
Leveraging Set Relations in Exact Set Similarity Join

Xubo Wang†, Lu Qin‡, Xuemin Lin†, Ying Zhang‡, and Lijun Chang†
†University of New South Wales, Australia
‡University of Technology Sydney, Australia

†{xwang,lxue,ljchang}@cse.unsw.edu.au, ‡{lu.qin,ying.zhang}@uts.edu.au

ABSTRACT
Exact set similarity join, which finds all the similar set pairs from
two collections of sets, is a fundamental problem with a wide
range of applications. The existing solutions for set similarity join
follow a filtering-verification framework, which generates a list of
candidate pairs through scanning indexes in the filtering phase,
and reports those similar pairs in the verification phase. Though
much research has been conducted on this problem, set relations,
which we find out is quite effective on improving the algorithm
efficiency through computational cost sharing, have never been
studied. Therefore, in this paper, instead of considering each
set individually, we explore the set relations in different levels to
reduce the overall computational costs. First, it has been shown
that most of the computational time is spent on the filtering phase,
which can be quadratic to the number of sets in the worst case for
the existing solutions. Thus we explore index-level set relations to
reduce the filtering cost to be linear to the size of the input while
keeping the same filtering power. We achieve this by grouping
related sets into blocks in the index and skipping useless index
probes in joins. Second, we explore answer-level set relations to
further improve the algorithm based on the intuition that if two
sets are similar, their answers may have a large overlap. We derive
an algorithm which incrementally generates the answer of one set
from an already computed answer of another similar set rather
than compute the answer from scratch to reduce the computational
cost. Finally, we conduct extensive performance studies using 21
real datasets with various data properties from a wide range of
domains. The experimental results demonstrate that our algorithm
outperforms all the existing algorithms across all datasets and can
achieve more than an order of magnitude speedup against the state-
of-the-art algorithms.

1. INTRODUCTION
Set similarity join is a fundamental problem. Given two

collections of sets, each of which contains a set of elements,
set similarity join finds all similar set pairs from the collections.
Here, two sets are similar if their similarity value is above
a user-defined threshold regarding a given similarity function.
Two commonly used similarity functions are Jaccard similarity
and Cosine similarity. Set similarity join is adopted in a

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 9
Copyright 2017 VLDB Endowment 2150-8097/17/05.

variety of application domains including data cleaning [19, 25],
infomation extraction [24], data integration [26], personalized
recommendation [27], community mining [38], entity resolution
[41], near duplicate detection [39, 46] and machine learning [48].
In the literature, two categories of set similarity join problems are
widely studied, namely, exact set similarity join [19, 25, 47, 38, 46]
and approximate set similarity join [36, 30]. In this paper, we focus
on the exact set similarity join problem.

State-of-the-art. The existing solutions for exact set similarity join
follow a filtering-verification framework [20, 45, 42, 31, 28, 32]. In
the filtering phase, a set of candidate pairs is generated and in the
verification phase, all candidate pairs are verified and those with
similarity above the threshold are reported as answers. The most
widely used filter is the prefix filter [20, 45, 42, 31, 32], which is
based on the property that if two sets are similar, they must share
at least one common element in their prefixes. For a certain set, to
compute its answer (i.e., its similar sets) using this property, one
only needs to probe the inverted lists for the elements in its prefix,
where the inverted list for an element consists of the sets containing
the element. In [32], a comprehensive empirical evaluation of set
similarity join techniques was conducted on ten real-world datasets
from various domains. The experimental results demonstrate that
for prefix-filter based algorithms, the verification can be performed
very efficiently in practice and the majority of computational costs
are spent on the filtering phase. Therefore, the authors conclude
that the key to improve the set similarity join algorithms is to reduce
the filtering cost.

Motivation. The main cost of the filtering phase for prefix-filter
based algorithms is spent on probing inverted lists for elements in
the prefix of each set. Existing solutions mainly focus on how to
reduce the cost when computing the answer for each individual set.
Nevertheless, none of the existing solutions consider the relations
among sets. Intuitively, if we consider some related sets together,
rather than individually, we can leverage their relations to share the
computational costs and thus speed up the algorithm. Motivated by
this, in this paper, we aim to investigate different relations among
sets to explore possible computational cost sharing in exact set
similarity join.

Contributions. In order to leverage set relations in exact set
similarity join, the following issues need to be addressed: (1) What
relations can be used to speed up exact set similarity join? and (2)
How can we use the set relations to effectively reduce the overall
computational cost? In this paper, we answer these questions and
make the following contributions.

(1) Theoretical analysis of existing algorithms. We conduct
a comprehensive theoretical analysis of the time and space
complexities of existing algorithms for exact set similarity join.
We discover that although only linear space is required for existing

925

prefix-filter based algorithms, the time complexity can be O(n2 ·

lavg + V), where n is the number of sets in the input, lavg is the
average set size, and V is the verification cost, which is small in
practice according to [32]. We show that the main reason for the
high cost in the filtering phase is that cost sharing is not considered
when computing the answers for different sets.

(2) Skipping technique based on index-level set relations. We first
explore the relations of sets in the inverted list of each element
and propose a light-weight inverted index where the sets indexed in
the same inverted list are partitioned into different skipping blocks,
and the sets in the same skipping block are sorted according to
a predefined order. Using these skipping blocks, we show that
once a certain set is filtered, when probing a skipping block in the
filtering phase, the set along with all the remaining sets in the same
skipping block can be skipped thereafter. This property enables us
to design an algorithm with a space complexity linear to the input
size and a time complexity of O(n · lavg + V), which improves the
time complexity of O(n2 · lavg + V) for the existing algorithms. The
improvement is significant because the verification cost V is much
smaller than the filtering cost in practice.

(3) Skipping technique based on answer-level set relations. We
then investigate the relations of the answers for different sets.
Intuitively, if two sets are similar, their answers should have a large
overlap. Given two similar sets where the answer for one set has
been computed, we can generate the answer for the other set by
adding and removing a small number of sets incrementally without
computing the answer from scratch. Based on this intuition, we
design a method that can compute the answer for one set based on
the answer for another set incrementally. We also derive a cost
model to determine whether to apply the answer-level skipping
technique when computing the answer of each set to reduce the
overall computational cost.

(4) Extensive performance studies. Finally, we conduct extensive
experiments using 21 real-world datasets from different domains to
compare our algorithm with the state-of-the-art algorithms. The
datasets are selected from different domains with various data
properties. According to the experimental results, our algorithm
outperforms all the other algorithms in all tests which shows
the effectiveness of merging the two different level skipping
techniques; and with comparable memory usage, our algorithm can
achieve a speedup of more than an order of magnitude compared to
the state-of-the-art algorithms.

Outline. The remainder of this paper is organized as follows:
Section 2 formally defines the problem of exact set similarity
join. Section 3 shows the existing solutions and provides
a theoretical analysis of the time and space complexities for
the existing solutions. Section 4.1 and Section 4.2 detail our
skipping techniques based on index-level relations and answer-
level relations respectively. Section 5 evaluates our algorithm
through extensive performance studies. Section 6 reviews related
work and Section 7 concludes the paper. Due to lack of space, we
put the proofs of all lemmas and theorems in our technical report
[43].

2. PROBLEM DEFINITION
Suppose E = {e1, e2, . . . , em} is a finite universe of elements and

a record (we use record and set interchangeably in this paper) r
is a subset of elements in E, i.e., r ⊆ E. Given two records ri
and r j, we use a similarity function Sim(ri, r j) ∈ [0, 1] to measure
the similarity between ri and r j. Two commonly used similarity
functions, namely Jaccard Similarity and Cosine Similarity, are

Table 1: Frequently Used Notations
Notation Description

R = {r1, . . . , rn} The collection of records
E = {e1, . . . , em} The set of elements in R

τ The similarity threshold
A,A(ri) The join answer and the answer set for record ri

I(ei) The inverted list for element ei
lavg, lmax The average and maximum record lengths in R
preti

(ri) The prefix of length ti for record ri

posei
(r j) The position of element ei in r j

Bei (l) The skipping block for element ei and length l
I∗(ei) The inverted list with skipping blocks for element ei

respectively defined as Jac(ri, r j) =
|ri∩r j |

|ri∪r j |
and Cos(ri, r j) =

|ri∩r j |√
|ri |×|r j |

.

Given two collections of records R and S, a similarity function
Sim, and a threshold τ, the R-S join of R and S finds all record
pairs r ∈ R and s ∈ S such that Sim(r, s) ≥ τ. In this paper,
for simplicity and without loss of generality, we focus on the self-
join, i.e., R = S and we use the Jaccard similarity to describe our
techniques. We show how to support R-S join with R , S and
how to handle Cosine Similarity in our technical report [43]. The
problem studied in this paper is formally defined as follows:

Problem Statement. Given a database of records R = {r1, r2, . . . ,
rn} and a threshold τ, set similarity join computes the set of pairsA
= {(ri, r j)|ri ∈ R, r j ∈ R, j > i, Jac(ri, r j) ≥ τ}.

Definition 2.1: (Answer Set). Given a database of records R = {r1,
r2, . . . , rn} and a threshold τ, for any 1 ≤ i ≤ n, the answer set of ri
is defined as:

A(ri) = {(ri, r j)|r j ∈ R, j > i, Jac(ri, r j) ≥ τ}. (1)

Obviously,A =
⋃

ri∈R
A(ri). �

We use n to denote the number of records in the record database
R, and use m to denote the number of distinct elements in R. For
each record ri ∈ R, the length of ri is the number of elements in ri,
which is denoted as |ri|. For each record r and a position k ∈ [1, |r|],
we use r[k] to denote the k-th element of r. For each element ei ∈ E,
we use I(ei) to denote the set of records in R that contains ei, i.e.,
I(ei) = {r ∈ R|ei ∈ r}. We call I(ei) the inverted list for element
ei. The number of records in I(ei) is denoted as |I(ei)|, i.e., |I(ei)| =
|{r ∈ R|ei ∈ r}|. The average record length is denoted as lavg, i.e.,

lavg =
∑

ri∈R |ri |

n , and the maximum record length is denoted as lmax,
i.e., lmax = maxri∈R |ri|. Following [20, 45, 42, 31, 32], we assume
that the records r ∈ R are sorted according to the non-decreasing
order of |r|, i.e., |ri| ≤ |r j| for any 1 ≤ i < j ≤ n, and we assume
that the elements e ∈ E are sorted according to the non-decreasing
order of |I(e)|, i.e., |I(ei)| ≤ |I(e j)| for any 1 ≤ i < j ≤ m.

Table 2: A Collection of Records
r1 {e1, e6, e7, e8, e9, e10, e11, e13, e14, e15, e17, e18}

r2 {e3, e7, e8, e9, e10, e12, e13, e14, e15, e16, e17, e18}

r3 {e2, e7, e8, e9, e10, e12, e13, e14, e15, e16, e17, e18}

r4 {e6, e7, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18}

r5 {e5, e6, e8, e9, e10, e11, e12, e13, e15, e16, e17, e18}

r6 {e2, e3, e4, e5, e8, e11, e13, e14, e15, e16, e17, e18}

r7 {e2, e3, e4, e5, e9, e11, e13, e14, e15, e16, e17, e18}

r8 {e3, e4, e5, e6, e7, e8, e10, e11, e12, e14, e16, e17, e18}

r9 {e3, e4, e5, e6, e7, e8, e10, e12, e14, e15, e16, e17, e18}

r10 {e2, e4, e5, e6, e7, e9, e11, e12, e13, e14, e15, e16, e17, e18}

Example 2.1: Consider the dataset in Table 2. Assume the given
threshold is τ = 0.7. The answer set of r1 is A(r1) = {(r1, r4)} as
only Jac(r1, r4) = 10

14 ≥ τ. For the element e3, we have I(e3) =

{r2, r6, r7, r8, r9}. �

Frequently used notations are summarized in Table 1.

926

3. EXISTING SOLUTIONS
The state-of-the-art solutions are based on a filtering-verification

framework. In the filtering phase, a set of candidate pairs is
generated. In the verification phase, the similarity of each candidate
pair is calculated and those pairs with similarity no smaller than the
threshold are output. Based on different filtering schemes, existing
solutions can be divided into two categories: prefix-filter based
methods and partition-filter based methods.

3.1 Prefix-Filter based Methods
Given a record r ∈ R, a prefix of r, denoted as pret(r), is the first

t elements in r. To compute A(ri), instead of exploring all records
in ∪e∈ri I(e), prefix-filter based algorithms only need to probe the
inverted lists of elements in pret(r) based on the following lemma:

Lemma 3.1: Given two records ri and r j, if Jac(ri, r j) ≥ τ, we
have preti (ri) ∩ pret j

(r j) , ∅, where ti = b(1 − τ) · |ri|c + 1 and
t j = b(1 − τ) · |r j|c + 1. �

According to Lemma 3.1, given a record ri, in order to compute
A(ri), we only need to consider those records that are in the
inverted lists of the first ti elements in ri, i.e.,

A(ri) ⊆ {(ri, r j)|r j ∈ ∪e∈preti (ri)I(e), j > i}. (2)

Based on Equation (2), existing prefix-filter based methods aim
to reduce the size of candidates according to the following three
categories of filtering techniques [20, 45, 31, 42]:
• Prefix Filter: Instead of exploring I(e) for all e ∈ ri, we only

need to probe I(e) for the elements e ∈ preti (ri).
• Length Filter: For each e ∈ preti (ri), we do not need to visit all

records in I(e). Instead, we only need to visit those r j (j > i)
with length no larger than a length threshold ui(e).

• Position Filter: When visiting a certain r j ∈ I(e) for element
e ∈ preti (ri), the position of e in r j can be used to filter r j.
A self-explanatory algorithm framework for the prefix-filter

based approaches that incorporates the above filters is shown in
Algorithm 1. We assume that records in I(e) are sorted in non-
decreasing order of record length. Below, we briefly introduce each
of the state-of-the-art prefix-filter based algorithms.

Algorithm AllPairs. We do not need to probe all records in the
inverted list I(e) for each element e ∈ preti (ri). In AllPairs [20], a
length filter is proposed according to the lemma shown below:
Lemma 3.2: Given two records ri and r j, if Jac(ri, r j) ≥ τ, we have
|r j| ≤ ui(e) = b

|ri |
τ
c. �

Algorithm PPJ/PPJ+. In PPJ [45], a position filter is proposed.
Given a record r and an element ei ∈ r, the position of ei in r,
denoted as posei

(r) is defined as:

posei
(r) = |{e j|e j ∈ r, j ≤ i}|. (3)

posei
(r) can be precomputed together with the inverted list I(ei) for

each r ∈ I(ei). With the position information, the position filter
introduced in PPJ [45] is based on the following lemma:
Lemma 3.3: Given two records ri and r j, if Jac(ri, r j) ≥ τ, for any
e ∈ ri ∩ r j, we have |r j| − pose(r j) + |prepose(ri)(ri)∩ prepose(r j)(r j)| ≥
d τ

1+τ
(|ri| + |r j|)e. �

Specifically, if e is the first element in ri ∩ r j, the position filter in
Lemma 3.3 can be formulated as: |r j|−pose(r j)+1 ≥ d τ

1+τ
(|ri|+|r j|)e.

In addition, in PPJ [45], an improved prefix filter is proposed
according to the lemma shown below:

Lemma 3.4: Given two records ri and r j with |r j| ≥ |ri|, if Jac(ri, r j)
≥ τ, we have preti (ri) ∩ pret j

(r j) , ∅, where ti = b 1−τ
1+τ
· |ri|c + 1 and

t j = b(1 − τ) · |r j|c + 1. �

Algorithm 1: Prefix-Filter based Framework
Input: A set of records R; a similarity threshold τ
Output: All similar record pairs (ri, r j) with Jac(ri, r j) ≥ τ

1 for each record ri ∈ R do
2 C(ri)← ∅; Calculate the prefix length ti (prefix filter);
3 for each element e ∈ preti

(ri) do
4 Calculate the length threshold ui(e) (length filter);
5 for each record r j ∈ I(e) with j > i do
6 if |r j | > ui(e) then break;
7 if (ri, r j) < C(ri) and r j is not filtered by the position of e in r j

(position filter) then C(ri)← C(ri) ∪ {(ri, r j)};

8 for each (ri, r j) ∈ C(ri) do
9 if Jac(ri, r j) ≥ τ then output (ri, r j) ;

Compared to Lemma 3.1, Lemma 3.4 improves the prefix length of
ri from b(1 − τ) · |ri|c + 1 to b 1−τ

1+τ
· |ri|c + 1.

In [45], the authors further proposed an algorithm PPJ+ by
making use of the suffix information to filter more candidates after
applying the basic filters.

Algorithm PEL. In PEL [31], the authors improved the length filter
proposed in AllPairs [20] using the position information according
to the following lemma:

Lemma 3.5: Given two records ri and r j with Jac(ri, r j) ≥ τ, for
the first element e in ri ∩ r j, i.e., the element e ∈ ri ∩ r j with the
smallest pose(ri), we have |r j| ≤ ui(e) = b

|ri |−(pose(ri)−1)·(τ+1)
τ

c. �

Based on Lemma 3.5, when exploring the inverted list of the k-th
element of ri, i.e., I(e) for e = ri[k], we only need to consider those
records r j with length no larger than b |ri |−(k−1)·(τ+1)

τ
c, which improves

the bound of b |ri |
τ
c shown in Lemma 3.2.

Algorithm ADP. In [32] the authors proposed an algorithm ADP
using an extended prefix filter. The main idea is based on a
generalization of Lemma 3.1, which is shown below:

Lemma 3.6: Given two records ri and r j, if Jac(ri, r j) ≥ τ, we
have |preti,l (ri) ∩ pret j,l

(r j)| ≥ l, where ti,l = b(1 − τ) · |ri|c + l and
t j,l = b(1 − τ) · |r j|c + l. �

According to Lemma 3.6, if one probes a longer prefix of ri, more
prefix information is gained and therefore more dissimilar pairs
can be pruned. The length of the prefix to be probed is computed
adaptively according to a cost function.

Some other heuristics are introduced in [34] and [21]. However,
as compared in [32], these heuristics cannot significantly improve
the efficiency of the prefix-filter based algorithms.

Result Verification. In [32], Mann et al. introduced a
new verification algorithm to efficiently verify whether the
similarity of two records reaches a certain threshold τ. The
verification algorithm uses a merge-like method and adopts an early
termination condition based on Lemma 3.3. As stated in [32], based
on the early termination condition, verification is surprisingly fast
in practice.

Summary. To summarize, in order to compute A(ri), the most
effective filters are shown below:

• Prefix Filter: We only need to probe I(e) for e ∈ preti (ri), where

ti = b
1 − τ
1 + τ

· |ri|c + 1 (4)

• Length Filter: For each e ∈ preti (ri), we only need to visit those
r j (j > i) with |r j| ≤ ui(e), where

ui(e) = b
|ri| − (pose(ri) − 1) · (τ + 1)

τ
c (5)

927

• Position Filter: When visiting a new record r j ∈ I(e) for e ∈
preti (ri), (ri, r j) is a candidate pair if

|r j| − pose(r j) + 1 ≥ d
τ

1 + τ
(|ri| + |r j|)e (6)

Time/Space Complexity. The following theorem shows that
the filtering cost of the prefix-filter based algorithms that follow
Algorithm 1 can be quadratic to the number of records in R.

Theorem 3.1: The time complexity of Algorithm 1 is O(n2 ·lavg +V),
where V is the time cost to verify all candidate pairs. �

The following lemma shows that the memory usage of
Algorithm 1 is linear to the size of the input:

Theorem 3.2: The space complexity of Algorithm 1 is O(n · lavg).
�

3.2 Partition-Filter based Methods
In [28], a partition-filter based algorithm PTJ was proposed.

In PTJ, each record in R is partitioned into several disjoint sub-
records such that two records are similar only if they share a
common sub-record. Specifically, given an integer p, a partition
scheme scheme(E, p) is a partition of E which divides the element
universe E into p subsets E1, E2, . . ., Ep, where ∪p

i=1E
i = E and

Ei ∩ E j = ∅ for any 1 ≤ i < j ≤ p. Under a partition scheme
scheme(E, p), a record r can be partitioned into p sub-records r1,
r2, . . ., rp where ri = r ∩ Ei for any 1 ≤ i ≤ p. The partition-filter
based methods are designed based on the following lemma:
Lemma 3.7: For any two records ri and r j, suppose we use the
same partition scheme scheme(E, pi) to partition ri and r j into pi =

b 1−τ
τ
|ri|c + 1 sub-records, if Jac(ri, r j) ≥ τ, then there exist at least

one integer k ∈ [1, pi] with rk
i = rk

j . �

The PTJ algorithm is designed following a filtering-verification
framework. The filtering phase consists of two steps:
• In the first step, for each record ri ∈ R, we generate all its

sub-records under the partition scheme scheme(E, pi) and index
them using the inverted list.

• In the second step, for each record r j ∈ R, we generate all the
sub-records of r j under the partition schemes scheme(E, b 1−τ

τ
lc+

1) for any τ|r j| ≤ l ≤ |r j|. For each such sub-record rk
j in each

of the generated partition schemes, we probe all records ri in the
inverted list of rk

j and consider (ri, r j) as a candidate pair.
In the verification phase, all candidate pairs are verified and those
pairs (ri, r j) with Jac(ri, r j) ≥ τ are output.

The time and space complexities of PTJ are shown below:

Theorem 3.3: The time complexity of PTJ is O(n · l2
max + V ′), where

V ′ is the time cost to verify all candidate pairs. �

Theorem 3.4: The space complexity of PTJ is O(n · lmax). �

4. SPEED UP JOINS BY SKIPPING
As shown in Section 3, the time complexities of the existing

prefix-filter based algorithms and partition-filter based algorithms
are O(n2 · lavg + V) and O(n · l2

max + V ′) respectively. Here, the
dominant costs are spent on the filtering phase, which are O(n2 ·lavg)
and O(n · l2

max) for prefix-filter and partition-filter based algorithms
respectively. As indicated in [32], it does not pay off to use more
sophisticated filters to further reduce the number of candidates to
be verified. Therefore, in this paper, we do not intend to use
more filters to reduce the number of candidates. Instead we aim
to improve the efficiency of the filtering phase without increasing
the verification cost.

We observe that in the existing prefix-filter based algorithms, the
records are processed independently, and thus the relations among

records are never considered when computing the answer sets for
different records. Specifically, first, when computing the candidate
set C(ri) for a certain record ri, the records indexed in the inverted
lists of elements in the prefix of ri are probed independently;
and second, the answer sets A(ri) for all records ri are computed
independently. To address this problem, in this section, we develop
effective skipping techniques to reduce the number of index probes
by considering two levels of record relations, namely, index-level
skipping, and answer-level skipping, which will be introduced in
Section 4.1 and Section 4.2 respectively. Note that the two skipping
techniques can be independently studied, and each technique has
a significant contribution to the improvement of the algorithm
efficiency as demonstrated in Section 5.

4.1 Index-Level Skipping
Motivation. In this section, we introduce the skipping technique
that uses the index-level record relations. Before introducing the
technique details, we first look at a motivating example below:

Example 4.1: Suppose we computeA(r1) for the dataset shown in
Table 2. The prefix pret1 (r1) contains e1, e6, and e7. Assume that we
are now probing the inverted list I(e6) = {r1, r4, r5, r8, r9, r10}. The
number of probed entries is 5 according to Algorithm 1. However,
it is worth noticing that, for any record r j ∈ {r8, r9}, the record
length and element position are the same with |r j| = 13 and
pose6

(r j) = 4. They all fail the position condition as |r j| − pose6
(r j)

+ 1 = 10 < d τ
1+τ

(|r1| + |r j|)e = 11. In fact, whenever we probe the
inverted list I(e6), once r j = r8 fails the position condition, we can
skip the position condition checking for r j = r9. �

This example demonstrates that by considering the relations of
the records in the inverted list of a certain element, the cost of
probing the inverted list can potentially be reduced. Note that we
have three types of filters: prefix filter, length filter, and position
filter. The key to reduce the cost of probing the inverted lists is to
reduce the number of failed attempts (the record probes that fail the
filter condition) for each filter. Below, we analyze each of the three
types of the filters individually:
• For the prefix filter (line 2 of Algorithm 1), when probing the

inverted list I(e) for e ∈ ri, we guarantee that e is selected from
the prefix preti (ri) of ri. In other words, the prefix condition in
Equation (4) will never fail.

• For the length filter (line 4-6 of Algorithm 1), when probing the
inverted list I(e) for e ∈ ri, we need to prune those records r j
with |r j| > ui(e) (Equation (5)). By sorting the records in each
inverted list I(e) according to the non-decreasing order of length,
such a condition can be satisfied without failed attempts.

• For the position filter (line 7 of Algorithm 1), in order to avoid
failed attempts, we need to find an appropriate order of records
in the inverted list I(e) for e ∈ ri. However, this is difficult since
when probing I(e), we need to consider three factors |ri|, |r j| and
pose(r j) at the same time as shown in Equation (6).

Based on the above analysis, the key to avoid failed attempts is to
avoid the failure of the position condition in Equation (6). In the
remainder of the paper, we use failed attempt to denote the attempt
that fails the position condition in Equation (6).

The Rationale. In the position condition in Equation (6) used in the
position filter, there are three factors, namely, |ri|, |r j|, and pose(r j).
For ease of analysis, we rewrite Equation (6) as:

(1 + τ) · pose(r j) + τ · |ri| ≤ |r j| + τ + 1 (7)

It is easy to see that if a certain pair (ri, r j) fails the position
condition in Equation (7) when probing the inverted list I(e), all
the pairs (ri′ , r j′) with |r j′ | = |r j|, |ri′ | ≥ |ri|, and pose(r j′) ≥ pose(r j)

928

Be1(12)

I∗(e2)

I∗(e1)

Be2(12)

(r6, 1) (r7, 1) (r10, 1)

I∗(e3)

I∗(e4)

I∗(e5)

Be2(14)

(r3, 1)

(r2, 1) (r6, 2) (r7, 2) (r8, 1) (r9, 1)

Be3(12) Be3(13)

(r1, 1)

(r6, 3) (r7, 3) (r8, 2) (r9, 2) (r10, 2)

Be4(12) Be4(13) Be4(14)

(r5, 1) (r6, 4) (r7, 4) (r8, 3) (r9, 3) (r10, 3)

Be5(12) Be5(13) Be5(14)

…

I∗(e6) (r4, 1) (r1, 2) (r5, 2) (r8, 4) (r9, 4) (r10, 4)

Be6(12) Be6(13) Be6(14)

Figure 1: Illustration of inverted list I∗(e)
will also fail the position condition in Equation (7) when probing
the inverted list I(e). Making use of such a domination relationship
can possibly reduce the number of failed attempts when probing
the inverted list I(e). Recall that the records r j in the inverted list
I(e) are sorted by non-decreasing order of |r j|. We need to keep
this order since the length filter relies on it. To use the domination
relationship, we further group all the records r j with the same |r j|

in I(e), and construct a new inverted list I∗(e) which is defined as:

Definition 4.1: (Inverted list I∗(e)). For each element e, the
inverted list I∗(e) consists of all entries (r j, pose(r j)) such that
e ∈ r j. The entries in I∗(e) are grouped into skipping blocks. Each
skipping block Be(l) consists of all entries (r j, pose(r j)) in I∗(e)
with |r j| = l. Skipping blocks Be(l) in I∗(e) are sorted in non-
decreasing order of l, and entries ((r j), pose(r j)) in each skipping
block are sorted in non-decreasing order of pose(r j). �

Index Construction. From the above definition, we can see that
the main difference between I∗(e) and I(e) is the sorting order. That
is, each record is added to I∗(e) based on record size and element
position. Therefore, the time complexity of constructing I∗(e) and
I(e) are the same. So are the space complexity. Note that the
index can be built offline since it is independent of any user given
parameter. Below, we give an example to illustrate the inverted
index I∗(e) with skipping blocks.

Example 4.2: The inverted lists I∗(e) of elements e in the dataset of
Table 2 are illustrated in Figure 1. Take element e3 as an example.
The records that contain e3 are r2, r6, r7, r8 and r9. Records
r2, r6, and r7 are grouped into skipping block Be3 (12) since their
lengths are all 12. Likewise, records r8 and r9 are grouped into
Be3 (13). Inside each skipping block, the records are sorted in non-
decreasing order of the position of e3. For example in Be3 (12), the
entries are (r2, 1), (r6, 2), and (r7, 2), with the non-decreasing order
of positions 1, 2, and 2 respectively. �

Next, we show how the skipping blocks are used to reduce the
number of failed attempts by skipping useless index probes. The
key is to make use of the non-decreasing order of pose(r j) for all
entries (r j, pose(r j)) in the same skipping block. Based on such an
order, we can derive the following lemma:

Lemma 4.1: When computing C(ri) by probing Be(l), once an entry
(r j, pose(r j)) fails the position condition in Equation (7), we have:

(1) All un-probed entries in Be(l) will fail Equation (7) when
computing C(ri); and

(2) All un-probed entries in Be(l) along with (r j, pose(r j)) will
fail Equation (7) when computing C(ri′) for any i′ > i. �

Based on Lemma 4.1, we know that once an entry fails the
position condition in Equation (7), we have: (1) the un-probed
entries in the same skipping block Be(l) can be skipped for the

Algorithm 2: Index-Level Skipping
Input: A set of records R; a similarity threshold τ
Output: All similar record pairs (ri, r j) with Jac(ri, r j) ≥ τ

1 for each record ri ∈ R do
2 C(ri)← ∅; Calculate the prefix length ti using Equation (4);
3 for each element e ∈ preti

(ri) do
4 Calculate the length threshold ui(e) using Equation (5);
5 for each skipping block Be(l) in I∗(e) do
6 if l > ui(e) then break;
7 for each (r j, pose(r j)) ∈ Be(l) before Be(l).pos do
8 if (r j, pose(r j)) fails Equation (7) then
9 Be(l).pos← position of (r j, pose(r j)) in Be(l);

10 break;

11 if (ri, r j) < C(ri) then C(ri)← C(ri) ∪ {(ri, r j)};

12 if Be(l).pos = 1 then Remove Be(l) from I∗(e);

13 for each (ri, r j) ∈ C(ri) do
14 if Jac(ri, r j) ≥ τ then output (ri, r j) ;

current iteration; and (2) the entry along with all the un-probed
entries in the same skipping block Be(l) can be skipped for all future
iterations when probing the same inverted list I∗(e). Below, we
show our algorithm for index-level skipping.

The Algorithm. To make use of Lemma 4.1, in each skipping
block Be(l), we define Be(l).pos to be the position of the first entry
that fails the position condition in Equation (7). Initially Be(l).pos
is set to be |Be(l)| + 1. Our algorithm for index-level skipping is
shown in Algorithm 2. To compute the answer set for each ri ∈ R,
we use the prefix filter and length filter the same as those used in
Algorithm 1 (line 2-4). For each element e ∈ preti (ri), we probe
all the skipping blocks Be(l) in the inverted list I∗(e) according
to the non-decreasing order of l (line 5). Once l exceeds the
length threshold ui(e), we skip all the remaining skipping blocks
(line 6). Otherwise, we probe the first Be(l).pos − 1 entries in the
current skipping block Be(l). For each entry (r j, pose(r j)) (line 7),
if the position condition Equation (7) fails, we set Be(l).pos as
the position of (r j, pose(r j)) in Be(l) and skip all the remaining
entries in the skipping block (line 8-10); Otherwise, we add (ri, r j)
as a candidate pair (line 11). Once all entries in the skipping
block Be(l) can be skipped, i.e., Be(l).pos = 1, we remove Be(l)
from I∗(e) (line 12). The verification phase is the same as that
used in Algorithm 1. Note that for simplicity, we do not add
the constraint i < j for each candidate pair (ri, r j) generated in
Algorithm 2. To ensure such a constraint, when probing an entry
(r j, pose(r j)) ∈ Be(l), if j ≤ i, we just need to remove the entry
from Be(l) since it will never be used afterwards. The correctness
of Algorithm 2 is guaranteed by Lemma 4.1.

Example 4.3: Consider the dataset in Table 2. Suppose the
threshold τ = 0.7 and we have built the inverted index with skipping
blocks for all elements in Table 2. We use record r1 as an example
to illustrate Algorithm 2 (see Figure 2). The prefix of r1 includes
e1, e6 and e7. Their inverted lists are I∗(e1) = {Be1 (12) : {(r1, 1)}},
I∗(e6) = {Be6 (12) : {(r4, 1), (r1, 2), (r5, 2)}, Be6 (13) : {(r8, 4), (r9, 4)},
Be6 (14) : {(r10, 4)}}, and I∗(e7) = {Be7 (12) : {(r2, 2), (r3, 2), (r4, 2),
(r1, 3)}, Be7 (13) : {(r8, 5), (r9, 5)}, Be7 (14) : {(r10, 5)}} respectively.
For element e1, since I∗(e1) only contains record r1, we probe the
inverted list I∗(e6) for element e6. The length threshold u1(e6) = 14
where all records in the dataset will pass the length filter. Then
we access each skipping block in inverted list I∗(e6). For skipping
block Be6 (12), all entries pass the position filter. So we add {(r1,
r4), (r1, r5)} into C(r1). For skipping block Be6 (13), (r8, 4) fails
the position filter. This results in Be6 (13).pos = 1 (as shown in
Figure 2). Thus, the whole block Be6 (13) is removed from I∗(e6).
For skipping block Be6 (14), (r10, 4) passes the position filter and
thus {(r1, r10)} is added into C(r1). After similarly processing

929

I∗(e6) (r4, 1) (r1, 2) (r5, 2) (r8, 4) (r9, 4) (r10, 4)

Be6(12) Be6(13) Be6(14)

Before Processing : r1 pos pos pos

I∗(e6) (r4, 1) (r1, 2) (r5, 2) (r8, 4) (r9, 4) (r10, 4)

Be6(12) Be6(13) Be6(14)

After Processing : r1 pos pos pos

Figure 2: Illustration of Algorithm 2
skipping blocks in I∗(e7), we get the candidate set C(r1) = {(r1,
r2), (r1, r3), (r1, r4), (r1, r5), (r1, r10)}. �

Cost Saving. It is easy to see that Algorithm 2 and Algorithm 1
have the same verification cost since they generate the same set
of candidates. Therefore, the major cost saving of Algorithm 2 is
the reduction of the number of failed attempts when probing the
inverted lists in the filtering phase. To illustrate the cost saving of
our algorithm, we define the failure space as follows:

Definition 4.2: (Failure Space). For each element e and 1 ≤ l ≤
lmax, the failure space w.r.t. e and l is the set of points (|ri|, pose(r j))
with |r j| = l that fails the position condition in Equation (7) when
applying a prefix-filter based algorithm. For each element e and
1 ≤ l ≤ lmax, we denote the failure space of Algorithm 1 and
Algorithm 2 w.r.t. e and l as Fe(l) and F ∗e (l) respectively. �

For any two points (|ri|, pose(r j)) and (|ri′ |, pose(r j′)), (|ri′ |,
pose(r j′)) is dominated by (|ri|, pose(r j)) if |ri′ | ≥ |ri|, pose(r j′) ≥
pose(r j), and (|ri′ |, pose(r j′)) , (|ri|, pose(r j)). Given a set of points
F , the skyline of F , denoted as skyline(F), is the set of points that
are not dominated by any other points in F . We have:

Lemma 4.2: For any element e and 1 ≤ l ≤ lmax, we have F ∗e (l) =

skyline(Fe(l)). �

Figure 3 (a) and Figure 3 (b) illustrate the failure spaces of
Algorithm 1 and Algorithm 2 respectively for each element e and
1 ≤ l ≤ lmax. In each figure, the x axis is |ri|, and the y axis
is pose(r j). The total space is [0, lmax] × [0, lmax]. The failure
space Fe(l) is the grey area in the upper right part of the line
(1 + τ) · pose(r j) + τ · |ri| = l + τ + 1 as shown in Figure 3
(a); and the failure space F ∗e (l) only consists of the skyline points
of Fe(l) as shown in Figure 3 (b). Compared to Algorithm 1,
Algorithm 2 reduces the two-dimensional failure space Fe(l) to
the one-dimensional skyline space F ∗e (l). We use the following
example to further illustrate the cost saving.

Example 4.4: Consider the dataset in Table 2 and the threshold
τ = 0.7. The number of failed attempts for Algorithm 1 is 22 while
Algorithm 2 only produces 5 failed attempts. This represents a 77%
reduction in failed attempts comparing to Algorithm 1 and shows
that our index-level skipping technique is effective on reducing the
number of failed attempts. �

Complexity Analysis. The cost saving on the failed attempts
results in the reduction of the time complexity of the algorithm.
We can derive the following two theorems:

Theorem 4.1: The time complexity of Algorithm 2 is O(n · lavg + V).
�

Theorem 4.2: The space complexity of Algorithm 2 is O(n · lavg).
�

Comparing theorems 4.1 and 4.2 to theorems 3.1 and 3.2, our
Algorithm 2 improves the time complexity of the filtering phase
from O(n2 · lavg) to O(n · lavg) with the same space complexity which
is linear to the size of the input. Comparing theorems 4.1 and
4.2 to theorems 3.3 and 3.4, our Algorithm 2 improves the time

(1 + τ) · pose(rj) + τ · |ri| = l + τ + 1

|ri|

pose(rj)

(0, 0)

(lmax, lmax)

Failure Space Fe(l)

(a) Failure Space of Algorithm 1
(1 + τ) · pose(rj) + τ · |ri| = l + τ + 1

|ri|

pose(rj)

(0, 0)

(lmax, lmax)

Failure Space F∗
e (l)

(b) Failure Space of Algorithm 2

Figure 3: Illustration of Failure Spaces Fe(l) and F ∗e (l)
complexity of the filtering phase from O(n · l2

max) to O(n · lavg), and
improves the space complexity from O(n · lmax) to O(n · lavg).

4.2 Answer-Level Skipping
Motivation. In this section, we discuss the skipping technique
that uses the answer-level record relations. Recall that for each
record ri ∈ R, Algorithm 1 calculates the answer set A(ri) for
ri from scratch without considering the relations among records.
Note that after computing A(ri) for record ri, each answer record
ri′ of ri, that is (ri, ri′) ∈ A(ri), has a high similarity with record
ri. Therefore, for each record r j, if r j is similar to ri, it is highly
possible that r j is also similar to ri′ . In other words, it is highly
possible that the answer setA(ri) is similar to the answer setA(ri′).
Based on this observation, if we can compute A(ri′) incrementally
based on A(ri), we can avoid computing A(ri′) from scratch and
therefore reduce the computational cost. Next, we show how to
incrementally generateA(ri′) based onA(ri).

The Rationale. Suppose A(ri) is computed for a certain record
ri. For a record ri′ that is similar to ri, to compute A(ri′) based
on A(ri), we need to consider the difference between ri and ri′ .
Specifically, we show that it is sufficient to only consider the
elements in ri′ \ ri to find all new candidates that need to be added
to the current answer set based on the following lemma:

Lemma 4.3: Given a record ri and the answer set A(ri), for any
record ri′ with i′ > i, we have:

A(ri′) ⊆ CCM(ri, ri′) ∪ CCR(ri, ri′), (8)

where CCM(ri, ri′) = {(ri′ , r j)|r j ∈ ∪e∈ri′ \ri I(e)} (9)

and CCR(ri, ri′) = {(ri′ , r j)|(ri, r j) ∈ A(ri)}. (10)

Here CCM(ri, ri′) and CCR(ri, ri′) are called the complementary
candidates and current candidates of ri′ w.r.t. ri respectively. �

According to Lemma 4.3, for any two similar records ri and
ri′ , suppose the answer set of ri is computed, we can use
the complementary candidates CCM(ri, ri′) and current candidates
CCR(ri, ri′) to generate the candidate set of A(ri′). We discuss the
two types of candidates below.
• Complementary Candidates. In the complementary candidates
CCM(ri, ri′), we only consider those elements that appear in ri′

but not in ri. For all such elements e, we union the records in
their inverted lists I(e) to form the complementary candidates
CCM(ri, ri′) as shown in Equation (9).

• Current Candidates. In the current candidates CCR(ri, ri′), we
only consider the records r j that are similar to ri, i.e., (ri, r j) ∈
A(ri). We union all these records r j to form the current
candidates CCR(ri, ri′) as shown in Equation (10).
Since we require ri and ri′ to be similar in order to compute

A(ri′) based on A(ri), we only consider those ri′ such that

930

(𝑟# ,𝑟#%)

𝐶() 𝑟#,𝑟#* 	

𝐶(, 𝑟#,𝑟#*

…

𝐼 𝑒/0

𝑒/% 𝑒/1 𝑒/0…

𝐼 𝑒/% 𝐼 𝑒/1 …∪ ∪ ∪

{𝑟4%,𝑟41,… , 𝑟46}

𝑟#*\𝑟#

𝒜 𝑟#

(𝑟# ,𝑟#*)

(𝑟# ,𝑟#:)

(𝑟#*, 𝑟#%)

…
(𝑟#*, 𝑟#1)

(𝑟#*, 𝑟#:)

(𝑟#*, 𝑟4%)

…
(𝑟#*, 𝑟41)

(𝑟#*, 𝑟46)

⊇ 𝒜 𝑟#*

Given 𝑟# and 𝑟#* , suppose 𝒜 𝑟# is computed and (𝑟#,𝑟#*) ∈ 𝒜 𝑟# :

…

Figure 4: Illustration of Lemma 4.3.
(ri, ri′) ∈ A(ri). The two types of candidates and their relationships
are demonstrated in Figure 4. We use the following example
to illustrate the cost saving by using the answer-level skipping
technique.

Example 4.5: Figure 5 shows a simple example to illustrate
the cost saving by using answer-level skipping. Suppose ew is
contained in all records of R′ = {ri, r j, . . . , r j+1000} ⊂ R as the
second element, ri and r j only differ in the first element, and all
records in R′ have the same length, and suppose A(ri) = {(ri, r j)}
has been computed. It is easy to see that without answer-level
skipping, we need to verify 1000 candidate pairs to computeA(r j).
With answer-level skipping, we can get that CCM(ri, r j) = (r j, r j)
and CCR(ri, r j) = (r j, r j). Therefore, no candidate pairs need to be
verified if we computeA(r j) using Lemma 4.3. �

Next, we show how to reduce the number of probed comple-
mentary candidates in CCM(ri, ri′) and improve the computation
of the current candidates CCR(ri, ri′) using two steps, namely,
complementary candidates probe and current candidates update as
follows:

• In the first step, we probe the inverted lists of elements in ri′ \ ri
and try to reduce the number of probed candidates.

• In the second step, we try to avoid computing the similarity
between ri′ and each other answer record of ri from scratch.
Instead, we aim to incrementally compute the similarity by
exploring the differences between ri and ri′ .

In addition, the answer-level skipping technique may not always be
of benefit. For each answer record ri′ , we need a cost function
to determine whether using the answer-level skipping technique
to compute A(ri′) is better than computing A(ri′) from scratch.
Below, we will introduce the two steps in detail, followed by a
discussion on the skipping condition.

Step 1: Complementary Candidates Probe. In this step, we
handle CCM(ri, ri′) = {(ri′ , r j)|r j ∈ ∪e∈ri′ \ri I(e)}. For each element
e ∈ ri′ \ ri, we probe the inverted list I(e), and consider the pairs
(ri′ , r j) for r j ∈ I(e) as candidates. It is not necessary to consider
all the records in I(e). Therefore, we try to reduce the number of
probed records by considering the three conditions:

• For the prefix filter, the element e may not be in the prefix
preti′

(ri′) of ri′ . Therefore, the prefix filter cannot be used.
• For the length filter, since e is not necessarily the first element in

ri ∩ ri′ , the length filter in Lemma 3.5 cannot be used. However,
the length filter in Lemma 3.2 can still be used since it only
requires |r j| ≤ b

|ri′ |

τ
c.

• For the position filter, Equation (6) also requires e to be the first
element in ri ∩ ri′ . Therefore, the position filter cannot be used.

Based on the above analysis, for each element e ∈ ri′ \ ri, we probe

𝑟"

𝑟#

𝐶 𝑟# = ∅

𝐶'(𝑟" , 𝑟# = { 𝑟# ,𝑟# }

𝐶', 𝑟" , 𝑟# = { 𝑟# , 𝑟# }

𝐼 𝑒/ = {𝑟"}
𝐼 𝑒0 = {𝑟#}
𝐼 𝑒1 = {𝑟",𝑟#,𝑟#23,… , 𝑟#23555}
…

𝐶 𝑟# = {(𝑟" ,𝑟#23),… , (𝑟" ,𝑟#23555)}

𝒜 𝑟# = ∅

𝓡

𝓐

𝑒0	𝑒1
Index

Probing

𝐼 𝑒0
𝐼 𝑒1

Verify

Candidate Generation & Verification

…

𝑒/ …	𝑒1

Without Answer-Level Skipping With Answer-Level Skipping

Verify

Index

1

2

3
…

Suppose 𝒜 𝑟" = {(𝑟" , 𝑟#)} is computed

…

𝑟#23 𝑒< 	𝑒1 …

Figure 5: Illustration of Cost Saving by Answer-Level Skipping
the records r j ∈ I(e) with j > i′ in non-decreasing order of |r j| and
add (ri′ , r j) into the candidate set C(ri′). Then we report (ri′ , r j) to
be an answer inA(ri′) if it passes the verification. Once the length
condition |r j| ≤ b

|ri′ |

τ
c fails, we break the current iteration and visit

the next element e ∈ ri′ \ ri. Here, before adding (ri′ , r j) into C(ri′),
we need to make sure that (1) (ri′ , r j) < C(ri′), which is used to
avoid duplicated answers; and (2) (ri, r j) < A(ri), since for those
(ri, r j) ∈ A(ri), the possible answer (ri′ , r j) will be handled in the
next step - current candidates update.

Step 2: Current Candidates Update. In this step, we handle
CCR(ri, ri′) = {(ri′ , r j)| (ri, r j) ∈ A(ri)}. For each (ri, r j) ∈ A(ri),
we aim to verify whether Jac(ri′ , r j) ≥ τ incrementally without
computing Jac(ri′ , r j) from scratch. Note that for any (ri, r j),
Jac(ri, r j) ≥ τ is equivalent to |ri ∩ r j| ≥ d

τ
1+τ

(|ri| + |r j|)e. After
computing A(ri), for each (ri, r j) ∈ A(ri), the value of |ri ∩ r j|

is already computed. Therefore, the key to incrementally verify
Jac(ri′ , r j) ≥ τ is to compute |ri′∩r j| based on |ri∩r j| incrementally.
In order to do so, we can derive the following lemma:

Lemma 4.4: For any three records ri, ri′ , and r j, we have:

|ri′ ∩ r j| = |ri ∩ r j| + δ(ri, ri′ , r j) (11)

where δ(ri, ri′ , r j) = |(ri′ \ ri) ∩ r j| − |(ri \ ri′) ∩ r j|. �

In order to make use of Lemma 4.4, we can initialize |ri′ ∩ r j| as
|ri∩r j| for all (ri, r j) ∈ A(ri). Then we go through the inverted index
of each element e ∈ ri′ \ ri, and for each r j ∈ I(e), if (ri, r j) ∈ A(ri),
we increase |ri′ ∩ r j| by one. Next, we go through the inverted index
of each element e ∈ ri \ ri′ , and for each r j ∈ I(e), if (ri, r j) ∈ A(ri),
we decrease |ri′ ∩ r j| by one. In this way, we incrementally update
|ri′ ∩ r j| from |ri ∩ r j| by only considering the differences between
ri′ and ri. Finally, for each (ri, r j), we check whether |ri′ ∩ r j| ≥

d τ
1+τ

(|ri′ | + |r j|)e holds. If so, we report (ri′ , r j) as an answer in
A(ri′) without further verification.

Example 4.6: Consider the dataset in Table 2 with threshold
τ = 0.7. Take r2 and r3 as an example. Assume that we have already
computed answer set of r2 which is A(r2) = {(r2, r3), (r2, r4)}.
Now we want to compute the answer set of record r3 based on
A(r2). Here, r3 \ r2 = {e2}. We probe the inverted list I(e2) =

{r3, r6, r7, r10}. Thus, CCM(r2, r3) = {(r3, r6), (r3, r7), (r3, r10)}. After
result verification for candidates in CCM(r2, r3), none of them are
added to A(r3). We also have CCR(r2, r3) = {(r3, r4)}. Instead
of computing the similarity of r3 and r4 from scratch, we use
Lemma 4.4. That is, |r3 ∩ r4| = |r2 ∩ r4| + δ(r2, r3, r4). |r2 ∩ r4|

is already known as 10 when computing Jac(r2, r4). Now we need
to compute δ(r2, r3, r4) = |(r3 \ r2) ∩ r4| − |(r2 \ r3) ∩ r4|. Since
|(r3 \ r2)∩ r4| = |∅| = 0 and |(r2 \ r3)∩ r4| = |∅| = 0, δ(r2, r3, r4) = 0.
Thus, |r3 ∩ r4| = 10 ≥ d τ

1+τ
(|r3| + |r4|)e. Therefore, we have

A(r3) = {(r3, r4)}. Using the answer-level skipping technique,

931

when computing A(r3), we reduce the number of probed records
from 11 to 7 and reduce the number of verifications from 5 to 3. �

When to Skip. After computing A(ri) for a record ri, for each
answer record ri′ where (ri, ri′) ∈ A(ri), we need to determine
whether to compute ri′ from scratch or to use the above answer-
level skipping technique. In order to do so, we need to estimate
the cost to compute A(ri′) from scratch and the cost to compute
A(ri′) using the answer-level skipping technique. The number of
probed records is employed to estimate the cost since the exact
cost is hard to compute. We use costscratch to denote the estimated
cost to compute A(ri′) from scratch, and use costskip to denote the
estimated cost to compute A(ri′) using the answer-level skipping
technique. Below, we discuss how to compute costscratch and
costskip:
• The best way to calculate costscratch is scanning the inverted lists

of the elements in the prefix of ri′ . However, it will increase the
estimation cost and reduce the algorithm efficiency. Therefore,
we directly use the length of the inverted lists for the elements
in the prefix of ri′ to estimate the cost as this is the only existing
information that we can use without probing the records in the
corresponding inverted lists. Intuitively, the larger the length of
the inverted lists for the elements in the prefix of ri′ , the more
records will be expected to be probed when computing A(ri′)
from scratch. We have:

costscratch = c ×
∑

e∈preti′

|I(e)|. (12)

Here, c is a constant with 0 < c ≤ 1.
• To compute costskip, we need to investigate the two steps to

computeA(ri′) incrementally. In step 1, we probe the records in
the inverted lists of elements in ri′ \ ri. Therefore, the number
of probed records in step 1 is bounded by

∑
e∈ri′ \ri

|I(e)|. In
step 2, we probe the records in the inverted lists of elements in
ri′ \ ri and ri \ ri′ to compute δ(ri, ri′ , r j) for all (ri, r j) ∈ A(ri),
and then we go through all answer records to update the new
answer set A(ri′). Therefore, the number of probed records
in step 2 is bounded by

∑
e∈ri′ \ri

|I(e)| +
∑

e∈ri\ri′
|I(e)| + |A(ri)|.

To summarize, the estimated cost to compute A(ri′) using the
skipping technique can be computed as:

costskip = 2 ×
∑

e∈ri′ \ri

|I(e)| +
∑

e∈ri\ri′

|I(e)| + |A(ri)|. (13)

After computing costscratch and costskip, if costskip ≥ costscratch, we
compute A(ri′) from scratch. Otherwise, we compute A(ri′) using
the answer-level skipping technique.

The Algorithm. Based on the above discussion, the algorithm for
answer-level skipping is shown in Algorithm 3. We use Rskip to
maintain the set of records whose answer sets have been computed
using the answer-level skipping technique (line 1). For each record
ri ∈ R (line 2), if ri ∈ Rskip, we simply skip it and continue to handle
the next ri (line 3). Otherwise, we computeA(ri) using Algorithm 2
(line 4). After computing A(ri), we go through all record pairs
(ri, ri′) in A(ri) to find possible opportunities for answer-level
skipping (line 5). For each (ri, ri′) ∈ A(ri), we compute costscratch
(line 6) and costskip (line 7) as discussed above, and only apply
the answer-level skipping technique if costskip < costscratch (line 8).
When applying the answer-level skipping technique for record ri′ ,
we first add ri′ into Rskip and initialize C(ri′) and A(ri′) (line 9).
Next, we apply the first step, complementary candidates probe, by
probing the inverted lists I(e) for e ∈ ri′ \ ri as discussed above
(line 10-15). Then, we apply the second step, current candidates
update, by probing the inverted lists I(e) for e ∈ ri′ \ ri (line 16-
18) and e ∈ ri \ ri′ (line 19-21), and updatingA(ri′) based onA(ri)
(line 22-24) as discussed above. Finally, we outputA(ri′) asA(ri′).

Algorithm 3: Answer-Level Skipping
Input: A set of records R; a similarity threshold τ
Output: All similar record pairs (ri, r j) with Jac(ri, r j) ≥ τ

1 Rskip ← ∅;
2 for each record ri ∈ R do
3 if ri ∈ Rskip then continue;
4 Line 2-12 of Algorithm 2;
5 for each (ri, ri′) ∈ A(ri) do
6 costscratch ← c ×

∑
e∈preti′

|I(e)|;

7 costskip ← 2 ×
∑

e∈ri′ \ri |I(e)| +
∑

e∈ri\ri′
|I(e)| + |A(ri)|;

8 if costskip ≥ costscratch then continue;
9 Rskip ← Rskip ∪ {ri′ }; C(ri′)← ∅;A(ri′)← ∅;

/* Step 1: Complementary Candidates Probe */
10 for each element e ∈ ri′ \ ri do
11 for each record r j ∈ I(e) with j > i′ do
12 if |r j | > b

|ri′ |
τ c then break;

13 if (ri′ , r j) < C(ri′) and (ri, r j) < A(ri) then
14 C(ri′)← C(ri′) ∪ {(ri′ , r j)};
15 if Jac(ri′ , r j) ≥ τ thenA(ri′)← A(ri′) ∪ {(ri′ , r j)};

/* Step 2: Current Candidates Update */
16 for each element e ∈ ri′ \ ri do
17 for each record r j ∈ I(e) with (ri, r j) ∈ A(ri) do
18 δ(ri, ri′ , r j)← δ(ri, ri′ , r j) + 1;

19 for each element e ∈ ri \ ri′ do
20 for each record r j ∈ I(e) with (ri, r j) ∈ A(ri) do
21 δ(ri, ri′ , r j)← δ(ri, ri′ , r j) − 1;

22 for each (ri, r j) ∈ A(ri) do
23 if |ri ∩ r j | + δ(ri, ri′ , r j) ≥ d τ

1+τ (|ri′ | + |r j |)e then
24 A(ri′)← A(ri′) ∪ {(ri′ , r j)};

25 outputA(ri′);

Example 4.7: We use the dataset from Table 2 to illustrate
Algorithm 3. Suppose the threshold τ = 0.7 and c = 1. Initially,
Rskip is ∅. We consider the first record r1. Since r1 < Rskip, we
use Algorithm 2 to compute its answer set A(r1) = {(r1, r4)}.
Then we consider (r1, r4) ∈ A(r1). Since r4 \ r1 = {e12, e16} and
r1\r4 = {e1, e8}, we have costskip = 2×

∑
e∈r4\r1

|I(e)|+
∑

e∈r1\r4
|I(e)|+

|A(r1)| = 2 ∗ 16 + 8 + 1 = 41 > costscratch = c ×
∑

e∈pret4
|I(e)| = 20.

Therefore, r4 is not added into Rskip. Next, we process record
r2 < Rskip. We can getA(r2) = {(r2, r3), (r2, r4)} using Algorithm 2.
For (r2, r3), since r3 \ r2 = {e2} and r2 \ r3 = {e3}, we have
costskip = 2×

∑
e∈r3\r2

|I(e)|+
∑

e∈r2\r3
|I(e)|+ |A(r2)| = 2∗4+5+2 =

15 < costscratch = c ×
∑

e∈pret3
|I(e)| = 18. Therefore, r3 is added

to Rskip and the answer set of r3 is computed incrementally using
Algorithm 3 as explained in Example 4.6. The remaining records
are processed similarly. �

Cost Analysis. We first analyze the time cost for Algorithm 3. We
divide the cost into two parts, namely, C1: the cost to compute the
answer sets for the non-skipped records R \ Rskip, and C2: the cost
to compute the answer sets for the skipped records Rskip. Below,
we analyze the two costs individually:

• For C1, the failed attempts when computing the answer set for
each individual record in R \ Rskip using Algorithm 3 may be
different from those when computing the answer set for the
same record using Algorithm 2. However, it is easy to see
that with the index level skipping technique, the total failed
attempts in Algorithm 3 is subsumed by the total failed attempts
in Algorithm 2.

• For C2, with the skipping condition, for each record ri ∈ Rskip,
the cost to compute A(ri) from scratch is expected to be more
expensive than the cost to compute A(ri) using the answer-level
skipping technique.

Based on the above analysis, the time cost consumed by
Algorithm 3 is expected to be smaller than that consumed by

932

Table 3: Characteristics of datasets
Dataset Abbreviation Type Record Elements # Record lmax lavg # Elements # Pairs Index Time(s)
Amazon [1] AMAZ Rating Product Rating 2,146,057 12,180 2.68 1,230,915 5,743,258 0.12
AOL [2] AOL Text Query Keyword 10,054,183 245 3.01 3,873,246 30,272,560 1.30
Bookcrossing [3] BOOKC Rating Book User 340,523 2,502 3.38 105,278 1,149,739 0.02
Citeulike [4] CITEU Folksonomy Tag User 153,277 8,814 3.51 22,715 538,761 0.01
DBLP [28] DBLP Text Biboliography 3-gram 873,524 1,538 94.06 44,798 82,160,425 4.49
Delicious [5] DELIC Folksonomy User Tag 833,081 16,996 98.42 4,512,099 81,989,133 2.50
Discogs [6] DISCO Affiliation Artist Label 1,754,823 47,522 3.02 270,771 5,302,276 0.14
Enron [7] ENRON Text Email Word 517,431 3,162 133.57 1,113,219 69,114,932 2.51
Flickr [21] FLICK Folksonomy Photo Word/Tag 1,235,799 102 10.05 810,659 12,425,560 0.42
Kosarak [8] KOSA Interaction User Link 990,001 2,497 8.10 41,269 8,018,988 0.27
Lastfm [9] LAST Interaction User Song 1,084,620 773 4.07 992 4,413,833 0.16
Linux [10] LINUX Interaction Thread User 337,509 6,627 1.78 42,045 599,858 0.01
Livejournal [11] LIVEJ Affiliation User Group 3,201,203 300 35.08 7,489,073 112,307,385 4.52
Reuters [12] RUTRS Text Story Word 781,265 1585 77.53 283,911 60,569,726 2.72
Spotify [13] SPOT Interaction User Track 437,836 11,608 12.75 759,041 5,583,222 0.09
Stack [14] STACK Rating User Post 545,196 4,917 2.39 96,680 1,301,941 0.02
Sualize [15] SUALZ Folksonomy Picture Tag 495,402 433 3.63 82,035 1,800,330 0.06
Teams [16] TEAMS Affiliation Athlete Team 901,166 17 1.52 34,461 1,366,466 0.03
Trackers [17] TRKRS Hyperlink Trackers Domain 12,756,245 11,571,952 11.02 27,665,731 140,613,762 2.88
Tweet [28] TWEET Text Tweet Word 2,000,000 70 21.57 1,713,437 43,133,623 2.44
Wikipedia [37] WIKI Authorship User Article 3,819,691 1,916,898 31.96 21,504,191 122,075,170 1.65

0.1

1

10

100

AMAZ DISCO LINUX STACK TEAMS WIKI

T
im

e
(s

ec
)

SKJ PSKJ PEL

(a) Jaccard Similarity

0.1

1

10

100

AMAZ DISCO LINUX STACK TEAMS WIKI

T
im

e
(s

ec
)

SKJ PSKJ PEL

(b) Cosine Similarity

Figure 6: Evaluating the Skipping Techniques
Algorithm 2. Regarding the space cost, it is easy to see that
Algorithm 3 consumes linear space O(n · lavg) w.r.t. the size of
the input by keeping the inverted lists for all elements in memory,
which is the same as that consumed by Algorithm 2.

5. PERFORMANCE STUDIES
In this section, we present our experimental results. All of our

experiments are conducted on a machine with an Intel Xeon E5-
2690 (8 Cores) 2.9GHz CPU and 32GB main memory running
Linux (Red Hat Enterprise Linux 6.4, 64 bit).

Datasets. We used 21 real datasets selected from different domains
with various data properties. The datasets include those datasets
used in existing works. The detailed characteristics of the 21
datasets are shown in Table 3. For each dataset, we show the type
of the dataset, what each record and each element represents, the
number of records in the dataset, the maximum and average record
length, the number of different elements in the dataset, the number
of record-element pairs in the dataset, and the time to build the
index with skipping blocks. As shown in Table 3, the index can be
built very efficiently since the longest index time for the 21 datasets
is only 4.52 seconds.

Algorithms. We compared our algorithm (Algorithm 3), denoted
as SKJ, with all the state-of-the-art algorithms for exact set
similarity join, including PPJ and PPJ+ [45], ADP [42], PEL
[31] and PTJ [28]. For PPJ, PPJ+, ADP and PEL, we obtained
the source codes from the authors of [32], since the authors
claimed in [32] that their implementation is faster than the available
implementation provided by the original authors. The source code
of PTJ was obtained from the authors of [28]. In all algorithms,
we used the same candidate verification algorithm provided by the

authors of [32], which was claimed to be much faster than other
implementations. All algorithms were implemented in C++ and
compiled with GCC with the -O3 flag. The preprocessing time is
not included in all tests. We use 0.9 as the default threshold value
τ, and we vary τ from 0.5 to 0.95 in Section 5.3.

5.1 Evaluation of the Skipping Techniques
We first evaluate the efficiency of our index-level skipping

and answer-level skipping techniques. We use PSKJ to denote
the algorithm with the index-level skipping technique, i.e.,
Algorithm 2, and use SKJ to denote the algorithm with both
the index-level skipping technique and answer-level skipping
technique, i.e., Algorithm 3. We compare the two skipping
based algorithms with the state-of-the-art prefix-filter based
algorithm PEL with all the three filtering techniques introduced in
Section 3.1. We test the three algorithms over six representative
datasets. The experimental results are shown in Figure 6(a) and
Figure 6(b) for the Jaccard similarity function and Cosine similarity
function respectively.

The experimental results demonstrate the power of our index-
level and answer-level skipping techniques for the two similarity
functions. First, we can see that PSKJ consistently outperforms
PEL and is faster than PEL by 2-3 times. This is because PSKJ
saves the index probing cost by skipping useless entry visits and
filtering condition checks. The experimental results are consistent
with our theoretical analysis in Section 4.1. Second, we find that
SKJ further improves PSKJ and performs best over all datasets.
This is because the answer-level skipping technique effectively
reduces the computational cost by incrementally computing the
answer sets for records. Remarkably, SKJ can achieve more than
an order of magnitude faster than PEL. For example, on the DISCO

933

0.01

0.1

1

10

100

1K

10K

AMAZ
AOL

BOOKC

CITEU

DBLP
DELIC

DISCO

ENRON

FLICK
KOSA

LAST
LINUX

LIVEJ
RUTRS

SPOT
STACK

SUALZ

TEAMS

TRKRS

TW
EET

W
IKI

Ti
m

e
(s

ec
)

SKJ PPJ PPJ+ PEL ADP PTJ

(a) Processing Time (Jaccard Similairty)

0.01

0.1

1

10

100

1K

10K

100K

AMAZ
AOL

BOOKC

CITEU

DBLP
DELIC

DISCO

ENRON

FLICK
KOSA

LAST
LINUX

LIVEJ
RUTRS

SPOT
STACK

SUALZ

TEAMS

TRKRS

TW
EET

W
IKI

Ti
m

e
(s

ec
)

SKJ PPJ PPJ+ PEL ADP PTJ

(b) Processing Time (Cosine Similarity)

10M

100M

1G

10G

100G

AMAZ
AOL

BOOKC

CITEU

DBLP
DELIC

DISCO

ENRON

FLICK
KOSA

LAST
LINUX

LIVEJ
RUTRS

SPOT
STACK

SUALZ

TEAMS

TRKRS

TW
EET

W
IKI

M
em

or
y

(B
yt

es
)

SKJ PPJ PPJ+ PEL ADP PTJ

(c) Memory Usage (Jaccard Similarity)

Figure 7: Comparison with Existing Algorithms
dataset for the Cosine similarity function, the algorithms SKJ,
PSKJ and PEL finish in 2.49 seconds, 13.38 seconds, and 26.16
seconds, respectively. For the two similarity functions, the relative
performances for the three algorithms are similar. In the following
we use SKJ to compare with other algorithms.

5.2 Comparison with Existing Solutions
This experiment compares our algorithm SKJ with the state-of-

the-art algorithms PPJ, PPJ+, ADP, PEL, and PTJ for exact set
similarity join. We conduct the experiment over all 21 datasets
for Jaccard and Cosine similarities. The experimental results are
shown in Figure 7.

Figure 7(a) and Figure 7(b) show the processing time of
all algorithms for the Jaccard similarity and Cosine similarity
respectively. We can see that our algorithm SKJ consistently
outperforms all the state-of-the-art algorithms in all datasets. For
example, on the TEAMS dataset for the Jaccard similarity, SKJ is
11, 15, 12, 5, and 26 times faster than PPJ, PPJ+, PEL, ADP,
and PTJ, respectively. The results demonstrate the large cost
saving achieved by using our index-level and answer-level skipping
techniques. The performances of the existing prefix-filter based
algorithms PPJ, PPJ+, PEL, and ADP are quite similar, which
is consistent with the result obtained by [32]. PPJ+ performs
the worst among the four algorithms PPJ, PPJ+, PEL, and ADP,
because with the fast candidate verification algorithm [32], the
sophisticated filters used in PPJ+ do not pay off. The performance
of ADP is dependent on the balance between the overhead of
extended prefix searching and the cost saved by reducing candidate
size. For the partition-filter based algorithm PTJ, it cannot
outperform the prefix-filter based algorithms PPJ, PPJ+, PEL, and
ADP in most cases. It is worth noting that, we do reproduce the

results in [28] to compare PTJ with the original implementations
of PPJ+ and ADP over the three datasets used in [28]. However,
as stated in [32], their implementations of prefix-filter based
algorithms is much faster than the original implementations in all
cases. On the other hand, PTJ uses complex index structures
such as hash table to reduce the number of candidates, and thus
spends too much time on the filtering phase. As a result, PTJ
can hardly outperform the prefix-filter based algorithms, which use
a light-weight index structure and spend much less time on the
filtering phase. Nevertheless, PTJ wins the existing prefix-filter
based algorithms on some datasets such as DBLP and TWEET
for the Cosine similarity. This is because the candidate number
generated by PTJ is much closer to the number of results than that
of PPJ, PPJ+, PEL and ADP. However, our algorithm SKJ still
outperforms PTJ in these cases.

We also compare the memory cost of the six algorithms and show
the experimental results for Jaccard similarity in Figure 7(c). We
can see that the memory usage for the prefix-filter based algorithms
PPJ, PPJ+, PEL, ADP, as well as our algorithm SKJ are similar
since they all consume a memory size linear to the size of the input
dataset. The small difference is due to the different auxiliary data
structures used for different algorithms. The partition-filter based
algorithm PTJ consumes much larger memory than the prefix-
filter based algorithms in all datasets. For example, for the DELIC
dataset, the memory usages for PPJ, PPJ+, PEL, ADP, SKJ, and
PTJ are 1.3 GB, 1.3 GB, 1.3 GB, 1.9 GB, 1.5 GB, and 10.1 GB
respectively. This is because PTJ needs to build the inverted lists
for all sub-records which consumes O(n · lmax) space as shown
in Section 3.2. The memory cost of the six algorithms for the
Cosine similarity are similar to that for the Jaccard similarity, and
therefore we omit the result here. In the following, when varying

934

0.1

1

10

100

1K

0.95 0.9 0.85 0.8 0.7 0.6 0.5

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(a) AMAZ

1

10

100

1K

0.95 0.9 0.85 0.8 0.7 0.6 0.5

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(b) DISCO

1

10

100

1K

10K

0.95 0.9 0.85 0.8 0.7 0.6 0.5

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(c) KOSA

0.1

1

10

100

1K

10K

100K

0.95 0.9 0.85 0.8 0.7 0.6 0.5

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(d) RUTRS

10

100

1K

0.95 0.9 0.85 0.8 0.7 0.6 0.5

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(e) SUALZ

1

10

100

1K

10K

100K

0.95 0.9 0.85 0.8 0.7 0.6 0.5

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(f) WIKI

Figure 8: Vary Threshold τ (Jaccard Similarity)
different parameters, we only show our experimental results for
Jaccard similarity since the performance of the algorithms for
Cosine similarity are similar to that for Jaccard similarity.

5.3 Variation of the Threshold
In this experiment, we test the performance of our algorithm

SKJ for different threshold τ and compare it with the existing
algorithms PPJ, PPJ+, PEL, ADP, and PTJ. We vary τ from 0.95
to 0.5. Figure 8 shows the experimental results on six representative
datasets for the Jaccard similarity. From the experimental results,
we can see that when the threshold τ decreases, the running time
of all algorithms increases. The reasons are twofold. First,
for prefix-filter based algorithms, a smaller τ leads to a longer
prefix, and for partition based algorithms, a smaller τ leads to
more partitions. Therefore, a smaller τ leads to a longer filtering
time. Second, a smaller τ will result in more similar pairs which
leads to more candidates and thus requires longer verification time.
In all datasets, we can see that our algorithm SKJ consistently
outperforms all other algorithms for different threshold values. For
example, on the DISCO dataset, when τ = 0.95, SKJ is 17, 25,
19, 7, and 17 times faster than PPJ, PPJ+, PEL, ADP, and PTJ
respectively; When τ = 0.5, SKJ is 22, 31, 24, 8, and 70 times
faster than PPJ, PPJ+, PEL, ADP, and PTJ respectively. In AMAZ
and WIKI, when τ decreases to be smaller than 0.8, the processing
time for PTJ increases sharply. This is because when τ is small,
a large number of partitions are generated by PTJ. It is worth
noticing that even when τ is small, our algorithm SKJ can still
achieve a high speedup comparing to existing algorithms. This is
because for a smaller threshold, SKJ will produce a larger answer
set which results in more computational cost sharing.

5.4 Scalability Testing
In this subsection, we test the scalability of the algorithms PPJ,

PPJ+, PEL, ADP, PTJ, and SKJ by varying the number of records
in six large and representative datasets. For each dataset, we
randomly select 20%, 40%, 60%, 80%, and 100% of records in
the original dataset, and conduct the experiments on the sampled
datasets.

0.1

1

10

100

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(a) DBLP

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(b) DISCO

0.1

1

10

100

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(c) ENRON

0.1

1

10

100

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(d) LIVEJ

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(e) TRKRS

0.1

1

10

100

1K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

SKJ
PPJ

PPJ+
PEL

ADP
PTJ

(f) WIKI

Figure 9: Vary # Records (Jaccard Similarity)

Figure 9 shows the experimental results for the Jaccard
similarity. We can see that the running time of all algorithms
increases stably as the number of record increases for all datasets.
This is because when the number of records increases, the cost of
both filtering and verification phase increases for all algorithms.
Our algorithm SKJ consistently outperforms other algorithms in
all cases. The experimental results also demonstrate the high
scalability of our solution when the size of the inverted list
increases.

6. RELATED WORK
Exact Set Similarity Join. Exact set similarity join has been
extensively studied in the literature [18, 19, 20, 21, 28, 31, 32, 33,
34, 35, 40, 44, 45]. As we have introduced in Section 3, existing
solutions all follow the filtering-verification framework and can
be divided into two categories based on the filtering mechanism,
namely, prefix-filter based algorithms and partition-filter based
algorithms.

For prefix-filter based algorithms, Bayardo et al. [20] first
proposed prefix-filter based framework. Xiao et al. [45] introduced
positional filter and suffix filter to the prefix-filter based framework.
An optimized length filter was proposed by Mann et al. in [31].
Wang et al. [42] devised adaptive length prefix to strengthen
filtering power. Other prefix-filter based algorithms include [34]
to remove the useless entries in the inverted lists of elements,
and [21] to group the records with the same prefix. However,
they cannot significantly improve the algorithm. The details of
the state-of-the-art prefix-filter based algorithms are introduced in
Section 3.1. Mann et al. [32] introduced an efficient candidate
verification algorithm that improves the efficiency of all existing
prefix-filter based algorithms. They conducted a comprehensive
study on existing prefix-filter based techniques and demonstrated
that with some basic filtering techniques, using sophisticated filters
to further reduce the number of candidates does not pay off. Our
method falls into this category. Since none of the existing solutions
have ever considered the relations of records in join processing, in

935

this paper, we aim to improve the algorithm by considering such
information.

For partition-filter based algorithms, Arasu et al. [19] developed
a two-level algorithm with partitioning and enumerating to find
exact similar sets. Deng et al. [28] designed a partition-based
method for exact set similarity join, which is introduced in details
in Section 3.2. The partition-filter based algorithm [28] can
effectively reduce the number of candidates. However, it usually
results in an expensive filtering cost and high memory overhead to
maintain the complex inverted lists for partitioned sub-records.

Other work focus on processing exact set similarity join in a
distributed environment using MapReduce [33, 35, 40], which is
not the focus of this paper.

Approximate Set Similarity Join. Approximate set similarity
join is also widely studied [22, 23, 29, 36, 30, 47], which
can only produce approximate join results. Existing works on
the approximate set similarity join problem are mostly based on
the Locality Sensitive Hashing (LSH) technique [30], which is
a probabilistic scheme by hashing similar records into the same
cluster with high probability. Among them, MinHash [22] is
a quick estimation method for Jaccard similarity. Zhai et al.
proposed a probabilistic algorithm ATLAS for similarity search
with a low threshold on records with a high dimension [47].
Satuluri et al. proposed a Bayesian algorithm BayesLSH to extend
LSH to be used in candidate pruning and similarity estimation
[36]. Chakrabarti et al. [23] adopted sequential hypothesis testing
on LSH to adaptively prune candidates aggressively and provide
tighter qualitative guarantees over BayesLSH. In this paper, we
focus on exact similarity join with different problem settings from
the approximate set similarity join.

7. CONCLUSION
In this paper, we study the exact set similarity join problem,

which is a fundamental problem with a wide range of applications.
Existing solutions compute the answer set for each record
individually, which may result in a large number of redundant
computations. In this paper, we aim to leverage the relations among
sets to seek for possible cost sharing in the join process. We first
explore index-level set relations to group the sets in the inverted
index of elements and design effective skipping techniques when
probing the sets in each group. We then investigate the answer-
level set relations to compute the answers of a set incrementally
based on the answers of a similar set. Our algorithm improves the
state-of-the-art algorithms both theoretically and in practice. We
conducted extensive experiments on 21 real datasets with various
data properties. The experimental results demonstrate that our
algorithm outperforms all the other algorithms in all datasets and
can achieve a speedup of more than one order of magnitude against
the state-of-the-art algorithms.

8. ACKNOWLEDGMENTS
Lu Qin is supported by ARC DE140100999 and DP160101513.

Xuemin Lin is supported by NSFC61232006, ARC DP150102728,
DP140103578 and DP170101628. Ying Zhang is supported by
ARC DE140100679 and DP170103710. Lijun Chang is supported
by ARC DE150100563 and ARC DP160101513.

9. REFERENCES
[1] http://liu.cs.uic.edu/download/data/.
[2] http://www.cim.mcgill.ca/∼dudek/206/Logs/AOL-user-ct-collection.
[3] http://www.informatik.uni-freiburg.de/∼cziegler/BX/.
[4] http://www.citeulike.org/faq/data.adp.
[5] http://dai-labor.de/IRML/datasets.

[6] http://www.discogs.com/.
[7] http://www.cs.cmu.edu/∼enron.
[8] http://fimi.ua.ac.be/data/.
[9] http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/.

[10] http://konect.uni-koblenz.de/networks/lkml person-thread.
[11] http://socialnetworks.mpi-sws.org/data-imc2007.html.
[12] http://trec.nist.gov/data/reuters/reuters.html.
[13] http://dbis-twitterdata.uibk.ac.at/spotifyDataset/.
[14] http://www.clearbits.net/torrents/1881-dec-2011.
[15] http://vi.sualize.us/.
[16] http://wiki.dbpedia.org/Downloads.
[17] http://dumps.wikimedia.org/.
[18] D. C. Anastasiu and G. Karypis. L2AP: fast cosine similarity search with prefix

L-2 norm bounds. In Proc. of ICDE’14, 2014.
[19] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In Proc.

of VLDB’06, 2006.
[20] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In

Proc. of WWW’07, 2007.
[21] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB,

6(1), 2012.
[22] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise

independent permutations (extended abstract). In Proc. of STOC’98, 1998.
[23] A. Chakrabarti and S. Parthasarathy. Sequential hypothesis tests for adaptive

locality sensitive hashing. In Proc. of WWW’15, 2015.
[24] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An efficient filter for

approximate membership checking. In Proc. of SIGMOD’08, 2008.
[25] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity

joins in data cleaning. In Proc. of ICDE’06, 2006.
[26] W. W. Cohen. Integration of heterogeneous databases without common domains

using queries based on textual similarity. In Proc. of SIGMOD’98, 1998.
[27] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:

scalable online collaborative filtering. In Proc. of WWW’07, 2007.
[28] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method for

exact set similarity joins. PVLDB, 9(4), 2015.
[29] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In Proc. of VLDB’99, 1999.
[30] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In Proc. of STOC’98, 1998.
[31] W. Mann and N. Augsten. PEL: position-enhanced length filter for set similarity

joins. In Proc. of GVD’14, 2014.
[32] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity

join techniques. PVLDB, 9(9), 2016.
[33] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework

for all-pair similarity joins of multisets and vectors. PVLDB, 5(8), 2012.
[34] L. A. Ribeiro and T. Härder. Generalizing prefix filtering to improve set

similarity joins. Inf. Syst., 36(1), 2011.
[35] A. D. Sarma, Y. He, and S. Chaudhuri. Clusterjoin: A similarity joins

framework using map-reduce. PVLDB, 7(12), 2014.
[36] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive hashing for fast

similarity search. PVLDB, 5(5), 2012.
[37] S. Schelter and J. Kunegis. Tracking the trackers: A large-scale analysis of

embedded web trackers. In Tenth International AAAI Conference on Web and
Social Media, 2016.

[38] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity measures: a
large-scale study in the orkut social network. In Proc. of SIGKDD’05, 2005.

[39] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: robust and efficient near
duplicate detection in large web collections. In Proc. of SIGIR’08, 2008.

[40] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using
mapreduce. In Proc. of SIGMOD’10, 2010.

[41] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. PVLDB, 5(11), 2012.

[42] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive
framework for similarity join and search. In Proc. of SIGMOD’12, 2012.

[43] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging set correlations
in exact set similarity join. Technical report, 2016. Available as
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201616.pdf.

[44] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In Proc. of
ICDE’09, 2009.

[45] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near
duplicate detection. In Proc. of WWW’08, 2008.

[46] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for
near-duplicate detection. ACM Trans. Database Syst., 36(3), 2011.

[47] J. Zhai, Y. Lou, and J. Gehrke. ATLAS: a probabilistic algorithm for high
dimensional similarity search. In Proc. of SIGMOD’11, 2011.

[48] X. Zhu and A. B. Goldberg. Introduction to Semi-Supervised Learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2009.

936

