
Finding Diverse, High-Value Representatives
on a Surface of Answers ∗

You Wu‡
†

Junyang Gao† Pankaj K. Agarwal† Jun Yang†
‡Google Research, †Duke University

wuyou@google.com {jygao,pankaj,junyang}@cs.duke.edu

ABSTRACT
In many applications, the system needs to selectively present a
small subset of answers to users. The set of all possible answers can
be seen as an elevation surface over a domain, where the elevation
measures the quality of each answer, and the dimensions of the do-
main correspond to attributes of the answers with which similarity
between answers can be measured. This paper considers the prob-
lem of finding a diverse set of k high-quality representatives for
such a surface. We show that existing methods for diversified top-k
and weighted clustering problems are inadequate for this problem.
We propose k-DHR as a better formulation for the problem. We
show that k-DHR has a submodular and monotone objective func-
tion, and we develop efficient algorithms for solving k-DHR with
provable guarantees. We conduct extensive experiments to demon-
strate the usefulness of the results produced by k-DHR for appli-
cations in computational lead-finding and fact-checking, as well as
the efficiency and effectiveness of our algorithms.

1 Introduction
The problem of returning a selective subset of answers to users has
been studied by many research communities in many contexts, such
as recommender systems [18, 6] and top-k queries with diversifica-
tion [2, 3, 14]. For many applications, the answers can be modeled
as points on an elevation surface over an underlying domain. The
elevation captures an answer’s quality or relevance to the query,
while the dimensions of underlying domain correspond to various
answer attributes by which we can measure the similarities among
answers. Most of the time, users are interested in examining only a
few answers. Naturally, we want to select those answers with high
quality. Second, we want the selected answers to be diverse, be-
cause users learn less from answers that are similar (close to each
other in the underlying domain). Finally, in many scenarios, we
∗Work on this paper is supported by NSF grants CCF-15-13816, CCF-
15-46392, IIS-14-08846, and IIS-13-20357, by ARO grant W911NF-15-
1-0408, by grant 2012/229 from the U.S.-Israel Binational Science Foun-
dation, and a Google Faculty Research Award. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of
the author(s) and do not necessarily reflect the views of the funding agen-
cies.
†Most of the work was conducted when the author was at Duke University.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 7
Copyright 2017 VLDB Endowment 2150-8097/17/03.

further want the selected answers to be “representative,” and avoid
outliers for which close-by answers have far lower qualities. In
other words, we would like to use a small number of high-value
points to represent the high-value regions of the surface.

To see why these criteria are important, consider the following
example from computational lead-finding and fact-checking [16],
a novel application in journalism where we analyze data to find in-
teresting leads, or counterarguments to claims that may be factually
correct but still misleading (e.g., due to cherry-picking). Here, the
surface is formed by a large number of factual claims that one can
generate from a dataset.

Example 1 (Revisiting Giuliani’s Adoption Claim). A real-life
example of “correct but still misleading” claim considered in [16]
was Giuliani’s claim in 2007 that “adoptions went up 65 to 70
percent” in the New York City “when he was the mayor.” An ef-
fective way of countering such a claim, used frequently in practice
by journalists and professional fact-checkers, is to find claims of
the same form, which, with slightly different views of the same data
(time series of New York City adoption totals in this case), lead to
much weaker or even opposite conclusions. For example, one such
counterargument produced by the algorithm in [16] is:

(CA-1) Comparing Giuliani’s first and second 4-year terms, i.e.,
1994-1997 and 1998-2001, leads to 1% decrease.

Here, each possible counterargument is characterized by three at-
tributes: length of the two windows being compared, distance be-
tween the windows, and the position (starting point) of the second
window. The quality of each counterargument is measured by a
combination of how much it weakens the original claim’s conclu-
sion (e.g., from “up 65 to 70 percent” to “1% decrease”), and how
natural and contextually relevant it is to the original claim (e.g.,
how well the two windows of comparison reflect “before” and “af-
ter” Giuliani’s contribution). Hence, the set of all possible counter-
arguments can be seen as an elevation surface over a 3-d domain.

Many counterarguments are not directly comparable to each other.
Even if we return only Pareto-optimal counterarguments as in [16],
there are too many answers, e.g., just to list a few:

(CA-2) Comparing the two 4-year windows of 1995-1998 and
1999-2002, leads to 19% decrease.

(CA-3) Comparing the two 2-year windows of 1996-1997 and
2000-2001, leads to 24% decrease.

(CA-4) Comparing the last year of Giuliani’s first and second
half of his term, i.e., 1997 and 2001, leads to 32% decrease.

One obvious problem is that these answers are not too different
from each other. For example, the 8 years covered by (CA-1) and
the 8 years covered by (CA-2) share 6 years in common.

793

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
y

0.00

0.50

1.00

(a) MMR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
y

0.00

0.50

1.00

(b) Graph-based diversification

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
y

0.00

0.50

1.00

(c) Weighted k-means

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
y

0.00

0.50

1.00

(d) k-DHR
Figure 1: Comparison of 3 answers chosen on a synthetic piece-wise constant surface by different methods. Elevation (value) is represented
by color. Chosen answers are marked with black dots.

Another interesting problem is that counterarguments themselves
can be countered. For example, the following claim is a counterar-
gument to (CA-1), and vice versa:

(CA-5) Comparing second half of Giuliani’s term against the 4
years preceeding his term, the adoptions increased by 99.34%.

Hence, professional fact-checkers carefully avoid selecting outliers
as counterarguments. Even if a counterargument is highly effective
by itself, it will be considered nitpicking if most of its neighbors—
obtained by slight perturbations of its attributes—are not.

To recap, there are three objectives we want to achieve with our
selection of answers from a surface, where the elevation represents
answer quality (henceforth also referred to as value), and the un-
derlying domain captures similarity among answers:

(Utility) Each selected answer should have high value.
(Diversity) Selected answers should not be too similar.
(Representativeness) Selected answers should represent high-
value neighborhoods.

Existing Methods While our problem is related to diversified
top-k queries and weighted clustering, existing methods for these
problems cannot be readily applied to achieve all three of our ob-
jectives above. To illustrate, consider a piecewise-constant surface
shown in Figure 1, generated using a mixture of four 2-d Gaussian
kernels with similar peak values, plus a single spike at the lower-
right corner (23, 1), which has the highest value overall but is lo-
cated in a low-value region. The high-value (vertically oriented)
region on the left is a mixture of two Gaussian kernels with close-
by centers, while the two high-value regions (horizontally oriented)
on the right corresponds to two separate Gaussian kernels with the
same peak value (slightly lower than the peak values of the high-
value region on the left). If the goal is to choose k = 3 representa-
tives, ideally, we should choose one for each of the three high-value
regions, and the lonesome spike should be avoided. Let us see what
existing methods will do for this example.

Diversified Top-k We first consider two methods representative
of the work on diversified top-k queries: the maximal marginal rel-
evance (MMR) method [2], and graph-based diversification [14].
MMR iteratively finds the next answer to return that optimizes a
linear combination of its value (for utility) and its minimum dis-
tance to answers already picked (for diversity). The trade-off is
controlled by a parameter λ ∈ (0, 1]. Graph-based diversifica-
tion assumes a distance threshold δ and looks for k answers with
the highest total value (for utility) that are at least distance δ away
from each other (for diversity). (More details can be found in the
technical report version of this paper [17].)

Picking parameters λ for MMR and δ for graph-based diversifi-
cation is tricky, but with some trials and errors, we end up with our
best-effort solutions for MMR and graph-based diversification in

Figures 1a and 1b, respectively. Both methods managed to choose
answers with high individual value, but both failed to avoid the
spike at (23, 1), which should not be surprising because neither
methods considers representativeness of their answers.

Beyond the lack of representativeness, there are other problem
with these methods in how they achieve diversity. For MMR, be-
cause diversity (distance) is part of its linear optimization objective
function, it tends to choose answers far away from previously cho-
sen ones. In Figure 1a, MMR first picked (23, 1) and then (6, 9).
For the third answer, MMR picked (18, 13) over (17, 13), even
though the latter has a higher value and is the peak of the sur-
rounding high-value region, simply because of distances to the first
two chosen answers. For the same reason, MMR favored picking
from the upper one of the two high-value regions on the right, even
though the lower region is bigger and peaks at the same value.

For graph-based diversification, there are scenarios where no
choice of the distance threshold δ can lead to desired result. Let us
ignore the distraction of outliers by removing the spike at (23, 1)
(Figure 2). Again, if we are asked to choose 3 answers, it is best
to pick the centers of the three high-value regions. However, as we
will show below, no choice of δ would allow graph-based diversi-
fication to pick the two peaks on the right, located at (17, 8) and
(17, 13), simultaneously. The problem is that there exists two can-
didates (6, 9) and (6, 16) from the same high-value region on the
left, whose values are slightly higher than (17, 8) and (17, 13) and
whose distance is longer than that between (17, 8) and (17, 13). If
we set δ to be small enough such that (17, 8) and (17, 13) are not
mutually exclusive as candidates, graph-based diversification will
still favor picking (6, 9) and (6, 16) simultaneously, hence prevent-
ing (17, 8) and (17, 13) to be both chosen among the 3 answers.
Basically, even for a relatively simple surface, a single δ cutoff is
not sufficient to capture what constitutes “close enough” across dif-
ferent parts of the surface.

Weighted Clustering Another line of work related to our goal
is weighted clustering. By considering each answer’s value as its
weight, weighted clustering algorithms can be used to partition the
surface into the desired number of regions and find a represen-
tative from each region. Figure 1c shows the result of applying
weighted k-means clustering to our example; here, we mark the
cluster boundaries using white lines, and we pick the weighted cen-
troid of each cluster (rounded to the nearest integral point) as the
answer representing the cluster. Unfortunately, weighted k-means
clustering recognizes the two separately high-value regions on the
right as a single cluster, while partitioning the skinny high-value
region on the left into two clusters. Moreover, while the weighted
k-means objective function considers the values of all answers in a
cluster, it gives no special consideration to the value of representa-
tive for the cluster. Thus, there is no guarantee that the represen-
tative has high value. In fact, we see in Figure 1c that k-means

794

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
y

0.00

0.50

1.00

Figure 2: Example where no set-
ting of distance threshold δ for
graph-based diversification works;
the white dot should have been cho-
sen among the 3 representatives, but
can never be chosen.

δ(p, s)

Ks(p)

reciprocal

Gaussian

Figure 3: Impact as func-
tion of distance, according
to Gaussian and reciprocal
kernels.

clustering is prone to picking a low-value representative for a clus-
ter wherein peaks are away from the (unweighted) geographical
cluster center, because distances from the representative are heav-
ily penalized (squared in the objective function).

In summary, for the three objectives introduced earlier, diversi-
fied top-k methods target utility and diversity, but not representa-
tiveness. Weighted clustering methods such as k-means achieves
representativeness and diversity via partitioning, but they do not
account for the utility of representatives. We also saw limitations
of diversity control in MMR (due to fixed linear weighting of dis-
tance by λ) and graph-based diversification (due to fixed distance
threshold δ), as well as difficulty in setting their parameters. The
same limitations would also apply if we add consideration for rep-
resentativeness to MMR and graph-based diversification in analo-
gous ways, e.g., by defining representativeness over a fixed-radius
neighborhood and including it as a separately weighted term in the
objective function.

Our Contributions We define the k-DHR problem for finding
a Diverse set of k High-value Representative points from a sur-
face. This new problem formulation accounts for utility, diver-
sity, and representativeness simultaneously. A key feature of our
formulation—inspired by clustering—is that it achieves diversity
by partitioning the surface and selecting one representative per par-
tition. k-DHR allows users to tune the desired degree of diversity
using an impact kernel, which, together with clustering, enables k-
DHR to adapt to the local surface features much better than meth-
ods that rely on weights or thresholds that are inflexible and difficult
to set. For example, Figure 1d shows the 3 representatives found by
k-DHR, which are intuitively better than the solutions by the three
existing methods discussed earlier.

We study techniques for efficiently solving the k-DHR problem.
While k-DHR is NP-hard, we show that its optimization objec-
tive function is submodular and monotone, allowing us to develop
Greedy, a greedy algorithm with (1 − 1

e
)-approximation. We pro-

pose a number of techniques to further improve Greedy’s perfor-
mance, culminating in an algorithm we call Greedy+. In addition,
we present two alternative algorithms, LocalSearch (based on lo-
cal search) and EM (based on the expectation-maximization tech-
nique). These two algorithms provide additional references of com-
parison; LocalSearch can also be used by other algorithms as a fast
post-processing step to ensure local optimality.

Finally, we apply k-DHR to the practical problem of computa-
tional lead-finding for journalism, and evaluate the usefulness of
k-DHR solutions on real-world data. We also perform extensive
experiments to study the efficiency of our proposed algorithms.

2 The k-DHRk-DHRk-DHR Problem
Given a non-negative real-valued function g with a finite set D of
inputs, our goal, intuitively, is to select a small set of elements from
D that are “diverse” and “representative” of the high-value regions
of D. We formalize the problem below.

Given a candidate representative s ∈ D, we define the impact of
s on the elements of D using a function φs : D 7→ R≥0:

φs(p) = g(s) ·Ks(p), (1)

where Ks : D 7→ R≥0 is the impact kernel function. The impact
of s on p is proportional to g(s), the value of s, and is discounted
by Ks(p). Generally speaking, the impact of s peaks at p = s,
and diminishes for p further away from s. We will discuss concrete
choices of Ks later.

Given a set S ⊆ D of representatives, we define the impact of S
on an element p ∈ D, denoted ΦS(p), as the maximum impact on
p among all individual representatives:

ΦS(p) = max
s∈S

φs(p). (2)

Intuitively, each p ∈ D is represented by some s ∈ S having the
maximum impact on p. Let DS(s) denote the subset of elements
in D represented by s, which we call the max-impact region of s,
define as follows.

DS(s) = {p ∈ D | φs(p) = ΦS(p)}. (3)

Basically, ΦS is the upper envelope of functions {φs}s∈S , and
{DS(s)}s∈S is also known as the maximization diagram of {φs}s∈S .1

Given k, the desired number of representatives, we want to choose
the subset S ⊆ D of size k to maximize the weighted total impact
of S on all elements of D, defined as:

G(S) =
∑
p∈D

g(p) · ΦS(p). (4)

The higher the value of p, the more weight it carries in the total,
reflecting the intuition that high-value regions of D demand better
coverage by the representatives.

To recap, the k-(D)iverse (H)igh-value (R)epresentatives (k-DHR)
problem is formally defined as follows.

(The k-DHR Problem) Given function g : D 7→ R≥0 and a natu-
ral number k > 0, find:

S∗ = arg maxS⊆D,|S|=kG(S), where (5)

G(S) =
∑
p∈D

(
g(p) ·max

s∈S

(
g(s) ·Ks(p)

))
. (6)

If D is a subset of Rd, a natural choice of the impact kernel
would be the (unnormalized) d-dimensional Gaussian kernel with
Mahalanobis distance:

Ks(p) = exp

{
−C

2
δ2(p, s)

}
(7)

where parameter C ∈ R≥0 and covariance matrix Σ (with deter-
minant 1) are user-defined, and δ2(p, s) = (p − s)TΣ−1(p − s)
is the squared Mahalanobis distance between p and s. We will dis-
cuss the setting of C as well as other possible impact kernels in the
remainder of this section.
1The effective partitioning of the D by {DS(s)}s∈S is analogous to the
Voronoi diagram—the latter is the minimization (as opposed to maximiza-
tion) diagram of the distances to (as oppose to the impacts of) representa-
tives.

795

2.1 Achieving the Three Objectives
Achieving Representativeness We note that representativeness
is built into the definition of k-DHR—each representative natu-
rally represents elements in its max-impact region. By weighing
the impact on each element p by p’s value in the objective func-
tion G, k-DHR focuses more on high-value regions of the surface.
Furthermore, doing so discourages picking high-value outliers as
representatives, because they have low-value neighborhoods that
weigh down their contribution to G. In contrast, as discussed in
Section 1, MMR and graph-based diversification, do not consider
representativeness, so they are prone to picking outliers.
Achieving (Tunable) Diversification By dividing D into max-
impact regions, each with one representative, k-DHR achieves di-
versification in a data-driven manner without resorting to any fixed
distance threshold (like graph-based diversification) or weight on
distance (like MMR). Once k-DHR picks a representative, it be-
comes redundant to have other representatives from the same “neigh-
borhood.” Here, the extent of neighborhood naturally depends on
k as well as the presence of other nearby, high-value candidate rep-
resentatives.

Nonetheless, k-DHR allows users to control the degree of diver-
sity through the impact kernel K. In particular, for the Gaussian-
Mahalanobis kernel in Eq. (7), setting C larger implies a looser
diversification requirement. Consider two extreme cases for exam-
ple.
• C = 0. We have Ks(p) = 1 and φs(p) simplifies to g(s). Here,

the impact of a representative s on p does not decrease as p
moves away from s. Hence, it suffices to pick arg maxs∈D g(s),
the highest-value element, to represent all of D (having addi-
tional representatives in S would not increase G(S) further).
We can view this case as having the strongest diversification
requirement, where the single representative “pushes out” all
other candidates.
• C → +∞. We have Ks(p) = 1 if p = s, or 0 otherwise. In

this case, a representative has no impact on any element other
than itself, and G(S) simplifies to

∑
s∈S g(s)2. Hence, the op-

timal solution S∗ would consist of the k elements in D with
the highest values, regardless of distances among them. We can
view this case as having no diversification requirement at all.

Intuitively, changing the impact kernel effectively adjusts the no-
tion of how close two representatives are. A small C increases
the competition from nearby high-value candidate representatives,
and the objective function G of k-DHR naturally penalizes pick-
ing nearby representatives, hence encouraging diversity. Moreover,
for the Gaussian-Mahalanobis kernel, changing C effectively per-
forms uniform scaling of the co-variance matrix Σ. Diversity con-
trol along different directions is made possible by tuning individual
values of Σ, hence changing the shape of the impact kernel. Typi-
cally, C is folded into Σ. We keep them separate for clarity as the
they are used to control different things.

Tunable diversity is necessary for encoding expert knowledge
and/or user preference. Even for the same dataset, the desired de-
gree of diversity may vary depending on the context of interest.
For example, in the historical data on employment (which we shall
experiment later in Section 4.2), one may be interested in trends
at different temporal scales: the desired degree of diversity when
looking for claims in a specific election cycle will inevitably differ
from that when looking across generations of population.

Finally, it is worth emphasizing again how k-DHR achieves tun-
able diversity differently from MMR and graph-based diversifica-
tion discussed in Section 1. The other two methods also allow users
to specify the two extreme cases above (corresponding to C = 1

and C → +∞ for k-DHR).2 However, for the more interesting
cases between the two extremes, these methods control the trade-
off differently and lead to different results. As we have seen in
Section 1 and will see in Section 4.2, MMR’s linear weighting of
distance by a fixed λ tends to push representatives farther away than
necessary; graph-based diversification’s fixed distance threshold δ
may not suit different regions of the surface. The ways these meth-
ods apply their parameters do not allow them to adapt to local fea-
tures of the surface; finding the appropriate parameters for a given
dataset is thus difficult. In contrast, k-DHR’s kernel-based formu-
lation is more flexible and does not impose a hard constraint. In-
stead, diversity is achieved via clustering into max-impact regions,
which adapts better to the local surface features.
Achieving Utility k-DHR achieves utility by accounting for the
value of a representative in its impact (Eq. (1)). Doing so encour-
ages selection of high-value representatives, but thanks to other
components of the objective function, it does not lead to simply
selecting elements with the highest values. For example, instead
of picking another high-value element close to but largely “shad-
owed” by an existing representative, k-DHR is more likely to pick
a faraway element whose value is not as high but brings a larger
marginal contribution to G.

In contrast, classical weighted clustering methods, such as k-
means, k-median, and k-medoids, do not consider the weights of
the representatives (centroids/medians/medoids). In fact, as we will
show in Section 3.1, the k-median problem can be reduced to an in-
stance of k-DHR. Taking the analogy a little further, we can view
weighted clustering as considering values of elements in comput-
ing the weighted total impact (i.e., using the g(p) term in Eq. (6)),
but not considering the values of the representatives (i.e., not us-
ing g(s) in Eq. (6)). As we have seen in Section 1 and will see in
Section 4.2, this lack of consideration for the values of the repre-
sentatives themselves leads to low result utility.

2.2 Choice of Impact Kernel
We introduced the Gaussian-Mahalanobis impact kernel (Eq. (7))
earlier in this section. Here we discuss some other choices of the
impact kernel for k-DHR.
Gaussian vs. Reciprocal One alternative to the Gaussian kernel
is the reciprocal kernel Ks(p) = 1

δ(p,s)+C
, where δ remains the

Mahalanobis distance function and C is a regularization term (to
avoid division by zero when p = s or overly rewarding p’s very
close to s). Intuitively, the impact is inversely proportional to dis-
tance. However, compared to a Gaussian kernel, which gives a
smooth decrease of impact in the close neighborhood of s, the re-
ciprocal kernel yields a sharp decrease around s (Figure 3). For
this reason, we find the reciprocal kernel less favorable than the
Gaussian kernel in our applications.
Mahalanobis vs. Geodesic Distance Another option is to keep
using a Gaussian kernel, but with a different distance function.
Since we view g as a surface, a good choice is the geodesic dis-
tance, which measures the length of the shortest path between two
points on the surface. Practically, suppose D is a set of discrete
points. Let N ⊆ D ×D be a symmetric relation defining all pairs
of (immediate) neighboring points of D. Abusing the notation a
little, let N(p) = {q | (p, q) ∈ N} be the set of neighbors of

2The strongest diversification requirement can be achieved in MMR by set-
ting λ = 0, and in graph-based diversification by setting δ → +∞; all
three methods return only the high-value element as the single represen-
tative. The case of no diversification can be achieved in MMR by setting
λ = 1, and in graph-based diversification by setting δ = 0 for the graph-
based approach; all three methods return the k elements with the highest
values.

796

p, and assume |N(p)| is bounded by a small constant. Consider a
weighted undirected graph G = (D,N,W), where for (p, q) ∈ N,
the edge weight is

W (p, q) =

√
δ2(p, q) + (α · (g(p)− g(q)))2.

Here, δ(·, ·) is the Mahalanobis distance function, and α is a nor-
malization constant where

α =
maxp,q∈D δ(p, q)

maxp∈D g(p)−minq∈D g(q)
.

Then, the (approximate) geodesic distance δG(p, q) between any
p, q ∈ D is defined as the graph distance between p and q on G.

Geodesic distance has some modeling advantages over Maha-
lanobis distance, because the former accounts for changes in “ele-
vation” (value). For example, consider two high-value regions sep-
arated only by a thin but deep valley. Under geodesic distance, k-
DHR may choose two representatives, one from each region. Under
Mahalanobis distance in D, k-DHR will be less likely to do so, be-
cause it ignores the effort of crossing elevation changes and thinks
that the two representatives are close.

On the other hand, from the efficiency perspective, Mahalanobis
distance is more appealing. Computing geodesic distance on de-
mand for an arbitrary pair of points takes Ω(|D|) time in the worse
case [8, 9]—as opposed to O(1) time for Mahalanobis distance.
Computing geodesic distances between one point and all other points
takes O(|D|)—same as that for Mahalanobis distances, but at the
cost of O(|D|) additional space. In practice, for data and applica-
tions we tested, we found Mahalanobis distance to give comparable
results much more quickly, as we will show in Section 4.
Kernel for Domains with Mutually Non-Representable Elements
In practice, there are scenarios where it makes no sense for two el-
ements of D to represent each another. For instance, suppose D

includes both numerical and categorical attributes. (A concrete ex-
ample will be presented in Section 4.1.) Two elements that do not
agree on the categorical attributes may not be comparable in gen-
eral, so selecting one in the answer does not give any representation
to the other. Although we have not explicitly addresses such sce-
narios earlier, k-DHR can handle them gracefully with appropriate
definitions of the impact kernel, as shown below.

Let the problem domain D be a finite subset of a d-dimensional
space P, consisting of two orthogonal subspaces which we call
the representing subspace (denoted PR) and the non-representing
subspace (denoted PNR). Formally, D ⊆ P ⊆ PR × PNR, and
dim(PR) + dim(PNR) = d. Intuitively, if two elements of D differ
in their values for the non-representing subspace, they should not
represent each other—we define their impact on each other to be 0;
otherwise, they can represent each other and we compute their im-
pact on each other using their projections onto the representing sub-
space. Formally, for each p ∈ D, let πR(p) and πNR(p) denote the
projections of p on PR and PNR, respectively; let KR be a kernel de-
fined over PR (such as the Gaussian-Mahalanobis kernel). We can
simply define the impact kernel for D as Ks(p) = KR

πR(s)(πR(p))

if πNR(p) = πNR(s), or 0 otherwise.
We will further discuss in Section 3 the algorithmic implications

for domains with non-null non-representing subspaces.

3 Algorithms
We now discuss how to solve the k-DHR problem. We begin by
establishing the hardness of k-DHR. Then, we present several al-
gorithms for k-DHR: LocalSearch, EM, Greedy, as well as a ver-
sion called Greedy+ with a number of efficiency improvements.
We conclude this section with a discussion on the relative merits of
the four algrorithms, and on issues such as how these algorithms

can help users choose appropriate k, and how they handle domains
with mutually non-representable elements.

3.1 NP-Hardness of k-DHRk-DHRk-DHR
We show the NP-hardness of the decision version of the k-DHR
problem by reduction from the well-known k-median problem, shown
to be NP-hard in the plane under Euclidean distance [12].

(The kkk-median Problem in 2D) Given a set D of n points in R2, a
parameter k, and a value ∆, the k-median problem finds a k-subset
S of D such that

∑
x∈D mins∈S ‖x − s‖ ≤ ∆, where ‖ · ‖ is the

Euclidean norm.

Lemma 1. The k-DHR problem (decision version) is NP-hard.

Proof. Given a set D of n points, a parameter k, and a value ∆,
the k-median problem can be reduced to the decision version of
k-DHR as follows. Consider an instance of k-DHR where D is
the same, g(p) = 1 for all p ∈ D, and Ks(p) = M − ‖p − s‖.
Here, M is a constant no smaller than maxp,q∈D ‖p − s‖. The k-
median problem is equivalent to finding a k-subset S of D such that
G(S) =

∑
p∈D(M − ‖p − s‖) ≥ nM −∆. Since the k-median

problem is NP-hard, k-DHR (the decision version) is NP-hard.

NP-hardness in Other Settings We used a different kernel in
the reduction for the sake of simplicity. We note that this kernel
approximates the linear kernel and the proof can be adapted. The
k-means problem, where one uses squared Euclidean distance in-
stead of the Euclidean distance, is also known to be NP-hard. Fur-
thermore,M ·(1−‖p−q‖2/M) approximates Gaussian kernel with
appropriate choices ofC and Σ. Therefore one could prove the NP-
hardness for the Gaussian kernel as well, although the derivation
becomes more complicated.

3.2 The LocalSearchLocalSearchLocalSearch Algorithm
Starting with an arbitrary k-subset S of D, LocalSearch repeat-
edly makes local improvements—i.e., replacing a representative of
S with one of its “neighbors” in D—that increases the objective
function G(S) the most, until no more improvements can be made.

We use the same neighbor relation N defined in Section 2.2 on
pairs of elements in D. As a concrete example, if D is a set of
d-dimensional integral points (as for WAC claims to be discussed
in Section 4.1), it is natural to define two points (x1, . . . , xd) and
(x′1, . . . , x

′
d) to be neighbors iff

∑d
i=1 |xi−x

′
i| = 1. Given a set of

representatives S, LocalSearch considers another set S′ as a candi-
date for local improvement iff S′ = S \{s}∪{s′} for some s ∈ S
and s′ ∈ N(s). Let candidates(S) denote set of candidates for im-
proving S. Given a initial set S of k representatives, LocalSearch
works as follows:
• Repeat until return:

a. Find Snew ← arg maxS′∈candidates(S)G(S′).
b. If G(Snew) ≤ G(S), return S. Otherwise, S ← Snew.

Evaluating the objective function G for a given set of k represen-
tatives takes O(k|D|) time, where we compute the impact of each
representative on each element of D. Each step of LocalSearch in-
volves evaluating G over all candidates in candidates(S). For the
concrete example of N over d-dimensional integral points above,
each element has O(d) neighbors, so |candidates(S)| = O(kd).
Hence, the overall complexity is O((# iterations) · k2d|D|).

While LocalSearch will always find a locally optimal solution,
it can (and will likely) miss the globally optimal solution. We can
run LocalSearch multiple times, each time with a different, ran-
domly selected set of k representatives. Standard techniques such

797

as simulated annealing can help, but a key concern remains that a
large number of runs may be required to produce high-quality so-
lutions for complex surfaces that arise in practice (as we shall see
in experiments in Section 4).

3.3 The EMEMEM Algorithm
Our next approach applies the expectation-maximation (EM) tech-
nique [4]. Intuitively, EM alternates between two steps: a) given
the current set S of k representatives, we assign each element of D
to its best representative in S (one with the largest impact); b) given
the current assignment of elements in D into k “clusters,” we pick
the best representative for each cluster (one that would generate the
highest weighted total impact for the cluster).3 Given an initial S,
EM works as follows:

• Repeat until return:

a. Partition D into clusters {DS(s)}s∈S (Eq. 3).
b. For each cluster DS(s), find new representative newrep(s) =

arg maxs′∈D
∑
p∈DS(s) g(p) · φs′(p).

c. Snew ← {newrep(s) | s ∈ S}. If S = Snew, return S.
Otherwise, S ← Snew.

In (a), partitioning D into clusters takes O(k · |D|) time—it in-
volves computing the impact of each of the k representatives on
each element p ∈ D, and then for each p picking the representative
with the maximum impact on p. In (b), for each cluster, finding
the best representative involves enumerating every possible candi-
date s′, and evaluating

∑
p∈DS(s) g(p) · φs′(p) for each s′. The

time complexity to process each cluster is O(|D| · |DS(s)|). Sum-
ming over all clusters, we get a time complexity ofO(|D|2) for (b).
Overall, the cost of EM is dominated by (b), and the total time com-
plexity is O((# iteration) · |D|2).

Like LocalSearch, the quality of the solution by EM can be af-
fected by the initial choice of S. Thus, in practice, we run EM
multiple times, each time with a different, randomly selected set of
k representatives.

Compared with LocalSearch, EM steps are more expensive, and
does not guarantee local optimality. However, our experiments
show that when the number of runs is accounted for, EM can find
solution with equal or better quality than LocalSearch within the
same time frame; see Section 4 for details.

3.4 The GreedyGreedyGreedy Algorithm
An obvious drawback of the previous two algorithms is their lack
of guarantee on the (global) optimality of their solutions. We now
present a greedy algorithm capable of producing a solution that is
at least (1 − 1/e) ≈ 62% of the optimal in terms of the objec-
tive function value. In the following, we first sketch out a basic
version of Greedy, then show its approximation ratio, and finally,
discuss techniques for improving its efficiency that culminate in an
improved version of the algorithm called Greedy+.

Greedy starts out with an empty solution set S0 = ∅. In the
(i+ 1)-th step, Greedy greedily adds one more representative s to
grow the solution from Si to Si+1. This representative s is chosen
as the remaining unpicked element that maximizes the objective
function G(Si ∪ {s}). Greedy returns Sk after k steps.

3Weighted clustering algorithms often use the expectation-maximation
technique as well. As explained in Section 2.1, the key difference lies in
the criteria for assigning elements to clusters and picking representatives
for clusters. Weighted clustering only considers distances and weights (val-
ues) of elements, while we also consider the values of representatives. This
difference also leads to a subtlety: when we look for the best representative
for a cluster, we look beyond elements within the cluster for candidates, as
it is possible for the best representative to be outside the current cluster.

Choosing the representative in each step in a straightforward
manner takes O(|D|2) time, so the overall complexity of Greedy
is O(k|D|2). In more detail, each step considers O(|D|) candi-
dates. For each candidate s, we need to evaluate G(Si ∪ {s}). By
remembering ΦSi(p) for each element p ∈ D, we can easily com-
pute ΦSi∪{s}(p) in constant time. Therefore, it takes O(|D|) time
to evaluate G(Si ∪ {s}) for a given s (and to update ΦSi(p) to
ΦSi+1(p) for each p once s is chosen).

To establish the quality of solution by Greedy, we first show the
submodularity [15] and monotonicity of the objective function G.
(Note that there are other equivalent definitions of submodularity;
we use only one below.)

Definition 1 (Submodularity). Let Ω be a set. A set function f :
2Ω 7→ R, where 2Ω denotes the power set of Ω, is said to be sub-
modular if for all X ⊆ Ω and x1, x2 ∈ Ω \X , we have

f(X ∪ {x1}) + f(X ∪ {x2}) ≥ f(X ∪ {x1, x2}) + f(X).

Lemma 2. G is submodular.

Proof. We need to show that for all S ⊆ D and s1, s2 ∈ D \ S:

G(S ∪ {s1}) + G(S ∪ {s2}) ≥ G(S ∪ {s1, s2}) + G(S).

Consider P1 = DS∪{s1}(s1) and P2 = DS∪{s2}(s2). First
of all, it is clear that for all p ∈ D \ (P1 ∪ P2), ΦS∪{s1}(p) =
ΦS∪{s2}(p) = ΦS∪{s1,s2}(p) = ΦS(p), i.e., including either or
both of s1 and s2 would not change the contribution of p to the
objective function G.

For p ∈ P1 ∪ P2, we have

max
i=1,2
{ΦS∪{si}(p)} = ΦS∪{s1,s2}(p),

min
i=1,2
{ΦS∪{si}(p)} ≥ ΦS(p).

Adding up the equality and the inequality above, we have

ΦS∪{s1}(p) + ΦS∪{s2}(p) ≥ ΦS∪{s1,s2}(p) + ΦS(p).

Summing the inequality above for all p ∈ D, we get

G(S ∪ {s1}) + G(S ∪ {s2}) ≥ G(S ∪ {s1, s2}) + G(S).

Hence G is submodular.

Lemma 3. G is monotone, i.e., for all S1, S2 ⊆ D such that S1 ⊆
S2, we have G(S1) ≤ G(S2).

The proof for Lemma 3 is trivial and thus omitted.
It was shown in [13] that a greedy algorithm provides a (1−1/e)-

approximation for maximizing a monotone submodular set func-
tion with cardinality constraint. The greedy algorithm is defined
as growing the solution set by picking its elements one at a time,
namely the one that provides the maximum marginal contribution
to the maximization objective. Greedy is an instantiation of this
algorithm for the k-DHR problem.

Theorem 1. Let S∗ be the optimal solution to the k-DHR problem,
and SG be the solution by Greedy, we have

G(SG) ≥
(

1− 1

e

)
· G(S∗).

Note that this result holds for any choice of the impact kernel
(or the distance function that it uses), because submodularity and
monotonicity of G are inherent to the formulation of k-DHR and
do not depend on K (our proofs of Lemmas 2 and 3 only uses the
fact that ΦS(p) maximizes φs(p) over all s ∈ S).

798

3.5 From GreedyGreedyGreedy to Greedy+Greedy+
Greedy+

Next, we present a number of techniques for improving the effi-
ciency of Greedy, by utilizing the properties of the objective func-
tion and the solution set.

Lazy Update Not all elements are promising candidates for the
solution set. For example, within a same neighborhood in D, ele-
ments with higher values are more promising than those with lower
values. However, the basic Greedy considers all elements as possi-
ble candidates indiscriminately. Motivated by this observation, we
introduce the lazy update technique, which utilizes results remem-
bered from previous steps to prioritize candidates for considera-
tion, making it possible to choose the next representative without
exhaustively re-examining all candidates.

Consider the (i+1)-th step. At this point we have already chosen
Si. For a remaining candidate p ∈ D \ Si, let ∆p,i denote the
extra utility that would be obtained by choosing p as the (i+ 1)-th
representative; i.e., ∆p,i = G(Si ∪ {p}) − G(Si). The (i + 1)-th
representative to be chosen is arg maxp∈D\Si

∆p,i.

We use a priority queue Q to record the extra utilities we com-
puted during the algorithm. Each entry ofQ has the form 〈p, j,∆p,j〉,
and records the extra utility of candidate pwe computed after step j
of the greedy algorithm. At any time, Q contains at most one entry
for each p, recorded when p’s extra utility was computed the last
time. We prioritize Q based on its entries’ extra utility component.

Observe that for any p, ∆p,i1 ≥ ∆p,i2 for any i1 < i2. In
other words, the earlier a candidate p is added to the solution set,
the more p can contribute to G. Therefore, in the (i + 1)-step,
the (potentially stale) extra utility recorded for p in Q serves as an
upper bound on ∆p,i. To choose the (i + 1)-th representative, we
repeatedly retrieve the top entry 〈p, j,∆p,j〉 from Q. If j = i, we
know p should be chosen. Otherwise, we update ∆p,j to ∆p,i, and
reinsert the updated entry 〈p, i,∆p,i〉 into Q.

To update ∆p,j to ∆p,i, we only need to consider elements in
DSj∪{p}(p)

⋂(⋃
s∈Si\Sj

DSi(s)
)

. Intuitively, there is no need
to consider elements outside DSj∪{p}(p) because they did not even
contribute to ∆p,j and therefore will not contribute to ∆p,i. There
is also no need to consider elements outside

⋃
s∈Si\Sj

DSi(s) be-
cause their contributions to ∆p,j are unaffected by changes from
Sj to Si and therefore remain the same to ∆p,i. Thanks to the
geometric structure of the max-impact regions, such elements can
be enumerated efficiently without scanning the entire D. See our
technical report [17] for additional details.

To initialize Q at the beginning of the greedy algorithm, let Q =
{〈p,−1, g(p) ·Kp(p) ·G〉 | p ∈ D}, where G =

∑
q∈D g(q).

The extra utility component here is a safe upper bound on ∆p,0,
because ∆p,0 = G({p}) =

∑
q∈D g(q) · g(p) ·Kp(q) ≤ g(p) ·

Kp(p)
∑
q∈D g(q) = g(p)·Kp(p)·G.

Overall, the lazy update technique can potentially save us a lot
of work on considering many low-priority candidates, such as those
with low values and those close to existing representatives.

Domains with Non-Representing Subspace Recall from Sec-
tion 2.2 that in practice, some domains have elements that are mu-
tually non-representable. We now show how to improve the greedy
algorithm for the case where D ⊆ P = PR × PNR and the non-
representing subspace PNR is non-null. The high-level intuition is
the following. Since elements that differ in PNR cannot represent
each other, we can group elements by their projections on PNR and
process each group using an instance of Greedy. We execute these
Greedy instances in parallel, requesting each instance to generate
the next representative when needed.

Formally, forX ⊆ P and p̌ ∈ PNR, letXp̌ = {p ∈ X | πNR(p) =
p̌} denote the subset ofX whose projection onto PNR is p̌. The defi-
nition of K using KR for domains with non-representing subspaces
in Section 2.2 leads readily to the following:

Lemma 4. Let S∗ be the optimal solution to k-DHR on D ⊆ PR×
PNR. For any p̌ ∈ PNR where Dp̌ 6= ∅, S∗p̌ is the optimal solution to
the |S∗p̌ |-DHR problem on the domain Dp̌.

The above lemma allows us to solve the k-DHR problem on the
entire domain D as independent sub-problems of kp̌-DHR on sub-
domains Dp̌, except that the choice of kp̌ for each p̌ is not known
a priori. However, this issue can be addressed by the incremental
nature of Greedy. We run an instance of Greedy for each Dp̌, and
we pick our next (global) representative to be the best among the
next (local) representative chosen by each of the Greedy instances.
Local representatives that are not picked remain in consideration
when we pick the next global representative.

Suppose there are m distinct projections of D on PNR, leading
to m partitions of D of similar sizes. The overall time complexity
of the above strategy is O(k+m

m2 |D|2), where picking a next local
representative takes O(|D|

2

m2) time. A total of k + m local repre-
sentatives will be computed, including one extra representative for
each of the m partitions, on top of the k representatives needed by
the global solution.
Limiting the Set of Candidates The complexity of Greedy de-
pends heavily on the number of candidates considered in each step.
Even with lazy update, we are not ruling out the possibility for any
element of D to be in the solution. To further improve efficiency,
however, we consider the approach of limiting the set of candidates
from the outset. One simple strategy is to choose as candidates all
local maxima of the surface (defined using the same neighbor rela-
tion N introduced in Section 2.2). A disadvantage of this strategy is
that it does not permit flexible control of the number of candidates.

Another strategy is weighted sampling, where we choose each
element p ∈ D as a candidate with probability proportional to g(p);
we can control the number of candidates. (If D has a non-null non-
representing subspace, we also observe the constraint that we pick
at least one candidate from each sub-domain Dp̌.) To reduce the
chance that a particular set of candidates leads to a poor solution,
we can run the greedy algorithm multiple times, each time with a
different random sample as the set of candidates. We experimen-
tally evaluate these strategies in Section 4.
The Combined Algorithm In Algorithm 1 we present Greedy+,
the improved version of Greedy that incorporates all techniques
described above. This algorithm is given a candidate set C ⊆ D.
To handle a domain with a non-null representing subspace PNR, we
create, for each distinct projection p̌ on PNR, a priority queue Qp̌
(Lines 2–4), to run an instance of the greedy algorithm with lazy
update to solve the sub-problem on Dp̌. We then use a merge queue
M for storing the next local representative from each sub-problem
and for choosing the next best global representative. The compu-
teUpdate subroutine for updating ∆p,j to ∆p,i is given at the end
of Algorithm 1; the enumeration of points on Lines 22 and 25 are
performed efficiently using the power diagram structure of max-
impact regions (see [17] for details).

3.6 Discussion
Among LocalSearch, EM, and basic Greedy, LocalSearch is clearly
the fastest with each of its steps (O(k2d|D|) vs. O(|D|2) for EM
and Greedy). On the other hand, Greedy has a fixed number of
steps (k). More importantly, Greedy deterministically produces a
solution with theoretically guaranteed quality, so only one run is
needed. In contrast, LocalSearch and EM require multiple runs

799

Algorithm 1: Greedy+(g,D, k,C).

1 Ď← {πNR(p) | p ∈ D};
2 foreach p̌ ∈ Ď do
3 Qp̌ ← {〈p,−1, g(p)·Kp(p)·G〉 | p ∈ Cp̌},

where G =
∑
q∈Dp̌

g(q),
as a priority queue organized by each entry’s third component;

4 kp̌ ← 0; Sp̌,0 ← ∅;

5 M ← {〈p̌, Qp̌.removeMax()〉 | p̌ ∈ Ď}, as a priority queue
organized by the third component within each entry’s second component;

6 S ← ∅;
7 for i← 1 to k do
8 while true do
9 if M.empty() then break;

10 〈p̌, 〈p, j,∆p,j〉〉 ←M.removeMax();
11 if j = kp̌ then
12 Sp̌,kp̌+1 ← Sp̌,kp̌ ∪ {p}; S ← S ∪ {p};
13 else
14 Qp̌.insert(computeUpdate(〈p, j,∆p,j〉, kp̌,Dp̌, Sp̌,i, Sp̌,kp̌));

15 if ¬Qp̌.empty() then
16 M.insert(〈p̌, Qp̌.removeMax()〉);

17 if j = kp̌ then
18 kp̌ ← kp̌ + 1; break;

19 return S;
20 def computeUpdate(〈p, j,∆p,j〉, i,D, Sj , Si) begin

// note that D, Sj , Si here may refer to a sub-problem
21 if j = −1 then
22 ∆p,i =

∑
q∈DSi∪{p}(p) g(q) · φp(q);

23 else
24 ∆p,i ← ∆p,j ;
25 foreach q ∈ DSj∪{p}(p)

⋂(⋃
s∈Si\Sj

DSi(s)
)

do
26 ∆p,i ← ∆p,i − g(q)·

(
min{ΦSi(q), φp(q)} − ΦSj (q)

)
;

27 return 〈p, i,∆p,i〉;

with different seeds. Greedy+ makes each step of Greedy much
faster, especially by using a size-limited candidate set. The trade-
off, however, is that solution quality becomes susceptible to the
choice of the candidate set (just as LocalSearch and EM are af-
fected by the choice of seeds). Thus, multiple runs of Greedy+

may be needed. We will examine this trade-off closely with exper-
iments in Section 4.

A nice feature of LocalSearch is that it always finds a locally
optimal solution. Note that we can give this advantage to other al-
gorithms as well, simply by feeding their solutions to LocalSearch
as seeds and let LocalSearch improve them to local optima. Since
LocalSearch steps are fast, this post-processing step adds very little
overhead.

Compared with LocalSearch and EM, Greedy and Greedy+ also
hold advantages on the important practical issues of helping users
choose appropriate k, and handling domains with mutually non-
null non-representing subspace. We discuss these issues next.

Choosing kkk The formulation of k-DHR assumes that k is given,
but in practice, given an input surface, it can be tricky for users
to determine the value of k. One approach is to look for signs
in the solutions indicating that the given k is too big. Namely,
suppose for some representative s in the solution set S, s 6∈ DS(s).
In other words, s, as a representative, can in fact be represented
better by another representative. If we can find such an s, that
means we are picking too many representatives. For Greedy and

Greedy+, since the algorithms effectively produces solutions for
k = 1, 2, . . . incrementally, we can simply perform the test at the
end of every step and terminate as soon as we find k to be too big.
For LocalSearch and EM, however, we can perform this test only
at the end of the algorithm; if k is deemed too big, we have to run
the algorithm from scratch with a smaller k.

A more methodical approach for choosing k, which we apply in
Section 4, is to observe how the value of the objective function G

improves as we increase k. If further increases in k would lead to
only small marginal improvement, we will have found a good value
for k. Again, the incremental nature of Greedy and Greedy+ make
them ideal for implementing this approach. LocalSearch and EM
will be much more expensive to use.

Handling Domains with Non-Representing Subspace A non-
null non-representing subspace PNR is problematic for LocalSearch,
because poor seeding can be particularly detrimental. Recall from
Section 3.5 that we can partition elements of D by their projection
onto PNR. Because elements from different partitions are not neigh-
bors of each other, if LocalSearch starts with k seed representa-
tives from a specific subset of the partitions, it will never consider
any representatives from other partitions or change the number of
representatives allocated to each partition. A huge number of inde-
pendent runs may be needed to land on a reasonable solution.

EM also has trouble with a non-null PNR. During the execution of
EM, the current set S of representatives likely come from a small
subset of the partitions of D; elements outside these partitions have
no preference in attaching themselves to any representative s ∈ S
because s always has zero impact on all of them. Although more
flexible than LocalSearch, EM’s search is less directed and less
effective than Greedy. Greedy+, with its optimization for domains
with non-representing subspace, is even more efficient.

4 Experiments
We begin this section by describing the real-life application scenar-
ios and datasets that we evaluate k-DHR and our algorithms with.
Then, Section 4.2 focuses on assessing the k-DHR problem formu-
lation and the usefulness of its solutions. Section 4.3 focuses on
evaluating the efficiency of our proposed algorithms.

All algorithms were implemented in C++. We conducted all ex-
periments on a machine with Intel Core i7-2600 3.4GHz processor
and 7.8GB of memory.

4.1 Application Scenarios and Datasets
In [16], a factual claim based on structured data is modeled as a
parametrized query, where the parameters control the context or
particular view of the data from which the claim draws its conclu-
sion. The goal of computational lead-finding is to find, given a
dataset and a parametrized query template, settings of parameters
that lead to interesting claims. k-DHR helps us find k claims that
are interesting (high-utility), diverse, and representative. In this set-
ting, D is set of all possible parameter settings, and g can be based
on the query result as well as the sensibility of the parameter set-
ting (see [16] for details). In the following, we describe two types
of claims studied in [16], namely the Window Aggregate Compari-
son (WAC) claims and the Time Series Similarity (TSS) claims. We
then describe the datasets that we use to evaluate the application of
k-DHR to the above two claim types.

Window Aggregate Comparison (WAC) Claims A WAC claim
is defined as a query q over a sequence of n positive numbers
x1, x2, . . . , xn (e.g., New York City adoption totals by year) and
parametrized by three variables: 1) the window length w, 2) the
anchor time t, and 3) the lead d. The query compares the sum of

800

values in two windows of the same length w with distance d be-
tween their index positions in the input sequence, where the second
window ends at position t; i.e., q(w, t, d) =

(∑
i∈(t−w,t] xi

)
/(∑

i∈(t−d−w,t−d] xi
)

.
For the k-DHR problem, D in general consists of points of N3 in

a convex polytope constrained byw ∈ [1, n−1], t ∈ [w+1, n], and
d ∈ [1, t−w]. For experiments in this paper, we fixw = 1, because
otherwise it would be difficult to visualize the surface and assess
the usefulness of solutions intuitively. Hence, D becomes a set
of O(n2) 2D integral points, where the non-representing subspace
is null. For the elevation function g in k-DHR, we start with q and
normalize its range to [0, 1] using the logistic function parametrized
by the standard deviation of q on D (see [17] for details).

Time Series Similarity (TSS) Claims A TSS claim is a query
q over a collection of m time series X1, X2, . . . , Xm of the same
length n (e.g., legislators’ voting records in the US Congress). The
query compares the similarity between two of the m sequences
within an interval [a, b]; i.e., q(u, v, a, b) = sim[a,b](Xu, Xv).
For the k-DHR problem, the full D is 4-dimensional and has size
O(m2n2). To obtain the elevation function g for k-DHR, we start
with q and again normalize its range to [0, 1].

In practice, we are often given a time series Xu of interest and
only interested in finding claims comparing Xu with some other
Xv; furthermore, claims involving different Xv’s do not represent
each other. Therefore, in this case, D has size O(mn2) and a non-
representing subspace with attribute v. In other situations, we may
be given both Xu and Xv , and only interested in finding claims
comparing them over different time periods. In that case, D be-
comes structurally the same as that of WAC, i.e. O(n2) 2-d integral
points with null non-representing subspace.

Datasets We use three real-life datasets in conjunction with the
two claim types above for evaluation.

UNEMP This dataset is a small time series of US yearly un-
employment rate,4 from 1948 to 2012 (n = 65). It is used for
generating a small surface for WAC claims used for intuitively as-
sessing solution quality in Section 4.2. A representative chosen by
k-DHR for this surface should translate into a robust factual claim
quoting an increase in unemployment rate between two years in
history. To make interpretation easier, we let t in WAC start at
1948 (instead of 1), and we fix w = 1 as discussed earlier. To
help visualization, we further restrict D to a rectangular region
{(t, d) | t ∈ [1981, 2012] ∧ d ∈ [1, 33]} (without this restriction
D would have been triangular, which is awkward to visualize).

STOCK This dataset contains the price history of the Yahoo!
stock, with daily prices from January 1996 to July 2016 (with 253
trading days a year). It is suitable for generating WAC claims. Fix-
ing w = 1, we define D by varying the range of t and d as follows.
We restrict the anchor time t to be within the last ` years of the time
series, and d to the range (0, `]. The size of D is hence 2532 · `2.
By varying `, we get D of different sizes, which we use to test the
scalability of our algorithms.

VOTE This database of US Congressional voting records con-
tains a time series of votes for each of the US legislators. We focus
on votes in the House from 2001 to 2014 by one of the m = 153
legislators whom we consider “recognizable” (with least one ap-
pearance on Sunday talk shows). We restrict the time granularity
of comparison to whole months, resulting in n = 154. We consider
two variants of the problem of generating TSS claims pertaining to
former House Representative James Marshall (by fixing u to him):

4Derived by taking the average monthly unemployment rate data by calen-
dar years. http://data.bls.gov/timeseries/LNS140000000

2 4 6 8 10 12 14 16 18 20

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
D

(S
)

/
G

D
(S

2
0
)

C=1

C=1/2

C=1/4

(a) (Normalized) G(Sk) vs. k

2 4 6 8 10 12 14 16 18 20

k

0

10

20

30

40

50

60

70

80

90

100

k
 /

1
 (

%
)

C=1

C=1/2

C=1/4

(b) ∆k/∆1 vs. k
Figure 4: How Greedy solution quality on UNEMP improves with
k, for different values of kernel parameter C.

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33d

0.17

0.50

0.99

(a) C = 1/2, k = 4

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33d

0.17

0.50

0.99

(b) C = 1, k = 6; last two in green
Figure 5: Greedy solutions on UNEMP under different values of
kernel parameter C.

• VOTE-PELOSI: By further fixing v to former House Speaker
Nancy Pelosi, we get a D with dimensions (a, b) and total size(
n
2

)
≈ 1.2× 104; the non-representing subspace is null.

• VOTE-ALL: By allowing v to vary, we get a D with dimensions
(v, a, b), where the non-representing subspace involves dimen-
sion v. D effectively consists of m slices of 2-d surfaces, so the
total size is m

(
n
2

)
≈ 1.8× 106.

For all experiments, we use a Gaussian-Mahalanobis impact ker-
nel with identity covariance matrix, unless specified otherwise.

4.2 Case Study: WAC Claims on UNEMP
We use this case study to assess the flexibility and effectiveness of
the k-DHR problem formulation. We use Greedy for k-DHR in ex-
periments for this case study, because Greedy is deterministic and
has provable guarantee on its solution quality (we will study its effi-
ciency as well as other algorithms for k-DHR later in Section 4.3).

Choosing kkk, and Effect of Kernel Parameter CCC We first apply
the strategy described in Section 3.6 to choose the approximate k
for UNEMP. We run Greedy for 20 steps, which incrementally pro-
duces solutions S1, S2, . . . , S20 to k-DHR for k = 1, 2, . . . , 20.
Figure 4a shows the solution quality as measured by the value of
the objective function G(Sk) (normalized by G(S20)), while Fig-
ure 4b shows the marginal utility of each additional representa-
tive, as a percentage of the utility of the first representative (i.e.,
∆k/∆1, where ∆k = G(Sk) − G(Sk−1). We see that in general,
the overall solution quality increases with k, but marginal improve-
ment decreases. A good value of k can be chosen such that the next
greedily selected representative gives significantly lower marginal
improvement.

These figures also show the behavior under three different set-
tings of the impact kernel parameter: C = 1, 1/2 and 1/4. For
C = 1/2, as we can see from Figure 4b, the marginal contribu-
tion ∆5 of the fifth representative is only 60% of ∆1 (as opposed
to > 80% by the fourth representative); therefore, k = 4 would
be appropriate for C = 1/2, which gives the solution shown in
Figure 5a. In contrast, for C = 1, Figure 4b shows that k = 4

801

http://data.bls.gov/timeseries/LNS140000000

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33d

0.17

0.50

0.99

Figure 6: Solution to k-DHR by
Greedy under geodesic distance;
other settings same as Figure 5a.

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 x

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
y

0.17

0.50

0.99

(a) MMR

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 x

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
y

0.17

0.50

0.99

(b) Graph-based diversification

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12 t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33d

0.17

0.50

0.99

(c) Weighted k-means
Figure 7: Four representatives chosen from UNEMP by previous methods.

is not enough, as the next representative still gives good marginal
improvement. This observation can be confirmed intuitively in Fig-
ure 5b, where the first four representatives, marked by black dots,
are not enough to cover all high-value regions of the surface; the
next two representatives, marked by green dots, continue to im-
prove the solution.

Recall from Section 2.1 that a smaller C indicates a stronger
preference towards diversity. Indeed, we see in Figure 4 that a
smaller C translates to faster rate of decrease in marginal improve-
ment, because a stronger diversity requirement implies that fewer
representatives are needed. Figure 5 also shows the effect of C
clearly: selection of representatives is intuitively more diverse in
Figure 5a than in Figure 5b (even if we just compare the first four
representatives chosen).

In the ensuing discussion, we fix C = 1/2 and k = 4. To give a
better sense of the usefulness of the k-DHR solution, we translate
the four representatives to plain English:
• The unemployment rate in 1983 increased by as much as 169.8%

compared to that of 1968.
• The unemployment rate in 1983 increased by as much as 228.2%

compared to that of 1953.
• The unemployment rate in 1992 increased by as much as 110.5%

compared to that of 1968.
• The unemployment rate in 2010 increased by as much as 142.6%

compared to that of 2000.
Kernel with Geodesic Distance In Section 2.2 we discussed the
use of geodesic instead of Mahalanobis distance in the impact ker-
nel. Now we see how it affects the solution quality for UNEMP.
Figure 6 shows the 4-DHR representatives under geodesic distance.
Compared with Figure 5a, which was obtained under Mahalanobis
distance for the same setting, we see only very minor differences in
their choices of representatives. We also see that geodesic distance
is able to find boundaries of max-impact regions that better match
the nuanced features of the surface, but in this case they have little
impact on the solution. There are cases where the merit of geodesic
distance is more noticeable; we show such a case with a synthetic
surface in [17].

Another consideration is algorithm efficiency. With geodesic
distance, we experimented with two implementation options:
• Use O(|D|) extra space, and compute pairwise geodesic dis-

tance in each step inO(|D|2 log|D|) time. For UNEMP, Greedy
finished in 11.52 seconds with this option.
• Use O(|D|2) extra space, and precompute pairwise geodesic

distance in O(|D|2 log|D|) time. The time complexity of each
Greedy step remains O(|D|2). Greedy finished in 3.55 seconds
with this option.

In contrast, Greedy with Mahalanobis distance finished in 1.32 sec-
onds, significantly faster than with geodesic distance. For bigger

0 5 10 15 20

sample ratio (%)

1880

1900

1920

1940

1960

1980

2000

2020

Q
u

a
lit

y
 (

G
(S

K
))

weighted random sampling

local maxima

Figure 8: Effect of candidate
set on Greedy+ solution quality
(STOCK, ` = 5).

2 4 6 8 10 12 14 16 18 20

K

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e
 (

s
e

c
)

C=1

C=1/2

C=1/4

Figure 9: Effect of C on
Greedy+ efficiency (using all lo-
cal maxima as candidates) on
VOTE-ALL.

problems, the efficiency advantage of Mahalanobis distance be-
comes even greater.

Comparison with Previous Methods Next, we apply the three
previous methods discussed in Section 1—MMR, graph-based di-
versification, and weighted k-means clustering—to UNEMP for
k = 4. MMR and graph-based diversification require parameter
tuning. For MMR, we chose its parameter λ to be the smallest value
such that the marginal contribution of the (k+ 1)-th (i.e., 5th) rep-
resentative is non-negative. For graph-based diversification, there
is no obvious way to choose the distance threshold δ automatically
for a complex surface. We first ran weighted k-means to get a rough
idea of how close the representatives are, and then set δ to be the
smallest distance between two cluster centroids.

Figures 7 shows the solutions by the three previous methods. In
Figures 7a and 7b, we see that both MMR and graph-based diversi-
fication picked diverse representatives with high individual values,
but did a poor job with representativeness. Some of their choices,
e.g., those located in the upper-right corner, do not represent a large
high-value region. In Figure 7c, we see that weighted k-means
failed to produce a meaningful partitioning for this fairly complex
surface, and failed to pick representatives with high utility. In com-
parison, the solution to k-DHR in Figure 5a or 6 are intuitively
much better than previous methods in achieving utility, diversity,
and representativeness simultaneously.

4.3 Algorithm Effectiveness and Efficiency
For the purpose of evaluating algorithm effectiveness and efficiency,
we use the larger VOTE and STOCK datasets, which induce larger
input surfaces to k-DHR. Before embarking on the comparison of
all k-DHR algorithms, we will first investigate the effect of candi-
date set generation on Greedy+, and the effect of kernel parameter
C on algorithm efficiency.

Choosing Candidates for Greedy+++ Section 3.5 discussed two
possible ways of using a small subset of D as the initial candidate
set for Greedy+: 1) using all local maxima and 2) weighted ran-
dom sampling. Figure 8 shows how these two methods compare

802

2 4 6 8 10

k

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Q
u

a
lit

y
 (

G
(S

k
))

Greedy

Greedy+

EM

(a) Effectiveness (VOTE-PELOSI)

2 4 6 8 10

k

0

50

100

150

200

250

300

T
im

e
 (

s
e

c
)

Greedy

Greedy+

EM

(b) Efficiency (VOTE-PELOSI)

5 10 15 20 25

k

0

0.5

1

1.5

2

Q
u

a
lit

y
 (

G
(S

k
))

Greedy

Greedy+

EM

(c) Effectiveness (VOTE-ALL)

5 10 15 20 25

k

0

1000

2000

3000

4000

T
im

e
 (

s
e

c
)

Greedy

Greedy+

EM

(d) Efficiency (VOTE-ALL)
Figure 10: Performance of k-DHR algorithms on VOTE as k varies.

2.5k 10k 23k 41k 64k

|D|

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
u
a
lit

y
 (

G
(S

K
))

Greedy

Greedy+

EM

(a) Effectiveness

2.5k 10k 23k 41k 64k 256k 576k 1.6M 4M 6.4M

|D|

0

0.5

1

1.5

2

T
im

e
 (

s
e
c
)

10
4

Greedy

Greedy+

EM

(b) Efficiency
Figure 11: Performance of k-DHR algorithms when
varying the size of input data (derived from STOCK).

0 200 400 600 800 1000

Time (sec)

0

0.05

0.1

0.15

0.2

Q
u

a
lit

y
 (

G
(S

K
))

50 runs of Greedy+

20 runs of EM

57 runs of Local Search

(a) VOTE-PELOSI

0 500 1000 1500 2000

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
u

a
lit

y
 (

G
(S

K
))

70 runs of Greedy+

20 runs of EM

426 runs of Local Search

(b) VOTE-ALL

0 1000 2000 3000 4000 5000

Time (sec)

0

5

10

15

Q
u

a
lit

y
 (

G
(S

K
))

310 runs of Greedy+

20 runs of EM

315 runs of Local Search

(c) STOCK (` = 1)
Figure 12: Best solution quality vs. time spent for LocalSearch, EM, and Greedy+

on different datasets (k = 10).

in terms of solution quality, as measured by the objective function
value. The dataset is STOCK with ` = 5, for which the size of D
is 2532 · 52 ≈ 1.6× 106. This surface is very noisy; about 14% of
the elements in D correspond to local maxima. For weighted ran-
dom sampling, we vary the sample size between 0.1% and 20% of
|D|. Each point in the plot is the average over 5 independent runs.
Not surprisingly, the solution quality improves as the sample size
increases, and becomes comparable to that using all local maxima
starting around 10%. For the smaller VOTE-PELOSI and VOTE-
ALL surfaces, it turns out a much lower sample ratio would suffice
(see [17] for results). In ensuing experiments, we fix the candi-
date set size to be 1% of |D| for Greedy+ with weighted random
sampling, unless specified otherwise.

Effect of Kernel ParameterCCC on Algorithm Efficiency In Sec-
tion 4.2 we have seen how C controls the diversity of k-DHR so-
lutions. Now, we examine its effect on algorithm efficiency. In
Figure 9, we show the running time for the first k steps of Greedy+

(using all local maxima as candidates) for VOTE-ALL, under three
different settings of C. We see that larger C leads to faster running
times. There is a natural explanation. Recall from Section 2.1 that
a smaller C indicates a stronger preference towards diversity, with
representatives having larger impacts on faraway elements, which
intuitively makes the problem harder. In the case of Greedy+ with
lazy updates, a smaller C basically leads to more updates being
triggered.

Comparison of Algorithms when Varying kkk We compare the
performance of EM, Greedy, and Greedy+ on VOTE-PELOSI and
VOTE-ALL, as we vary k. For all these algorithms, we apply Lo-
calSearch as a post-processing step, as discussed in Section 3.6
(we will study how LocalSearch performs as a standalone algo-
rithm at the end of this section). Greedy is deterministic. For EM
and Greedy+, we perform 20 runs for each problem setting with
random seeding (we will further study the relationship between the
number of runs and solution quality at the end of this section).
In the effectiveness (as measured by solution quality) plots (Fig-
ures 10a and 10c), each plot point for EM and Greedy+ shows the
average solution quality over the 20 runs, plus an error bar showing
the minimum and maximum qualities among the runs. In the effi-
ciency (as measured by running time) plots (Figures 10b and 10d),

each plot point for EM and Greedy+ shows the average running
time per run, plus an error bar representing the standard deviation.

On VOTE-PELOSI, in terms of effectiveness, Figure 10a shows
that the best solution qualities of EM and Greedy+ are compara-
ble, and slightly better than that of Greedy. But among the multiple
runs, Greedy+ is more consistent than EM, as shown by narrower
error bars. In terms of efficiency, Figure 10b shows that the run-
ning time of Greedy increases linearly in k. EM is slightly slower
than Greedy when k is small, but becomes faster than Greedy when
k increases, because its number of steps required for convergence
does not increase linearly in k. Greedy+ is clearly much faster than
both Greedy and EM.

Next, consider the larger, more complex surface VOTE-ALL with
a 1-d non-representing subspace. In term of effectiveness, Fig-
ure 10c shows that while Greedy and Greedy+ remain compara-
ble, EM produces notably poorer solutions. The reason lies in the
difficulty of handling domains with non-representing subspace in
EM, as discussed in Section 3.6, which is not an issue for Greedy
or Greedy+. In terms of efficiency, Figure 10d shows that Greedy
is very slow because of the non-representing subspace, particularly
at the very first step. Greedy+ remains much faster than the other
two algorithms.

Overall, Greedy+ runs much faster than Greedy and EM while
producing solutions of comparable or better quality.

Comparison of Algorithms when Varying Input Size We use
STOCK to test the scalability of the proposed algorithms as we vary
the input size. By letting ` = 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 5, 8, 10, we
generate ten 2-d surfaces of sizes 2.5k, 10k, 23k, 41k, 64k, 256k,
576k, 1.6M, 4.1M, and 6.4M. The non-representing subspace is
null here. Here, Greedy+ uses all local maxima as candidates, and
as Greedy, runs once for each problem setting; EM runs 20 times
per setting with random seeding. Again, LocalSearch is applied as
a post-processing step for all three algorithms.

In terms of effectiveness, Figure 11a compares the solution qual-
ities of the three algorithms for the five smaller input surfaces where
all three algorithms finished with 2 hours. As the input surfaces
differ, we normalize the objective function values the using that
achieved by Greedy. There is no observable difference between

803

Greedy and Greedy+, but the quality of EM decreases slightly as
the input size increases.

In terms of efficiency, Figure 11b shows that EM is faster than
Greedy, but neither managed to finish within 6 hours when the in-
put size goes beyond 254k. On the other hand, Greedy+ scales
much better than Greedy and EM, while generating solutions of
comparable or higher quality. On the largest surface of size 6.4M,
Greedy+ finished within 20 minutes. Note that we have not consid-
ered I/O-efficiency of our algorithms when the input does not fit in
memory, but it is possible to adapt Greedy+ such that it makes one
pass over its disk-resident intermediate data in each step. Other
techniques such as parallelization and surface simplification are
also interesting directions for future work.

Solution Quality vs. Time Spent While Greedy and Greedy+

with all local maxima as candidates are deterministic, LocalSearch
(running independently), EM, and Greedy+ with randomly sam-
pled candidates are non-deterministic and dependent on the initial
seeding of the solution or candidate set. In practice, we perform
multiple runs of these algorithms until we find a good solution or
run out of time, so it is important to understand how fast they are
able to improve over time. In Figure 12, we run LocalSearch, EM,
and Greedy+ repeatedly and record the best solution quality ob-
tained so far at a particular time. Each plot is thus a step function,
where each step up corresponds to the completion of a run that pro-
duced a new best solution.

On VOTE-PELOSI (Figure 12a), we see that the three algorithms
eventually converged to a similar quality. However, Greedy+ and
LocalSearch managed to squeeze in more runs within the time
limit, and converged faster than EM. On the larger, more complex
VOTE-ALL (Figure 12b), we see that Greedy+ not only converged
much faster, but also to a higher quality than EM and LocalSearch,
again because the difficulty of handling non-presenting subspace
for EM and LocalSearch as discussed in Section 3.6. On STOCK,
Greedy+ again converged fastest and to the highest quality among
the three algorithm, due to the much larger input size (as opposed to
non-representing subspace). In conclusion, Greedy+ can produce
equal or better solutions faster than LocalSearch and EM. For this
reason, Greedy+ is our algorithm of choice in practice.

5 Related Work
The lead-finding problem studied in this paper is closely related to
a large body of work on diversification of results for recommender
systems and top-k queries.

Top-k diversification As discussed in Section 1 and 4.2, MMR [2]
operates in an iterative and greedy fashion. Optimality was de-
fined as the trade-off between a candidate item’s relevance to the
query item (utility), and its relevance to existing solution items (di-
versity). [3] later built on MMR and studied the diversified top-k
problem over bounded regions.

The graph-based approach [14] uses a hard threshold to define
similar items, and force them to be mutually exclusive in the solu-
tion set as a way to ensure diversity.

As illustrated throughout this paper, while these two methods fo-
cus on the quality of solution points only, we consider the relation-
ship between the chosen representatives and other points, thus tak-
ing into account solution representativeness. We also took a more
flexible approach towards diversification.

Weighted clustering We have also compared the k-DHR prob-
lem with the popular weighted k-means clustering algorithm [11,
10]. We have shown that weighted k-means does not strive for
high-value representatives.

The classification of weighted clustering algorithms was studied
in [1]. Weighted k-means belongs to the class of weight sensitive
weighted clustering algorithms.
Diversification in recommender systems The utility-diversity
trade-off also frequently appears in recommender systems. Using
collaborative filtering, the trade-off can be represented as a linear
combination of two different probability re-distribution methods
[18]. Diversification is achieved by prefering “weak-ties”.
Spatial diversification Item relevance in recommender systems
can be regarded as item distance in a metric space, or parameter
space distance in our context. [7, 5] studied the problem of k-
Nearest Diverse Neighbor (kNDN) from a geometric perspective.

6 Conclusion
In this paper, we have studied the problem of finding diverse high-
quality representatives on surface data. We have shown that ex-
isting methods designed for diversified top-k do not account for
representativeness. Their diversify control also suffer from “no-
one-size-fit-all”. On the other hand, clustering methods, such as k-
means, do not aim at finding high-quality individuals to represent
high-value regions. We present the k-DHR problem that targets
all three aspects of good representatives on a surface, which takes
a different approach towards diversity. We show the advantage of
k-DHR over the other methods on both synthetic and real data.
References
[1] M. Ackerman, S. Ben-David, S. Brânzei, and D. Loker Weighted

clustering. AAAI, 2012, 858–863.
[2] J. Carbonell and J. Goldstein. The use of MMR, diversity-based

reranking for reordering documents and producing summaries.
SIGIR, 1998, 335–336.

[3] I. Catallo, E. Ciceri, P. Fraternali, D. Martinenghi, and M.
Tagliasacchi. Top-k diversity queries over bounded regions. TODS,
38(2), 2013.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal
Statistical Society Series B (methodological), 39(1):1–38, 1977.

[5] J. R. Haritsa. The KNDN problem: A quest for unity in diversity.
IEEE DEB, 32(4):15–22, 2009.

[6] M. Hasan, A. Kashyap, V. Hristidis, and V. J. Tsotras. User effort
minimization through adaptive diversification. SIGKDD, 2014,
203–212.

[7] A. Jain, P. Sarda, and J. R. Haritsa. Providing diversity in k-nearest
neighbor query results. PAKDD, 2004, 404–413.

[8] R. Kimmel, A. Amir and A. M. Bruckstein. Finding shortest paths on
surfaces using level sets propagation. PAMI, 17(6):635–640, 1995.

[9] R. Kimmel and J. A. Sethian. Computing geodesic paths on
manifolds. PNAS, 95(15):8431–8435, 1998.

[10] S. P. Lloyd. Least squares quantization in pcm. Info. Theory,
28(2):129–137, 1982.

[11] J. MacQueen. Some methods for classification and analysis of
multivariate observations. BSMSP, 1(14):281–297, 1967.

[12] N. Megiddo and K. J. Supowit. On the complexity of some common
geometric location problems. SIAM, 13(1):182–196, 1984.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of
approximations for maximizing submodular set functionsi.
Mathematical Programming, 14(1):265–294, 1978.

[14] L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results. VLDB,
5(11):1124–1135, 2012.

[15] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency,
volume 24. Springer, 2003.

[16] Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu. Toward
computational fact-checking. VLDB, 7(7):589–600, 2014.

[17] Y. Wu, J. Gao, P. K. Agarwal, and J. Yang. Finding diverse,
high-value representatives on a surface of answers. Technical report,
Duke University, 2016. http://db.cs.duke.edu/papers/
WuGaoEtAl-16-diverse_reprs.pdf.

[18] T. Zhou, Z. Kuscsik, J-G Liu, M. Medo, J. R. Wakeling, and Y-C
Zhang. Solving the apparent diversity-accuracy dilemma of
recommender systems. PNAS, 107(10):4511–4515, 2010.

804

http://db.cs.duke.edu/papers/WuGaoEtAl-16-diverse_reprs.pdf
http://db.cs.duke.edu/papers/WuGaoEtAl-16-diverse_reprs.pdf

	Introduction
	The k-DHR-.4 Problem
	Achieving the Three Objectives
	Choice of Impact Kernel

	Algorithms
	NP-Hardness of k-DHR-.4
	The LocalSearch-.4 Algorithm
	The EM-.4 Algorithm
	The Greedy-.4 Algorithm
	From Greedy-.4 to Greedy+-.4
	Discussion

	Experiments
	Application Scenarios and Datasets
	Case Study: WAC Claims on UNEMP
	Algorithm Effectiveness and Efficiency

	Related Work
	Conclusion

