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ABSTRACT
Influence maximization is a combinatorial optimization problem
that finds important applications in viral marketing, feed recom-
mendation, etc. Recent research has led to a number of scalable ap-
proximation algorithms for influence maximization, such as TIM+

and IMM, and more recently, SSA and D-SSA. The goal of this pa-
per is to conduct a rigorous theoretical and experimental analysis
of SSA and D-SSA and compare them against the preceding algo-
rithms. In doing so, we uncover inaccuracies in previously reported
technical results on the accuracy and efficiency of SSA and D-SSA,
which we set right. We also attempt to reproduce the original exper-
iments on SSA and D-SSA, based on which we provide interesting
empirical insights. Our evaluation confirms some results reported
from the original experiments, but it also reveals anomalies in some
other results and sheds light on the behavior of SSA and D-SSA in
some important settings not considered previously. We also report
on the performance of SSA-Fix, our modification to SSA in order
to restore the approximation guarantee that was claimed for but not
enjoyed by SSA. Overall, our study suggests that there exist oppor-
tunities for further scaling up influence maximization with approx-
imation guarantees.

1. INTRODUCTION
Given a social network G, a propagation model M on how

nodes in G may influence each other, and a positive integer k, the
influence maximization problem asks for k nodes in G that can
influence the largest number of nodes (in expectation) under the
propagation model M . This problem is motivated by viral mar-
keting [11, 24], in which a company provides free product sam-
ples to a number of influential individuals in a social network,
aiming to advertise the products through these users via word of
mouth. In addition, the problem has applications in feed recom-
mendations and studies of propagations of rumors and innovations,
etc. Solving influence maximization efficiently is an interesting
and challenging problem that has attracted considerable interest
[4–9, 12–14, 16–21, 25–27, 30] in the past decade. Most existing
techniques, however, suffer from a tension between accuracy and
efficiency. Specifically, the methods that provide non-trivial accu-
racy guarantees often require days to process even a small network,
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while the approaches that are practically efficient rely on heuris-
tics and do not offer any assurance on the quality of the solutions
returned.

The aforementioned tension is addressed in a recent line of re-
search [5, 21, 26, 27] based on a subgraph sampling method devel-
oped by Borgs et al. [5]. (We elaborate this method in Section 2.2.)
In particular, Borgs et al. [5] introduce the method in a theoretical
study of influence maximization, and they utilize it to develop an al-
gorithm that runs inO(k(m+n)ε−3 log2 n) expected time and re-
turns an (1−1/e−ε)-approximate solution for influence maximiza-
tion with at least 1−1/n probability. Subsequently, Tang et al. [27]
show that Borg et al.’s algorithm is inefficient in practice, and they
propose a much more scalable algorithm (referred to as TIM+) that
not only provides the same approximation guarantee but also re-
duces the expected time complexity toO(k(m+n)ε−2 logn). Af-
ter that, Tang et al. [26] devise a further enhanced method (referred
to as IMM) that retains TIM’s asymptotic guarantees on accuracy
and efficiency but significantly decreases its computation time in
practice. Most recently, Nguyen et al. [21] develop two algorithms,
SSA and D-SSA, that improve over IMM in terms of empirical ef-
ficiency. They claim that SSA and D-SSA offer identical accuracy
guarantees as IMM does, and that they are asymptotically optimal
in terms of the numbers of subgraph samples that they use.

Unfortunately, we notice that the theoretical and experimental re-
sults reported by the proponents of SSA and D-SSA contain impor-
tant gaps. Motivated by this, we conduct a rigorous theoretical and
experimental analysis of SSA and D-SSA and set the story straight
with respect to the state of the art for influence maximization. In
doing so, we make the following contributions.

• Refuting theoretical claims. We revisit the key lemmas and
theorems in [21] and identify substantial gaps in their proofs.
Our analysis invalidates Nguyen et al.’s claims that (i) SSA and
D-SSA return an (1 − 1/e − ε)-approximation with at least
1 − 1/n probability and (ii) the numbers of subgraph samples
generated by SSA and D-SSA are optimal.
• Fixing SSA for accuracy. We present a revised version of SSA,

dubbed SSA-Fix, that restores (1−1/e−ε)-approximation at the
cost of increased computation overheads. We also implement
and evaluate SSA-Fix.
• Repeating experiments. We successfully repeat some of the

experiments in [21]. Our results support that the finding in [21]
that SSA and D-SSA are more efficient than IMM when k is large.
• Analyzing discrepancies. We observe considerable discrepan-

cies between some of our results and those in [21]. For example,
our experiments show that IMM is consistently more efficient
than SSA and D-SSA under the independent cascade model [17]
when k is small, whereas the results in [21] demonstrate the op-
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Table 1: Frequently used notations.
Notation Description
G(V,E) a social network G with node set V and edge set E

n,m n = |V | and m = |E|
p(e) the propagation probability of an edge e ∈ E
I(S) the spread of a seed set S in a propagation process

E[·] the expected value of a random variable

OPT the maximum expected spread of any size-k seed set

Sk a size-k seed set

R a set of random RR sets

CovR(Sk) the number of RR sets inR that overlap Sk
Iest(Sk) an estimation of Sk’s expected spread output by Algo-

rithm 3

posite. We analyze those discrepancies and conclude that the
results in [21] are likely to be anomalous.
• Providing new empirical insights. We conduct new experi-

ments with datasets and settings frequently used in the influence
maximization literature but not considered in [21]. Based on the
results, we shed new light on the behavior of SSA and D-SSA.

Overall, our study shows that SSA and D-SSA generally outper-
forms IMM in terms of empirical running time, but they fail to pro-
vide the worst-case guarantees claimed in [21]. This suggests that
there exist opportunities to improve the state of the art for influence
maximization by developing an algorithm that not only achieves
the practical efficiency of SSA and D-SSA but also offer rigorous
asymptotic guarantees in terms of both efficiency and accuracy.

Remark. We note that there are two revised versions of [21] sub-
mitted to arXiv on Sep. 7, 2016 [22] and Feb. 22, 2017 [23], re-
spectively. The first version [22] was concurrent to our work, and
it rectifies the accuracy issue of SSA in a way similar to our fix in
Section 3.3. However, it does not discuss why the original SSA fails
to provide the claimed accuracy guarantee, neither does it mention
the misclaim of SSA’s efficiency which we analyze in Section 3.2.
Furthermore, it does not point out the problems in D-SSA’s effi-
ciency and accuracy claims which we elaborate in Section 4. The
second version [23] was submitted after our work was made avail-
able to Nguyen et al., and it claims to have corrected the errors
in the proofs for SSA and D-SSA. Unfortunately, we find that there
still exist important gaps in some proofs in [23]. We refer interested
readers to our technical report [1] for details.

2. PRELIMINARIES
This section presents a formal definition of the influence max-

imization problem and summarizes the state of the art. For ease
of exposition, we focus on the independent cascade model [17],
which is one of the most well-adopted propagation models in the
literature; nonetheless, our discussions can be easily extended to
other propagation models, e.g., the linear threshold model [17].
Table 1 shows the notations that are frequently used.

2.1 Problem Definition
Let G be a social network with a node set V and a directed edge

set E, with |V | = n and |E| = m. For any two nodes u and v in
G, if 〈u, v〉 ∈ E, then we say that v is an outgoing neighbor of u
and u is an incoming neighbor of v. Assume that each edge e ∈ E
is associated with a propagation probability p(e) ∈ [0, 1].

Given a set S of nodes in G, an influence propagation process
under the independent cascade (IC) model [17] is a discrete-time
stochastic process as follows:
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Figure 1: Input graphG and its corresponding random graphs.

1. At timestamp 0, all nodes in S are activated, while all other
nodes remain inactive.

2. If a node u is first activated at timestamp i, then it has a chance
to activate its outgoing neighbors at timestamp i+1, after which
it can no longer activate any other node. In particular, if u has
an inactive outgoing neighbor v, then u’s activation attempt on
v succeeds with probability p(e) at timestamp i+ 1, where e =
〈u, v〉 is the edge connecting u to v.

3. The influence propagation process terminates when none of the
remaining inactivate nodes can be activated.

Let I(S) be the number of activated nodes in G after the above
process terminates. We refer to S as a seed set and I(S) as its
spread in the propagation process.

GivenG and an integer k > 0, the influence maximization prob-
lem asks for a seed set Sk with the largest expected spread, i.e.,

Sk = arg maxS′:|S′|=kE[I(S′)].

2.2 State of the Art
As mentioned in Section 1, the state-of-the-art methods for in-

fluence maximization [5,21,26,27] all utilize a sampling technique
proposed by Borgs et al. [5]. This technique is based on the con-
cept of random reverse reachable (RR) set [27], which we explain
in the following: Let g be a directed graph obtained by removing
each edge e inG with probability 1−p(e) independently, and G be
the distribution of g induced by the randomness in edge removal.
Given an instance of g and a node v, the reverse reachable (RR) set
R for v in g is the set of nodes in g that can reach v. R is a random
RR set, if v is selected uniformly at random from G. We illustrate
the above concepts with an example.

EXAMPLE 1. Figure 1a shows a social network with three
nodes and three edges. (The number besides each edge e indicates
its propagation probability p(e).) If we independently remove each
edge e in G with 1− p(e) probability, then the resulting graph has
four possibilities, which we illustrate as g1, g2, g3, g4 in Figures
1b-1e. The RR set for node v1 in g1 is {v1, v2}, since v1 and v2

are the only nodes that can reach v1 in g1. Meanwhile, the RR set
for v1 in any of g2, g3, and g4 is {v1, v2, v3}. �

Observe that if a node u appears in an RR set for another node
v, thenGmust contain a directed path from u to v, which indicates
that u has a probability to influence v in a propagation process.
Based on this observation, Borgs et al. prove that random RR sets
can be used to estimate the expected spread of any seed set, as
shown in the following lemma:

LEMMA 1. ( [5]) Let S be a seed set, g be a sample from G,
and R be the RR set for a node v in g. Let ρ1 be the probability
that S can activate v in an influence propagation process, and ρ2

be the probability that R overlaps with S. Then, ρ1 = ρ2.
LetR be a set of random RR sets, and CovR(S) be the number of
RR sets inR that overlap with S. By Lemma 1, n

|R|CovR(S) can
be used as an unbiased estimator of the expected spread of S:

COROLLARY 1. ( [5]) E
[
n
|R|CovR(S)

]
= E[I(S)].
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Based on the above property of random RR sets, Borgs et al. [5]
propose an elegant two-step method for influence maximization:

1. Generate a sufficiently large setR of random RR sets.

2. Use the greedy algorithm for maximum coverage [28] to
identify a size-k seed set Sk that overlaps with a large num-
ber of RR sets inR.

The intuition of the above method is that, if a seed set S in-
tersects a large number of RR set in R, then, by Corollary 1, the
expected spread of S is likely to be large, in which case S could
be a good solution for the influence maximization problem. Nev-
ertheless, if we are to ensure the worst-case quality of S, then we
have to carefully decide the size of R. Towards this end, Borgs et
al. propose to keep generating random RR sets inR, until the total
number of edges inspected during the generation process exceeds
a predefined threshold τ . They show that when τ is properly set,
there is at least 3

5
probability that the method returns a seed set S

with a (1− 1/e− ε)-approximation ratio, i.e.,

E[I(S)] ≥ (1− 1/e− ε)OPT,

where OPT denotes the maximum expected spread of any size-k
seed set in G. In addition, Borgs et al. show that the method’s suc-
cess probability can be increased to 1−1/n at the cost of degrading
its expected time complexity to O(k(m+ n)ε−3 log2 n).

Following Borgs et al.’s work, Tang et al. [27] propose an im-
proved solution, TIM+, which runs in O(k(m + n)ε−2 logn) ex-
pected time and returns a (1−1/e−ε)-approximation with at least
1− 1/n probability. Their idea is to avoid imposing a threshold on
the number of edges inspected during the construction ofR, but to
apply the Chernoff bounds to more accurately decide whether the
number of random RR sets in R is sufficiently large. The experi-
ments in [27] show that TIM+ is several order of magnitude faster
than Borgs et al.’s algorithm, and it is able to process a billion-edge
social network in reasonable time. Subsequently, Tang et al. [26]
present a further enhanced algorithm, IMM, which offers the same
theoretical guarantee as TIM+ does but provides much higher em-
pirical efficiency. The improvement of IMM is mainly due to a
martingale-based technique for deciding the size of R [26], which
is shown to be less pessimistic than the method used in TIM+.

Very recently, Nguyen et al. [21] observe that the computation
time of IMM still leaves room for improvement, as it tends to gen-
erate an excessive number of RR sets when k is large. To address
this issue, they propose two new algorithms, the Stop-and-Stare al-
gorithm (SSA) and the Dynamic Stop-and-Stare algorithm (D-SSA),
both of which are similar in spirit to IMM but exploit the zero-one
estimation theorem [10] to gauge the number of RR sets required.
We will revisit SSA and D-SSA in Sections 3 and 4, respectively.

Besides the aforementioned work, there exists a plethora of other
techniques [4, 6–9, 12, 14–20, 25, 29, 30] for influence maximiza-
tion. The majority of these techniques [4,6–9,14,16,19,25,29,30]
rely on heuristics to achieve practical efficiency, but fail to pro-
vide non-trivial worst-case guarantees in terms of the quality of
results. For example, Wang et al. [29] presents a method that uti-
lizes sketch-based heuristics to reduce the running time of IMM;
however, as a trade off, the method neither retains the (1−1/e−ε)-
approximation ratio of IMM nor offers a non-trivial time complex-
ity bound. Meanwhile, there are techniques [15, 17, 18, 20] that
ensure (1 − 1/e − ε)-approximations, but they incur significant
overheads and do not scale to large graphs. In particular, among
these methods, CELF++ [15] is shown to be the most efficient one
under the IC model, and yet, its running time is several orders of
magnitude larger than that of IMM [26].

Algorithm 1: SSA
input : G, ε, δ and k.
output: A size-k seed set Sk .

1 ε1 = 1
6
ε, ε2 = 1

2
ε, ε3 = 1

4(1−1/e)
ε

2 Λ1 =
(4e−8)(1+ε1)(1+ε2)

ε23
ln(3/δ)

3 Generate a setR of Λ1 random RR sets
4 repeat
5 〈Sk, CovR(Sk)〉 ←Max-Coverage(R, k, n)
6 if CovR(Sk) ≥ Λ1 then

7 Iest(Sk)← Estimate-Inf
(
G,Sk, ε2,

δ
3
, 1+ε2

1−ε2
· ε

2
3

ε22
· |R|

)
8 if n

|R|CovR(Sk) ≤ (1 + ε1)Iest(Sk) then
9 return Sk

10 Generate |R| random RR sets, and insert them into R
11 until |R| ≥ 8+2ε

ε2

(
ln 2
δ

+ ln
(n
k

))
n;

12 return Sk

3. SSA REVISITED

3.1 Description of SSA
In a nutshell, SSA runs in an iterative manner as follows:

1. Generate an initial setR of random RR sets.

2. Use the greedy approach for maximum coverage [28] to
identify a size-k seed set Sk fromR.

3. Generate a separate set of random RR sets to test whether Sk
is a good approximate solution.

4. If Sk is a good approximation, terminate the algorithm and
return Sk; otherwise, double the number of random RR sets
inR, and goto Step 2.

The correctness and efficiency of SSA rely on Step 3, where it ap-
plies the zero-one estimation theorem [10] to decide whether a good
approximation solution has been identified.

Algorithm 1 shows the details of SSA. It starts by initializing
four internal parameters ε1, ε2, ε3, and Λ1 (Lines 1-2). After that,
it generates an initial set R of random RR sets, with |R| = Λ1

(Line 3). The subsequent part of SSA consists of a number of itera-
tions (Lines 4-11). In each iteration, SSA first invokes the standard
greedy algorithm for maximum coverage (i.e., Algorithm 2) to ob-
tain a size-k seed set Sk, as well as the number CovR(Sk) of RR
sets in R that overlap Sk (Line 5). If CovR(Sk) ≥ Λ1, then SSA
invokes Algorithm 3 to derive an estimation Iest(S) of the expected
spread of Sk (Line 7). If Iest(S) is sufficiently large, then SSA re-
gards Sk as a good solution and returns it (Line 8-9); otherwise,
SSA doubles the number of RR sets inR, and proceeds to the next
iteration (Line 10).

Nguyen et al. [21] claim that SSA returns a (1 − 1/e − ε)-
approximate solution with at least 1 − δ probability, but do not
state its time complexity. Instead, they (i) consider a class of al-
gorithms that utilize random RR sets for influence maximization,
and (ii) claim that the number of random RR sets generated by SSA
is asymptotically optimal within all algorithms in the class. As we
analyze in Sections 3.2 and 3.3, however, the above claims of SSA’s
accuracy and efficiency are both incorrect.

3.2 Misclaim on Efficiency
Consider any algorithm for influence maximization that derives

its output Sk by applying the greedy approach for maximum cov-
erage [28] on a setR of random RR sets. Let C be a subset of such
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Algorithm 2: Max-Coverage
input : a setR of random RR sets, and k.
output: a size-k seed set Sk , and the number CovR(S) of RR sets in

R that overlap Sk .

1 Sk = ∅
2 for i = 1 to k do
3 v = arg maxv′∈V (CovR(Sk ∪ {v′})− CovR(Sk))
4 Insert v into Sk
5 return 〈Sk, CovR(Sk)〉

Algorithm 3: Estimate-Inf
input : G, ε2, δ2, a seed set S, and a threshold Tmax.
output: an estimation Iest(S) of the expected spread of S.

1 Λ2 = 1 +
(4e−8)(1+ε2)

ε22
ln 1
δ2

2 cnt = 0
3 for i = 1 to Tmax do
4 Generate a random RR set R
5 if R ∩ S 6= ∅ then
6 cnt = cnt+ 1

7 if cnt ≥ Λ2 then
8 return n · cnt/i

9 return −1

algorithms that ensure the following two inequalities:

Pr

[
n

|R|CovR(Sk) ≤ (1 + εa)E[I(Sk)]

]
≥ 1− δa, (1)

Pr

[
n

|R|CovR(S◦k) ≥ (1− εb)OPT
]
≥ 1− δb, (2)

where S◦k denotes the optimal solution for the influence maxi-
mization problem, and εa, εb, δa, and δb are constants. Let
N1
min(εa, εb, δa, δb) be the minimum size of R needed to ensure

both Equations 1 and 2. Nguyen et al. [21] make the following
claim regarding SSA’s efficiency (see Lemma 9 in [21]):

CLAIM 1 ( [21]). With at least (1− δ)-probability, the num-
ber of random RR sets generated by SSA is at most a constant
times N1

min(εa, εb, δa, δb), with εa = 2
3
ε+ 1

12
ε2, εb = 1

4(1−1/e)
ε,

δa = δ/3, and δb = 2δ/3.

To prove Claim 1, Nguyen et al. [21] point out that SSA termi-
nates when the conditions in Lines 6 and 8 in Algorithm 1 simulta-
neously hold, i.e.,

CovR(Sk) ≥ Λ1, and (3)
n

|R|CovR(Sk) ≤ (1 + ε1)Iest(Sk), (4)

where Λ1 = (4e − 8)(1 + ε1)(1 + ε2) ln(3/δ)/ε23, and Sk is ob-
tained by applying the greedy maximum coverage approach onR.
Nguyen et al. [21] claim that, after the size R reaches a constant
times N1

min(εa, εb, δa, δb), there is a high probability that both
Equations 3 and 4 are satisfied, i.e., Claim 1 holds.

In particular, Nguyen et al. make the following claim in connec-
tion to Equation 3 (see Lemma 7 in [21]):

CLAIM 2 ( [21]). There exists a constant c1, such that when
|R| ≥ c1

1−1/e−εN
1
min(εa, εb, δa, δb), Equation 3 holds with at least

1− δb probability.

In addition, they claim the following regarding Equation 4 (see
Lemma 8 in [21]):

In this case, the necessary number of RR sets is the same as that to
satisfy Equation 1 when εa = ε1+ε2+ε1ε2. The only question here
is whether the Estimate-Inf algorithm succeeds and returns a good
estimation of E[I(Sk)] when the main algorithm has |R| random
RR sets.

. . .
(Note: The subsequent part of the proof shows that Estimate-Inf can
return a good estimation of E[I(Sk)].)

Figure 2: Nguyen et al.’s proof for Claim 3 in [21].

CLAIM 3 ( [21]). When |R|≥ c1
1−1/e−εN

1
min(εa, εb, δa, δb),

Equation 4 holds with at least 1− δa probability.

However, the proof of Claim 3 is incorrect, as we discuss in the
following. Figure 2 shows an abridged version of Nguyen et al.’s
proof for Claim 3. The proof begins by claiming that, if the number
of random RR sets is large enough to ensure Equation 1, then it is
also sufficient to ensure Equation 4. However, this is true only if
Equation 1 implies Equation 4, i.e., when

n

|R|CovR(Sk) ≤ (1 + εa)E[I(Sk)] (5)

=⇒ n

|R|CovR(Sk) ≤ (1 + ε1)Iest(Sk). (6)

In turn, this requires the right hand side of Equation 5 to be no
larger than the right hand side of Equation 6, i.e.,

(1 + εa)E[I(Sk)] ≤ (1 + ε1)Iest(Sk),

which is equivalent to

(1 + ε2)E[I(Sk)] ≤ Iest(Sk), (7)

since (1 + εa) = (1 + ε1)(1 + ε2).
Recall that Iest(Sk) is the output of Estimate-Inf. By Nguyen

et al.’s proof in [21], Estimate-Inf ensures that Iest(Sk) ≤ (1 +
ε2)E[I(Sk)] holds with at least 1 − δa probability. That is, Equa-
tion 7 holds with at most δa probability, and hence, Equation 5 does
not imply Equation 6. Consequently, Claim 3 does not hold, which
in turn invalidates the efficiency guarantee of SSA in Claim 1.

3.3 Misclaim on Accuracy and A Fix
To establish the approximation guarantee of SSA, Nguyen et

al. [21] leverage the fact that Algorithm 1 terminates when both
Equations 3 and 4 (which correspond to Lines 6 and 8 in Algo-
rithm 1, respectively) are satisfied, and they analyze the quality of
the size-k seed set Sk based on Equations 3 and 4. In particular,
they first consider the estimation Iest(Sk) of Sk’s expected spread
obtained in Line 7 of Algorithm 1, and show the following corol-
lary (see Corollary 1 in [21]):

COROLLARY 2. Let Iest(Sk) be the output of Estimate-Inf in
Line 7 of Algorithm 1. Then,

Pr [Iest(Sk) ≤ (1 + ε2)E[I(Sk)]] ≥ 1− δ

3
.

Based on Corollary 2 and Line 8 of Algorithm 1, Nguyen et al.
make the following claim (see Lemma 5 in [21]):

CLAIM 4. SSA returns a seed set Sk with

Pr

[
n

|R|CovR(Sk) ≤ (1 + ε1)(1 + ε2)E[I(Sk)]

]
≥ 1− δ

3
. (8)

Then, based on Claim 4, they proceed to prove that SSA returns a
(1− 1/e− ε)-approximation with at least 1− δ.
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Recall that SSA terminates when the selected seed set Sk satisfies
two conditions:

CovR(Sk) ≥ Λ1, and
n

|R|
CovR(Sk) ≤ (1 + ε1)Iest(Sk).

From Corollary 2, we have

Pr [Iest(Sk) ≤ (1 + ε2)E[I(Sk)]] ≥ 1− δ/3.

By this and n
|R|CovR(Sk) ≤ (1 + ε1)Iest(Sk), we have

Pr

[
n

|R|
CovR(Sk) ≤ (1 + ε1)(1 + ε2)E[I(Sk)]

]
≥ 1− δ/3.

This completes the proof.

Figure 3: Nguyen et al.’s proof for Claim 4 [21].

Unfortunately, Claim 4 is incorrect. To help establish this, we
show in Figure 3 Nguyen et al.’s proof of Claim 4. In short, Nguyen
et al. prove that Equation 8 holds when n

|R|CovR(Sk) ≤ (1 +

ε1)Iest(Sk) (see Line 8 in Algorithm 1) and

Iest(Sk) ≤ (1 + ε2)E[I(Sk)]. (9)

Based on this, they assert that Claim 4 is valid because, by Corol-
lary 2, Equation 9 holds with at least 1 − δ/3 probability. This
assertion, however, overlooks the fact that SSA consists of several
iterations, and that each iteration generates a different version of
Iest(Sk) (see Line 7 in Algorithm 1). If a certain iteration pro-
duces a version of Iest(Sk) that violates Equation 9, then SSA may
terminate in that iteration and return a size-k seed set Sk that vio-
lates Equation 8. To avoid this issue, it is necessary that Equation 9
holds in all iterations of SSA. In contrast, the proof in Figure 3
only considers the case when Equation 9 holds in the last iteration
of SSA, but ignores all previous iterations. As a consequence, the
proof does not establish Claim 4, which invalidates Nguyen et al.’s
claim on the approximation guarantee of SSA.

One way to address the above problem is to ensure that Equa-
tion 9 holds with at least 1− δ/3/x probability in each iteration of
SSA, where x denotes the total number of iterations. Then, by the
union bound, there is at least 1 − δ

3
probability that Equation 9 is

valid for all iterations of SSA, in which case Claim 4 holds. For this
purpose, we can change Line 7 in Algorithm 1 to

Iest(Sk)← Estimate-Inf
(
G,Sk, ε2,

δ
3α
,

(1+ε2)ε23
(1−ε2)ε22

|R|
)
, (10)

where α is an upper bound of the number of iterations in SSA. To
set α to an appropriate value, we observe that (i) SSA starts with
a set R of Λ1 RR sets in its first iteration (where Λ1 is as defined
in Line 2 of Algorithm 1) and doubles the size of R in each sub-
sequent iteration, and (ii) SSA terminates if the size of R exceeds
8+2ε
ε2

(
ln 2

δ
+ ln

(
n
k

))
n (see Line 11 of Algorithm 1). Accordingly,

we set α = log2

(
8+2ε
ε2

(
ln 2

δ
+ ln

(
n
k

))
n

Λ1

)
, which ensures that α

is no smaller than the number of iterations in SSA. Interested read-
ers are referred to our technical report [1] for a detailed proof on
the correctness of this fix.

4. D-SSA REVISITED
4.1 Description of D-SSA

SSA (i.e., Algorithm 1) has three internal parameters ε1, ε2, and
ε3. These three parameters (i) decide the approximation errors al-
lowed in its estimation steps (see Lines 7 and 8 in Algorithm 1),

Algorithm 4: D-SSA
input : G, ε, δ and k.
output: A size-k seed set Sk .

1 Λ =
(4e−8)(1+ε)2

ε2
ln 2
δ

2 Generate a setR of Λ random RR sets
3 repeat
4 〈Sk, CovR (Sk)〉 ←Max-Coverage(R, k, n)
5 Generate a setR′ of |R| random RR sets
6 Iest(Sk)← n

|R′| · CovR′ (Sk)

7 ε1 = n
|R|

CovR(Sk)
Iest(Sk)

− 1

8 if ε1 ≤ ε then
9 ε2 = ε−ε1

2(1+ε1)
, ε3 = ε−ε1

2(1−1/e)

10 δ1 = e
−

ε23·CovR(Sk)
(4e−8)(1+ε1)(1+ε2)

11 δ2 = e
−
ε22·(CovR′ (Sk)−1)

(4e−8)(1+ε2)

12 if δ1 + δ2 ≤ δ then
13 return Sk

14 R = R∪R′

15 until |R| ≥ 8+2ε
ε2

(
ln 2
δ

+ ln
(n
k

))
n;

16 return Sk

and (ii) determine the number of random RR sets generated in each
iteration of SSA. In SSA, they are fixed to ε1 = 1

6
ε, ε2 = 1

2
ε,

ε3 = 1
4(1−1/e)

ε. Nguyen et al. [21] suggest that fixing them in all
iterations may lead to suboptimal performance, and propose to vary
them in different iterations to reduce the total number of random
RR sets generated. Accordingly, they propose the D-SSA method,
as shown in Algorithm 4.

Similar to SSA, D-SSA also generates an initial setR of random
RR sets (Line 1 in Algorithm 4, and then enters an iterative process
(Lines 3-15). In each iteration, D-SSA first applies the greedy ap-
proach for maximum coverage onR to obtain a size-k seed set Sk,
along with the number CovR(Sk) of RR sets inR that overlap Sk
(Line 4). After that, it generates another setR′ of random RR sets
with |R′| = |R| (Line 5). Then, it usesR′ to derive an estimation
Iest(Sk) of Sk’s expected spread, based on which it determines the
value of ε1 (Lines 5-7). If ε1 ≤ ε, then the algorithm proceeds to
decide the values of ε2 and ε3 based on ε1 and ε (Line 9). In addi-
tion, it also derives δ1 and δ2, which quantify the probabilities that
R andR′, respectively, do not provide the accurate estimations re-
quired by D-SSA (Lines 10-11). If δ1 + δ2 ≤ δ, then D-SSA returns
Sk as a solution (Lines 12-13); otherwise, it doubles the size of R
by moving all RR sets in R′ into R, after which it proceeds to the
next iteration (Line 14).

Nguyen et al. [21] claim that D-SSA achieves (1 − 1/e − ε)-
approximation with at least 1 − δ probability. In addition, they
claim that the number of random RR sets generated by D-SSA is
asymptotically optimal among a large class of algorithms that uti-
lize random RR sets. However, both claims are incorrect, as we
show in Sections 4.2 and 4.3.

4.2 Misclaim on Efficiency
Let N1

min(εa, εb, δa, δb) be as defined in Section 3, i.e.,
N1
min(εa, εb, δa, δb) is the minimum size of a setR of random RR

sets that simultaneously ensure Equations 1 and 2. Let N2
min(ε, δ)

be the minimum value ofN1
min(εa, εb, δa, δb) under the constraints

that εa+(1−1/e)εb ≤ ε and δ1 +δ2 ≤ δ. Nguyen et al. [21] point
out that N2

min(ε, δ) is a lower bound on the expected number of
random RR sets required by the state-of-the-art solutions [5,26,27].
In addition, they make the following claim on the efficiency of D-
SSA (see Theorem 5 in [21]):

917



(Note: In the following, Equations 11, 12-14, and 15 correspond to
Equations 64, 75-78 in [21], respectively.)

. . .

Pr

∣∣R′∣∣ ≥ Υ(
ε∗b
2
,
δ∗b
2

)

E[I(S)]/n

 ≥ 1− δ∗a −
δ∗b
2
. (11)

. . .
CovR(Sk) ≥ (4e− 8)

1

ε∗2b
ln

2

δ∗b
. (12)

Combining Equation 12 and the definition of δ1 in D-SSA, we get

δ1 = e
−

CovR(Sk)ε23
(4e−8)(1+ε1)(1+ε2) ≤ e−

(4e−8) ln 2
δ∗
b

1
ε23

·ε23

(4e−8)(1+ε1)(1+ε2) ≤ δ∗b /2.
(13)

Based on the fact |R′| = |R| and Equation 11, we get

δ2 = e
−
CovR′ (Sk)ε22
(4e−8)(1+ε2) ≤ e−

(4e−8) ln 2
δ∗
b

1
ε22

·ε22

(4e−8)(1+ε2) ≤ δ∗b /2. (14)

From Equation 13 and Equation 14, we conclude

δ1 + δ2 ≤ δ∗b /2 + δ∗b /2 = δ∗b ≤ δ, (15)

which proves the claim.

Figure 4: Nguyen et al.’s proof for Claim 6 in [21].

CLAIM 5. ( [21]) With at least 1 − δ probability, the number
of random RR sets generated by D-SSA is at most a constant times
N2
min(ε, δ).

To establish Claim 5, Nguyen et al. [21] consider the conditions
on which D-SSA terminates, and aim to quantify the number of
random RR sets required by D-SSA to satisfy those conditions. As
shown in Lines 12 in Algorithm 4, one of D-SSA’s termination con-
ditions is δ1 + δ2 ≤ δ. In connection to this, Nguyen et al. [21]
make the following claim (see Lemma 12 in [21]):

CLAIM 6 ( [21]). Suppose that when εa = ε∗a, εb = ε∗b , δa =
δ∗a, and δb = δ∗b , we have N2

min(ε, δ) = N1
min(εa, εb, δa, δb) with

εa + (1− 1/e)εb ≤ ε and δ1 + δ2 ≤ δ. In addition, define M as

M =
ln 2

δ∗
b

ln 1
δ∗
b

4(1 + ε∗a)2

( 1
2
− 1

e
− ε

2
)3
.

Then, there exists a constant c1 such that if |R| ≥Mc1N
2
min(ε, δ)

and ε1 ≤ ε∗a+ε∗b/2
1−ε∗

b
/2

, then we have δ1 + δ2 ≤ δ.

Unfortunately, Claim 6 is invalid due to two gaps in its proof;
in turn, this nullifies the efficiency guarantee of D-SSA stated in
Claim 5. To clarify this, we show in Figure 4 a part of Nguyen
et al.’s proof for Claim 6, and we will illustrate that Equations 13
and 14 are incorrect. In particular, based on the first inequality in
Equation 13,

δ1 ≤ e
−

(4e−8) ln 2
δ∗
b

1
ε23

·ε23

(4e−8)(1+ε1)(1+ε2) = e
−

ln 2
δ∗
b

(1+ε1)(1+ε2) .

Then, by the fact that (1 + ε1)(1 + ε2) ≥ 1, we have

e
−

ln 2
δ∗
b

(1+ε1)(1+ε2) ≥ e
− ln 2

δ∗
b = δ∗b/2.

This contradicts the second inequality in Equation 13, i.e.,

e
−

(4e−8) ln 2
δ∗
b

1
ε23

·ε23

(4e−8)(1+ε1)(1+ε2) ≤ δ∗b/2.

Similarly, based on the first inequality of Equation 14 and the
fact that 1 + ε2 ≥ 1, we have

δ2 ≤ e
−

(4e−8) ln 2
δ∗
b

1
ε22

·ε22

(4e−8)(1+ε2) = e
−

ln 2
δ∗
b

1+ε2 ≥ e
− ln 2

δ∗
b = δ∗b/2,

which contradicts the second inequality in Equation 14, i.e.,

e
−

(4e−8) ln 2
δ∗
b

1
ε22

·ε22

(4e−8)(1+ε2) ≤ δ∗b/2.

Since Equations 13 and 14 are invalid, Equation 15 does not hold.

4.3 Misclaim on Accuracy
Nguyen et al. [21] make the following claim about the approxi-

mation guarantee of D-SSA (see Theorem 4 in [21]):

CLAIM 7. Given a graph G, 0 ≤ ε ≤ 1− 2/e, and 0 ≤ δ ≤ 1
as inputs, D-SSA returns a (1− 1/e− ε)-approximate solution.

Figure 5 shows Nguyen et al.’s proof for Claim 7. Its basic idea
is to prove that when D-SSA terminates, the seed set that it returns
is as least as good as that returned by SSA. However, the proof is
incorrect in at least three aspects. First, as we shown in Section 3.3,
SSA itself does not ensure (1 − 1/e − ε)-approximation with at
least 1 − δ probability; therefore, Claim 7 cannot be established
by proving that D-SSA provides the same approximation as SSA
does. Second, the proof claims that Equation 19 (see Figure 5) is
equivalent to the second stopping condition in SSA, i.e., Equation 4
(see Line 8 in Algorithm 1). However, if we compare Equation 19
with Equation 4, it is apparent that Equation 19 contains a typo and
should have been

n

|R|CovR(Sk) ≤ (1 + ε1)(1 + ε2)E[I(Sk)]. (16)

In what follows, we will use Equation 16 as a replacement of Equa-
tion 19 in our discussion.

The third (and most serious) bug in the proof lies in the deriva-
tion of Equation 16. As shown in Figure 5, the proof claims that
Equation 16 follows from Equations 17 and 18, by drawing con-
nection between Equation 16 and the Estimate-Inf procedure (i.e.,
Algorithm 3). This could be a bit confusing since Estimate-Inf is
not invoked in D-SSA. To clarify this, we first elaborate Nguyen et
al.’s reasoning in the derivation of Equation 16, and then we point
out its loophole.

Nguyen et al.’s derivation of Equation 16. We first introduce
the zero-one estimator theorem [10], which is used by Nguyen et
al. [21] to establish the accuracy bound of Estimate-Inf in Corol-
lary 2; for ease of exposition, we present a simplified version of the
theorem in the context of our discussion.

THEOREM 1. ( [10]) Let ε and δ be two constants in (0, 1), and
S be any seed set. Suppose that we generate a sequence of random
RR sets, until the number of RR sets that overlap with S is at least

1 +
(4e− 8)(1 + ε)

ε2
ln

1

δ
.

LetR∗ be the set of RR sets thus obtained. Then,

Pr

[
n

|R∗|CovR
∗(S) ≤ (1 + ε) · E[I(S)]

]
≥ 1− δ. (20)

The proof in Figure 5 implies that Equation 16 can be derived
from Theorem 1 as follows. By Theorem 1, given constants ε2 and
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(Note: In the following, Equations 17, 18, and 19 correspond to
Equations 26, 27, and 28 in [21], respectively.)

We prove that the two stopping conditions in SSA still hold in D-SSA,
and thus, D-SSA has the same approximation factor as SSA does.
Directly from Algorithm 4, when D-SSA terminates, the following
conditions are satisfied:

CovR(Sk) =
(4e− 8)(1 + ε1)(1 + ε2)

ε23
ln

1

δ1
(17)

CovR′ (Sk) = 1 +
(4e− 8)(1 + ε2)

ε22
ln

1

δ2
(18)

with ε1 + ε2 + ε1ε2 + (1− 1/e)ε3 = ε and δ1 + δ2 = δ.
Equation 17 is the first stopping condition in SSA. Equation 18 is the
checking condition in the Estimate-Inf procedure in SSA. Together
with the setting of ε1, we obtain the second stopping condition in
SSA:

n

|R|
CovR(Sk) ≥ (1 + ε1)(1 + ε2)E[I(Sk)]. (19)

Thus, the (1− 1/e− ε)-approximation factor is followed from SSA,
which completes the proof.

Figure 5: Nguyen et al.’s proof for Claim 7 in [21].

δ2 in (0, 1) and a size-k seed set Sk, if we generate a set R′ of
random RR sets that satisfies Equation 18, then we have

Pr

[
n

|R′|CovR
′(Sk) ≤ (1 + ε2) · E[I(Sk)]

]
≥ 1− δ2. (21)

Meanwhile, by Lines 5-7 in Algorithm 4, we have

ε1 =
n

|R|
CovR (Sk)

Iest(Sk)
− 1 =

CovR (Sk)

CovR′ (Sk)
− 1. (22)

Combining Equations 21 and 22, we have

Pr

[
n

|R′|CovR(Sk) ≤ (1 + ε1)(1 + ε2)E[I(Sk)]

]
≥ 1− δ2.

Namely, Equation 16 holds with at least 1− δ2 probability.

Loophole in derivation. The above derivation, however, requires
that ε2 is a constant independent of R′, due to the requirements in
Theorem 1. Unfortunately, D-SSA sets

ε2 =
ε− ε1

2(1 + ε1)
=

1 + ε

2
· CovR

′(Sk)

CovR(Sk)
− 1

2
, (23)

which is a variable that depends on the setR′ of random RR sets on
which Theorem 1 is applied. This invalidates Equation 21, which
in turn nullifies Claim 7.

To illustrate the problem of setting ε2 based on Equation 23, one
may consider the probabilistic event in Equation 21:

n

|R′|CovR
′(Sk) ≤ (1 + ε2) · E[I(Sk)], (24)

namely, the event that the random variable n
|R′|CovR′(Sk) is at

most 1 + ε2 times its expectation E[I(Sk)]. When ε2 is a constant,
this event is of the same type considered in Theorem 1, and thus,
its probability can be bounded using the latter. However, if ε2 is as
defined in Equation 23, then the above event becomes

n

|R′|CovR
′(Sk) ≤

(
1 + ε

2
· CovR

′(Sk)

CovR(Sk)
+

1

2

)
· E[I(Sk)].

Note that the random variable CovR′(Sk) appears in both sides
of the inequality. By moving CovR′(Sk) to the left hand side of
inequality, we have

Table 2: Dataset details. (K = 103, M = 106, G = 109)
Dataset n m Type Avg. degree
NetHEPT 15.2K 31.4K undirected 4.18

NetPHY 37.2K 181K undirected 9.73

Enron 36.7K 184K undirected 10.0

Epinions 132K 841K directed 13.4

DBLP 655K 1.99M undirected 6.08

Orkut 3.07M 117M undirected 76.2

LiveJournal 4.85M 69.0M directed 28.5

Twitter 41.7M 1.47G directed 70.5

n

|R′|CovR
′(Sk) ≤

(
1

2− |R′|
n

(1+ε)E[I(Sk)]
CovR(Sk)

)
E[I(Sk)], (25)

which represents the event that the random variable
n
|R′|CovR′(Sk) is at most

(
2− |R

′|
n

(1+ε)E[I(Sk)]
CovR(Sk)

)−1

times

its expectation E[I(Sk)]. The probability of this event cannot be
bounded using Theorem 1 whenever |R

′|
n

(1+ε)E[I(Sk)]
CovR(Sk)

< 1.
We note that the above loophole can be fixed only if we set ε2 to

a constant in D-SSA. However, it is unclear how this can be done
without changing D-SSA in a substantial manner.

5. EXPERIMENTS
This section repeats and extends the experimental evaluation of

SSA and D-SSA in [21]. All of our experiments are conducted on a
Linux machine with an Intel Xeon 2.6GHz CPU and 64GB RAM.
In each experiment, we measure the performance of each method
20 times and report the average measurement.

5.1 Experimental Setting
Datasets. The experiments in [21] are based on eight datasets, i.e.,
NetHEPT, NetPHY, Enron, Epinions, DBLP, Orkut, Twitter,
and Friendster. We use all of these datasets except for Friendster,
since every tested method runs out of memory on Friendster on our
machine. (This issue does not occur in the experiments in [21] since
the machine used has 100GB RAM.) As an alternative, we replace
Friendster with another dataset, LiveJournal, which is frequently
used in the literature. Table 2 shows the details of our datasets.
Algorithms. We evaluate four algorithms: SSA [21], D-SSA [21],
IMM [26], and SSA-Fix, which is a revised version of SSA that re-
turns (1− 1/e− ε)-approximation with at least 1− δ probability,
as we explain in Section 3.3. We obtain the C++ implementation of
IMM from [2] and those of SSA and D-SSA from [3]. The SSA and
D-SSA implementations deviate from the pseudo-code [21] in sev-
eral minor places (e.g., the constant Λ1 in Algorithm 1); to repeat
the experiments in [21], we modify the implementations of SSA and
D-SSA to make them consistent with the descriptions in [21]1.

In addition, we observe that the SSA and D-SSA implementations
are more optimized than that of IMM since (i) they adopt a faster
random number generator and a more efficient method to produce
random RR sets under the LT model (see Appendix A for a dis-
cussion), and (ii) they use a more optimized implementation of the
greedy algorithm for maximum coverage [28] to identify seed sets
from random RR sets. To eliminate the effects of these implementa-
tion differences from our comparison of IMM, SSA, and D-SSA, we

1We have tested the performance of the implementations before
and after our consistency-driven modifications. In general, the SSA
and D-SSA implementations run around 10% faster after our mod-
ifications for k ≥ 2500, and around 15% slower for k ≤ 50.
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revise the IMM code so that it uses the random number generator as
well as the methods for RR set generation and maximum coverage
in the SSA and D-SSA code. We refer to the revised implementation
of IMM as IMM∗.

Parameter settings. Following [21], we evaluate all algorithms
with ε = 0.1 and δ = 1/n under two popular influence propagation
models: independent cascade (IC) [17] and linear threshold (LT)
[17]. Note that this setting is to the advantage of SSA and D-SSA
because, as we point out in Sections 3 and 4, they do not guarantee
(1− 1/e− ε)-approximation with at least 1− δ probability, while
IMM and SSA-Fix do. Following previous work [21], for each edge
e = (u, v), we set its propagation probability p(e) to 1

din(v)
, where

din(v) is the in-degree of the node v.
We consider two settings of the size k of the seed set: (i)

k ∈ {1, 2500, 5000, 7500, . . . , 20000}, referred to as the large
k setting, and (ii) k ∈ {1, 2, 5, 10, 20, 30, 40, 50}, referred to as
the small k setting. The large k setting is used in [21], while the
small k setting is adopted in most existing work on influence max-
imization. We note that the small k setting is more consistent with
the motivation of influence maximization, i.e., a marketer aims to
provide product samples to a small number of individuals to start
a viral marketing campaign based on word-of-month; nonetheless,
we recognize that there might be other applications where the large
k setting could be useful.

5.2 Results under the IC model
In the first set of experiments, we examine the performance of

SSA, D-SSA, SSA-Fix, and IMM under the IC model. Figures 6 and
8 report the running time of each method under the large and small
k settings, respectively. In addition, Figure 7 shows the number of
RR sets that each method generates. The experiments in Figures
6e-6h, 7, and 8 are new with respect to [21], since (i) [21] does
not report any result under the IC model concerning the small k
setting or the number of RR sets, and (ii) it omits Enron, Epinions,
Orkut, and LiveJournal under the IC model. The maximum value
of k tested on NetHEPT is 15000, since NetHEPT has only 15233
nodes. In what follows, we analyze our results based on (i) whether
the same experiments are conducted in [21] and (ii) whether the
results from the same experiments are consistent with those in [21].
Consistent results for k ≥ 2500. The settings of the experiments
in Figures 6a, 6b, 6c, and 6d are identical to those in Figures 7a,
7b, 7c, and 7d in [21], respectively. In both sets of experimental
results, SSA and D-SSA outperform IMM when k ≥ 2500. This
confirms the findings in [21] that SSA and D-SSA are more efficient
than IMM when k is large. In addition, in both set of experiments,
D-SSA consistently incurs smaller running time than SSA does.
Inconsistent results for k = 1. Figure 6 shows that IMM is sev-
eral times faster than SSA and D-SSA on all datasets when k = 1.
Besides, Figure 7 shows that, when k = 1, both SSA and D-SSA
produce noticeably larger numbers of RR sets than IMM. These re-
sults are in contradiction with those in [21], which show that SSA
and D-SSA are always more efficient than IMM on NetHEPT, Net-
PHY, DBLP, and Twitter when k = 1. We discussed this issue
with Nguyen et al. [21] and were informed that on their machine,
IMM runs slower than SSA and D-SSA, even though the former gen-
erates a much smaller number of RR sets than the latter.

New results on Enron, Epinions, Orkut, and LiveJournal. Fig-
ures 6e-6h (resp. Figures 7e-7h) show the running time of (resp.
the number of RR sets generated by) each method on Enron, Epin-
ions, Orkut, and LiveJournal. The results are qualitatively similar
to those in Figures 6a-6d and 7a-7d. That is, IMM is more efficient

than SSA and D-SSA when k = 1, but the former incurs a larger
running time than the latter when k >= 2500.

New results under the small k setting. Figure 8 shows the run-
ning time of each method under the small k setting. Interestingly,
D-SSA is outperformed by SSA in most cases, which contrasts the
results for the large k setting. IMM is more efficient than SSA and
D-SSA when k ≤ 20, but it entails a larger cost when k ≥ 30.

New results for SSA-Fix and IMM∗. As shown in Figures 6-8,
SSA-Fix offers comparable efficiency to SSA in all cases. This is be-
cause, although the number of random RR sets required by SSA-Fix
is larger than that of SSA, the difference in the number is negligible.

Meanwhile, the figures also show that IMM∗ is up to 8 times
faster than IMM, even though they generate the same number of
random RR sets. Furthermore, on NetPHY, IMM∗ is as efficient
as SSA and SSA-Fix in almost all cases. Nevertheless, the overall
efficiency of IMM∗ is inferior to SSA, SSA-Fix, and D-SSA.

5.3 Results under the LT model
Our second set of experiments evaluate the performance of each

method under the LT model. Figures 9 and 10 show the compu-
tation cost of each technique under the large and small k settings,
respectively; Tables 3-5 compare SSA, D-SSA, and IMM on their
running time and the number of RR sets that they generate on En-
ron, Epinion, and Orkut. Note that the settings of the experiments
in Figures 9a, 9b, 9c, and 9d are identical to those in Figures 6a,
6b, 6c, and 6d in [21], respectively, while the experiments in Tables
3-5 repeat the experiment in Table 3 in [21]. As in Section 5.2, we
discuss our results based on whether they are new and whether they
are consistent with those in [21].
Consistent results for k ≥ 2500. As shown in Figures 9a, 9b, 9c,
and 9d, IMM is consistently outperformed by SSA and D-SSA on
when k ≥ 2500. In addition, D-SSA is more efficient than SSA.
These results are in agreement with those in [21].
Inconsistent results when k = 1. Figure 9 shows that IMM con-
siderably outperforms SSA and D-SSA when k = 1 on all datasets.
This contradicts the results in Figure 7 in [21], which demonstrates
that SSA and D-SSA are more efficient than IMM on NetHEPT,
NetPHY, DBLP, and Twitter when k = 1.
Inconsistent results in Tables 3-5. Tables 3, 4, 5 show the run-
ning time and the number of RR set of each method when k = 1,
k = 500, and k = 1000, respectively. In addition, they include
the results of the same experiments in Table 3 in [21]. (We omit
SSA-Fix and IMM∗ as they are not evaluated in [21].) Note that
there exist significant differences between our results and those
from [21], especially on Orkut. While the discrepancies in running
time could be attributed to hardware differences, we are unable to
explain why the RR set numbers that we observe differ so much
from those in [21].

Nonetheless, we observe that there exist two major anomalies in
the results from [21]. First, for k = 1 on Enron, Nguyen et al.’s
results show that the numbers of RR sets generated by D-SSA and
SSA are more than 40 times larger than that of IMM, and yet, D-
SSA and SSA incur smaller computation time than IMM does. This
is anomalous because (i) the major overheads of D-SSA, SSA, and
IMM are incurred by the generation of RR sets, and accordingly,
(ii) a significantly larger number of RR sets should indicate a higher
computation overhead. One may wonder whether this anomaly is
caused by the differences in how D-SSA, SSA, and IMM produce
each RR set under the LT model. However, as we show in Ap-
pendix A, the time required by D-SSA and SSA to generate an RR
set on Enron is at least 40% of that of IMM, which is insufficient to
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Figure 6: Running time under the IC model (large k setting).
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Figure 7: Number of random RR sets under the IC model (large k setting).
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Figure 8: Running time under the IC model (small k setting).
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Figure 9: Running time under the LT model (large k setting).
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Figure 10: Running time under the LT model (small k setting).

offset the 40-time difference in the numbers of RR sets. In contrast,
our results in Tables 3-5 do not exhibit this anomaly.

Second, Nguyen et al.’s results show that, when k = 1, the run-
ning time of each method on Orkut is less than 3 times of that on
Enron, despite the fact that Orkut contains 82 times more nodes
and 635 times more edges than Enron does. Similar issues exist
for the cases of k = 500 and k = 1000. These results are ir-
regular because the tremendous increase in the dataset size should
have led to a more pronounced degradation of computation effi-
ciency. In particular, the expected time complexity of IMM is
O(k(m + n)ε−2 logn) [26], which is linear to both m and n.
Meanwhile, our results in Tables 3-5 show that the running time
of IMM increases by roughly two orders of magnitude when we
change the input graph from Enron to Orkut, which is much more
consistent with the time complexity of IMM.

New results on Enron, Epinions, Orkut, and LiveJournal. Fig-
ures 9e-9h illustrate the computation overhead of each method on
Enron, Epinions, Orkut, and LiveJournal. The results are largely
consistent with those in Figures 9a-9d.

New results under the small k setting. Figure 10 illustrates the
processing cost of all methods under the small k setting. The results
are qualitatively similar to those in Figure 8. In particular, IMM
is outperformed by SSA and D-SSA when k ≥ 5, while SSA is
generally more efficient than D-SSA.

New results for SSA-Fix and IMM∗. Figures 9 and 10 demon-
strate that (i) SSA-Fix’s computation overhead is comparable to
that of SSA, and (ii) IMM∗ significantly outperforms IMM in many
cases, but it is still less efficient than SSA, SSA-Fix, and D-SSA.
These results are consistent with those under the IC model (dis-
cussed in Section 5.2).

5.4 Summary of Experimental Results
In summary, our experimental results support part of the find-

ings in [21] that, under the IC and LT models, SSA and D-SSA are
more efficient than IMM when k is large. In addition, we have the
following new findings:
1. Contrary to the results in [21], we observe that IMM is consid-

erably more efficient than SSA and D-SSA when k = 1, and is
generally faster than the latter when k < 20.
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Table 3: Number of RR sets under the LT model with k = 1.

Dataset Source
RR set num. (×103) Running time (sec)
D-SSA SSA IMM D-SSA SSA IMM

Enron
ours 954 1073 211 1.26 1.22 0.62
[21] 120 180 2.8 0.2 0.6 0.7

Epinion
ours 2234 2149 489 2.3 1.8 0.7
[21] 160 300 400 0.4 0.8 0.8

Orkut
ours 5115 4678 1177 178.2 152.7 69.4
[21] 30 60 124 0.5 1.1 2.1

Table 4: Number of RR sets under the LT model with k = 500.

Dataset Source
RR set num. (×103) Running time (sec)
D-SSA SSA IMM D-SSA SSA IMM

Enron
ours 82 176 579 0.15 0.25 2.5
[21] 30 60 580 0.1 0.2 3.1

Epinion
ours 250 378 1409 0.36 0.44 3.5
[21] 40 60 1214 0.1 0.1 4.4

Orkut
ours 315 473 2135 14.6 18.9 140.0
[21] 60 240 760 0.6 3.4 17.4

Table 5: Number of RR sets under the LT model with k = 1000.

Dataset Source
RR set num. (×103) Running time (sec)
D-SSA SSA IMM D-SSA SSA IMM

Enron
ours 154 333 911 0.30 0.59 4.4
[21] 120 180 910 0.2 0.6 6.9

Epinion
ours 314 644 2226 0.46 0.86 8.2
[21] 160 240 1852 0.3 0.7 12.1

Orkut
ours 422 878 3279 27.2 39.1 263.0
[21] 60 240 1392 0.6 4.3 45.5

2. When k ≤ 50, SSA is at least as efficient as or more efficient
than D-SSA in most cases.

3. SSA-Fix offers comparable performance to SSA in all cases
tested.

4. The performance gap between IMM and SSA (resp. D-SSA) is
partially due to the fact that the implementation of the former is
less optimized than that of SSA (resp. D-SSA). We show that an
optimized implementation of IMM (i.e., IMM∗) can be up to an
order of magnitude faster than the original implementation, but
its overall efficiency is still inferior to that of SSA and D-SSA.

Remark. We have also tested the expected influence of the seed
sets generated by each algorithm. Our results show that, given the
same experimental setting, all methods achieve similar expected
influence, i.e., there is no significant difference in the quality of
results returned by each method. In addition, the expected influence
of each method increases considerably from when k increases 1 to
2500, but does not increase much when k further increases from
2500 to 20000. This indicates that k < 2500 is likely to be a more
realistic setting for the influence propagation models that we have
tested. Due to the space constraint, we omit the results from this
paper but include them in our technical report [1].

6. CONCLUSION
This paper revisits SSA and D-SSA [21], which are two recently

proposed algorithms for influence maximization that claim to offer
non-trivial accuracy guarantees, optimal time efficiency, and strong
empirical performance. We carefully analyze the key lemmas and

theorems in [21] and conduct a comprehensive set of experiments
to re-evaluate SSA and D-SSA against a competing method, IMM
[26]. Our analysis shows that the accuracy and efficiency claims of
both SSA and D-SSA are flawed, and we provide a revised version
of SSA, referred to as SSA-Fix, which restores the approximation
guarantee of SSA. Meanwhile, our experiments confirm the finding
in [21] that SSA and D-SSA are more efficient than IMM when the
size k of the seed set is large, but we also find that, contrary to
the results reported in [21], IMM generally outperforms SSA and
D-SSA when k is small. In addition, we observe that there exist
several other anomalies in the experimental results in [21], and that
SSA-Fix is largely as efficient as SSA. Our study leaves open the
question of whether one can improve SSA (resp. D-SSA) to fix both
its accuracy and efficiency claims and to reduce its empirical over-
heads when k is small, e.g., k <= 1000.
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APPENDIX
A. GENERATION OF RR SETS UNDER

THE LINEAR THRESHOLD MODEL
As with the IC model, the linear threshold (LT) model [17] also

assumes that each edge e in the social networkG is associated with
a propagation probability p(e), but it requires that for each node v
in G, the propagation probabilities of all edges ending to v sum up
to no more than 1. In addition, given a seed set S, it considers a
different type of influence propagation process as follows:

1. At timestamp 0, for each node v in G, we assign a threshold
θ(v) that is sampled uniformly at random from [0, 1]. Then,
we activate the nodes in S.

2. At timestamp i, for each inactive node w, we examine all
of its incoming edges from activated nodes and check if the
sum of those edges’ propagation probabilities is not smaller
than θ(v). If it is, then we activate w; otherwise, w remains
inactive.

3. The influence propagation process terminates when none of
the remaining inactivate nodes can be activated.

As shown in [27], a random RR set R under the LT model can
be generated using an iterative procedure. In the first iteration, we

choose a node u uniformly at random from G and set R = {u}.
Then, in the i-th (i > 1) iteration, we examine the nodes inserted
into R in the (i − 1)-th iteration. For each v of those nodes, we
identify the set Ein(v) of edges that end at v, and we toss a coin
that lands heads with a probability of

∑
e∈Ein(v) p(e). If the coin

shows a head, then we sample an edge e′ fromEin(v), such that the
sampling probability of each edge is proportional to its propagation
probability; after that, we insert into R the node that e′ starts from
(if the node is not already in R). On the other hand, if the coin
shows a tail, then we do not perform any operation for v. This
iterative procedure terminates when no node is inserted into R in a
certain iteration.

IMM, SSA, SSA-Fix, and D-SSA all implement the above itera-
tive procedure to generate random RR sets under the LT model but
their implementations differ in the way that they sample an edge
from each edge set Ein(v). Without loss of generality, assume that
Ein(v) contains α edges e1, e2, . . . , eα. Given Ein(v), IMM first
samples a number x uniformly at random from [0, 1], after which it
performs a linear scan on e1, e2, . . . , eα. If x >

∑α
i=1 p(ei), then

IMM omits all edges in Ein(v); otherwise, it retrieves eβ , where
β is the smallest integer satisfying

∑β
i=1 p(ei) ≥ x. Observe that

this edge sampling process takes O(α) time.
In contrast, SSA, SSA-Fix, and D-SSA only take O(logα) time

to generate eβ . In particular, for each node v in G, they prepro-
cess Ein(v) to obtain the prefix sum of p(e1), p(e2), . . . , p(eα),
namely, they pre-compute an α-element array for v such that the
j-th element equals

∑j
i=1 p(ei). After that, whenever they need

to sample an edge from Ein(v), they first generate a number x
uniformly at random from [0, 1], and then they perform a binary
search on the prefix sum for v to identify the smallest integer β
with

∑β
i=1 p(ei) ≥ x. If β does not exists (i.e., x >

∑α
i=1 p(ei)),

then they omit all edges in Ein(v); otherwise, they use eβ as the
edge sampled from Ein(v).

To illustrate the efficiency difference between the above two
edge sampling approaches, we measure the time required by IMM,
SSA, SSA-Fix, and D-SSA to generate 106 random RR sets on each
dataset, and we report the average time per RR set in Table 6. Ob-
serve that the time required by IMM is up to 10 times larger than
that by the other algorithms.

In addition to using an optimized edge sampling procedure, SSA,
SSA-Fix, and D-SSA incorporate another trick to reduce the over-
head of RR set generation. In particular, in Line 7 of SSA (i.e., Al-
gorithm 1), it invokes Algorithm 3 to estimate the expected spread
of a seed set Sk, in which it generates random RR sets one by one
and checks if they intersect Sk. For each RR set R involved in this
process, SSA does not wait until R is full constructed to check if
R and Sk overlap. Instead, when SSA constructs R, it examines
each node v being inserted into R, and checks whether it is in Sk;
if v ∈ Sk, then SSA immediately terminates the generation of R
since it is clear that R intersects Sk. The same trick is also adopted
in SSA-Fix and Lines 5-6 of D-SSA (i.e., Algorithm 4).
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