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ABSTRACT
Query optimizers and query execution engines cooperate to
deliver high performance on complex analytic queries. Typ-
ically, the optimizer searches through the plan space and
sends a selected plan to the execution engine. However,
optimizers may at times miss the optimal plan, with some-
times disastrous impact on performance. In this paper,
we develop the notion of robustness of a query evaluation
strategy with respect to a space of query plans. We also
propose a novel query execution strategy called Lookahead
Information Passing (LIP) that is robust with respect to the
space of (fully pipeline-able) left-deep query plan trees for
in-memory star schema data warehouses. LIP ensures that
execution times for the best and the worst case plans are far
closer than without LIP. In fact, under certain assumptions
of independent and uniform distributions, any plan in that
space is theoretically guaranteed to execute in near-optimal
time. LIP ensures that the execution time for every plan in
the space is nearly-optimal. In this paper, we also evaluate
these claims using workloads that include skew and correla-
tion. With LIP we make an initial foray into a novel way
of thinking about robustness from the perspective of query
evaluation, where we develop strategies (like LIP) that col-
lapse plan sub-spaces in the overall global plan space.

1. INTRODUCTION
Relational database management systems (RDBMSs) have

a unique internal organization where query execution can be
viewed as a composition of basic relational algebraic (RA)
operations. This underlying framework allows RDBMSs to
navigate the space of equivalent RA compositions to find the
most efficient execution plan. This ability to optimize query
plans is crucial to the RDBMSs’ ability to execute complex
queries efficiently even on large databases.

Query optimization, however, is a complex task. Decades
of research in this area have yielded a plethora of techniques
for plan enumeration, cardinality and cost estimation, and
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dynamic query optimization. Despite these remarkable ad-
vancements, it is well known [17, 23] that query optimizers
still falter in some cases, producing query plans that have
disastrously worse performance than optimal.

Rather than directly improving the capability of query
optimizers, in this work, we take an approach that is com-
plementary to most prior work in query optimization. The
question we seek to address is: Can we develop query execu-
tion techniques that dramatically reduce the impact of a poor
choice of a query plan? Thus, the big picture view of our
approach is to focus on developing efficient query evaluation
techniques that increase the robustness of query plans, by
mitigating issues related to bad plan selection within a sub-
space of plans. We further limit our scope to increasing the
robustness of plans to errors in join order selection.

Lookahead Information Passing (LIP), the query evalua-
tion strategy that we propose in this work, is targeted at the
common scenario of star schema data warehouses. In such
workloads, a natural space of “good” plans for a query op-
timizer is that of fully pipeline-able left-deep join trees. For
instance, consider Query 4.3 in the Star Schema Benchmark,
shown in Figure 2. Figures 2a and 2b show two of the 24
possible left-deep query plans for this query, resulting from
all permutations of the 4 dimension tables in the query.

If the optimizer selects a poor join order for such a query,
the intermediate join results will be needlessly large, incur-
ring additional processing time for extraneous tuples. One
approach to reducing the impact of bad plan selection, there-
fore, is to efficiently pre-filter such extraneous tuples. This
idea underlies our proposed LIP strategy.

In essence, the LIP strategy consists of two components.
First, we pass succinct filter data structures (such as Bloom
filters) from the “outer” (dimension) relations in all the joins
to the “inner” (fact) relation. Thus, we can approximately
pre-filter the fact table before performing the join opera-
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Figure 1: All 24 possible left-deep query plans for SSB
Query 4.3 in increasing order of execution time.
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SELECT d_year , s_city , p_brand1 ,
SUM(lo_revenue - lo_supplycost) AS profit1

FROM date , customer , supplier , part , lineorder
WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey
AND lo_partkey = p_partkey
AND lo_orderdate = d_datekey
AND c_region = ’AMERICA ’
AND s_nation = ’UNITED STATES ’
AND (d_year = 1997 OR d_year = 1998)
AND p_category = ’MFGR#14’

GROUP BY d_year , s_city , p_brand1
ORDER BY d_year , s_city , p_brand1;

⋈
LINEORDER σ(CUSTOMER)

⋈ σ(PART)

σ(DATE)

σ(SUPPLIER)

𝛾

⋈
⋈⋈ =		Join

𝛾 =		Aggregation

(a)

⋈
LINEORDER

σ(CUSTOMER)

⋈ σ(PART)

σ(DATE)

σ(SUPPLIER)⋈
⋈

𝛾

(b)

Figure 2: Query 4.3 from Star Schema Benchmark and two left-deep query plans for it.

tion. For the case of a hash join, for instance, this optimiza-
tion can trade off expensive hash table probes in DRAM for
more efficient filter probes in the CPU cache. Further, it
also reduces the cost of materializing intermediate results in
a vectorized query execution engine. Second, to minimize
the number of filter lookups required, we use an adaptive
reordering algorithm that dynamically converges to the op-
timal ordering for filter application.

Figure 1 illustrates how the use of LIP increases robust-
ness in query processing. The execution times of the naive
evaluation strategy (without using our proposed techniques),
marked using diamonds, can be anywhere from 1.1s to 2.7s,
depending on the join order selected. On the other hand,
the execution times using LIP are all within 0.1s of each
other. Further, not only does LIP have negligible overhead,
we actually see an improvement in performance for typical
queries. For instance, in 8 of the 13 SSB queries, the query
plan using the LIP technique had an execution time better
than the best query plan without using LIP.

A salient aspect of the LIP strategy is that its implemen-
tation requires only minimal changes in an existing query
optimizer and execution engine. The technique is agnostic
to the cardinality estimation and the plan selection meth-
ods that are used by the query optimizer. Further, the build
and probe of these filter structures can be folded into the
respective hash table operations in the join implementation,
thus avoiding the need for any new operators or changes to
the control flow in the execution engine.

The idea of passing a filter between the two sides of a join
operation in the LIP technique bears resemblance to the
well-known semi-join optimization. However, to the best
of our knowledge, ours is the first work to aggressively use
this optimization across multiple joins in a join tree. For
this reason, the benefit of semi-join optimization for robust
query processing has not been noted in literature. It is also
important to note that the adaptive reordering phase of the
LIP technique is crucial for both reducing sensitivity to es-
timation errors as well as speeding up performance.

In this work, we introduce a novel approach to robust
query processing: one that focuses on query execution tech-
niques that are immune to poor choices made by the query
optimizer. In this initial foray, we have limited the scope
to star schema data warehouses and left-deep query plans.
LIP is also applicable to left-deep join tree subplans within
larger query plans, as we demonstrate (in Section 5.6) using
an example query from the TPCH benchmark.

While we admittedly address a simple scenario in this ini-
tial paper on robustness of query execution strategies, we
are able to present elegant analytical results that we find
at once insightful and intuitive. We believe that these in-

sights will guide future research into robust query processing
strategies for more complex scenarios.

We now summarize the contributions made in this paper.

1. A formal definition for the robustness of a query evalua-
tion strategy, along with a simple analytical model that
allows us to derive closed-form results about performance
and robustness in a plan space.

2. A specific strategy, Lookahead Information Passing, that
dramatically increases robustness to errors in join order
selection, with little overhead (and often, improved per-
formance), for the case of left-deep query plans in a star
schema data warehouse.

3. Theoretical guarantees (based on the simple models) for
the claims about robustness and near-optimality.

4. Some notes about implementation issues that had to be
addressed in order to apply these techniques in a high-
performance main memory analytics database system.

5. Empirical evaluation of LIP, including a new synthetic
data and query generator that allows us to study the
impact of skew and correlation on execution times.

2. PRELIMINARIES
We begin this section by defining the star schema. We

scope the analysis in this paper to the plan space consisting
of left-deep join trees for select-project-join (SPJ) queries in
such a schema, operating in an in-memory setting. Then,
we use a cost model to evaluate the performance of plans in
this space, without using LIP. The results from this baseline
analysis allow us to formally define the notion of robustness
that we use in the rest of the paper. Finally, we provide a
brief introduction to Bloom filters, the key data structure
used in our implementation of LIP.

2.1 Star Schema and Left-deep Join Trees
Data warehouses used for decision support systems of-

ten follow the Kimball method [15] which results in a star
schema. In this paper, we focus on this important pattern.

A star schema consists of a fact table F , often contain-
ing information about events such as sales and shipments,
as well as a set of N dimension tables {D1, D2, . . . , DN},
containing additional descriptive attributes such as details
about customers or products. The dimension tables are typi-
cally orders of magnitude smaller than the fact table, and are
related to it through primary key - foreign key constraints.

We limit our focus to SPJ queries involving some n di-
mension tables, as shown in the RA expression:

F ./ σ(D1) ./ σ(D2) ./ . . . ./ σ(Dn) (1)
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All the notation used throughout this paper is summa-
rized in Table 1. Note that for notational convenience, we
have dropped the selection predicate on F , though our re-
sults do not depend on this assumption.

Given typical table cardinalities in star schema warehouses,
the optimal query plan for such a query likely uses the fact
table as the “outer” relation in every join (i.e., the probe side
of hash joins). We can visualize such a plan as a left-deep
tree of joins. Such left-deep trees allow for full pipelining of
the query results and are generally the optimal plan shape
for queries of this type. We further scope the paper to only
examine query plans with this shape.

Example 1. The Star Schema Benchmark (SSB) [22] is
a widely used variation of the TPC-H benchmark, and is a
star schema data warehouse. The benchmark database con-
sists of a fact table LINEORDER and four dimension tables,
with foreign key constraints between the LINEORDER table and
each of the dimension tables. There are 13 select-project-
join-aggregate queries in the benchmark, split into 4 groups.
For instance, Figure 2 shows the Query 4.3, which involves
joins between all the tables in the database.

Though structurally similar, different left-deep plans can
have widely varying execution times, depending on the se-
lectivities of the predicates in the query. For example, since
the predicates on CUSTOMER and DATE tables have selectivities
20% and 28% respectively, the plan in Figure 2a performs
about 6% fewer hash table probes than that in Figure 2b.

Each permutation of the dimension tables, called a join
order, results in a distinct left-deep query plan. Given a per-
mutation π : {1, 2, ..., n} → {1, 2, ..., n}, we can use the nota-
tion Pπ(1)π(2)...π(n) to refer to the query plan corresponding
to the join order Dπ(1), Dπ(2), ..., Dπ(n).

A key challenge faced by a query optimizer is picking the
optimal join order among the n! choices, which requires ac-
curate estimation of predicate selectivities in spite of skew
and correlation in the data distribution. This remains an
open problem despite years of research [17, 23].

2.2 Modeling Performance Without LIP
We begin our analysis by modeling the impact of join or-

der selection on the performance of query plans in the naive
evaluation strategy that does not use the LIP technique. We
focus on the star schema SPJ query shown in Equation 1.

Without loss of generality, we pick the plan P12...n as an
arbitrary left-deep hash join tree for this query. In the the-
oretical results below, we have assumed that all data in the
tables is independent and uniformly distributed. Under this
assumption, the selectivity of the join between F and Di is
equal to the selectivity of the predicates on Di. Our exper-
iments in Section 5.3 show that this assumption does not
affect the efficacy of LIP in handling real-world data with
skew and correlation.

2.2.1 Cost Model
Let us use a simple model to derive the costs for the dif-

ferent operations in the execution of the query plan P12...n.
In this model, we assign unit cost each per tuple to the
operations of checking whether it satisfies a selection pred-
icate, inserting it into a hash table, and probing whether it
is contained in the hash table.

As an example, consider a query with only one dimension
table D containing 100 tuples. If 10 tuples pass the selection

predicate and are inserted into a hash table, the total cost
of these operations in our model is 100 (for selection) +10
(for insertion) = 110 units. If this hash table is probed using
a fact table containing 1000 tuples, the probe cost is 1000
units and the total cost is 1110 units.

2.2.2 Hash Table Build Phase
In the naive evaluation strategy, we first apply the se-

lection predicates on the dimension tables and then build
hash tables on the results. Denoting the selectivity of the
predicate on Di by σi, the build cost is:

BuildCost(P12...n) =

n∑
i=1

(1 + σi)|Di| (2)

Note that this cost is the same for all join orders.

2.2.3 Hash Table Probe Phase
Next, we probe each of the hash tables in the join order

specified by the plan. Let us assume the selectivity of the
join predicate between F and Di is also σi. Then, the cost of
probing the hash table on D1 using F is |F |, and the result
has a cardinality σ1|F |. The subsequent probes have costs
σ1|F |, σ1σ2|F | and so on. Letting σ0 = 1, the hash table
probe cost in our model can be written as:

HashTableProbeCost(P12...n) =

n∑
i=1

σ0σ1...σi−1|F | (3)

2.2.4 Bounds on Cost of Any Plan
The total cost T (P12...n) of this plan is the sum of the

build and the probe cost terms.

T (P12...n) = BuildCost(P12...n)

+ HashTableProbeCost(P12...n)

=

n∑
i=1

(1 + σi)|Di|+
n∑
i=1

σ0σ1...σi−1|F | (4)

It is intuitively clear (and can be proved by induction on
n) that the HashTableProbeCost above is minimized when
the probes are done in ascending order of selectivities, and
maximized when using descending order. These sorted join
orders therefore also have the minimal (or maximal) total
costs, since the BuildCost is independent of the join order.
Let us denote the best (minimal cost) join order by the se-
quence 1′, 2′, ..., n′ and the corresponding plan P1′2′...n′ by
Pb. Then, the worst (maximal cost) join order is the reverse
sequence n′, ..., 2′, 1′, and we denote Pn′...2′1′ as Pw. Let us
also use σmin = σ1′ and σmax = σn′ to denote the minimum
and maximum selectivities.

σmin = σ1′ ≤ σ2′ ≤ ... ≤ σn′ = σmax (5)

Replacing each selectivity factor σi for i > 0 in the sum-
mation in Equation 3 with σmax (or σmin) gives us an upper
bound (respectively, lower bound) for the cost of any plan.

1− σnmin

1− σmin
|F | ≤ HashTableProbeCost(P12...n) ≤ 1− σnmax

1− σmax
|F |

(6)

2.2.5 Robustness: Cost Difference Between Plans
Recall that the BuildCost is the same for all join orders.

Thus, the difference in total cost between any two join orders
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Table 1: Summary of Notation used in Sections 2 and 3

Category Notation Meaning Remarks

Star Schema

F fact table

see expression in Equation 1
D1, ..., DN dimension tables

n number of joins in the query plan

Bloom Filter

r bit array size: number of bits per inserted object
configured by query optimizer

k number of hash functions

ε false positive rate

Query Plans

1, 2, ..., n join order D1, D2..., Dn represents any

arbitrary join order

1′, 2′, ..., n′ optimal join order (its reverse is the worst join order)

see Section 2.2P12...n query plan in the naive evaluation strategy without LIP

Pb, Pw best and worst naive query plans

B12...n query plan using LIP, but no adaptive reordering
see Section 4.1

Bb, Bw best and worst query plans with LIP, no adaptive reordering

Cost Model

1 cost per tuple for predicate evaluation and hash table insertion
or probe

see Section 2.2

β relative cost of Bloom filter insertion or probe

σ1, ..., σn selection predicate and join selectivities

σmin, σmax minimum and maximum selectivities among σi

BuildCost(·) cost of selection, and building hash table and bloom filter

HashTableProbeCost(.) cost of probing hash tables in LIP strategies

T(·) total cost of query plan

BloomProbeCost(·) cost of probing Bloom filters see Section 4.1

is just the difference between their HashTableProbeCosts.
This cost difference between the best and the worst plans is:

T (Pw)− T (Pb) =

n−1∑
i=1

(
σn′ ...σ(n−i+1)′ − σ1′ ...σi′

)
|F | (7)

In Section 2.3 below, we will formally define a notion of
robustness that depends on this cost difference. Note that
this equation has n − 1 difference terms in the summation.
We will now find a lower bound for this expression in terms
of σmax−σmin. The ith difference term above is the difference
between the terms σn′ ...σ(n−i+1)′ and σ1′ ...σi′ . These terms
are respectively the products of the largest and smallest i
selectivities in the sorted sequence 1′, 2′, ..., n′.

To obtain an upper bound, we begin by replacing all the
i−1 factors apart from the first factor σn′ in the larger term
with the corresponding i− 1 smaller factors from the other
term. Then, we replace these i − 1 factors by the smallest
selectivity σ1′ .

σn′σ(n−1)′ ...σ(n−i+1)′ − σ1′σ2′ ...σi′ ≥ (σn′ − σ1′)σ2′ ...σi′

≥ (σn′ − σ1′)σ
i−1
1′

Plugging the above bound into Equation 7, we get the fol-
lowing lower bound:

T (Pw)− T (Pb) ≥
n−1∑
i=1

σi−1
1′ (σn′ − σ1′)|F |

=
1− σn−1

min

1− σmin
(σmax − σmin)|F | (8)

2.3 Robustness
We will see that, in general, the difference in execution

cost between the worst and the best plans grows linearly

with the size of the fact table. Further, it also grows with the
spread of selectivities of the predicates used in the query, i.e.,
σmax−σmin, because intuitively, errors in join order selection
are more disastrous to performance when the selectivities are
more different from each other. In fact, if we assume that
the selectivities (and hence cardinalities) are estimated with
some error tolerance δ, i.e., if each estimate σ̂i is within δ of
actual σi, then we expect the worst plan to be worse than
the best in proportion to δ.

Our cost model does not incorporate the second order
effects such as the size of the hash table on probe cost and
the impact of number of output attributes on materialization
cost. In the special case when the predicate selectivities
are all similar, σmax − σmin is negligibly small or even 0,
and these second order effects dominate the cost difference
between plans. Addressing this shortcoming of our model
is left out of scope of this paper. Consequently, we assume
that σmax − σmin is non-zero in the definitions below.

To make this notion more concrete, let us formally define
robustness such that we can use it to compare different query
evaluation strategies.

Definition 1. An evaluation strategy E is said to be θ-
fragile and Θ-robust and with respect to a plan space P if
the maximum deviation in performance of any plan in P
(including the worst plan Ew) from the best one Eb, normal-
ized by the fact table cardinality and spread of selectivities
in a query, is bounded between θ and Θ.

θ ≤ T (Ew)− T (Eb)
(σmax − σmin)|F | ≤ Θ, σmax 6= σmin (9)

For robustness, we want to pick an evaluation strategy
which guarantees that mistakes made by the query opti-
mizer are not too expensive. But a θ-fragile strategy nec-
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essarily has a large spread in performance between the best
and worst plans, particularly when θ is large. Thus, such a
strategy adds fragility to plan selection. On the other hand,
a Θ-robust strategy guarantees that even the worst plan in
the plan space is not much more expensive than the optimal,
particularly when Θ is small.

By Equation 8 above, the naive (non-LIP) evaluation strat-
egy is θ-fragile with respect to the space of left-deep hash

join trees, for θ =
1−σn−1

min
1−σmin

. In Section 4.1.5, we will show

that the proposed LIP strategy is Θ-robust for a Θ typically
smaller than this θ.

2.4 Bloom Filter
A Bloom filter [8] is a probabilistic data structure that suc-

cinctly represents a set. It is used to maintain approximate
information about membership in the set. When probed to
test for membership of an object in the set, if the Bloom
filter returns false, then the object is guaranteed not to be
a member of the set. It is also guaranteed to return true

for all members of the set. But the filter may also wrongly
return true for objects that are not members. The prob-
ability of such false positives, denoted ε, can be fixed by
appropriately configuring the filter.

A Bloom filter consists of a configurable number of bits in
a bit array, as well as a configurable number k of hash func-
tions. These k hash functions can be thought of as mapping
each object into k bit positions in the bit array. To insert
an object into the filter, we set the k bits at the positions
indicated by the k hash functions. To test whether an object
is in the filter, we check whether all of the corresponding k
bit positions are set. If any of these k bit positions is unset,
then we can be sure that the object is not in the set. But
it is possible that all these k bits are set even though the
object had never been inserted, resulting in a false positive.

Theoretical results such as those in [20] can be used to find
the optimally sized Bloom filter configuration for a given
target false positive rate.

3. LOOKAHEAD INFORMATION PASSING
We briefly motivated and presented an overview of Looka-

head Information Passing (LIP) in Section 1. In this section,
we define this strategy more concretely.

The key insight behind the LIP strategy is that in the
space of left-deep join trees for star schema queries, a sub-
optimal plan schedules less selective joins before selective
ones. Such a plan incurs additional cost relative to the op-
timal one due to extra hash table probes for tuples that are
filtered out in the later joins.

Thus, we can mitigate this cost by forwarding information
about later join predicates to earlier ones in the plan. Such
a lookahead filter can be forwarded from the build tables
involved in downstream joins to the probe table, where they
can be applied prior to performing the hash table probe. The
resulting hash table probes now involve far fewer tuples.

3.1 LIP Algorithm Summary
We now give an overview of the LIP strategy.

1. Build Phase. For each dimension table in the join tree,
we build both a hash table as well as a succinct filter data
structure, such as a Bloom filter, on the selection result.
This phase is discussed in detail in Section 3.1.1.

2. Bloom Filter Probe Phase. We then simultaneously
probe all these filters using the fact table, maintaining
hit/miss statistics.

3. Adaptive Reordering Phase. We adaptively reorder
the filters during the probe, using the estimated selectiv-
ity. For a good choice of filter configuration, the result
of this multiway filter probe is roughly equal to the final
output result, albeit possibly with a few false positives.
We describe this algorithm in more detail in Section 3.2.

4. Hash Table Probe Phase. Subsequently, we probe the
hash tables and eliminate the false positives as well as
collect build-side attributes that are required for further
processing.

Thus, using succinct filter data structures (such as a Bloom
filter), we can greatly reduce the hash table probe cost (which
is the dominating cost term) in such multi-join queries. In
fact, as we show in Section 4.2.2, there are even fewer hash
table probes than in the optimal plan using naive evaluation.
However, we bear the additional cost of building and prob-
ing the LIP filter itself. On balance, we still see a speedup
since the LIP data structures (Bloom filters in this paper)
are more space-efficient than hash tables, and are more likely
to fit in the processor caches, minimizing probe costs.

The small size of such filters also allows us to dynamically
reorder their probes based on their observed selectivities.
This adaptive reordering ensures that the number of probes
to the filters is close to the number of hash table probes
required in the optimal join order, regardless of the join
order picked by the optimizer. In fact, nearly all join orders
exhibit roughly the same execution time, and that time is
roughly equal to the optimal execution time (or better).

3.1.1 Critical Implementation Aspects
To efficiently parallelize the construction of Bloom filters

in the Build Phase of the algorithm in a multithreaded ex-
ecution environment, we use the commutativity and asso-
ciativity properties of the Bloom filter insertion operation.
Each thread, while scanning the input dimension table, con-
structs its own thread-local copy of the Bloom filter. All
these local filters have the same configuration, set by the
query optimizer. Finally, all the thread-local filters for a
particular table are unioned together using the bitwise-OR
operation on the bit array.

3.2 Adaptive Reordering of Lookahead Filters

3.2.1 Motivation
In the LIP strategy, we trade off expensive hash table

probes for efficient lookahead filter lookups. However, these
lookups are not negligibly cheap. Further, the number of
lookups depends on the order in which the filters are probed,
which can itself reduce robustness. For instance, if we always
apply the lookahead filters in the same order as the join
order, then a plan with a bad join order will cause a large
number of tuples to be used for probing the low-selectivity
filters, only to have them dropped in the following high-
selectivity filter probes.

We now summarize the algorithm we use to mitigate this
issue, followed by some implementation notes. Then, we
use an analytical model to prove that the algorithm has fast
convergence. Experimental results supporting the need for
adaptiveness are presented in Section 5.4.
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3.2.2 Algorithm Summary
Algorithm 1 shows how we dynamically adapt the looka-

head filter probe order to mitigate the additional cost due
to a bad fixed ordering. We maintain hit/miss statistics for
all probes into each of the lookahead filters. Periodically,
these statistics are used to estimate the observed selectivity
of the underlying filters, called the miss rate here. Sorting
the lookahead filters by their miss rates ensures that subse-
quent probes occur on the most selective filter first, then the
next most selective filter, and so on. Since the convergence
is usually very fast, the number of lookahead filter probes
performed is therefore roughly the same as the number of
hash table probes in the optimal (minimal cost) join order,
regardless of the join order selected by the query optimizer.
Thus, this adaptive reordering is a crucial contributor to the
robustness and the near-optimality properties of LIP.

Algorithm 1: Filtering with adaptive reordering

Input: filters – an array of m lookahead filters
tuples – an array of n tuples

Output: indices of tuples that pass filtering

results ← ∅
foreach f in filters do

count [f ] ← 0
miss[f ] ← 0

batch size ← 64
n ← |tuples|
loc ← 0

while loc < n do
probe batch ← an array of tuple indices from loc

to min(loc + batch size, n)− 1
foreach f in filters (in order) do

result batch ← ∅
foreach i in probe batch do

if f contains tuples[i] then
result batch ← result batch ∪ {i}

count [f ] ← count [f ] + |probe batch|
miss[f ] ← miss[f ] + |probe batch| - |result batch|
probe batch ← result batch

Sort filters in ascending order of miss[f ]
count[f ]

results ← results ∪ probe batch
loc ← loc + batch size
batch size ← batch size × 2

return results

3.2.3 Critical Implementation Aspects
We have implemented the LIP technique in the Quickstep

RDBMS, whose storage subsystem horizontally partitions
each table into small blocks of a few megabytes each. The
algorithm above is run for each such block in the fact table.
We begin the probe by creating a small batch probe batch
of a few hundred tuples. We then probe the first lookahead
filter f using the batch of tuples, keeping statistics about
the number of probes, and hits/misses in an auxiliary data
structure. The tuples whose keys are found to be hits in
f (including false positives) are written into a result batch,
which is then used to probe the next filter in bulk. After all
the filters have been probed using the first batch, we sort the

filters in ascending order of their miss rates, computed from
the hit/miss statistics in the auxiliary data structures. This
new ordering is used for the next cycle of batched probes.

The batching of tuples in the algorithm is necessary for ef-
ficiency because the aggregate size of all lookahead (Bloom)
filters is often larger than the processor cache size. The
probes are most cache-efficient when we allow one filter at
a time to warm up the cache and become cache-resident by
consecutively probing it with tuples in a batch. Note an-
other implementation detail: to avoid the cost of copying
tuples between probe batch and result batch, we only use a
single batch data structure containing tuple references. Our
execution engine performs the lookahead filter probes as part
of the hash join probe operator for the bottom-most join in
the query plan. After all the filters have been probed using
a batch, the resulting tuples are used to probe the bottom-
most hash table. The remaining hash tables are only probed
after an entire output block is produced.

While large batch sizes benefit from cache residence of the
Bloom filters, they slow down the convergence rate of the
adaptive algorithm, since reordering is only done between
batches. To balance the two effects, we adapt the batch
sizes by iteratively doubling it at the end of every cycle,
along with the adaptive reordering. Both the batch size and
the lookahead filter order are reset after completing all the
probes for a given storage block of the fact table.

3.2.4 Convergence Rates
To examine the convergence procedure in our model, we

assume that join predicates are independent and that the
tuples in a block are randomly distributed. The indepen-
dence assumption ensures that the observed miss rate of a
given filter does not depend on which filters were probed
prior to it. The random distribution assumption ensures
that, within a block, observed miss rates for the tuples at
the beginning of a block are roughly the same as those for
tuples anywhere else in the block. Note that this assump-
tion does not require the tuples in the entire table to be
randomly distributed: for instance, the adaptive algorithm
can gracefully deal with partitioned tables or biases in the
order of insertion of tuples into the fact table.

Under the above assumptions, according to the law of
large numbers, the observed miss rate for the ith filter con-
verges to its selectivity, say γi. Note that in the case of
a Bloom filter, this γi includes both the selectivity of the
predicate on the corresponding dimension table, as well as a
(configurable) false positive rate. Consider the probability
that, after probing using Ni tuples, the observed miss rate
γ̂i is off from γi by more than a factor δ. Modeling the ob-
served miss rate as a Binomial random variable with mean
γi, using Chebyshev’s inequality we can derive that:

Pr

(
1− δ < γ̂i

γi
< 1 + δ

)
≥ 1− γi
Niγiδ2

We see that the observed miss rate for a filter converges
to its true selectivity at a rate proportional of the number
of tuples used to probe the filter.

Note that this number of probes for the ith filter within a
batch depends on the selectivities of the prior filters, in that
highly selective prior filters 1, 2, ..., (i− 1) may result in too
few tuples being used to probe the ith filter. However, in
practice, for typical selectivities in the range 5% to 25%, we
have found that the ordering of the filters converges to the
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optimal in just 3-4 adapter cycles. For instance, if the true
selectivity γ = 0.10, then after examining 3800 tuples, the
estimation error δ is less than 5% with 95% probability.

4. MODELING PERFORMANCE OF LIP
In this section, we analyze the performance of query plans

in the LIP strategy. This performance model not only allows
us to compare this strategy with the naive one (analyzed in
Section 2.2), but also to prove theoretical guarantees regard-
ing robustness and near-optimality.

4.1 Robustness Through LIP
Corresponding to the plan P12...n in the naive evaluation

strategy, consider the equivalent plan B12...n that uses LIP
to whittle down the fact table before probing the hash tables
in the order defined by the subscript sequence.

4.1.1 Cost Model
Let us model the per-tuple cost of a Bloom filter insertion

or probe by a factor β relative to the unit cost for per-tuple
hash table operations. In the remainder of this subsection,
we separately analyze each phase of query evaluation in the
LIP strategy, as highlighted in the steps of the algorithm
summary in Section 3.1.

As an example, consider a query with only one dimension
table D containing 100 tuples. Suppose 10 tuples pass the
selection predicate and get inserted into the hash table and
Bloom filter. The total cost of these operations in our model
is 100 (for selection) + 10 (for hash table insertion) + 10 β
(for Bloom filter insertion) = 110 + 10β units. If the Bloom
filter is probed using a fact table containing 1000 tuples, the
probe cost is 1000β units. Assuming a false positive rate of
10% for the filter, the probe results in 200 selected tuples,
rather than the ideal 100 (extra 10% of 1000 tuples). These
200 tuples are then used to probe the hash table at a cost
of 200 units. Thus, the total cost of this plan using the LIP
technique is 310 + 1010β units.

4.1.2 Hash Table and Bloom Filter Build Phase
As a first step in evaluating a plan using the LIP strategy,

we apply the selection predicates on the dimension tables
and build both a hash table and a Bloom filter on each
result. The total cost for these operations is independent of
the selected join order and is given by:

BuildCost(B12...n) =

n∑
i=1

(1 + σi + βσi)|Di| (10)

4.1.3 Bloom Filter Probe and Reordering Phases
Before we analyze the next two phases of the algorithm,

we make an observation about the cardinality of the result
set of any Bloom filter probes. Recall from Section 2.4 that
as a probabilistic data structure, the Bloom filter has a cer-
tain false positive rate, say ε, that we can appropriately
configure. Consider the Bloom filter built on the selection
result of the dimension table Di. If we probe this filter using
some N tuples from F , we would expect to obtain hits for
not only the only at most N tuples can be hits, notwith-
standing the false positive rate. Thus the selectivity of this
Bloom filter is max(1, σi+ ε). For simplicity, we will assume
that σi + ε < 1 hereafter.

As proved in Section 3.2, the adaptive reordering algo-
rithm converges quickly to the optimal ordering of Bloom

filters. This ordering is the same as the increasing order of
selectivities, which is also the optimal ordering we have seen
before for hash table probes. As before, we denote this or-
dering by the sequence 1′, 2′, ..., n′. We ignore the negligibly
small overhead of the probes and adaptive algorithm until
convergence. Thus the BloomProbeCost is:

BloomProbeCost(B12...n) =[
1 +

n−1∑
i=1

(σ1′ + ε)...(σi′ + ε)

]
β|F |

(11)

Note that this cost has the optimal selectivity order
1′, 2′, ..., n′ on the right hand side, but is independent of the
selected join order 1, 2, ..., n. We note in passing that instead
of probing the Bloom filters adaptively, if the join order were
to be used for probing, then this cost term would no longer
be independent of the join order. In fact, in that case, this
cost term would actually dominate the overall query execu-
tion cost, greatly impacting robustness.

4.1.4 Hash Table Probe Phase
Regardless of the order of the Bloom filter probes above,

the probes result in a final relation of size (σ1 + ε)...(σn +
ε)|F |, which we use, in the Hash Table Probe Phase, to probe
the n hash tables built in the Build Phase. After probing
the first hash table at a cost of (σ1 + ε)(σ2 + ε)...(σn +
ε)|F | units, we eliminate the false positives obtained from
the corresponding first Bloom filter, so that the resulting
cardinality is σ1(σ2 + ε)...(σn + ε)|F |. Continuing this line
of reasoning (and setting σ0 = 1 for convenience), we get:

HashTableProbeCost(B12...n) =
n∑
i=1

σ0σ1...σi−1(σi + ε)...(σn + ε)|F | (12)

If we ignore the terms that are O(ε2) or higher powers of
ε, we can simplify the above equation to:

HashTableProbeCost(B12...n) '

σ1σ2...σn|F |
n∑
i=1

1 + ε
( 1

σi
+

1

σi+1
+ ...+

1

σn

)
(13)

This HashTableProbeCost is minimized when the probes are
done in ascending order of selectivity 1′, 2′, ...n′ and maxi-
mized when using the descending (reverse) order. Replac-
ing each of the terms in the inner summation of the above
equation with σn′ = σmax gives us a lower bound for the
HashTableProbeCost of any plan with LIP.

HashTableProbeCost(B12...n)

≥ σ1σ2...σn|F |
n∑
i=1

1 + ε

(
1

σn′
+

1

σn′
+ ...+

1

σn′

)

= σ1σ2...σn|F |
n∑
i=1

1 + ε
n− i+ 1

σn′

= σ1σ2...σn|F |

[
n+

ε

σmax

n(n+ 1)

2

]
(14)

Substitution with σ1′ = σmin in the inner terms gives us
the following upper bound for the cost of any plan in this
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strategy.

HashTableProbeCost(B12...n)

≤ σ1σ2...σn|F |

[
n+

ε

σmin

n(n+ 1)

2

]
(15)

4.1.5 Robustness: Cost Difference Between Plans
The total cost T (B12...n) for any plan is the sum of the

three cost terms above. Since the first two terms are both
independent of the join order, the difference between the
total costs for any two plans is only due to the difference
in the HashTableProbeCost terms. We can use the above
upper bound for the best query plan Bb and the lower bound
for the worst query plan Bw to bound the difference between
the HashTableProbeCosts of any two plans in this strategy.

T(Bw)− T(Bb)

≤ 1

2
σ1σ2...σnεn(n+ 1)

[
1

σmin
− 1

σmax

]
|F | (16)

Key Result: From Equation 16, it is clear that LIP with
adaptive reordering is a Θ-robust evaluation strategy, for

Θ =
1

2

σ1σ2...σn
σminσmax

εn(n+ 1) (17)

4.2 Insights from the Analytical Model
The simple cost model we have used allowed us to derive

interesting analytical results for the performance of query
plans using naive strategy in Section 2.2 and that for the
LIP strategy in Section 4. Comparing these results, we now
summarize the key insights obtained from this analysis.

4.2.1 LIP Makes Plans More Robust
Using Equation 8 in Section 2.3, we showed that the naive

evaluation strategy without LIP is θ-fragile with respect to
the space of left-deep hash join trees, for

θ =
1− σn−1

min

1− σmin
. (18)

On the other hand, using Equation 16 above, we showed
that LIP with adaptive reordering is Θ-robust with respect
to the same plan space, for Θ given by Equation 17.

Usually, the selectivities σi are fairly small, lying in the
range of 5% to 30%. In such a scenario, the product of n−2
selectivities in Θ bound for LIP strategy is likely to be much
smaller than the factor quadratic in the number of joins n.
Further, the false positive error rate ε can be made arbi-
trarily small by appropriately configuring the Bloom filter.
In fact, it can even be made 0 by using an exact LIP data
structure (such as a bitmap). To illustrate this point, let us
take an example query with n = 6 joins with selectivities
5%, 10%, ..., 30%. Then, Pw and Pb have a cost difference
of at least 0.21|F | units, whereas Bw and Bb have a cost
difference of at most 0.002|F |.

From this discussion, it is clear that LIP theoretically
guarantees robustness, whereas the naive evaluation strategy
is likely to make plan selection much more fragile.

4.2.2 LIP Makes Plans Nearly Optimal
The above discussion shows that the LIP technique dra-

matically improves the robustness of query plans by ensuring

that all plans have nearly the same cost. We now show a
stronger guarantee - that these costs are typically quite close
to the cost of the optimal query plan using naive evaluation.

Using similar methods as above, we can get a lower bound
for the total cost of the optimal naive query plan Pb, as well
as an upper bound for the worst LIP query plan Bw.

T (Pb) ≥
n∑
i=1

(1 + σi)|Di|+
1− σnmin

1− σmin
|F | (19)

T (Bw) ≤
n∑
i=1

(1 + σi + βσi)|Di|

+
1− (σmin + ε)n

1− (σmin + ε)
β|F |

+ σ1σ2...σn

[
n+

ε

σ1′

n(n+ 1)

2

]
|F | (20)

In the above bounds, we see that the BuildCosts differ by∑n
i=1 βσi|Di|. Since the dimension tables are typically much

smaller than the fact table, particularly after application of
a selection predicate, this cost difference is usually a small
fraction of the optimal cost.

As noted before, in the BloomProbeCost(Bw), the second
term (ε) can be made very small, so that this term is roughly
β times HashTableProbeCost(Pb). This is because as long as
the false positive rate ε is small, we make roughly the same
number of probes into the Bloom filter in any query plan
using LIP with adaptive reordering as we make into the hash
tables in the optimal naive query plan Pb. However, due to
its small size, the Bloom filter is likely to be cache resident
and hence make the probes much faster, i.e., β � 1. But,
there is a tradeoff here as making ε smaller by increasing the
Bloom filter size or number of hash functions also makes β
larger (i.e., probes become more expensive).

Finally, as we have discussed before, the product of selec-
tivities in the upper bound for HashTableProbeCost(Bw) is
typically small enough to render the term a negligibly small
fraction of the total cost of the optimal plan, despite the
quadratic dependence on the number of joins n.

Summing the three terms, we see that T (Bw) is typically
at least as small as T (Pb), and is often better. In other
words, not only is an LIP query plan guaranteed to run in
approximately the time for the optimal LIP query plan, it
is also nearly always as good as (and often better than) the
optimal naive query plan. Our empirical evaluation in Sec-
tion 5 also confirms these theoretical insights.

5. EVALUATION
All the experiments presented in this section were per-

formed using the Quickstep database engine, which is an
in-memory relational DBMS. The experiments were run on
a machine with 160 GB of main memory and dual socket In-
tel Xeon E5-2660 v3 processors, with 10 physical cores per
socket (i.e. 40 virtual cores with hyperthreading).

We used three datasets for the experiments: a) Star
Schema Benchmark (SSB) [22] at various scale factors, b) a
synthetic dataset to stress different data parameters, and c)
TPC-H at scale factor 100. In the description below, unless
stated otherwise, we use the 100 scale factor SSB dataset.

In all the experiments, the buffer pool was large enough to
contain the entire working set in memory. All reported query
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Figure 3: Comparison of optimal execution times for
Query 4.3 using different Bloom filter configurations

execution times are averages of 5 successive runs. Since
we are interested in how robust our techniques make the
query execution times, we enhanced the query optimizer to
produce all possible join orders for each query. All joins were
performed using a hash join algorithm, where the fact table
was used to probe the hash tables built on the dimension
table(s). LIP was configured to use Bloom filters with 1
identity hash function and size 8 bits per tuple estimated
in the dimension table (after selection). This configuration
choice is explained in Section 5.1 below.

5.1 Choice of Bloom Filter Configuration
The configuration of a Bloom filter is defined by its size (r)

as well as the number (k) and choice of hash functions.
These parameter choices affect not only its false positive
rate (denoted ε in this paper) but also the computational
cost of operations on it (denoted β). While there are the-
oretical results [20] about the former, optimizing the latter
requires empirical study. In this paper, we are interested
in the overall execution cost for a query, which depends on
both these factors.

Figure 3 shows the optimal execution time (i.e., for the
best join order) among all 24 possible join orders for SSB
Query 4.3, for different Bloom filter configurations. (Results
for other queries are similar, and in the interest of space, we
only present results for Query 4.3.) The four curves in the
figure show the execution times when the number of hash
functions used for building and probing the Bloom filter is
varied from 1 through 4. The x-axis for the plots is the size
of the Bloom filter, as a ratio of the estimated cardinality
of the selection result for the dimension table it is based on,
i.e., the number of bits in the Bloom filter per tuple used to
build the corresponding hash table.

It is clear that the best performance is obtained using
just a single hash function, and about 8-10 bits per tuple.
Further, the performance of the query is not sensitive to the
size of the Bloom filter near this optimal size. This latter
observation justifies the use of our technique even when the
estimated cardinality of the table may be erroneous.

Another factor that determines performance of the LIP
approach is the choice of the hash functions. In our ex-
periments with various different hash function families, we
found that the identity function yields the best performance
for this dataset. (The results in Figure 3 are for the first
hash function being an identity function, and the others be-
ing variants of Knuth’s multiplicative hash functions [16].)

The fact that the optimal Bloom filter configuration uses
just a single hash function, and that too an identity func-
tion, may seem counter-intuitive. However, it is important

to note that the Bloom filters are only used as an efficient
but approximate filter to avoid more expensive hash table
probes. This configuration choice minimizes the computa-
tional cost of evaluating the hash function and looking up
the bit array, while sufficiently reducing the false positive
rate to dramatically reduce the number of hash table probes.

5.2 Robustness to Join Order Selection
For each query in the SSB workload, we enumerated all

possible join orders and ran them with and without LIP.
Figure 5 shows the execution times for the first three queries
(group 1) which have only one join. For the other queries,
Figure 4 compares running times for all 24 join orders. In
Figure 4, the execution times of query plans without using
LIP is shown using diamonds, on the left in each subfigure,
and they are connected to the execution times of query plans
when using LIP (the latter is shown using circles).

In the naive strategy, we see that for all queries where
there are multiple possible join orders (i.e., excepting the
queries in group 1), there are several query plans that are
far worse than the optimal one. For instance, in case of
Query 4.1, the worst plan (18.1s) is more than 6× worse
than the best plan (2.9s), and 10 of the 24 possible join
orders have a running time at least double the optimal. On
the other hand, the LIP strategy is much more robust to the
join order. For the same query 4.1, all the 24 query plans
have times within 5% of each other.

It is also remarkable that for most queries, the execu-
tion time of even the worst query plan using LIP is smaller
than (or within the experimental error bounds) of the best
query plan without LIP. In fact, comparing the total execu-
tion time for the entire benchmark, even choosing the worst
query plan for every query along with LIP is better (17.4s)
than choosing the optimal query plan for every query with-
out LIP (17.6s), and far better than the worst plan for every
query (90.9s).

5.3 Handling Skew and Correlation
In addition to the experiments using SSB, we also use a

synthetic workload to stress-test our implementation using
a large number of tables of widely-varying sizes, containing
data with skew and correlation.

Database. The synthetic data generator creates a star
schema database consisting of a fact table and n dimension
tables (we set n = 12). Each dimension table has three
columns, one integer primary key and two character columns
with 25 distinct values each. They vary in size (4 each have
sizes in ratio 1:10:100). The fact table has a primary key as
well as all 12 foreign keys and is 10x larger than the largest
dimension table. The total database size is configurable,
and the table cardinalities are then derived according to the
size ratios given above (we set the database size to 10 GB).

Data Distribution. Each value in the character columns
consists of a prefix and a suffix. The prefix is always picked
uniformly at random, whereas the suffix is picked uniformly
in half the tables and, in the rest, using an inverse exponen-
tial distribution (as in [23]). Further, in half the dimension
tables, the two character column values are correlated, shar-
ing the same prefix with probability 0.80. In the rest of the
tables, these columns are independent. The foreign keys in
the fact table are independent and uniformly distributed.

The 12 dimension tables are obtained using all possible
combinations of size, distribution and correlation above.
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Figure 4: Execution times for the Star Schema Benchmark queries for groups 2–4, with and without LIP.

Thus, there are four small, medium and large dimension ta-
bles each. For each size, there are two tables with uniformly
distributed values in the first character column, and two
with skewed distribution. Finally, for each pair of size and
distribution, there is one table with independent columns
and another with correlated columns.

Queries. We also generated a synthetic workload over
this dataset in which each query is similar in structure to
the SSB queries: each query joins the fact table with a sub-
set of the dimension tables. To generate each query, we first
pick a random subset of dimension tables (six tables on aver-
age). For each table, we pick an equality selection predicate.
The predicate may be on a single column (in which case,
we compare with either the most or least frequent value in
the skewed distribution) or on two columns (in which case,
we compare with either the pair of most frequent or least
frequent values in the correlated distribution). Thus, our
workload generator allows us to individually control and ex-
amine the effects of skew and correlation, with both high
and low selectivity predicates. For brevity, we only show
the results for 10 randomly selected such queries here.

Query Plans. For each query, we randomly sampled 26
different join orders from the plan space. Each join order
was executed with and without LIP.

Results. As shown in Figure 6, for every query, the best
plan in the sample set had an execution time between 200
and 400 ms. Using LIP improved the best time for each
query by about 13% on average. Only three of the queries
were negatively impacted, with a 4% slowdown at worst.
More importantly from the perspective of robustness, the
average difference in execution times between the worst and
best plans went down from 14 seconds without LIP to just
150 ms with LIP.

5.4 Importance of Adaptiveness
In this experiment, we ran each SSB query using all pos-

sible join orders, with the order of LIP filter probing either
fixed or chosen adaptively using Algorithm 1.
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Figure 5: Execution times for SSB queries in group 1.

Figure 7 shows the resulting execution times for some se-
lected queries. Overall, adaptive execution imposes little
overhead (at most 8%). However, in some queries, such as
queries 3.2 and 3.3, adaptiveness is crucial for maintaining
robustness. For instance, for a particular join order for query
3.2, when we changed the bloom filter probes to be adaptive
rather than the same fixed ordering as the join order, the
slowdown from the optimal ordering dropped from 57.6% to
just 6.3%. These results support our claim in Section 4.1
that adaptive reordering is a critical part of the robustness-
enhancing property of the LIP technique.

5.5 Effect of Scaling
To better understand the scaling behavior of LIP, we ran

the SSB workload for scale factors 10, 50, 100 and 200 (the
largest scale factor possible on our machine), both with and
without LIP. As shown in Figure 8, in both cases, we obtain
better than linear scaling across this range of scale factors.
In fact, the execution time for SF 200 was only 17× that for
SF 10. Further, LIP not only improves the execution time
across all scale factors, this effect actually scales up with
the data size. For instance, going from SF 100 to SF 200
increases the speedup due to LIP from 34% to 63%.

5.6 Applying LIP to Subplans
Throughout this paper, we have limited our focus to left-

deep join trees for star schemas. However, the LIP technique
is more generally applicable to subplans with this pattern in
larger query plans. To demonstrate this wider applicability,
we picked Query 8 from the TPCH benchmark (scale factor
100) and applied LIP to star join subplans within each of the
675 query plans enumerated for this query by our optimizer.

Figure 9a shows one of the subplans following this pat-
tern. While we have used LINEITEM as the “fact” table,
the “dimension” tables in this pattern are themselves sub-
plans having the same primary key as the ORDERS, PART and
SUPPLIER tables. Note that while ORDERS is usually consid-
ered a fact table in the TPCH schema, for the purpose of
LIP application, it can be considered as a dimension table
due to the primary key - foreign key constraint between it
and the LINEITEM table.

Figure 9b illustrates the gain in robustness using a box
plot. With the naive execution strategy, the running times
for this query varied from 2.1 s to 58 s, whereas LIP reduced
this spread to between 1.3 s and 7.4 s. In addition to this 9×
reduction in the difference between running times of plans,
every query plan also saw an improvement in performance,
with speedups varying from 1.20× to 18× (geometric mean
of speedups was 4.0). In fact, 25% of the query plans ran
faster with LIP than the optimal plan with naive evaluation.
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Figure 6: Execution times for sampled join orders of some queries in the synthetic workload.

5.7 Time Breakdown
To better understand the performance characteristics

when using LIP, we broke down the fraction of overall query
execution time spent in the build and probe phases for hash
tables and LIP filters, as well as the time for materializa-
tion of intermediate and final results. Figure 10 shows the
results of this experiment for all possible join orders for SSB
Query 4.3. Similar results were obtained for other queries
as well.

Across the board, we see a 5 − 10× speedup from using
LIP. In the naive strategy, the execution time is dominated
by the cost of materializing results, accounting for 63% of
the total execution time. Using LIP however, this fraction
was down to just 4% on average, since almost all the re-
dundant rows are eliminated early on. The cost of probing
hash tables accounted for about 37% of the total time in
the naive strategy but only a negligible fraction of the time
in the LIP strategy. Instead, the execution time in LIP
strategy was dominated by the cost of probing LIP filters
(93% on average). It is worth noting, however, that this
dominant cost term of probing LIP filters was only about
20% of the cost of probing hash tables in the naive strategy.
Lastly, we observed that the cost of building hash tables and
LIP filters was negligible in comparison to these other cost
terms. These results validate our theoretical analysis and
cost model: using LIP adds negligible overhead in terms of
build cost, and more than pays off in terms of probe and
materialization costs.

Finally, we note that both the hash table and LIP filter
probe times showed little variance across join orders for the
same query, highlighting the effect of the adaptive reordering
algorithm.

6. RELATED WORK
We organize the related work in four groups, and discuss

each group below.
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Figure 7: Execution times for fixed and adaptive lookahead
filter probe ordering.
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Figure 8: Execution times of the entire SSB workload for
varyious scale factors, with and without LIP.

Bloom filters. First introduced in [8], Bloom filters have
been used extensively in distributed database systems to
minimize I/O and network transmission costs [18, 2, 9], as
well as in semi-join optimization [7, 27, 18, 2, 9, 12, 25]
to accelerate joins. We use bloom filters in LIP and also
explore the impact of its parameters when used with LIP.

Sideways information passing (SIP). The semi-join
reduction [7, 27, 18, 2, 9] accelerates a single join by passing
a filter from one side to the other. SIP strategies and magic
sets transformation, first introduced in [6], consider the
space of semi-join reductions and associated query rewrit-
ing techniques. There has been much follow-on work in this
space, including the use of greedy heuristics [10, 21] and
cost-based approach [24].

Our proposed LIP strategy can be considered a special
case of the general SIP strategies, though with the additional
crucial component of adaptive filter reordering. Further,
LIP also bears considerable likeness to adaptive information
passing [14]. However, to the best of our knowledge ours is
the first work to focus on the robustness benefits of SIP, as
well as the ability to get near-optimal performance from all
plans in the subspace under consideration. We supported
these claims using both theoretical and empirical results.
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Figure 9: Left-deep star join subplan in TPCH Query 8,
and execution times of all 675 possible query plans.
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Figure 10: Execution time breakdown for all 24 join orders
of SSB Query 4.3. For each query plan, the breakdown with
the Naive and the LIP strategies are shown.

Adaptive reordering of filters. Prior work has shown
the benefits from reordering of predicates in relational and
stream processing. If selectivities are known exactly, then
the optimal filter ordering can be derived directly [13]. Oth-
erwise, learning-based approaches [1, 5] can be used. Our
use of adaptive reordering of lookahead filters is inspired
by these approaches. However, we focused our implementa-
tion efforts on ensuring low-overhead adaptation, as well as
cache-sensitive bulk application of the filters. These imple-
mentation details are crucial to the fast convergence rate as
well as the robustness benefits of LIP.

Robust query execution. The notion of robustness
in query optimization has been well studied in the literature
[28]. Proposed techniques include correcting cardinality esti-
mates though sampling [3] or runtime feedback [26], dynam-
ically switching between a candidate set of plans at runtime
[11], as well as runtime re-optimizations [19, 4]. We consider
our work to be complementary to such techniques. Whereas
these techniques require a redesign of the query optimizer
(in addition to any changes in the execution engine), our
proposed LIP approach attempts to entirely avoid changes
to the query optimizer, using query evaluation to immunize
against selectivity estimation errors.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a query execution strat-

egy called LIP that collapses the space of left-deep query
plans for star schema warehouses down to almost a single
point near the optimal plan. In addition to this robustness
benefit, it also significantly speeds up query execution in
this important subplan space. We have demonstrated these
claims through theoretical and empirical results. Besides the
immediate application of LIP, we believe our work opens a
novel approach to the notion of “robustness”, one that is
focused on query execution strategies possibly tailored to
corresponding query plan (sub-)spaces. As part of future
work, we hope to generalize these ideas to more complex
schemas and query plans. We will also explore how this new
approach to robustness impacts query optimization.
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