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ABSTRACT

In order to guarantee recoverable transaction execution, database

systems permit a transaction’s writes to be observable only at the

end of its execution. As a consequence, there is generally a delay

between the time a transaction performs a write and the time later

transactions are permitted to read it. This delayed write visibility

can significantly impact the performance of serializable database

systems by reducing concurrency among conflicting transactions.

This paper makes the observation that delayed write visibility

stems from the fact that database systems can arbitrarily abort trans-

actions at any point during their execution. Accordingly, we make

the case for database systems which only abort transactions under

a restricted set of conditions, thereby enabling a new recoverabil-

ity mechanism, early write visibility, which safely makes transac-

tions’ writes visible prior to the end of their execution. We design a

new serializable concurrency control protocol, piece-wise visibility

(PWV), with the explicit goal of enabling early write visibility. We

evaluate PWV against state-of-the-art serializable protocols and a

highly optimized implementation of read committed, and find that

PWV can outperform serializable protocols by an order of magni-

tude and read committed by 3X on high contention workloads.

1. INTRODUCTION
Over the past decade, concurrency control research has seen a re-

naissance due to the abundance of parallelism in multi-core servers

and datacenters. Modern serializable protocols are explicitly de-

signed to exploit this abundant parallelism [17,19,28–30,32,37,38,

44–46]. While these new protocols propose novel isolation mecha-

nisms that address the incompatibility between conventional con-

currency control protocols and massively parallel environments,

they use ideas for recoverability [12] that are decades old. Indeed,

the last widely-adopted research on recoverability, group commit

[22], was proposed in the 1980s. These conventional recoverability

mechanisms limit concurrency control protocols’ ability to extract

concurrency from a workload.

Recoverability is the property that all of a committed transac-

tion’s writes are made durable, and that none of an aborted transac-

tion’s writes are made durable or observed by committed transac-

tions [12]. In order to guarantee recoverability, most concurrency

control protocols only permit a transaction’s writes to be read when
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it commits or at least finishes executing [16, 22]. These protocols

effectively delay making a transaction’s writes visible. This write

visibility delay can adversely impact strong isolation levels such as

serializability. This is because serializable isolation requires that

transactions always read the latest value of any record; any delay in

satisfying a read will delay the corresponding reading transaction.

Recoverability mechanisms employ delayed write visibility be-

cause database systems can arbitrarily abort a transaction prior to

the point that its commit record is made durable; a database system

may abort a transaction due to deadlock handling logic, failures,

optimistic validation errors, or simply because the transaction con-

sumes resources that are in short supply. Database systems’ ability

to arbitrarily abort transactions forces recoverability mechanisms

to make extremely pessimistic assumptions about when a transac-

tion’s writes are safe from being rolled back.

This paper makes the case for curtailing database systems’ abil-

ity to arbitrarily abort transactions. We show that if a database

system only aborts transactions under a restricted set of conditions,

then it can avoid pessimistic recoverability mechanisms based on

delayed write visibility. In particular, if only a subset of a transac-

tion’s statements can cause it to abort, then the transaction is guar-

anteed to commit as soon as every such abortable statement has

finished executing, even while one or more “non-abortable” state-

ments remain to be executed. This enables a new write visibility

discipline, early write visibility, which can safely make transac-

tions’ writes visible prior to the end of their execution, and, as a

consequence, can reduce the duration for which concurrent trans-

actions are disallowed from making progress due to conflicts.

This paper proposes a new deterministic concurrency control

protocol, piece-wise visibility (PWV), explicitly designed to en-

able early write visibility. PWV employs deterministic execution

to avoid arbitrarily aborting transactions. To enable early write vis-

ibility, PWV decomposes transactions into a set of sub-transactions

or pieces, such that each piece consists of one or more transac-

tion statements. PWV then schedules pieces such that their corre-

sponding transactions execute in a serializable order. PWV makes

a piece’s writes visible as soon as its transaction commits, even if

one or more pieces of the same transaction have not yet executed.

PWV decomposes transactions by performing a data-flow anal-

ysis on their control-flow graphs [8]. PWV’s decomposition proce-

dure has three important properties. First, it is modular; a transac-

tion is decomposed based only on the data dependencies between

its constituent statements. Second, it places no restrictions on the

number of pieces that can potentially abort, while simultaneously

preventing cascaded aborts. Third, it allows PWV to exploit intra-

transaction parallelism by executing multiple pieces belonging to

the same transaction in parallel. These three properties address lim-
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itations that, to the best of our knowledge, are present in every prior

transaction decomposition proposal [36, 43, 48, 52, 54, 55].

Our experimental evaluation shows that PWV’s ability to pro-

duce aggressive serializable schedules results in significant perfor-

mance gains. Under high contention workloads, PWV can outper-

form state-of-the-art serializable protocols, including transaction

chopping, by over an order of magnitude. Furthermore, we show

that PWV can even outperform a highly optimized implementation

of read committed isolation by more than 3X, while still providing

the stronger guarantee of serializable isolation.

In summary, this paper makes the following contributions:

• We identify write visibility delay as a significant impediment to

the performance of strong isolation levels due to the specifica-

tions for strong isolation. This impediment is fundamental and

cannot be avoided by designing better concurrency control pro-

tocols (Section 2).

• We propose a new write visibility discipline, early write visibil-

ity, that addresses the limitations of prior write visibility disci-

plines. We show that early write visibility can enable concur-

rency control protocols that allow a transaction’s writes to be

made visible prior to the end of its execution while still guaran-

teeing serializability and preventing cascaded aborts (Section 3).

• We design PWV, a concurrency control protocol that exploits

early write visibility to obtain greater concurrency than conven-

tional serializable protocols. We prove that if transactions’ read-

and write-sets are known a priori, it is impossible for any se-

rializable concurrency control protocol which avoids cascaded

aborts to extract more concurrency from a workload than an

ideal implementation of PWV. We also discuss practical issues

related to application corner cases (Section 4).

• We evaluate a multi-core optimized implementation of PWV

against state-of-the-art pessimistic locking, optimistic concur-

rency control, transaction chopping, and a weak isolation read

committed implementation. (Section 5).

2. BACKGROUND AND MOTIVATION
In order to guarantee serializable and recoverable execution of

transactions, every widely deployed concurrency control protocol

disallows a transaction’s writes from being read until at least the

end of the transaction’s execution. This write visibility delay is in-

trinsic to concurrency control protocols such as two-phase locking

and optimistic concurrency control due to their use of locks and

private writes prior to validation, respectively. Furthermore, the

requirement that database systems guarantee recoverability funda-

mentally limits them from making writes visible early, regardless

of concurrency control protocol.

2.1 Isolation
Variants of two-phase locking [18] and optimistic concurrency

control [31] are among the most widely deployed serializable iso-

lation protocols in modern database systems. In order to correctly

isolate conflicting transactions, both strict two-phase locking (2PL)

and optimistic concurrency control (OCC) restrict interleavings amo-

ng conflicting transactions. In particular, if a transaction T2 reads

T1’s write to x, then practical implementations of both 2PL and

OCC produce schedules in which T2’s read always follows T1’s

completion. Under 2PL, transactions hold long-duration locks on

records; any locks acquired by a transaction are only released at the

end of its execution [11, 23]. This locking discipline constrains the

execution of conflicting reads and writes; if transaction T2 reads

T1’s write to record x, and T1 holds a write lock on x until the time

it completes, T2’s read can only be processed after T1 completes.

OCC similarly constrains conflicting transactions. Transactions

perform writes in a local buffer, and only copy these writes to the

active database after validation [31]. Thus, a transaction’s writes

are only made visible at the very end of the transaction. Modern

variants of OCC actually produce schedules of committed transac-

tions that are provably equivalent to those produced by 2PL [46].

Both 2PL and OCC produce schedules in which there exists a de-

lay between the time that a transaction writes a record, and the time

that later transactions can read this write. This delay can signifi-

cantly limit opportunities for concurrency under high contention.

2.2 Recoverability
Every transaction processed by a database system must either

commit or abort. If a transaction commits, then all of its writes

must be made persistent. In contrast, if a transaction aborts, its

writes cannot be made persistent. Furthermore, most widely-used

isolation levels – including Read Committed, Snapshot Isolation,

and Serializability – require that an aborted transaction’s writes

must never be observed by a committed transaction [11]. If this

is not the case, the committed transaction exhibits an aborted read

anomaly [6].

In order to prevent aborted reads, concurrency control protocols

must constrain the execution of transactions whose reads and writes

conflict. Consider a transaction T1 that writes record x. If another

transaction, T2, reads T1’s write to x, then T2 must not be allowed

to commit before T1 commits. This discipline prevents T1 from

aborting after T2 (which read T1’s data) has already committed.

Schedules that satisfy this property are called recoverable [12]. Re-

coverable scheduling mechanisms must therefore control when a

transaction’s writes are made visible to other transactions. There

exist two general write visibility disciplines:

• Committed write visibility. The database delays making a trans-

action’s writes visible until the transaction is guaranteed to com-

mit. Strict two-phase locking is one such strategy [12]. A trans-

action holds exclusive locks on a record it writes from the time it

updates the record to the time the transaction commits. Holding

exclusive locks until commit time prevents concurrent transac-

tions from reading uncommitted writes.

• Speculative write visibility. Alternatively, the database system

can allow transactions to read uncommitted writes (dirty reads),

and enforce a commit discipline on transactions that perform

dirty reads [7, 12, 25, 27, 41]. In practice, if transaction T writes

a record and later aborts, then any transaction that read T ’s write

also aborts.

Each of these write visibility disciplines has advantages over the

other. Speculative write visibility is susceptible to cascaded aborts

[12]. If transaction T makes uncommitted writes visible to other

transactions and later aborts, then any transaction T ′ that read T ’s

uncommitted writes must abort. In turn, any transaction that read

uncommitted writes by T ′ must also abort, and so forth. In general,

if transaction T aborts, then the transitive closure of transactions

linked via dirty reads dependencies to T must also abort. Cascaded

aborts can severely hurt performance because the database wastes

cycles executing transactions that are later aborted.

Committed write visibility avoids cascaded aborts by disallow-

ing dirty reads; transaction T is never allowed to make uncommit-

ted writes visible to other transactions. On the other hand, commit-

ted write visibility can inhibit performance by forcing transactions

to wait for prior transactions’ commit records to be made durable.

This delay can lead to unacceptable performance when transac-

tions’ runtimes are much shorter than the time it takes to make

614



commit records durable, for instance, in main-memory database

systems which maintain durable state on disk.

As a consequence of these tradeoffs, modern database systems

employ hybrid disciplines that combine committed and specula-

tive write visibility [26, 32, 38, 46]. The best known example of

such a hybrid write visibility discipline is group commit [16, 22].

As originally proposed by Gawlick and Kinkade, transactions fol-

low a locking protocol in which they hold locks for the duration of

their execution, and release locks after their execution completes

but before their commit records are made durable. Prior to re-

leasing their locks, transactions write their commit records to an

in-memory sequential log. The in-memory log is asynchronously

flushed to disk in batches. Since a transaction T holds its locks

until its commit record is written to the in-memory log; if trans-

action T ′ reads T ’s writes, then its commit record will be logged

after T ’s commit record. This logging discipline guarantees re-

coverability; if transaction T ′ commits, then all transactions whose

commit records were logged prior to T ′’s also commit, including

those whose transactions whose writes were read by T ′.

Most modern concurrency control protocols either use a form of

committed write visibility or a variant of group commit based on

delayed write visibility. In Section 2.3, we show that even the short

delays in making writes visible in recoverability mechanisms such

as group commit – compared to, for instance, delays with disk I/O

on the critical path – can adversely impact serializable concurrency

control protocols under contended workloads.

2.3 Interaction of write visibility and isolation
Database systems allow users to assign transactions an isolation

level, which abstractly specifies the permissible set of interleavings

among conflicting transactions [6]. Isolation levels allow each indi-

vidual transaction to tradeoff consistency for performance. Strong

isolation levels, such as serializability, permit fewer interleavings

among conflicting transactions, which provides strong consistency

at the expense of concurrency. In contrast, weak isolation levels,

such as read committed, permit more interleavings among conflict-

ing transactions, allowing transactions to observe inconsistent data-

base states in order to improve performance.

One important restriction on interleavings is that serializabil-

ity requires that transactions always observe the latest committed

value of any record that they read. In contrast, read committed

allows transactions to read any previously committed values of a

record (reads can be arbitrarily stale). As a consequence, serializ-

able concurrency control protocols must carefully constrain the ex-

ecution of transactions whose reads and writes conflict, while read

committed protocols can decouple conflicting reads and writes. Con-

sider a scenario where record x is first written by transaction T0,

and next written by transaction T1 (T0 precedes T1). If a later trans-

action T2 reads x, then under serializability, T2’s read must return

the value written by T1. In contrast, read committed allows T2 to

read either of T0 or T1’s writes.

As Section 2.2 discussed, recoverability mechanisms based on

group commit only permit transactions’ writes to be observed at the

end of their execution. Serializability’s requirement that transac-

tions observe the latest committed values of records interacts poorly

with the delayed write visibility discipline employed by these re-

coverability mechanisms. In the above example, if T1’s write to

x is followed by additional writes to records y and z, then for re-

coverability purposes, T1’s write to x can only be read by T2 after

T1’s additional writes to y and z complete. In contrast, under read

committed, the database can allow T2 to read T0’s write to x even

as T1’s writes are in progress. In order to guarantee recoverability,

read committed must also delay making T1’s write to x visible until
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Figure 1: Effect of write visibility delay of hot record updates on

transaction throughput using 40 threads.

the end of its execution. However, this delay has no effect on T2

because T2 is permitted to read earlier transactions’ writes to x.

Serializability’s requirement that transactions observe the latest

committed values of records is part of its specification. Therefore,

every protocol that correctly implements this specification, that is,

every serializable concurrency control protocol, is subject to the re-

duction in concurrency due to delayed write visibility. The fact that

delayed write visibility limits concurrency cannot be circumvented

by designing better protocols or more efficient implementations.

In order to substantiate this argument, we conducted an experi-

ment to measure the interaction between write visibility delay and

isolation levels. The experiment runs a workload consisting of

transactions which perform 10 read-modify-write operations. The

database consists of 1,000,000 records. We designate one record in

the database as “hot”, and force every transaction to update this hot

record. As a consequence, every pair of transactions conflicts. The

9 remaining records updated by a transaction are chosen uniformly

at random from the remaining 999,999 records. We compare the

performance of a multi-core optimized implementation of serial-

izable locking and read committed (Section 5 provides a detailed

discussion of these algorithms and experimental setup).

In order to measure the impact of write visibility delay on each

system, we vary the point at which each transaction updates the hot

record. The earlier a transaction updates the hot record, the higher

the write visibility delay. We measure write visibility delay as the

number of updates that transactions must perform after updating

the hot record. Figure 1 shows the results of the experiment. We

plot the throughput of read committed and serializable locking as a

function of increasing write visibility delay.

Figure 1 shows that locking’s throughput decreases dramatically

as visibility delay increases. The locking algorithm acquires an ex-

clusive lock on a record prior to updating the record, and holds all

acquired locks until the end of its execution. When the hot record

update is performed at the end of each transaction (the left-most

point on the x-axis), the lock on the hot record is only held while the

transaction updates the hot record. In contrast, when the hot record

update is performed at the beginning of each transaction (the right-

most point on the x-axis), the lock on the hot record is acquired at

the beginning of each transaction, and is held while the transaction

updates every record in its write-set. Locking’s throughput drops

by nearly a factor 6 at maximum write visibility delay. In con-

trast, read committed’s throughput drops by a more modest 30%.

Increasing write visibility delay does not have as adverse an im-

pact on read committed as serializability because read committed

allows transactions to read stale values of records. The modest drop

in throughput occurs because read committed acquires write locks

on records at commit time in order to consistently order transac-

tions’ writes [6] (see Section 5). These commit time write locks

are acquired in the same order as serializable locking, but held are

held for a much shorter duration.
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3. EARLY WRITE VISIBILITY
We now describe a new recoverability mechanism, early write

visibility, that addresses the limitations of delayed write visibility.

Early write visibility constrains a database system’s ability to ar-

bitrarily abort transactions. Early write visibility can be tailored

to any database system which sufficiently constrains transaction

aborts to a specific set of circumstances, such as explicit abort state-

ments and constraint violations. Examples of such systems include

deadlock-free locking systems [42] and deterministic database sys-

tems [19, 44, 45]. In this paper, we focus on deterministic database

systems (although the ideas can be generalized to other systems).

3.1 Deterministic execution background
Transaction aborts can broadly be classified into logic- and system-

induced aborts. Logic-induced aborts occur in order to prevent a

transaction from writing state which violates application invariants.

For example, a transaction may include an explicit abort statement

which is conditionally triggered after reading a database record, or

the transaction may be aborted if its updates cause a constraint vio-

lation. System-induced aborts are triggered by the database sys-

tem, and occur independently of transactions’ logic. Examples

of system-induced aborts include aborts due to deadlock handling

logic, failures, and validation errors in optimistic protocols.

Deterministic systems employ scheduling techniques that elimi-

nate the vast majority of system-induced aborts in conventional sys-

tems. A deterministic system processes a transaction in the follow-

ing three steps. First, any calls to non-deterministic functions, such

as a random number generator or system clock, are evaluated in or-

der to be used at execution time. Second, the transaction’s logic, its

input parameters, and all non-deterministic input are logged. Note

that all transactions are logged, regardless of whether they eventu-

ally commit or abort. Third, the transaction is processed after its

existence has been successfully (stably) logged. We next describe

how deterministic systems execute transactions during normal case

and recovery processing.

Normal case processing. Deterministic systems process transac-

tions in an order that is equivalent to the order in which they are

logged (as described above). Serializability is guaranteed by the

fact that the log is totally ordered. A class of deterministic systems,

exemplified by Calvin and Bohm [19, 45], use knowledge of trans-

action conflicts to relax the total order into an equivalent partial

order. If transactions T1 and T2 conflict, such that T1 precedes T2

in the log, then T1 will always be executed before T2. The execu-

tion of non-conflicting transactions is not constrained.

These systems determine transactions’ conflicts using a priori

knowledge of transactions’ read- and write-sets. The read- and

write-sets are determined either via a static analysis of each transac-

tion’s logic, or via speculative execution of a subset of each transac-

tion’s logic (see below). These systems also use a priori knowledge

of read- and write-sets to implement a deadlock avoidance strategy.

For example, Calvin isolates transactions using a modified version

of logical locking [45]. The scheduler acquires transactions’ locks

by sequentially scanning the input log. For every transaction in the

log, the scheduler requests locks on every record in the transac-

tion’s read- and write-sets prior to its execution. A transaction is

only permitted to execute when all of its locks have been acquired.

This lock acquisition protocol avoids deadlocks because the set of

locks required by transactions are known a priori and can be ac-

quired in lexicographic order.

In certain applications, transactions’ read- and write-sets are de-

ducible from their input parameters, such as when all records in-

volved in a transaction are accessed by their primary keys. In other

applications, read- and write-sets depend on database state (such as

secondary indexes). In the latter case, deterministic systems deter-

mine transactions’ read- and write-sets using speculative execution.

Speculative execution occurs as part of non-deterministic input pro-

cessing prior to logging transactions (as described in the first step

of transaction processing above). The obtained read- and write-sets

are then logged along with transactions’ other input parameters. At

execution time, deterministic systems check that the speculatively

obtained read- and write-sets are correct. This is done by adding

a logical condition as early as possible in the transaction code to

validate the speculatively generated read- and write-sets. If this

condition fails, a deterministic logical abort results.

Recovery processing. Deterministic systems execute transactions

only when they are guaranteed to be stable on the log [33]. There-

fore, each in-progress transaction during a failure is guaranteed to

be in the log. Furthermore, all transactions are logged, regardless

of whether they eventually commit or abort. At recovery time,

a deterministic system can play the log forward from the time of

the last checkpoint. As mentioned previously, the only information

contained in a log record is the transaction’s logic, its input param-

eters, and any non-deterministic input. The log is played back in

a serial-equivalent fashion using the same mechanism used during

normal case processing; there is no difference between recovery

and normal case processing. Since the non-deterministic inputs to

a transaction are also logged, each transaction is guaranteed to de-

terministically write the same record values and arrive at the same

commit decision during recovery.

3.2 A new write visibility discipline
We make the observation that the reduced scope of aborts in de-

terministic systems can be exploited to obtain a far more aggressive

write visibility discipline than those used by conventional systems.

Since deterministic systems only abort transactions due to logic-

and speculation-induced aborts, a transaction is guaranteed to com-

mit once all the operations that can cause logic- and speculation-

induced aborts have finished executing. Importantly, this “commit

point” can occur before the transaction has finished executing in its

entirety. In other words, a transaction can have several operations

pending after its commit point.

Early write visibility prescribes two write visibility rules; each

applicable to writes that precede or follow a transaction’s commit

point:

• Writes preceding the commit point. Such writes can only be

made visible once every other operation that precedes the trans-

action’s commit point has finished executing. Delaying the vis-

ibility of these writes until a transaction’s commit point ensures

that they are never read by another transaction only to be later

rolled back.

• Writes following the commit point. Such writes can be made

visible immediately after their completion. A write that follows

a transaction’s commit point is guaranteed to never rollback be-

cause a transaction can never abort beyond its commit point.

The two rules above ensure that a transaction’s writes are only

made visible if it commits. Early write visibility therefore guaran-

tees that a transaction never reads dirty data, which eliminates the

possibility of a transaction reading a write that is later rolled back.

4. PIECE­WISE VISIBILITY
Although early write visibility makes a transaction’s writes vis-

ible as soon as it is guaranteed to commit, conventional concur-

rency control protocols such as 2PL and OCC cannot simply re-
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place their recoverability mechanisms with early write visibility.

These protocols cannot use early write visibility as a “black box”

for two reasons. First, delayed write visibility is intrinsic to both

2PL and OCC due to their respective use of locks and validation

(Section 2.1). Second, existing concurrency control protocols use

arbitrary transaction aborts pervasively; dynamic locking aborts

transactions due to deadlocks, and OCC aborts transactions on val-

idation failures. These arbitrary aborts preclude early write vis-

ibility, which requires that transactions are only aborted under a

limited set of conditions (Section 3). While existing deterministic

concurrency control protocols do not arbitrarily abort transactions

(Section 3.1), they cannot exploit early write visibility because they

schedule each transaction’s logic as a single atomic unit [19,44,45].

This section presents piece-wise visibility, or PWV, a new de-

terministic serializable concurrency control protocol that schedules

work at the granularity of subsets of transactions’ individual reads

and writes. This fine-grained scheduling allows PWV to fully ex-

ploit early write visibility. PWV decomposes the totally ordered set

of statements that constitute a straight-line transaction into a par-

tially ordered set of statements based on the transaction’s data-flow

and commit point. PWV then schedules each decomposed transac-

tion’s constituent statements using a deterministic scheduler. Intu-

itively, PWV can produce schedules that are similar to those pro-

duced by a locking-based concurrency control protocol that is not

two-phase; that is, a protocol which releases locks on records, and

then goes on to acquire more locks on different records later on, but

nonetheless guarantees serializability.

4.1 Transaction decomposition
The input to PWV’s scheduler is a totally ordered set of decom-

posed transactions. A decomposed transaction is a partially ordered

set of the transaction’s constituent statements. This partially or-

dered set can be represented by a directed acyclic graph (DAG)

whose nodes we refer to as pieces. The edges of the DAG define

the order in which its pieces can execute.

There exist two situations under which an edge is created from

piece p1 to p2. First, the input of p2 depends on the output of p1
(data dependencies). Second, p2 contains an update statement, and

follows its transaction’s commit point, while p1 precedes the com-

mit point (commit dependencies). Intuitively, commit dependen-

cies prevent pieces that follow a transaction’s commit point from

performing updates until the transaction is guaranteed to commit.

Figure 2 shows an example of transaction decomposition. The

transaction shows logic which is invoked when a customer attempts

to purchase a set of items from hypothetical online shopping portal.

The transaction first tries to decrement the count of each requested

item (lines 1-8). The transaction aborts if any of the item’s counts

is zero (lines 4-5). The transaction then updates some application-

specific statistics, in this case, the total number of items sold (lines

9-10). Finally, the transaction updates the outstanding amount due

from the customer (lines 11-12).

The transaction’s decomposition is shown below the straight-line

code (in Figure 2). Edges corresponding to data dependencies are

represented by solid arrows. Edges corresponding to commit de-

pendencies are represented by dashed arrows. The transaction can

safely commit after the count of every item requested by the cus-

tomer is successfully decremented. Each item count decrement is

represented by a piece Pi. Piece S updates the total number of

items sold, and only depends on the number of items the customer

purchases. Importantly, the write in piece S does not depend on the

output of any other piece. However, because it follows the trans-

action’s commit point, S has a commit dependency on each Pi. In

contrast, piece C, which updates the customer’s outstanding bill,

1  price = 0
2 for p_id in p_id_list:
3      prod = DB.write_ref(p_id, “products”)
4      if prod.count == 0:
5          ABORT() 
6      else:
7          prod.count -= 1
8 price += prod.price

9 stats = DB.write_ref(“statistics”)
10 stats.num_purchases += p_id_list.size()

11 cust = DB.write_ref(c_id, “customer”)
12 cust.bill += price

S

C

P

P0 !"!"!P1 Pn

S C

Figure 2: A straight-line transaction decomposed into a partially

ordered set of pieces. Solid edges represent data dependencies.

Dashed edges represent commit dependencies.

depends on the output of every piece Pi (note that C also has a

commit dependency on each Pi). In particular, C’s write depends

on the sum of the price of each item. An item’s price is only ob-

tained after the execution of the corresponding piece Pi. Pieces

that are not ordered via an edge or path in the graph can be exe-

cuted concurrently. In particular, each item update piece Pi does

not depend on any other item update piece.

In our current implementation, transactions are decomposed by

hand. However, PWV’s decomposition procedure can be made

fully automatic, and thus would not require any developer effort.

In its full generality, the algorithm for automatically decomposing

transactions is beyond the scope of this paper, but we describe a

simplified algorithm that creates a piece for each transaction state-

ment: First create one piece per unique record that is read or written

by the transaction. Data dependencies between pieces can be cre-

ated using the following three steps. First, construct a transaction’s

statement-level control flow graph (where each statement corre-

sponds to a single piece). Second, perform a reaching-definitions

analysis on the control flow graph [8]. Third, for every definition

that reaches a particular statement, construct an edge to the piece

from the piece that creates the definition. For commit dependen-

cies, create an edge to a writing piece that follows a transaction’s

commit point from every abortable piece.

PWV’s decomposition algorithm is modular; a particular trans-

action’s decomposition does not depend on any other transaction.

As a consequence, transactions can be decomposed on clients or

by admission control prior to being submitted to PWV. For the re-

mainder of this section, we assume that PWV takes transactions’

decomposed pieces as input.

4.2 Rendezvous points
PWV must execute the pieces of a decomposed transaction in

an order that is consistent with the DAG constructed via the anal-

ysis of a transaction’s data and commit dependencies. PWV co-

ordinates the execution of pieces whose execution must be ordered

using rendezvous points, a mechanism for synchronizing a partially

ordered set of transaction statements originally proposed by Pandis
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et al. in their work on data oriented transactions [40]. In addition to

using rendezvous points to coordinate the execution of dependent

pieces, PWV re-purposes rendezvous points (RVPs) to implement

a lightweight transaction commit protocol [12].

Coordinating dependent pieces. PWV associates a single ren-

dezvous point (RVP) with every piece that has at least one depen-

dency. For instance, in the decomposed transaction described in

Figure 2, PWV associates a RVP with the customer update piece

C, since it depends on each product update piece Pi. Furthermore,

two or more pieces can share a single RVP if they share the same

set of parent pieces. In Figure 2, both C and S have the same set

of parent pieces; P0, ..., Pn. C and S can therefore share a RVP.

A RVP is used to determine when all of a dependent piece’s par-

ents have finished executing. For this purpose, a RVP uses a counter

whose value is initialized to the number of parent pieces of a partic-

ular dependent piece. Each parent piece contains a reference to this

RVP, and decrements the RVP’s counter when it completes execut-

ing. When the value of the counter reaches zero, the downstream

pieces associated with the RVP are ready to execute. In Figure 2’s

decomposed transaction example, the RVP counter associated with

C and S is initialized to n + 1 (corresponding to its parent pieces

pieces P0, ..., Pn).

Committing transactions. PWV associates a single RVP with ev-

ery abortable piece in a transaction. We refer to this RVP as the

transaction’s commit RVP. The commit RVP’s counter is initialized

to the number of abortable pieces. When an abortable piece finishes

its execution and determines that it can commit, it decrements the

value of the counter. However, if a piece must abort, it atomically

sets the value of the counter to -1. The final value of the counter is

either 0 or negative. If the value is 0, the transaction can commit.

If the counter’s value is negative, the transaction must abort.

4.3 Piece ordering constraints
In order to guarantee serializable and recoverable execution, PWV

must appropriately order pieces corresponding to different trans-

actions. PWV must deal with write-read, write-write, and read-

write conflicts between pieces. Among these classes of conflicts,

only write-read and write-write conflicts can impact recoverability.

Read-write conflicts cannot impact recoverability because the abort

of a reader has no impact on a later writer.

If transaction T1 is serialized before T2, and one or more pairs

of their constituent pieces conflict, then PWV imposes constraints

on the order in which T1 and T2’s pieces can execute. Assume that

pieces P1 and P2 conflict (where P1 and P2 correspond to T1 and

T2, respectively). PWV orders the execution of P1 and P2 based on

Constraints 1 and 2 below. Constraint 1 captures ordering due to

write-read and write-write conflicts, and is divided into two cases

depending on whether the preceding writer can abort. Constraint

2 captures ordering due to read-write conflicts.

• Constraint 1. There exists a write-read or write-write conflict

between P1 and P2.

a) P1 can abort because it precedes T1’s commit point. In this

case, all of T1’s abortable pieces (including P1) must execute

before P2.

b) P1 cannot abort because it follows T1’s commit point. In

this case, P1 must execute before P2.

• Constraint 2. There exists a read-write conflict between P1 and

P2. In this case, P1 must execute before P2.

The constraints above ensure that PWV produces only serializ-

able and recoverable schedules. For serializability, PWV ensures

that if T1 is serialized before T2, then P1 is always executed be-

fore P2. For recoverability, PWV ensures that transactions never

observe dirty reads using Constraint 1a.

4.4 Executing pieces
This section describes a multi-core optimized implementation of

PWV which respects the ordering constraints from Section 4.3.

4.4.1 System model and assumptions

PWV divides the records in the database across a set of mutu-

ally exclusive partitions. Each partition processes pieces that read

and write records in its partition. PWV can guarantee that a piece

always writes records in a single partition by assigning each read

or update statement its own piece. The techniques described in this

section assume that PWV is deployed on a single multi-core server,

such that a single CPU core is assigned a partition of the database.

Intuitively, PWV imposes two total orders; first, a total order

on each transaction’s pieces, second, a total order on transactions

themselves. PWV processes transactions in batches, ordered as fol-

lows: Each transaction’s pieces are ordered according to a topologi-

cal sort of the decomposed transaction’s DAG (Section 4.1). Pieces

from different transactions are ordered according to transaction or-

der in the input log; if transaction T1 precedes transaction T2 in the

log, then all pieces of T1 precede all pieces of T2.

Given a batch of totally ordered pieces (as described above), each

core only processes pieces that read or write records on its parti-

tion. In certain cases, it may be impossible to deduce in advance

which partition must execute a piece. Such an ambiguous piece is

replicated and processed by every partition. Upon ascertaining the

correct partition at runtime, irrelevant replicas immediately commit

without executing any logic, while the relevant piece is executed as

usual (as Section 4.4.2 will describe).

4.4.2 Partition local concurrency control

PWV must ensure that it executes pieces such that the constraints

in Section 4.3 are satisfied. PWV ensures that the serialization or-

der of transactions in a particular batch is exactly the same as the

total order in which the transactions are received as input.

When a partition receives a batch of pieces, it first constructs a

dependency graph whose edges represent conflicts among pieces

within the partition. PWV constructs this dependency graph in its

entirety (for a particular batch), before it executes the first piece

in the batch. This partition-local dependency graph captures read-

write, write-read, and write-write conflicts among pieces. PWV’s

dependency graphs are similar to those used in prior determinis-

tic concurrency control algorithms [19, 20, 49]. These prior al-

gorithms use dependency graphs in a shared-everything context,

while PWV’s dependency graphs are partition-local.

In order to construct a batch’s dependency graph, PWV needs to

determine piece-wise conflicts. This either requires determination

of read- and write-sets as is done in other deterministic systems

[19, 20, 45], or alternatively, a piece can conservatively request to

access to arbitrary ranges of records, such as a partition or an entire

table (Section 4.5.2 discusses this issue in detail).

A piece can be in one of three states, Unexecuted, Executed,

and Completed. Non-abortable pieces can either be in state Unex-

ecuted or Completed. After executing, abortable pieces first tran-

sition to Executed, and eventually transition to Completed after

their corresponding transactions’ commit decisions are determined.

All pieces are initially Unexecuted.

Once a partition core constructs a batch’s dependency graph,

it progresses through the total order of pieces generated in Sec-

tion 4.4.1 and performs three checks to see if it can immediately
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execute that piece. The first check ensures that a piece P is cor-

rectly ordered with respect to pieces from other transactions. The

second and third checks ensure that P is correctly ordered with

respect to pieces in its own transaction.

• First, for every piece P ′ in the partition-local dependency graph

which P depends on, the partition core checks whether P ′ is

Completed. This step ensures that conflicting pieces execute

according to the pre-determined total order of transactions.

• Second, the partition core checks that P ’s RVP counter is zero.

This step ensures that P ’s data dependencies have been satisfied.

• Third, if P is not abortable then the partition core checks whether

P ’s corresponding transaction has obtained a commit decision

(by checking the corresponding commit RVP). This step ensures

that non-abortable pieces only execute if their corresponding

transactions commit. This check always holds if P is abortable.

If all three of the above checks hold, there exist two cases de-

pending on whether P is abortable. If P is abortable, then it is

executed. If P is non-abortable and the third check determines that

P ’s transaction committed, then P is executed. However, if the

third check determines that P ’s transaction aborted, then P can be

ignored and its state directly transitioned to Completed. If any of

the above three checks does not hold, P is added to a list of pending

pieces, and the core moves on to the next piece in the batch.1

On executing piece P , its core decrements the count on each of

P ’s children’s RVPs (Section 4.2). If P is non-abortable, its state

transitions to Completed. If P is abortable and can commit, the

partition core decrements the corresponding commit RVP’s counter

and P ’s state transitions to Executed. If P ’s commit decrements

the RVP’s counter to zero, then it means P ’s transaction has com-

mitted, and the partition core proceeds to transition every abortable

piece’s state to Completed (including P ’s). If P is the first piece to

abort, the partition core undoes the writes of the pieces that com-

mitted before P (even if the pieces reside on remote partitions),

and mark their state as well as P ’s as Completed. Note that remote

undo is safe because the abortable pieces are still in state Executed,

and as a consequence, later conflicting pieces from different trans-

actions are blocked because of the first check above.

The above partition-local mechanisms guarantee that the order-

ing constraints of Section 4.3 hold. The first step, which checks

whether conflicting pieces have finished executing, ensures Con-

straint 1b and Constraint 2 hold, while the first step and the com-

mit protocol above together ensure that Constraint 1a holds.

PWV’s constraints enable implementations that exploit both intra-

transaction parallelism and early write visibility. Our implementa-

tion uses the a priori total ordering of transactions and their pieces

to correctly order pieces across different transactions. Prior decom-

position algorithms cannot exploit intra-transaction parallelism. This

limitation is fundamental because these algorithms cannot make

any a priori ordering guarantees across multiple pieces correspond-

ing to a pair of conflicting transactions [36, 43, 48, 52, 55].

4.5 Discussion
4.5.1 Deferred constraint checks

Database constraints on records are usually checked as soon as

update statements that could invalidate the constraints are evalu-

ated. However, certain types of constraints (such as those involving

the values of two or more records) are rendered temporarily incon-

sistent if evaluated after a single update statement. Transactions

1
As an optimization, our implementation performs the third check even

if P is abortable. If its transaction aborted, P does not need to execute,
regardless of whether or not it is abortable, and can directly transition to
Completed, even if the first two checks do not hold.

typically fix these constraints with later updates. Database systems

therefore allow certain constraint checks to be deferred to the end

of transactions’ execution [3].

If applications use deferred integrity constraints, then PWV must

place the commit point of any transaction that triggers the deferred

constraint check at the end of its execution. Importantly, this does

not mean that PWV cannot be used by such applications, only that

certain transactions’ writes cannot be made visible early. Further-

more, because PWV uses a modular decomposition procedure, de-

ferred constraint checks in one transaction do not affect the commit

point of other transactions, even if they conflict. It should be noted

that practitioners have proposed that applications should avoid de-

ferred constraint checks when possible; for example, by grouping

updates together using multiple assignment operators [1, 2].

4.5.2 Comparison to prior deterministic systems

As explained in Section 3.1, certain deterministic systems use

speculative execution to determine a transaction’s read- and write-

sets prior to its execution. These systems use read- and write-set

knowledge to relax the pre-determined total order on transactions

into a partial order [19, 45].

PWV similarly needs to determine conflict information prior to

transaction execution. In particular, PWV leverages piece-wise

conflict information in order to execute pieces out of order on each

partition (Section 4.4.2). However, PWV’s early write visibility

discipline enables an alternative mechanism to the speculative exe-

cution required by prior deterministic systems.

If their read- and write-sets are unknown, pieces can conserva-

tively specify ranges of records that they may need to access. These

ranges can be arbitrarily imprecise; for instance, a piece may re-

quest exclusive access to an entire table even though it only updates

a handful of records in the table. While conservatively requesting

coarse-grained access to a range of records can limit concurrency

in conventional serializable protocols [42, 46], PWV’s piece-wise

execution reduces the duration for which conflicting transactions

are blocked, and thus substantially ameliorates any performance

penalty associated with coarse-grained requests for record access.

Even when read- and write-sets are known in advance, we have

found that coarse-grained conflict specification can improve the

performance of PWV — especially under lower contention work-

loads. Coarse-grained conflict information allows PWV to tradeoff

logical concurrency between conflicting pieces for reduced concur-

rency control overhead, in the spirit of hierarchical locking [23].

We explore this tradeoff in our experimental evaluation (Section 5.3).

4.6 Proof of optimality
This section proves that if transactions’ read- and write-sets can

be deduced a priori, then PWV’s piece ordering constraints are

necessary and sufficient to guarantee serializability (SR) and avoid

cascaded aborts (ACA) in the absence of failures. We term these

two properties together as SR ACA. Our proof pertains to transac-

tion histories permitted by PWV’s piece ordering constraints (Sec-

tion 4.3), not our specific implementation of these constraints (Sec-

tion 4.4). The implication of this proof is that, when transactions’

read- and write-sets are known a priori, it is impossible for an SR

ACA protocol to extract more concurrency from a workload than

an ideal implementation of PWV.

Our proof asserts that, under the assumptions above, PWV per-

mits all valid serializable transaction histories (unlike, for instance,

two-phase locking, which cannot permit certain valid serializable

histories [12, 18]). Section 4.3 showed that PWV’s constraints on

pieces are sufficient to guarantee serializability. We prove that these
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constraints are also necessary if transactions’ read- and write-sets

are known a priori.

We define a transaction’s constituent read, write, and commit/abort

statements as its operations. We denote read, write, and commit

operations of transaction Ti as ri[x], wi[x], and ci, respectively

(where reads and writes occur on record x). We denote operation

o1 preceding operation o2 as o1 < o2.

If a transactions’ read- and write-sets are known a priori, PWV

can assign each read and write operation to a single piece. The

proof sketch below therefore describes constraints on individual

read and write operations, not pieces. Given two conflicting trans-

actions, Ti and Tj such that Ti is serialized before Tj , PWV im-

poses the following constraints on the order in which their opera-

tions can execute:

• Case 1a. If wi[x] conflicts with oj [x], and wi[x] < ci (where

oj is either rj or wj), then PWV ensures that ci < oj [x]. No

SR ACA concurrency control protocol can produce the order

wi[x] < oj [x] < ci because Ti may abort, and oj [x] would

have observed an uncommitted write (wi[x]) which could have

rolled back prior to ci. Furthermore, no serializable concurrency

control protocol can produce oj [x] < wi[x] because doing so

would violate the assumption that Ti is serialized before Tj .

• Case 1b. If wi[x] conflicts with oj [x], and ci < wi[x], then

PWV ensures that wi[x] < oj [x]. No SR ACA concurrency

control protocol can produce oj [x] < wi[x] because doing so

would violate the assumption that Ti is serialized before Tj .

• Case 2. If ri[x] conflicts with wj [x], then PWV ensures that

ri[x] < wj [x]. No SR ACA concurrency control protocol can

produce wj [x] < ri[x] because it violates the assumption that

Ti is serialized before Tj .

4.7 Corner cases
PWV classifies each of a transaction’s pieces as abortable based

on the transaction’s logic (specifically, the location of explicit abort

statements) and constraints on database values, such as integrity

constraints. Above, we classified all other types of aborts as system-

induced, which are eliminated by deterministic database systems.

However, there exist corner cases that fall in between these two cat-

egories, in which even deterministic systems would abort the trans-

action, but nonetheless are not caused by abort statements in trans-

action logic or integrity constraints. Two examples of such corner

cases are integer overflows and infinite loops. One naïve corner

case handling mechanism is to consider all pieces that modify inte-

gers or involve loops (and so on for all corner cases) as abortable.

Obviously, this naïve solution would lead to a large number of

pieces being marked as abortable, precluding PWV’s ability to make

many writes visible early. A better approach is to engineer a solu-

tion to deal with each corner case individually. For loops, it is

possible to use static analysis to detect loops that will definitely

terminate. Only for the case where the static analysis fails to guar-

antee that a loop will terminate do the pieces corresponding to the

loop’s logic need to be marked as abortable. For integer overflows,

the system could simply allow integers to overflow (as is the default

setting in many modern database systems). Alternatively, the size

of the integer (or entire column) can be dynamically increased in

order to accommodate the overflow.

Although dealing with corner cases on a case-by-case basis us-

ing software engineering techniques, such as static analysis and

exception handling, is likely the optimal solution, our current im-

plementation uses a more general approach. Our implementation

optimizes for the common case where corner cases do not occur,

and suffers from reduced performance when they do. In particu-

lar, upon encountering a corner case, such as an integer overflow

or infinite loop, our implementation treats this as a full system fail-

ure, trashes the current database state, reloads state from the most

recent checkpoint, expunges the problematic transaction from the

log, and replays the log forward from the checkpoint without the

problematic transaction. Clearly, optimizations of this algorithm

are possible. For example, instead of trashing the entire database

state and replaying the entire log from a checkpoint, one could use

piece-wise conflict information to selectively re-execute only those

pieces which may have read the aborted transaction’s writes.

By selectively aborting problematic transactions, the above dy-

namic error handling mechanism prevents these expunged transac-

tions from affecting stable database state. However, it does not pre-

vent the writes performed by such aborted transactions from being

visible to the application running over the database (for instance,

via simple read queries). Our current implementation delays re-

turning results of any data to the application until any transactions

that contributed to these results have finished execution. We im-

plemented this via an epoch-based external visibility mechanism,

similar to the mechanism used in Silo [46], where read results are

returned to the user at the end of each batch of transactions.

5. EVALUATION
This section evaluates PWV against three serializable protocols

– locking, transaction chopping, and optimistic concurrency con-

trol (OCC) – and a read committed protocol.

Locking. This implementation is based on two-phase locking. The

implementation acquires locks in lexicographic to eliminate dead-

locks [42]. To avoid the overhead of maintaining a separate lock

table, logical locks are implemented as MCS reader-writer latches

co-located with records [35, 47].

Transaction chopping. This implementation is based on Wang et

al.’s IC3 protocol [48]. IC3 uses a serializable protocol to schedule

transactions’ constituent pieces, and dynamically enforces causal

dependencies across conflicting pieces. Our chopping implementa-

tion uses locking to guarantee serializable execution of pieces.

OCC. This implementation is based on Silo [46]. OCC validates

transactions using decentralized timestamps, and avoids writing

shared-memory for records that are only read.

Read committed. We implemented read committed isolation (RC)

by modifying the OCC algorithm above. Our RC implementa-

tion provides PL-2 isolation [5], which imposes two constraints on

transactions’ reads and writes. First, transactions can only read

committed values of records. Second, if two transactions perform

conflicting writes, then their writes must be consistently ordered [5,

6]. Our RC implementation buffers transactions’ writes until com-

mit time. A writer will therefore only interact with a reader at com-

mit time. RC uses a record latch – Silo’s per-record TID word [46]

– to ensure that reads observe only committed values of records.

A writer acquires this latch while copying a record’s updated value

from its local buffer. Readers spin on the latch until it is free. RC

deals with write-write conflicts using MCS latches, which, as in

our locking implementation, are co-located with records [34, 47].

At commit time, a transaction acquires its write latches in lexi-

cographic order, and then copies updated records’ values from its

local write buffers. Our RC implementation provides PL-2 isola-

tion, which provides more concurrency than the PL-2L isolation

provided by most real-world implementations of RC [5,11,23,32].
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We conduct our experimental evaluation on a single 40-core ma-

chine, consisting of four 10-core Intel E7-8850 processors and 128-

GB of memory. Our operating system is Linux 3.19.0. All experi-

ments are performed in main-memory, so secondary storage is not

utilized for our experiments. Every implementation explicitly pins

long running threads to CPU cores.

5.1 Effect of contention
In this experiment, we use the Yahoo! Cloud Serving Bench-

mark to understand PWV’s basic performance characteristics [14].

The database consists of a single table of 1,000,000 records. Each

record is 1,000 bytes in size. The workload in this section consists

of a single type of transaction; an update transaction that performs

20 read-modify-write (RMW) operations. The records updated by

each transaction are chosen from a zipfian distribution. We vary

contention by varying the zipfian parameter, theta [24]. PWV’s

batch size is set to 10,000 transactions. We partition data using a

random hash function, as a consequence most PWV transactions

span more than 10 partitions.

The experiments in this section assume that transactions do not

contain any abort statements, that is, they are guaranteed to commit

before they begin executing. As a consequence, in PWV, there is

no delay from the time that an individual update is performed, and

the time it is made visible to other transactions. We perform three

sets of experiments, one under low contention, one under high con-

tention, and one under varying contention (Figure 3). Transaction

chopping does not provide any benefit to our locking implementa-

tion in this experiment because it decomposes transactions based

on table-level accesses. We thus omit transaction chopping from

this set of experiments.

Figure 3a shows the results of the low contention experiment. We

measure the throughput of each implementation while varying the

number of available CPU cores. The zipfian parameter, theta2, is

set to 0. Figure 3a indicates that each system scales similarly under

low contention because conflicts among transactions are rare.

Figure 3b shows the results of the same experiment under high

contention. In this case, the records updated by each transaction

are chosen from a zipfian distribution with theta set to 0.9. Locking

and OCC’s throughput drops significantly as compared to the low

contention experiment. This is because in the high contention ex-

periment, the likelihood that a pair of transactions conflicts is much

higher. Figure 3b also shows that RC’s throughput significantly

decreases under contention. Although RC does not impose any or-

der among conflicting reads and writes, writes across transactions

must still be consistently ordered. Accordingly, our RC implemen-

tation acquires write locks on records at commit time, before trans-

actions copy updated values from their buffers into the database

(Section 5). The decrease in RC’s throughput under high con-

tention occurs due to transactions acquiring the same write locks

at commit time. Importantly, these locks are acquired at commit

time, and held for much shorter duration than locks acquired by se-

rializable locking. This explains why RC can attain a much higher

peak throughput than locking under high contention. It should be

noted that since transactions perform only updates, locking-based

PL-2L implementations which hold long-duration write locks on

records would perform the same as serializable locking.

Finally, we find that PWV’s throughput trend is completely dif-

ferent from the other concurrency control algorithms. The locking

and OCC lines remain nearly flat, while RC peaks at 12 cores and

plateaus thereafter. In contrast, PWV’s throughput increases with

core count without plateauing. Since transactions contain no abort

2
Theta can take values between 0 and 1. Larger values of theta correspond

to higher contention.
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Figure 3: Effect of contention on throughput.

statements, PWV can make an update visible as soon as it com-

pletes, without waiting for the corresponding transaction to finish

executing in its entirety. This decoupling of a single transaction’s

constituent writes is the reason that contention does not adversely

affect PWV’s throughput. At 40 cores, PWV outperforms OCC,

Locking, and RC by 15x, 7x, and 3x, respectively.

To better understand the behavior of each algorithm, we mea-

sured each algorithm’s throughput while varying contention. Fig-

ure 3c shows the results of the experiment (contention increases

with increasing theta). Locking and OCC’s throughputs decrease

at medium-low levels of contention (theta range of 0.3 to 0.6). RC

and PWV’s throughput remain very similar from low to medium

contention. RC’s throughput decreases when theta increases from

0.7 to 0.8 (medium to medium-high contention). PWV’s through-

put remains nearly constant despite variations in contention.

These experiments show that PWV is highly robust to contention

in the ideal scenario that transactions never experience logic-induced

aborts. Under high contention, PWV can outperform conventional

serializable protocols by more than order-of-magnitude. PWV even

outperforms our highly-optimized non-serializable read committed

implementation, indicating that PWV can provide applications that

fit this ideal with fast serializable isolation.

5.2 Effect of commit point
In this experiment, we limit PWV’s ability to make individual

writes visible as soon as they complete. We augment transactions’

logic with explicit abort statements. By varying the position of

transactions’ abort statements with respect to its update statements,

we can control which writes can be made visible immediately.

We term the point at which a transaction contains an abort state-

ment its commit position. The value of a transaction’s commit posi-
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Figure 4: Effect of commit point on throughput.

tion corresponds to the number of write operations that precede it.

We measure the effect of changing a transaction’s commit position

under low and high contention. As in Section 5.1, we use trans-

actions that perform 20 read-modify-writes. The parameters of the

low and high contention experiments are the same as Section 5.1.

Figure 4a shows the result of the low contention experiment.

Locking, OCC, and RC’s throughputs do not change while vary-

ing a transaction’s commit position. The fact that a transaction

contains an explicit abort statement has no effect on these proto-

cols. PWV’s throughput also remains nearly constant while vary-

ing transactions’ commit position. However, small variations occur

because each core needs to perform slightly more work to execute

transactions; PWV must execute the RVP-based commit protocol

(Section 4.2), and writing pieces that follow a transaction’s commit

point must wait for the commit protocol to complete.

Figure 4b shows the result of the high contention experiment. As

before, locking, OCC, and RC’s throughputs do not change with

commit position. In contrast, PWV’s throughput decreases sig-

nificantly with increasing commit position. This is because PWV

cannot make a transaction’s writes visible until its commit posi-

tion. Under high contention, this delayed visibility hurts through-

put. Unlike the other algorithms, PWV employs intra-transaction

parallelism by executing a single transaction’s updates in parallel

on multiple cores. Intra-transaction parallelism minimizes the exe-

cution time of an individual transaction, which reduces write visi-

bility delay. Thus, PWV’s throughput remains significantly higher

than locking and OCC’s, even when every algorithm makes writes

visible at the end of each transaction (the right-most point of Fig-

ure 4b).

5.3 Reducing concurrency control overhead
We now examine the performance implications of PWV’s coarse-

grained conflict isolation mechanisms, whereby transactions can

request access to a set of keys that is a guaranteed to be a super-

set of the keys they actually access. We show that coarse-grained

isolation can significantly improve PWV’s performance under low

contention, while preserving its advantages under high contention.

We evaluate the throughput of each system under a workload

consisting of an equal mix of TPC-C NewOrder and Payment trans-

actions [4]. We use two versions of PWV for this benchmark: stan-

dard PWV, and PWV-coarse. In order to access the District, Cus-

tomer, NewOrder, OrderLine, Order, and History tables, both PWV

and PWV-coarse specify read and write requests at the granularity

of (warehouse-id, district-id) foreign-key pairs. We partition these

tables by (warehouse-id, district-id) pairs. Pieces which request ac-

cess to a table via the same (warehouse-id, district-id) foreign-key

pair are always processed by the same partition, but records with

the same (warehouse-id, district-id) foreign-key from different ta-

bles, say Customer and NewOrder, can reside on different parti-

tions. PWV and PWV-coarse differ in their conflict specification

mechanisms for Stock records. PWV isolates pieces at the gran-

ularity of Stock record primary keys, while PWV-coarse isolates

conflicting accesses to the Stock table at the granularity of ware-

houses. In PWV-coarse, each piece effectively requests exclusive

access to the entire set of stock records within a single warehouse.

Thus, if two pieces update stock records within the same ware-

house, then PWV-coarse determines that they conflict, even if their

read- and write-sets do not overlap.

We also measure the impact of coarse-grained isolation on con-

ventional recoverability mechanisms by implementing a version of

coarse-grained locking. Like PWV-coarse, coarse-grained locking

protects all the stock records within a warehouse with a single lock.

Furthermore, we include two versions of our implementation of

IC3’s transaction chopping protocol [48]. A standard version of

IC3, which isolates pieces at the granularity of reads and writes,

and a version which exploits commutativity. We refer to these al-

gorithms as chopping and chopping-comm, respectively. Note that

PWV does not make any commutativity assumptions.

We first show the results of a low contention experiment in which

we simultaneously vary the number of database cores and ware-

houses (the number of warehouses is equal to number of cores).

The non-PWV algorithms affinitize a core to a particular ware-

house; requests which originate at a particular warehouse are al-

ways processed by the same core. This experiment therefore repre-

sents the best case scenario for these systems; locality is maximized

and conflicts are minimized because transactions on a particular

origin warehouse are always processed by the same core [42, 46].

Figure 5a shows the results of the experiment. Every algorithm’s

throughput scales with increasing core count. However, there ex-

ist significant differences in absolute throughput achieved by each

algorithm. First, both chopping and chopping-comm are outper-

formed by locking because of the extra overhead they impose on

tracking dependencies between pieces at runtime. Chopping-comm

outperforms chopping despite the lack of conflicts because it main-

tains less chopping-related meta-data corresponding to updates by

commuting pieces. Locking outperforms locking-coarse because

locking-coarse induces unnecessary conflicts. Since approximately

10% of NewOrder transactions update stock records from remote

warehouses, these transactions will block due to spurious stock up-

date conflicts. This reduction in concurrency outweighs any poten-

tial benefit in reduced concurrency control overhead.

In contrast, the opposite effect is observed for PWV-coarse, where

the reduced overhead greatly outweighs the reduction in concur-

rency. PWV-coarse pipelines the execution of transactions to min-

imize the impact of coarse-grained isolation on blocking. If two

transactions conflict, PWV-coarse only imposes an order between

the transactions’ conflicting pieces, not entire transactions.

Figure 5b shows the result of a high contention experiment in

which we fix the number of warehouses to 1, and vary the num-

ber of database cores. In non-PWV algorithms, the entire data-

base is shared across all cores of the system. Due to increasing

contention, OCC, locking, and locking-coarse’s throughput remain

mostly stagnant with increasing core count. Surprisingly, chopping
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Figure 5: TPC-C NewOrder and Payment throughput.

is unable to outperform any of these systems. There are two rea-

sons for this. First, if two pieces corresponding to a pair of trans-

actions conflict, then later non-conflicting pieces corresponding to

the same pair of transactions are constrained [48]. Second, dy-

namically tracking dependencies across pieces imposes overhead

at runtime, which worsens under increased contention.

In contrast, PWV and PWV-coarse are able to outperform both

RC and chopping-comm, despite the fact that they provide seri-

alizable isolation and make no assumptions about commutativity

of pieces. PWV and PWV-coarse outperform chopping-comm be-

cause they impose no constraints on the execution of non-conflicting

pieces, while chopping-comm must constrain non-conflicting pieces

(although these constraints are minimized due to commutativity).

The difference between RC and PWV is smaller than prior exper-

iments because RC must acquire fewer commit time write locks

and consequently holds write locks on the most contended records

(Warehouse and District records) for short durations.

PWV-coarse Locking OCC RC Chopping-comm

40 warehouses 2ms 8.2ms 3.4ms 4.5ms 42ms

1 warehouse 7.3ms 73ms 534ms 10ms 136ms

Figure 6: 95th%ile latency for batches of 5000 NewOrder and

Payment transactions under maximum throughput (40 cores).

Finally, Figure 6 shows the 95th percentile latency of processing

batches of 5,000 TPC-C transactions. Figure 6 shows that PWV-

coarse’s multi-core scalability does not come at the expense of la-

tency; PWV-coarse’s 95th percentile latency latency is lower than

that of every other protocol under both high and low contention.

6. RELATED WORK
Transaction decomposition. Transaction chopping is the most

well-known mechanism for serializable transaction decomposition

[43], but has two important limitations relative to PWV; it permits

only a single sub-transaction to abort, and only permits a pair of de-

composed transactions to conflict on a single sub-transaction. As

a consequence of these two limitations, chopping produces coarse-

grained decomposed transaction. Indeed, recent systems based on

transaction chopping, such as transaction chains [55] and Salt [51],

resort to the use of application semantics to reduce conflicts among

sub-transactions. In contrast, PWV places no restrictions on which

pieces of a decomposed transaction can abort and the number of

piece-wise conflicts between a pair of decomposed transactions.

Rococo dynamically fixes serializability violations among pieces

of a decomposed transaction with no outgoing data dependencies

[36]. However, pieces with outgoing data dependencies must be

scheduled using conventional concurrency control. Recent work

in optimistic systems that employ delayed write visibility proposes

addressing serializability violations by selectively re-executing a

subset of transactions’ logic [15, 50]. In contrast, PWV never vio-

lates serializability at runtime; transactions’ pieces are executed in

an order that is consistent with a pre-determined total order.

IC3 [48] and Runtime Pipelining [52] address limitations in con-

ventional transaction chopping by dynamically enforcing causal

dependencies across pieces. Furthermore, both IC3 and Runtime

Pipelining deal with aborts via cascaded rollbacks or defaulting

to a rollback-safe decomposition based on conventional transac-

tion chopping. Unlike IC3 and Runtime Pipelining, PWV uses a

pre-determined total order to enforce causal dependencies across

pieces, and avoids cascaded rollbacks via early commit points.

Faleiro et al. propose a decomposition mechanism that breaks a

transaction’s logic is into two pieces, an eager and a lazy piece [20];

a transaction’s eager piece is executed as soon as the transaction

enters the database, while the lazy piece is deferred. Lazy transac-

tions are coarsely decomposed based on transaction commit points.

In contrast, PWV decomposes a transaction using both, a transac-

tion’s commit point and its data-flow. PWV can therefore decom-

pose transactions at a much finer granularity than lazy transactions.

Write visibility. Jones et al. propose a speculative write visibil-

ity discipline to avoid making new transactions wait on distributed

coordination required to commit earlier transactions [27]. OPT is

a distributed commit protocol where transactions are permitted to

read the uncommitted writes of transactions in two-phase commit’s

prepare phase [25]. Reddy et al. propose a speculative write visibil-

ity discipline in which a transaction executes against both the pre-

image and after-image of preceding uncommitted transactions [41].

This forked execution prevents cascading aborts at the cost of ex-

tra CPU and memory resources. Agrawal and El Abbadi propose

ordered shared locks [7], which permit transactions to read uncom-

mitted writes of preceding transactions. Each of these write vis-

ibility mechanisms must permit dirty reads to avoid the overhead

associated with delayed write visibility. In contrast, PWV prevents

dirty reads altogether, and instead relies on deterministic execution

to arrive at early transaction commit decisions.

Exploiting application semantics. A Saga is decomposed trans-

action that exploits application-specific semantics to avoid serializ-

able isolation and tolerate aborted reads [21]. Alonso et al. propose

a logical inverse undo operation to avoid the overhead of delayed

write visibility while simultaneously avoiding cascaded aborts [9].

Gawlick and Kinkade, and O’Neil proposed variants of the escrow

method to exploit commutative operations on contended records

[22,39]. Doppel exploits commutative operations on hot records to

replicate such records, and allow concurrent commutative updates

to each replica [37]. Bailis et al. propose an application dependent

correctness criterion I-confluence, that determines whether a co-

ordination free execution of transactions will preserve application

invariants [10]. Conway et al. propose using monotonicity analy-

sis to eliminate coordination in distributed applications [13]. Each

of these prior techniques exploits application semantics to enable
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either a new recoverability or isolation mechanism, or both. In

contrast, PWV makes no assumptions about application semantics,

while still guaranteeing recoverability and serializability. PWV’s

novelty lies in its use of early write visibility and piece-wise sched-

uling of transactions to significantly reduce the duration of conflict-

induced blocking.

Transaction scheduling mechanisms. QURO reorders transaction

statements to reduce contended lock hold times [53]. DORA is

a partitioned system that exploits intra-transaction parallelism on

multi-core servers [40]. Both DORA and QURO use two-phase

locking to guarantee serializability, and hence inherit the limita-

tions of delayed write visibility. Whitney et al. [49], and Faleiro

and Abadi [19] propose using dependency graphs to schedule trans-

actions in deterministic systems. PWV uses a similar scheduling

mechanism within a partition, but at the granularity of transaction

pieces. Faleiro and Abadi’s work on deterministic multi-version

concurrency control is complimentary to PWV; PWV can use multi-

versioning to ensure that reads never block writes.

7. CONCLUSIONS
This paper identifies write visibility delay as an important in-

hibitor of database concurrency and introduces early write visibil-

ity, a recoverability mechanism that enables writes to become vis-

ible as soon as a transaction executes any statements that could

cause it to abort. To enable early write visibility, we designed

PWV, a new concurrency control protocol that leverages database

determinism to prevent arbitrary transaction aborts, and found that

PWV can significantly outperform modern serializable and non-

serializable concurrency control protocols.
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