics) are supported. For in-
stance, scatter plots are requested with point and heat maps with
bin2d. As for binning, binning based on bin width (bin) and num-
ber of bins (nbin) are supported for numerical attributes—we may
want to use binning, for example, when we are plotting the total
number of products whose prices lie within 0-10, 10-20, and so on.

Finally, ZQL supports all the basic SQL aggregation functions
such as AVG, COUNT, and MAX. Table 7 is an example of a

459

Table 7: Query which returns the heat map of sales vs. weights
across all transactions.

Name X Y Viz
*f1 ‘weight’ ‘sales’ bin2d.(x=nbin(20), y=nbin(20))

Table 8: Query which returns the heat map of sales vs. weights
across all transactions.

Name X Y Z
f1 ‘year’ ‘sales’ ‘product’.‘chair’
f2 ‘year’ ‘profit’ ‘location’.‘US’

*f3 <– f1 + f2 ‘weight’.[? < 10]

query which uses a different visualization type, heat map, and cre-
ates 20 bins for both x- and y- axes.

The Viz column allows users powerful control over the structure
of the rendered visualization. However, there has been work from
the visualization community which automatically tries to determine
the most appropriate visualization type, binning, and aggregation
for a dataset based on the x- and y- axis attributes [17, 21]. Thus,
we can frequently leave the Viz column blank and zenvisage will
use these rules of thumb to automatically decide the appropriate
setting for us. With this in mind, we omit the Viz column from
the remaining examples with the assumption that zenvisage will
determine the “best” visualization structure for us.

2.1.4 Name
Together, the values in the X, Y, Z, and Viz columns of each row

specify a collection of visualizations. The Name column allows us
to label these collections so that they can be referred to be in the
Process column. For example, f1 is the label or identifier given
to the collection of sales bar charts in Table 2. The * in front of
f1 signifies that the collection is an output collection; that is, ZQL
should return this collection of visualizations to the user.

However, not all rows need to have a * associated with their
Name identifier. A user may define intermediate collections of vi-
sualizations if she wishes to further process them in the Process
column before returning the final results. In the case of Table 8, f1
and f2 are examples of intermediate collections.

Also in Table 8, we have an example of how the Name column
allows us to perform high-level set-like operations to combine vi-
sualization collections directly. For example, f3 <– f1 + f2 as-
signs f3 to the collection which includes all visualizations in f1 and
f2 (similar to set union). This can be useful if the user wishes to
combine variations of values without considering the full Cartesian
product. In our example in Table 8, the user is able to combine the
sales for chairs plots with the profits for the US plots without also
having to consider the sales for the US plots or the profits for chairs
plots; she would have to do so if she had used the specification:
(Y: {‘sales’, ‘profit’}, Z: {‘product’.‘chair’, ‘location’.‘US’}).

An interesting aspect of Table 8 is that the X and Y columns of
the third row are devoid of values, and the Z column refer to the
seemingly unrelated weight attribute. The values in the X, Y, Z,
and Viz columns all help to specify a particular collection of visu-
alizations from a larger collection. When this collection is defined
via the Name column, we no longer need to fill in the values for X,
Y, Z, or Viz, except to select from the collection—here, ZQL only
selects the items which satisfy the constraint, weight < 10.

2.1.5 Process
The real power of ZQL as a query language comes not from

its ability to effortlessly specify collections of visualizations, but
rather from its ability to operate on these collections somewhat
declaratively. With ZQL’s processing capabilities, users can filter
visualizations based on trend, search for similar-looking visualiza-
tions, identify representative visualizations, and determine outlier
visualizations. Naturally, to operate on collections, ZQL must have

a way to iterate over them; however, since different visual analysis
tasks might require different forms of traversals over the collec-
tions, we expose the iteration interface to the user.
Iterations over collections. Since collections may be composed
of varying values from multiple columns, iterating over the col-
lections is not straight-forward. Consider Table 9—the goal is to
return profit by year visualizations for the top-10 products whose
profit by year visualizations look the most different from the sales
by year visualizations. While we will describe this query in de-
tail below, at a high level the first row assembles the visualizations
for profit over year for all products (f1), the second row assembles
the visualizations for sales over year for all products (f2), followed
by operating (via the Process column) on these two collections by
finding the top-10 products who sales over year is most different
from profit over year, while the third row displays the profit over
year for those top-10 products. A array-based representation of the
visualization collections f1 and f2, would look like the following:

f1=

X: ‘year’, Y: ‘profit’
Z: ‘product.chair’
Z: ‘product.table’
Z: ‘product.stapler’

...

f2=

X: ‘year’, Y: ‘sales’
Z: ‘product.chair’
Z: ‘product.table’
Z: ‘product.stapler’

...

We would like to iterate over the products, the Z dimension val-
ues, of both f1 and f2 to make our comparisons. Furthermore, we
must iterate over the products in the same order for both f1 and
f2 to ensure that a product’s profit visualization correctly matches
with its sales visualization. Using a single index for this would be
complicated and need to take into account the sizes of each of the
columns. Instead, ZQL opts for a more powerful dimension-based
iteration, which assigns each column (or dimension) a separate it-
erator called an axis variable. This dimension-based iteration is a
powerful idea that extends to any number of dimensions. As shown
in Table 9, axis variables are defined and assigned using the syn-
tax: 〈variable〉<– 〈collection〉; axis variable v1 is assigned to the
Z dimension of f1 and iterates over all product values. For cases
in which multiple collections must traverse over a dimension in the
same order, an axis variable must be shared across those collec-
tions for that dimension; in Table 9, f1 and f2 share v1 for their Z
dimension, since we want to iterate over the products in lockstep.
Operations on collections. With the axis variables defined, the
user can then formulate the high-level operations on collections of
visualizations as an optimization function which maximizes/mini-
mizes for their desired pattern. Given that argmaxx[k = 10] g(x)
returns the top-10 x values which maximizes the function g(x), and
D(x,y) returns the “distance” between x and y, now consider the
expression in the Process column for Table 9. Colloquially, the ex-
pression says to find the top-10 v1 values whose D(f 1, f 2) values
are the largest. The f 1 and f 2 in D(f 1, f 2) refer to the collections
of visualizations in the first and second row and are bound to the
current value of the iteration for v1. In other words, for each prod-
uct v1’ in v1, retrieve the visualizations f1[z: v1’] from collection
f1 and f2[z: v1’] from collection f2 and calculate the “distance”
between these visualizations; then, retrieve the 10 v1’ values for
which this distance is the largest—these are the products, and as-
sign v2 to this collection. Subsequently, we can access this set of
products, as we do in the Z column of the third line of Table 9.
Formal structure. More generally, the basic structure of the Pro-
cess column is:

〈argopt〉〈axvar〉[〈limiter〉]〈expr〉 where

460

Table 9: Query which returns the top 10 profit visualizations for products which are most different from their sales visualizations.
Name X Y Z Process

f1 ‘year’ ‘profit’ v1 <– ‘product’.*
f2 ‘year’ ‘sales’ v1 v2 <– argmaxv1[k = 10]D(f 1, f 2)

*f3 ‘year’ ‘profit’ v2

Table 10: Query which returns the sales visualizations for all products which have a negative trend.
Name X Y Z Process

f1 ‘year’ ‘sales’ v1 <– ‘product’.* v2 <– argmaxv1[t < 0]T (f 1)
*f2 ‘year’ ‘sales’ v2

〈expr〉 →
(
max |min |∑ |∏

)
〈axvar〉 〈expr〉

→ 〈expr〉 (+|− |× |÷) 〈expr〉
→ T (〈nmvar〉)
→ D(〈nmvar〉,〈nmvar〉)

〈argopt〉 → (argmax|argmin|argany)
〈limiter〉 → (k = N | t > R | p = R)

where 〈axvar〉 refers to the axis variables, and 〈nmvar〉 refers
to collections of visualizations. 〈argopt〉 may be one of argmax,
argmin, or argany, which returns the values which have the largest,
smallest, and any expressions respectively. The 〈limiter〉 limits
the number of results: k = N returns only the top-k values; t > R
returns only values who are larger than a threshold value t (may
also be smaller, greater than equal, etc.); p = R returns the top p-
percentile values. T and D are two simple functional primitives
supported by ZQL that can be applied to visualizations to find de-
sired patterns:
• [T (f) → R]: T is a function which takes a visualization f

and returns a real number measuring some visual property of
the trend of f . One such property is “growth”, which returns
a positive number if the overall trend is “upwards” and a nega-
tive number otherwise; an example implementation might be to
measure the slope of a linear fit to the given input visualization
f . Other properties may measure the skewness, or the number
of peaks, or noisiness of a visualization.

• [D(f , f ′)→ R]: D is a function which takes two visualiza-
tions f and f ′ and measures the distance (or dissimilarity) be-
tween these visualizations. Examples of distance functions may
include a pointwise distance function like Euclidean distance,
Earth Mover’s Distance, or the Kullback-Leibler Divergence.
The distance D could also be measured using the difference in
the number of peaks, or slopes, or some other property.

ZQL supports many different implementations for these two func-
tional primitives, and the user is free to choose any one. If the user
does not select one, zenvisage will automatically detect the “best”
primitive based on the data characteristics. Furthermore, if ZQL
does not have an implementation of the T or D function that the
user is looking for, the user may write and use their own function.
Concrete examples. With just dimension-based iteration, the opti-
mization structure of the Process column, and the functional prim-
itives T and D, we found that we were able to support the majority
of the visual analysis tasks required by our users. Common patterns
include filtering based on overall trend (Table 10), searching for the
most similar visualization (Table 11), and determining outlier visu-
alizations (Table 12). Table 13 features a realistic query inspired
by one of our case studies. The overall goal of the query is to find
the products which have positive sales and profits trends in loca-
tions and categories which have overall negative trends; the user
may want to look at this set of products to see what makes them
so special. Rows 1 and 2 specify the sales and profit visualizations
for all locations and categories respectively, and the processes for
these rows filter down to the locations and categories which have
negative trends. Then rows 3 and 4 specify the sales and profit vi-
sualizations for products in these locations and categories, and the

processes filter the visualizations down to the ones that have pos-
itive trends. Finally, row 5 takes the list of output products from
the processes in rows 3 and 4 and takes the intersection of the two
returning the sales and profits visualizations for these products.
Pluggable functions. While the general structure of the Process
column does cover the majority of the use cases requested by our
users, users may want to write their own functions to run in a ZQL
query. To support this, ZQL exposes a Java-based API for users to
write their own functions. In fact, we use this interface to imple-
ment the k-means algorithm for ZQL. While the pluggable func-
tions do allow virtually any capabilities to be implemented, it is
preferred that users write their queries using the syntax of the Pro-
cess column; pluggable functions are considered black-boxes and
cannot be automatically optimized by the ZQL compiler.

2.2 Discussion of Capabilities and Limitations
Although ZQL can capture a wide range of visual exploration

queries, it is not limitless. Here, we give a brief description of what
ZQL can do. A more formal quantification can be found in [2].

ZQL’s primary goal is to support queries over visualizations—
which are themselves aggregate group-by queries on data. Using
these queries, ZQL can compose a collection of visualizations, fil-
ter them in various ways, compare them against benchmarks or
against each other, and sort the results. The functions T and D,
while intuitive, support the ability to perform a range of computa-
tions on visualization collections—for example, any filter predicate
on a single visualization, checking for a specific visual property,
can be captured under T . Then, via the dimension-based iterators,
ZQL supports the ability to chain these queries with each other and
compose new visualization collections. These simple set of op-
erations offer unprecedented power in being able to sift through
visualizations to identify desired trends.

Since ZQL already operates one layer above the data—on the
visualizations—it does not support the creation of new derived data:
that is, ZQL does not support the generation of derived attributes or
values not already present in the data. The new data that is gener-
ated via ZQL is limited to those from binning and aggregating via
the Viz column. This limits ZQL’s ability to perform prediction—
since feature engineering is an essential part of prediction; it also
limits ZQL’s ability to compose visualizations on combinations of
attributes at a time, e.g., A1

A2 on the X axis. Among other drawbacks
of ZQL: ZQL does not support (i) recursion; (ii) any data mod-
ification; (iii) non-foreign-key joins nor arbitrary nesting; (iv) di-
mensionality reduction or other changes to the attributes; (v) other
forms of processing visualization collections not expressible via T ,
D or the black box; (vi) merging of visualizations (e.g., by aggre-
gating two visualizations); and (vii) statistical tests.

3. QUERY EXECUTION
In zenvisage, ZQL queries are automatically parsed and exe-

cuted by the back-end. The ZQL compiler translates ZQL queries
into a combination of SQL queries to fetch the visualization collec-
tions and processing tasks to operate on them. We present a basic
graph-based translation for ZQL and then provide several optimiza-
tions to the graph which reduce the overall runtime considerably.

461

Table 11: Query which returns the sales visualizations for the 10 products whose sales visualizations are the most similar to the sales
visualization for the chair.

Name X Y Z Process
f1 ‘year’ ‘sales’ ‘product’.‘chair’
f2 ‘year’ ‘sales’ v1 <– ‘product’.(* - ‘chair’) v2 <– argminv1[k = 10]D(f 1, f 2)

*f3 ‘year’ ‘sales’ v2

Table 12: Query which returns the sales visualizations for the 10 products whose sales visualizations are the most different from the others.
Name X Y Z Process

f1 ‘year’ ‘sales’ v1 <– ‘product’.*
f2 ‘year’ ‘sales’ v2 <– ‘product’.* v3 <– argmaxv1[k = 10]∑v2 D(f 1, f 2)

*f3 ‘year’ ‘sales’ v3

f1

f2

p1

p2

f3

f4

p3

p4

f5

Figure 2: The query plan for the query presented in Table 13.

3.1 Basic Translation
Every valid ZQL query can be transformed into a query plan in

the form of a directed acyclic graph (DAG). The DAG contains c-
nodes (or collection nodes) to represent the collections of visualiza-
tions in the ZQL query and p-nodes (or process nodes) to represent
the optimizations (or processes) in the Process column. Directed
edges are drawn between nodes that have a dependency relation-
ship. Using this query plan, the ZQL engine can determine at each
step which visualization collection to fetch from the database or
which process to execute. The full steps to build a query plan for
any ZQL query is as follows: (i) Create a c-node or collection
node for every collection of visualizations (including singleton col-
lections). (ii) Create a p-node or processor node for every opti-
mization (or process) in the Process column. (iii) For each c-node,
if any of its axis variables are derived as a result of a process, con-
nect a directed edge from the corresponding p-node. (iv) For each
p-node, connect a directed edge from the c-node of each collec-
tion which appears in the process. Following these steps, we can
translate our realistic query example in Table 13 to its query plan
presented in Figure 2. The c-nodes are annotated with f#, and the
p-nodes are annotated with p# (the ith p-node refers to the pro-
cess in the ith row of the table). Here, f1 is a root node with no
dependencies since it does not depend on any process, whereas f5
depends on the results of both p3 and p4 and have edges coming
from both of them. Once the query plan has been constructed, the
ZQL engine can execute it using the simple algorithm presented in
in Algorithm 1.

ALGORITHM 1. Algorithm to execute ZQL query plan:
1. Search for a node with either no parents or one whose parents

have all been marked as done.
2. Run the corresponding task for that node and mark the node as

done.
3. Repeat steps 1 and 2 until all nodes have been marked as done.

For c-nodes, the corresponding task is to retrieve the data for
visualization collection, while for p-nodes, the corresponding task
is to execute the process.
c-node translation: At a high level, for c-nodes, the appropriate
SQL group-by queries are issued to the database to compose the
data for multiple visualizations at once. Specifically, for the sim-
plest setting where there are no collections specified for X or Y, a
SQL query in the form of:

SELECT X, A(Y), Z, Z2, ... WHERE C(X, Y, Z, Z2, ...)
GROUP BY X, Z, Z2, ... ORDER BY X, Z, Z2, ...

is issued to the database, where X is the X column attribute, Y is the
Y column attribute, A(Y) is the aggregation function on Y (spec-
ified in the Viz column), Z, Z2, ... are the attributes/dimensions
we are iterating over in the Z columns, while C(X, Y, Z, Z2, ...)

refers to any additional constraints specified in the Z columns. The
ORDER BY is inserted to ensure that all rows corresponding to
a visualization are grouped together, in order. As an example, the
SQL query for the c-node for f1 in Table 12 would have the form:

SELECT year, SUM(sales), product
GROUP BY year, product ORDER BY year, product

If a collection is specified for the y-axis, each attribute in the collec-
tion is appended to the SELECT clause. If a collection is specified
for the x-axis, a separate query must be issued for every X attribute
in the collection. The results of the SQL query are then packed into
a m-dimensional array (each dimension in the array corresponding
to a dimension in the collection) and labeled with its f# tag.
p-node translation: At a high level, for p-nodes, depending on the
structure of the expression within the process, the appropriate pseu-
docode is generated to operate on the visualizations. To illustrate,
say our process is trying to find the top-10 values for which a trend
is maximized/minimized with respect to various dimensions (using
T), and the process has the form:

〈argopt〉v0[k = k′]
[
〈op1〉v1

[
〈op2〉v2 · · ·

[
〈opm〉vmT (f 1)

]]]
(1)

where 〈argopt〉 is one of argmax or argmin, and 〈op〉 refers to
one of (max |min |∑ |∏). Given this, the pseudocode which op-
timizes this process can automatically be generated based on the
actual values of 〈argopt〉, 〈op〉, and the number of operations. In
short, for each 〈op〉 or dimension traversed over, the ZQL engine
generates a new nested for loop. Within each for loop, we iterate
over all values of that dimension, evaluate the inner expression, and
then eventually apply the overall operation (e.g., max, ∑).

3.2 Optimizations
We now present several optimizations to the previously intro-

duced basic translator. In preliminary experiments, we found that
the SQL queries for the c-nodes took the majority of the runtime
for ZQL queries, so we concentrate our efforts on reducing the cost
of computing c-nodes. However, we do present one p-node-based
optimization for process-intensive ZQL queries. We start with the
simplest optimization schemes, and add more sophisticated varia-
tions later.

3.2.1 Parallelization
One natural way to optimize the graph-based query plan is to

take advantage of the multi-query optimization (MQO) [27] present
in databases and issue in parallel the SQL queries for independent
c-nodes—the c-nodes for which there is no dependency between
them. With MQO, the database can receive multiple SQL queries
at the same time and share the scans for those queries, thereby re-
ducing the number of times the data needs to be read from disk.

To integrate this optimization, we make two simple modifica-
tions to Algorithm 1. In the first step, instead of searching for a
single node whose parents have all been marked done, search for
all nodes whose parents have been marked as done. Then in step 2,
issue the SQL queries for all c-nodes which were found in step 1 in
parallel at the same time. For example, the SQL queries for f1 and

462

Table 13: Query which returns the profit and sales visualizations for products which have positive trends in profit and sales in locations and
categories which have overall negative trends.

Name X Y Z Z2 Z3 Process
f1 ‘year’ ‘sales’ v1 <– ‘location’.* v2 <– arganyv1[t < 0]T (f 1)
f2 ‘year’ ‘profit’ v3 <– ‘category’.* v4 <– arganyv3[t < 0]T (f 2)
f3 ‘year’ ‘profit’ v5 <– ‘product’.* ‘location’.[? IN v2] ‘category’.[? IN v4] v6 <– arganyv5[t > 0]T (f 3)
f4 ‘year’ ‘sales’ v5 ‘location’.[? IN v2] ‘category’.[? IN v4] v7 <– arganyv5[t > 0]T (f 4)

*f5 ‘year’ {‘profit’, ‘sales’} v6 ˆ v7

f2 could be issued at the same time in Figure 2, and once p1 and p2
are executed, SQL queries for f3 and f4 can be issued in parallel.

3.2.2 Speculation
While parallelization gives the ZQL engine a substantial increase

in performance, we found that many realistic ZQL queries intrin-
sically have a high level of interdependence between the nodes in
their query plans. To further optimize the performance, we use
speculation: the ZQL engine pre-emptively issues SQL queries to
retrieve the superset of visualizations for each c-node, considering
all possible outcomes for the axis variables. Specifically, by trac-
ing the provenance of each axis variable back to the root, we can
determine the superset of all values for each axis variable; then, by
considering the Cartesian products of these sets, we can determine a
superset of the relevant visualization collection for a c-node. After
the SQL queries have returned, the ZQL engine proceeds through
the graph as before, and once all parent p-nodes for a c-node have
been evaluated, the ZQL engine isolates the correct subset of data
for that c-node from the pre-fetched data.

For example, in the query in Table 13, f3 depends on the results
of p1 and p2 since it has constraints based on v2 and v4; specif-
ically v2 and v4 should be locations and categories for which f1
and f2 have a negative trend. However, we note that v2 and v4 are
derived as a result of v1 and v3, specified to take on all locations
and categories in rows 1 and 2. So, a superset of f3, the set of profit
over year visualizations for various products for all locations and
categories (as opposed to just those that satisfy p1 and p2), could
be retrieved pre-emptively. Later, when the ZQL engine executes
p1 and p2, this superset can be filtered down correctly.

One downside of speculation is that a lot more data must be re-
trieved from the database, but we found that blocking on the re-
trieval of data was more expensive in runtime than retrieving ex-
tra data. Thus, speculation ends up being a powerful optimization
which compounds the positive effects of parallelization.

3.2.3 Query Combination
From extensive modeling of relational databases, we found that

the overall runtime of concurrently running issuing SQL queries is
heavily dependent on the number of queries being run in parallel.
Each additional query constituted a Tq increase in the overall run-
time (e.g., for our settings of PostgreSQL, we found Tq = ~900ms).
To reduce the total number of running queries, we use query com-
bination; that is, given two SQL queries Q1 and Q2, we combine
these two queries into a new Q3 which returns the data for both Q1
and Q2. In general, if we have Q1 (and Q2) in the form of:

SELECT X1, A(Y1), Z1 WHERE C1(X1, Y1, Z1)
GROUP BY X, Z1 ORDER BY X, Z1

we can produce a combined Q3 which has the form:
SELECT X1, A(Y1), Z1, C1, X2, A(Y2), Z2, C2

WHERE C1 or C2
GROUP BY X1, Z1, C1, X2, Z2, C2
ORDER BY X1, Z1, C1, X2, Z2, C2

where C1 = C1(X1, Y1, Z1) and C2 is defined similarly. From
the combined query Q3, it is possible to regenerate the data which
would have been retrieved using queries Q1 and Q2 by aggregating
over the non-related groups for each query. For Q1, we would select
the data for which C1 holds, and for each (X1, Z1) pair, we would

aggregate over the X2, Z2, and C2 groups.
While query combining is an effective optimization, there are

limitations. We found that the overall runtime also depends on the
number of unique group-by values per query, and the number of
unique group-by values for a combined query is the product of the
number of unique group-by values of the constituent queries. Thus,
the number of average group-by values per query grows super-
linearly with respect to the number of combinations. However, we
found that as long as the combined query had less than MG unique
group-by values, it was more advantageous to combine than not
(e.g., for our settings of PostgreSQL, we found MG = 100k).
Formulation. Given the above findings, we can now formulate
the problem of deciding which queries to combine as an optimiza-
tion problem: Find the best combination of SQL queries that min-
imizes: α×(total number of combined queries) + ∑i (number of
unique group-by values in combined query i), such that no single
combination has more than MG unique group-by values.

As we show in the technical report [2], this optimization problem
is NP-HARD via a reduction from the PARTITION PROBLEM.
Wrinkle and Solution. However, a wrinkle to the above formu-
lation is that it assumes no two SQL queries share a group-by at-
tribute. If two queries have a shared group-by attribute, it may be
more beneficial to combine those two, since the number of group-
by values does not increase upon combining them. Overall, we de-
veloped the metric EFGV or the effective increase in the number of
group-by values to determine the utility of combining query Q′ to
query Q: EFGVQ(Q′) = ∏g∈G(Q′) #(g)[[g/∈G(Q)]] where G(Q) is the
set of group-by values in Q, #(g) calculates the number of unique
group-by values in g, and [[g /∈ G(Q)]] returns 1 if g /∈ G(Q) and
0 otherwise. In other words, this calculates the product of group-
by values of the attributes which are in Q′ but not in Q. Using the
EFGV metric, we then apply a variant of agglomerative cluster-
ing [10] to decide the best choice of queries to combine. As we
show in the experiments section, this technique leads to very good
performance.

3.2.4 Cache-Aware Execution
Although the previous optimizations were all I/O-based opti-

mizations for ZQL, there are cases in which optimizing the exe-
cution of p-nodes is important as well. In particular, when a pro-
cess has multiple nested for loops, the cost of the p-node may
start to dominate the overall runtime. To address this problem,
we adapt techniques developed in high-performance computing—
specifically, cache-based optimizations similar to those used in ma-
trix multiplication [13]. With cache-aware execution, the ZQL en-
gine partitions the iterated values in the for loops into blocks of data
which fit into the L3 cache. Then, the ZQL engine reorders the or-
der of iteration in the for loops to maximize the time that each block
of data remains in the L3 cache. This allows the system to reduce
the amount of data transfer between the cache and main memory,
minimizing the time taken by the p-nodes.

4. zenvisage SYSTEM DESCRIPTION
We now give a brief description of the zenvisage system.
Front-end. The zenvisage front-end is designed as a lightweight
web-based client application. It provides a GUI to compose ZQL

463

ZQL Query Specification

Result Visualizations

Attribute
Spec.

Figure 3: zenvisage basic functionalities

queries, and displays the resulting visualizations using Vega-lite [17].
A screenshot of zenvisage in action is shown in Figure 3. A list
of attributes, divided into qualitative and quantitative, is provided
on the left; a table to enter ZQL queries, with auto-completion, is
on top, and the resulting visualizations are rendered at the bottom.
Users also have the option of hiding the ZQL specification table and
instead using a simpler drop-down menu-based interface comple-
mented by a sketching canvas. The sketching canvas allows users to
draw their desired trend that can then be used to search for similar
trends. The menu-based interface makes it easy for users to per-
form some of the more common visual exploration queries, such as
searching for representative or outlier visualizations. Furthermore,
the user may drag-and-drop visualizations from the results onto the
sketching canvas, enabling further interaction with the results.
Back-end. The zenvisage front-end issues ZQL queries to the
back-end over a REST protocol. The back-end (written in node.js)
receives the queries and forwards them to the ZQL engine (written
in Java), which is responsible for parsing, compiling, and optimiz-
ing the queries as in Section 3. SQL queries issued by the ZQL
engine are submitted to one of our back-end databases (which cur-
rently include PostgreSQL and Vertica), and the resultant visual-
ization data is returned back to the front-end encoded in JSON.

5. EXPERIMENTAL STUDY
In this section, we evaluate the runtime performance of the ZQL

engine. We present the runtimes for executing both synthetic and
realistic ZQL queries and show that we gain speedups of up to 3×
with the optimizations from Section 3. We also varied the charac-
teristics of a synthetic ZQL query to observe their impact on our
optimizations. Finally, we show that disk I/O was a major bottle-
neck for the ZQL engine, and if we switched our back-end database
to a column-oriented database and cache the dataset in memory, we
can achieve interactive run times for datasets as large as 1.5GB.
Setup. All experiments were conducted on a 64-bit Linux server
with 8 3.40GHz Intel Xeon E3-1240 4-core processors and 8GB
of 1600 MHz DDR3 main memory. We used PostgreSQL with
working memory size set to 512 MB and shared buffer size set to
256MB for the majority of the experiments; the last set of experi-
ments demonstrating interactive run times additionally used Vertica
Community Edition with a working memory size of 7.5GB.
Optimizations. The four versions of the ZQL engine we use are:
(i) NO-OPT: The basic translation from Section 3. (ii) PARAL-
LEL: Concurrent SQL queries for independent nodes from Sec-
tion 3.2.1. (iii) SPECULATE: Speculating and pre-emptively is-
suing SQL queries from Section 3.2.2. (iv) SMARTFUSE: Query
combination with speculation from Section 3.2.3. In our experi-
ments, we consider NO-OPT and the MQO-dependent PARALLEL
to be our baselines, while SPECULATE and SMARTFUSE were con-
sidered to be completely novel optimizations. For certain exper-
iments later on, we also evaluate the performance of the caching
optimizations from Section 3.2.4 on SMARTFUSE.

Q1 Q2 Q3
Queries

0

2

4

6

8

10

12

14

16

18

tim
e

(s
)

no-opt
parallel
speculate
smartfuse

f1 p1 f2 p2

f3p3f4p4

Figure 4: Runtimes for queries on real dataset (left) and single
chain synthetic query (right)

101 102 103 104

visualizations

100

101

102

tim
e

(s
)

no-opt, parallel
speculate
smartfuse

1 2 3 4 5 6 7 8 9 10
c-nodes and p-nodes in one chain

2

4

6

8

10

12

14

16

tim
e

(s
)

no-opt, parallel
speculate
smartfuse

Figure 5: Effect of number of visualizations (left) and length of the
chain (right) on the overall runtimes.

5.1 Realistic Queries
For our realistic queries, we used 20M rows of a real 1.5GB

airline dataset [1] which contained the details of flights within the
USA from 1987-2008, with 11 attributes. On this dataset, we per-
formed 3 realistic ZQL queries inspired by the case studies in our
introduction. Descriptions of the queries can be found in Table 14.

Figure 4 (left) depicts the runtime performance of the three re-
alistic ZQL queries, for each of the optimizations. For all queries,
each level of optimization provided a substantial speedup in exe-
cution time compared to the previous level. Simply by going from
NO-OPT to PARALLEL, we saw a 45% reduction in runtime. From
PARALLEL to SPECULATE and SPECULATE to SMARTFUSE, we
saw 15-20% reductions in runtime. A large reason for why the opti-
mizations were so effective was because ZQL runtimes are heavily
dominated by the execution time of the issued SQL queries. In fact,
we found that for these three queries, 94-98% of the overall run-
time could be contributed to the SQL execution time. We can see
from Table 14, SMARTFUSE always managed to lower the number
of SQL queries to 1 or 2 after our optimizations, thereby heavily
impacting the overall runtime performance of these queries.

5.2 Varying Characteristics of ZQL Queries
We were interested in evaluating the efficacy of our optimiza-

tions with respect to four different characteristics of a ZQL query:
(i) the number of visualizations to explore, (ii) the complexity of
the ZQL query, (iii) the level of interconnectivity within the ZQL
query, and (iv) the complexity of the processes. To control for all
variables except these characteristics, we used a synthetic chain-
based ZQL query to conduct these experiments. Every row of
the chain-based ZQL query specified a collection of visualizations
based on the results of the process from the previous row, and ev-
ery process was applied on the collection of visualizations from
the same row. Therefore, when we created the query plan for this
ZQL query, it had the chain-like structure depicted by Figure 4
(right). Using the chain-based ZQL query, we could then (i) vary
the number of visualizations explored, (ii) use the length of the
chain as a measure of complexity, (iii) introduce additional inde-
pendent chains to decrease interconnectivity, and (iv) increase the
number of loops in a p-node to control the complexity of processes.

To study these characteristics, we used a synthetic dataset with 10M
rows and 15 attributes (10 dimensional and 5 measure) with cardi-
nalities of dimensional attributes varying from 10 to 10,000. By

464

Table 14: Realistic queries for the airline dataset with the # of c-nodes, # of p-nodes, # of T functions calculated, # of D functions calculated,
of visualizations explored, # of SQL queries issued with NO-OPT, and # of SQL queries issued with SMARTFUSE per query.

Query Description # c-nodes # p-nodes # T # D # Visual-
izations

SQL
Queries:
NO-OPT

SQL
Queries:

SMARTFUSE

1
Plot the related visualizations for airports which have a correlation
between arrival delay and traveled distances for flights arriving there. 6 3 670 93,000 18,642 6 1

2
Plot the delays for carriers whose delays have gone up at airports
whose average delays have gone down over the years. 5 4 1,000 0 11,608 4 1

3
Plot the delays for the outlier years, outlier airports, and outlier
carriers with respect to delays. 12 3 0 94,025 4,358 8 2

default, we set the input number of visualizations per chain to be
100, with 10 values for the X attribute, number of c-nodes per chain
as 5, the process as T (with a single for loop) with a selectivity of
.50, and number of chains as 1.
Impact of number of visualizations. Figure 5 (left) shows the
performance of NO-OPT, SPECULATE, and SMARTFUSE on our
chain-based ZQL query as we increased the number of visualiza-
tions that the query operated on. The number of visualizations was
increased by specifying larger collections of Z column values in the
first c-node. We chose to omit PARALLEL here since it performs
identically to NO-OPT. With the increase in visualizations, the
overall response time increased for all versions because the amount
of processing per SQL query increased. SMARTFUSE showed bet-
ter performance than SPECULATE up to 10k visualizations due to
reduction in the total number of SQL queries issued. However, at
10k visualization, we reached the threshold of the number of unique
group-by values per combined query (100k for PostgreSQL), so it
was less optimal to merge queries. At that point, SMARTFUSE be-
haved similarly to SPECULATE.

1 2 3 4 5
chains of c-nodes and p-nodes

0

5

10

15

20

25

30

35

40

tim
e

(s
)

no-opt
parallel
speculate
smartfuse

101 102 103 104

visualizations

10−3

10−2

10−1

100

101

tim
e

(s
)

single loop process
two loops-block optimized process
two loops-no opt process

Figure 6: Effect of number of independent chains (left) and the
number of loops in a p-node (right) on the overall runtimes.

Impact of the length of the chain. We varied the length of the
chain in the query plan (or the number of rows in the ZQL query) to
simulate a change in the complexity of the ZQL query and plotted
the results in Figure 5 (right). As the number of nodes in the query
plan grew, the overall runtimes for the different optimizations also
grew. However, while the runtimes for both NO-OPT and SPEC-
ULATE grew at least linearly, the runtime for SMARTFUSE grew
sublinearly due to its query combining optimization. While the
runtime for NO-OPT was much greater than for SPECULATE, since
the overall runtime is linearly dependent on the number of SQL
queries run in parallel, we see a linear growth for SPECULATE.
Impact of the number of chains. We increased the number of
independent chains from 1 to 5 to observe the effect on runtimes
of our optimizations; the results are presented in Figure 6 (left).
While NO-OPT grew linearly as expected, all PARALLEL, SPEC-
ULATE, and SMARTFUSE were close to constant with respect to
the number of independent chains. We found that while the over-
all runtime for concurrent SQL queries did grow linearly with the
number of SQL queries issued, they grew much slower compared
to issuing those queries sequentially, thus leading to an almost flat
line in comparison to NO-OPT.
Impact of process complexity. We increased the complexity of
processes by increasing the number of loops in the first p-node from

1 to 2. For the single loop, the p-node filtered based on a positive
trend via T , while for the double loop, the p-node found the out-
lier visualizations. Then, we varied the number of visualizations to
see how that affected the overall runtimes. Figure 6 (right) shows
the results. For this experiment, we compared regular SMARTFUSE
with cache-aware SMARTFUSE to see how much of a cache-aware
execution made. We observed that there was not much difference
between cache-aware SMARTFUSE and regular SMARTFUSE be-
low 5k visualizations when all data could fit in cache. After 5k
visualizations, not all the visualizations could be fit into the cache
the same time, and thus the cache-aware execution of the p-node
had an improvement of 30-50% as the number of visualizations
increased from 5k to 25k. However, this improvement, while sub-
stantial, is only a minor change in the overall runtime.

5.3 Interactivity
The previous figures showed that the overall execution times of

ZQL queries took several seconds, even with SMARTFUSE, thus
perhaps indicating ZQL is not fit for interactive use with large
datasets. However, we found that this was primarily due to the
disk-based I/O bottleneck of SQL queries. In Figure 7 (left), we
show the SMARTFUSE runtimes of the 3 realistic queries from be-
fore on varying size subsets of the airline dataset, with the time that
it takes to do a single group-by scan of the dataset. As we can see,
the runtimes of the queries and scan time are virtually the same,
indicating that SMARTFUSE comes very close to the optimal I/O
runtime (i.e., a “fundamental limit” for the system).

To further test our hypothesis, we ran our ZQL engine with Ver-
tica with a large working memory size to cache the data in mem-
ory to avoid expensive disk I/O. The results, presented in Figure 7
(right), showed that there was a 50× speedup in using Vertica over
PostgreSQL with these settings. Even with a large dataset of 1.5GB,
we were able to achieve sub-second response times for many queries.
Furthermore, for the dataset with 120M records (11GB, so only
70% could be cached), we were able to reduce the overall response
times from 100s of seconds to less than 10 seconds. Thus, once
again, zenvisage returned results in a small multiple of the time it
took to execute a single group-by query. Overall, SMARTFUSE is
interactive on moderate sized datasets on PostgreSQL, or on large
datasets that can be cached in memory and operated on using a
columnar database—which is standard practice adopted by visual
analytics tools [29]. Improving on interactivity is impossible due to
fundamental limits to the system; in the future, we plan to explore
returning approximate answers using samples, since even reading
the entire dataset is prohibitively slow.

2M 20M 120M
rows

10−1

100

101

102

103

tim
e

(s
)

singlegby
query1
query2
query3

2M 20M 120M
rows

10−2

10−1

100

101

tim
e

(s
)

singlegby
query1
query2
query3

Figure 7: SMARTFUSE on PostgreSQL (left) and Vertica (right)

465

6. USER STUDY
We conducted a user study to evaluate the utility of zenvisage

for data exploration versus two types of systems—first, visualiza-
tion tools, similar to Tableau, and second, general database and data
mining tools, which also support interactive analytics to a certain
extent. In preparation for the user study, we conducted interviews
with data analysts to identify the typical exploration tasks and tools
used in their present workflow. Using these interviews, we identi-
fied a set of tasks to be used in the user study for zenvisage. We
describe these interviews first, followed by the user study details.

6.1 Analyst Interviews and Task Selection
We hired seven data analysts via Upwork [5], a freelancing plat-

form—we found these analysts by searching for freelancers who
had the keywords analyst or tableau in their profile. We con-
ducted one hour interviews with them to understand how they per-
form data exploration tasks. The interviewees had 3—10 years of
prior experience and explained every step of their workflow; from
receiving the dataset to presenting the analysis to clients. The rough
workflow of all interviewees identified was the following: first, data
cleaning is performed; subsequently, the analysts perform data ex-
ploration; then, the analysts develop presentations using their find-
ings. We then drilled down onto the data exploration step.

We first asked the analysts what types of tools they use for data
exploration. Analysts reported nine different tools—the most pop-
ular ones included Excel (5), Tableau (3), and SPSS (2). The rest of
the tools were reported by just one analyst: Python, SQL, Alteryx,
Microsoft Visio, Microsoft BI, SAS. Perhaps not surprisingly, an-
alysts use both visualization tools (Tableau, Excel, BI), program-
ming languages (Python), statistical tools (SAS, SPSS), and rela-
tional databases (SQL) for data exploration.

Then, to identify the common tasks used in data exploration, we
used a taxonomy of abstract exploration tasks proposed by Amar
et al. [9]. Amar et al. developed their taxonomy through summa-
rizing the analytical questions that arose during the analysis of five
different datasets, independent of the capabilities of existing tools
or interfaces. The exploration tasks in Amar et al. include: filter-
ing (f), sorting (s), determining range (r), characterizing distribu-
tion (d), finding anomalies (a), clustering (c), correlating attributes
(co), retrieving value (v), computing derived value (dv), and find-
ing extrema (e). When we asked the data analysts which tasks they
use in their workflow, the responses were consistent in that all of
them use all of these tasks, except for three exceptions—c, reported
by four participants, and e, d, reported by six participants.

Given these insights, we selected a small number of appropriate
tasks for our user study encompassing eight of the ten exploration
tasks described above: f, s, r, d, a, c, co, v. The other two—dv
and e—finding derived values and computing extrema, are impor-
tant tasks in data analysis, but existing tools (e.g., Excel) already
provide adequate capabilities for these tasks, and we did not expect
zenvisage to provide additional benefits.

6.2 User Study Methodology
The goal of our user study was to evaluate zenvisage with other

tools, on its ability to effectively support data exploration.
Participants. We recruited 12 graduate students as participants
with varying degrees of expertise in data analytics. In short, half
of them used databases; eight of them used Matlab, R, Python or
Java; eight of them used spreadsheet software; and four of them
used Tableau. Data for other not as popular tools are not reported.
Baselines. For the purposes of our study, we explicitly wanted to
do a head-to-head qualitative and quantitative comparison with vi-
sual analytics tools, and thus we developed a baseline tool to com-
pare zenvisage against directly. Further, via qualitative interviews,

we compared zenvisage versus against other types of tools, such
as databases, data mining, and programming tools. Our baseline
tool was developed by replicating the visualization selection capa-
bilities of visual analytics tools with a styling scheme identical to
zenvisage to control for external factors. The tool allowed users to
specify the x-axis, y-axis, dimensions, and filters. The tool would
then populate all visualizations meeting the specifications.
Dataset. We used a housing dataset from Zillow.com [6], consist-
ing of housing sales data for different cities, counties, and states
from 2004-15, with over 245K rows, and 15 attributes. We selected
this dataset since participants could relate to the dataset and under-
stand the usefulness of the tasks.
Tasks. We designed the user study tasks with the case studies from
Section 1 in mind, and translated them into the housing dataset.
Further, we ensured that these tasks together evaluate eight of the
exploration tasks described above—f, s, r, d, a, c, co, and v. One
task used in the user study is as follows: “Find three cities in the
state of NY where the sold price vs year trend is very different
from the state's overall trend.” This query required the participants
to first retrieve the trend of NY (v) and characterize its distribution
(d), then separately filter to retrieve the cities of NY (f), compare
the values to find a negative correlation (co), sort the results (s),
and report the top three cities on the list.
Study Protocol. The user study was conducted using a within-
subjects study design [11], forming three phases. First, participants
described their previous experience with data analytics tools. Next,
participants performed exploration tasks using zenvisage (Tool A)
and the baseline tool (Tool B), with the orders randomized to reduce
order effects. Participants were provided a 15-minute tutorial-cum-
practice session per tool to get familiarized before performing the
tasks. Finally, participants completed a survey that both measured
their satisfaction levels and preferences, along with open-ended
questions on the strengths and weaknesses of zenvisage and the
baseline, when compared to other analytics tools they may have
used. After the study, we reached out to participants with back-
grounds in data mining and programming, and asked if they could
complete a follow-up interview where they use their favorite ana-
lytics tool for performing one of the tasks.
Metrics. Using data that we recorded, we collected the follow-
ing metrics: completion time, accuracy, and the usability ratings
and satisfaction level from the survey results. In addition, we also
explicitly asked participants to compare zenvisage with tools that
they use in their workflow. For comparisons between zenvisage and
general database and data mining tools via follow-up interviews,
we used the number of lines of code to evaluate the differences.
Ground Truth. Two expert data analysts prepared the ground truth
for each the tasks in the form of ranked answers, along with score
cut-offs on a 0 to 5 scale (5 highest). Their inter-rater agreement,
measured using Kendall’s Tau coefficient, was 0.854. We took the
average of the two scores to rate the participants’ answers.

6.3 Key Findings
Three key findings emerged from the study and are described

below. We use µ , σ , χ2 to denote average, standard deviation, and
Chi-square test scores, respectively.
Finding 1: zenvisage enables faster and more accurate explo-
ration than existing visualization tools. Since all of our tasks in-
volved generating multiple visualizations and comparing them to
find desired ones, participants were not only able to complete the
tasks faster—µ=115s, σ=51.6 for zenvisage vs. µ=172.5s, σ=50.5
for the baseline—but also more accurately—µ=96.3%, σ=5.82 for
zenvisage vs. µ=69.9%, σ=13.3 for the baseline. The baseline re-
quired considerable manual exploration to complete the same task,

466

explaining the high task completion times. In addition, participants
frequently compromised by selecting suboptimal answers before
browsing the entire list of results for better ones, explaining the low
accuracy. On the other hand, zenvisage was able to automate the
task of finding desired visualizations, considerably reducing man-
ual effort. Also of note is the fact that the accuracy with zenvisage
was close to 100%—indicating that a short 15 minute tutorial on
ZQL was enough to equip users with the knowledge they needed to
address the tasks—and that too, within 2 minutes (on average).

When asked about using zenvisage vs. the baseline in their cur-
rent workflow, 9 of the 12 participants stated that they would use
zenvisage in their workflow, whereas only two participants stated
that they would use our baseline tool (χ2 = 8.22, p<0.01). When
the participants were asked how, one participant provided a specific
scenario: “If I am doing my social science study, and I want to see
some specific behavior among users, then I can use tool A [zenvis-
age] since I can find the trend I am looking for and easily see what
users fit into the pattern.” (P7). In response to the survey ques-
tion “I found the tool to be effective in visualizing the data I want
to see”, the participants rated zenvisage higher (µ=4.27, σ=0.452)
than the baseline (µ=2.67, σ=0.890) on a five-point Likert scale. A
participant experienced in Tableau commented: “In Tableau, there
is no pattern searching. If I see some pattern in Tableau, such as
a decreasing pattern, and I want to see if any other variable is de-
creasing in that month, I have to go one by one to find this trend.
But here I can find this through the query table.” (P10).
Finding 2: zenvisage complements existing database and data
mining systems, and programming languages. When explicitly
asked about comparing zenvisage with the tools they use on a reg-
ular basis for data analysis, all participants acknowledged that zen-
visage adds value in data exploration not encompassed by their
tools. ZQL augmented with inputs from the sketching canvas proved
to be extremely effective. For example P8 stated: “you can just
[edit] and draw to find out similar patterns. You'll need to do a lot
more through Matlab to do the same thing.” Another experienced
participant mentioned the benefits of not needing to know much
programming to accomplish certain tasks: “The obvious good thing
is that you can do complicated queries, and you don't have to write
SQL queries... I can imagine a non-cs student [doing] this.” (P9).
When asked about the specific tools they would use to solve the
user study tasks, all participants reported a programming language
like Matlab or Python. This is despite half of the participants re-
porting using a relational database regularly, and a smaller num-
ber of participants (2) reporting using a data mining tool regularly.
Additionally, multiple participants, even those with extensive pro-
gramming experience, reported that zenvisage would take less time
and fewer lines of code for certain data exploration tasks. (Indeed,
we found that all participants were able to complete the user study
tasks in under 2 minutes.) In follow-up email interviews, we asked
a few participants to respond with code from their favorite data an-
alytics tool for the user study tasks. Two participants responded —
one with Matlab code, one with Python code. Both these code snip-
pets were much longer than ZQL: as a concrete example, the par-
ticipant accomplished the same task with 38 lines of Python code
compared to 4 lines of ZQL. While comparing code may not be fair,
the roughly order of magnitude difference demonstrates the power
of zenvisage over existing systems.
Finding 3: zenvisage can be improved. Participants outlined some
areas for improvement: some requested drag-and-drop interactions
to support additional operations, such as outlier finding; others
wanted a more polished interface; and some desired bookmarking
and search history capabilities.

Table 15: Verbose SQL query
with ranking as (
with distances as (
with distance_ product_year as (
with aggregate_ product_year as (
select product, year, avg(profit) as avg_profit
from table group by product, year))
select s. product as source, d. product as destination, s.year,

power(s.avg_profit - d.avg_profit,2) as distance_year
from aggregate_ product_year s, aggregate_ product_year d
where s. product!=d. product and s.year=d.year)
select source, destination, sum(distance_year) as distance
from distance_ product_year groupby source, destination)
select source, destination, distance,

rank() over (partition by source order by distance asc)
rank from distances)

select source, destination, distance
from ranking where rank < 10;

7. RELATED WORK
We now discuss related prior work in a number of areas. We be-

gin with analytics tools — visualization tools, statistical packages
and programming libraries, and relational databases. Then, we talk
about other tools that overlap somewhat with zenvisage.
Visual Analytics Tools. Visualization tools, such as ShowMe,
Spotfire, and Tableau [8, 22, 28], along with similar tools from the
database community [12, 18–20] have recently gained in popular-
ity, catering to data scientists who lack programming skills. Using
these tools, these scientists can select and view one visualization at
a time. However, these tools do not operate on collections of vi-
sualizations at a time—and thus they are much less powerful and
the optimization challenges are minimal. zenvisage, on the other
hand, supports queries over collections of visualizations, returning
results not much slower than the time to execute a single query (See
Section 5). Since these systems operate one visualization at a time,
users are also not able to directly identify desired patterns or needs.
Statistical Packages and Programming Libraries: Statistical tools
(e.g., KNIME, RapidMiner, SAS, SPSS) support the easy applica-
tion of data mining and statistical primitives—including prediction
algorithms and statistical tests. While these tools support the se-
lection of a prediction algorithm (e.g., decision trees) to apply, and
the appropriate parameters, they offer no querying capabilities, and
as a result do not need extensive optimization. As a result, these
tools cannot support user needs like those describe in the exam-
ples in the introduction. Similarly, programming libraries such as
Weka [15] and Scikit-learn [24] embed machine learning within
programs. However, manually translating the user desired patterns
into code that uses these libraries will require substantial user effort
and hand-optimization. In addition, writing new code and hand-
optimization will need to be performed every time the exploration
needs change. Additionally, for both statistical tools and program-
ming libraries, there is a need for programming ability and under-
standing of machine learning and statistics to be useful—something
we cannot expect all data scientists to possess.
Relational Databases. Relational databases can certainly support
interactive analytics via SQL. zenvisage uses relational databases
as a backend computational component, augmented with an engine
that uses SMARTFUSE to optimize accesses to the database, along
with efficient processing code. Thus, one can certainly express
some ZQL queries by writing multiple SQL queries (via procedu-
ral SQL), using complex constructs only found in some databases,
such as common table expressions (CTE) and window functions.
As we saw in Section 6, these SQL queries are too cumbersome to
write, and are not known to most users of databases—during our
user study, we found that all participants who had experience with
SQL were not aware of these constructs; in fact, they responded
that they did not know of any way of issuing ZQL queries in SQL,
preferring instead to express these needs in Python. In Table 15, we

467

list the verbose SQL query that computes the following: for each
product, find 10 other products that have most similar profit over
year trends. The equivalent ZQL query takes two lines. Further,
we were able to write the SQL query only because the function D
is Euclidean distance: for other functions, we are unable to come
up with appropriate SQL rewritings. On the other hand, for ZQL, it
is effortless to change the function by selecting it from a drop-down
menu. Beyond being cumbersome to write, the constructs required
lead to severe performance penalties on most databases—for in-
stance, PostgreSQL materializes intermediate results when execut-
ing queries with CTEs. To illustrate, we took the SQL query in Ta-
ble 15, and compared its execution with the execution of the equiv-
alent ZQL. As depicted in Figure 8, the time taken by PostgreSQL
increases sharply as the number of visualizations increases, taking
up to 10× more time as compared to ZQL query executor. This in-
dicates that zenvisage is still important even for the restricted cases
where we are able to correctly write the queries in SQL.

101 102 103

visualizations

100

101

102

tim
e

(s
)

sql
zql

Figure 8: ZQL vs SQL: we want to find top 10 similar products for
every product on varying the number of products from 10—5000.

OLAP Browsing. There has been some work on interactive brows-
ing of data cubes [25,26]. The work focuses on suggestions for raw
aggregates to examine that are informative given past browsing, or
those that show a generalization or explanation of a specific cell—
an easier problem meriting simpler techniques—not addressing the
full exploration capabilities provided by ZQL.
Data Mining Languages: There has been some limited work in
data mining query languages, all from the early 90s, on association
rule mining (DMQL [14], MSQL [16]), or on storing and retrieving
models on data (OLE DB [23]), as opposed to a general-purpose
visual data exploration language aimed at identifying visual trends.
Visualization Suggestion Tools: There has been some recent work
on building systems that suggest visualizations. Voyager [17] rec-
ommends visualizations based on aesthetic properties of the visu-
alizations, as opposed to queries. SeeDB [30] recommends visual-
izations that best display the difference between two sets of data.
SeeDB and Voyager can be seen to be special cases of zenvisage.
The optimization techniques outlined are a substantial generaliza-
tion of the techniques described in SeeDB; while the techniques
in SeeDB are special-cased to one setting (a simple comparison),
here, our goal is to support and optimize all ZQL queries.

8. CONCLUSION
We propose zenvisage, a visual analytics tool for effortlessly

identifying desired visual patterns from large datasets. We de-
scribed the formal syntax of the query language ZQL, motivated
by many real-world use-cases, and demonstrated that ZQL is visual
exploration algebra-complete (See [2]). zenvisage enables users
to effectively and accurately perform visual exploration tasks, as
shown by our user study, and complements other tools. In addition,
we show that our optimizations for ZQL execution lead to con-
siderable improvements over leveraging the parallelism inherent in
databases. Our work is a promising first step towards substantially
simplifying and improving the process of interactive data explo-
ration for novice and expert analysts alike.

Acknowledgements. We thank the anonymous reviewers for their
valuable feedback. We acknowledge support from grant IIS-1513407
and IIS-1633755 awarded by the National Science Foundation, grant
1U54GM114838 awarded by NIGMS and 3U54EB020406-02S1
awarded by NIBIB through funds provided by the trans-NIH Big
Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov), and
funds from Adobe, Google, and the Siebel Energy Institute. The
content is solely the responsibility of the authors and does not nec-
essarily represent the views of the funding organizations.

9. REFERENCES
[1] Airline dataset (http://stat-computing.org/dataexpo/2009/the-data.html).

[Online; accessed 30-Oct-2015].
[2] Effortless data exploration with zenvisage: An expressive and interactive visual

analytics system. Technical Report.
http://data-people.cs.illinois.edu/zenvisage.pdf.

[3] Spotfire, http://spotfire.com. [Online; accessed 17-Aug-2015].
[4] Tableau public (www.tableaupublic.com/). [Online; accessed 3-March-2014].
[5] Upwork (https://www.upwork.com/). [Online; accessed 3-August-2016].
[6] Zillow real estate data (http://www.zillow.com/research/data/). [Online;

accessed 1-Feb-2016].
[7] Tableau q2 earnings: Impressive growth in customer base and revenues.

http://www.forbes.com/sites/greatspeculations/2015/07/31/tableau-q2-earnings-
impressive-growth-in-customer-base-and-revenues.

[8] C. Ahlberg. Spotfire: An information exploration environment. SIGMOD Rec.,
25(4):25–29, Dec. 1996.

[9] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic activity in
information visualization. In INFOVIS., pages 111–117. IEEE, 2005.

[10] M. R. Anderberg. Cluster analysis for applications: probability and
mathematical statistics: a series of monographs and textbooks, volume 19.
Academic press, 2014.

[11] K. S. Bordens and B. B. Abbott. Research design and methods: A process
approach . McGraw-Hill, 2002.

[12] H. Gonzalez et al. Google fusion tables: web-centered data management and
collaboration. In SIGMOD Conference, pages 1061–1066, 2010.

[13] K. Goto and R. A. Geijn. Anatomy of high-performance matrix multiplication.
ACM Transactions on Mathematical Software (TOMS), 34(3):12, 2008.

[14] J. Han et al. Dmql: A data mining query language for relational databases. In
Proc. 1996 SiGMOD, volume 96, pages 27–34, 1996.

[15] G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning workbench.
In Conf. on Intelligent Information Systems ’94, pages 357–361. IEEE, 1994.

[16] T. Imielinski and A. Virmani. A query language for database mining. Data
Mining and Knowledge Discovery, 3(4):373–408, 2000.

[17] K. Wongsuphasawat et al. Voyager: Exploratory analysis via faceted browsing
of visualization recommendations. IEEE TVCG, 2015.

[18] S. Kandel et al. Profiler: integrated statistical analysis and visualization for data
quality assessment. In AVI, pages 547–554, 2012.

[19] A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck: Self-organizing
dashboards for visual analytics. SIGMOD ’12, pages 681–684, 2012.

[20] M. Livny et al. Devise: Integrated querying and visualization of large datasets.
In SIGMOD Conference, pages 301–312, 1997.

[21] J. Mackinlay. Automating the design of graphical presentations of relational
information. ACM Trans. Graph., 5(2):110–141, Apr. 1986.

[22] J. D. Mackinlay et al. Show me: Automatic presentation for visual analysis.
IEEE Trans. Vis. Comput. Graph., 13(6):1137–1144, 2007.

[23] A. Netz et al. Integrating data mining with sql databases: Ole db for data
mining. In ICDE’01, pages 379–387. IEEE, 2001.

[24] Pedregosa et al. Scikit-learn: Machine learning in python. The Journal of
Machine Learning Research, 12:2825–2830, 2011.

[25] S. Sarawagi. Explaining differences in multidimensional aggregates. In VLDB,
pages 42–53, 1999.

[26] G. Sathe and S. Sarawagi. Intelligent rollups in multidimensional olap data. In
VLDB, pages 531–540, 2001.

[27] T. K. Sellis. Multiple-query optimization. ACM TODS, 13(1):23–52, 1988.
[28] C. Stolte et al. Polaris: a system for query, analysis, and visualization of

multidimensional databases. Commun. ACM, 51(11):75–84, 2008.
[29] P. Terlecki et al. On improving user response times in tableau. In SIGMOD,

pages 1695–1706. ACM, 2015.
[30] M. Vartak et al. Seedb: Efficient data-driven visualization recommendations to

support visual analytics. VLDB, 8(13), Sept. 2015.
[31] H. Wickham. ggplot: An implementation of the grammar of graphics. R

package version 0.4. 0, 2006.
[32] L. Wilkinson. The grammar of graphics. Springer Science & Business Media,

2006.
[33] M. M. Zloof. Query-by-example: A data base language. IBM Systems Journal,

16(4):324–343, 1977.

468

