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ABSTRACT
Recently, community search over graphs has gained significant in-
terest. In applications such as analysis of protein-protein interac-
tion (PPI) networks, citation graphs, and collaboration networks,
nodes tend to have attributes. Unfortunately, most previous com-
munity search algorithms ignore attributes and result in communi-
ties with poor cohesion w.r.t. their node attributes. In this paper,
we study the problem of attribute-driven community search, that is,
given an undirected graph G where nodes are associated with at-
tributes, and an input queryQ consisting of nodes Vq and attributes
Wq , find the communities containing Vq , in which most community
members are densely inter-connected and have similar attributes.

We formulate this problem as finding attributed truss commu-
nities (ATC), i.e., finding connected and close k-truss subgraphs
containing Vq , with the largest attribute relevance score. We de-
sign a framework of desirable properties that good score function
should satisfy. We show that the problem is NP-hard. However, we
develop an efficient greedy algorithmic framework to iteratively re-
move nodes with the least popular attributes, and shrink the graph
into an ATC. In addition, we also build an elegant index to main-
tain k-truss structure and attribute information, and propose effi-
cient query processing algorithms. Extensive experiments on large
real-world networks with ground-truth communities show that our
algorithms significantly outperform the state of the art and demon-
strates their efficiency and effectiveness.

1. INTRODUCTION
Graphs have emerged as a powerful model for representing dif-

ferent types of data, such as protein-protein interaction networks,
sensor/communication networks, and collaboration networks. In
these graphs, communities naturally exist as groups of vertices that
are densely interconnected. Consequently, community detection,
i.e., finding all communities in a given network, serves as a global
network-wide analysis tool, and has been extensively studied in the
literature. More recently, a related but different problem called
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Figure 1: An example attributed graph G

community search has generated considerable interest. It is moti-
vated by the need to make answers more meaningful and personal-
ized to the user [27, 16]. For a given set of query nodes, community
search seeks to find the communities containing the query nodes.

In the aforementioned applications, the entities modeled by the
network nodes often have properties which are important for mak-
ing sense of communities. E.g., authors in collaboration networks
have areas of expertise; proteins have molecular functions, biolog-
ical processes, and cellular components as properties. Such net-
works can be modeled using attributed graphs [37] where attributes
associated with nodes capture their properties. E.g., Figure 1 shows
an example of a collaboration network. The nodes qi, vj , ... repre-
sent authors. Node attributes (e.g., DB, ML) represent authors’
topics of expertise. In finding communities (with or without query
nodes) over attributed graphs, we might want to ensure that the
nodes in the discovered communities have homogeneous attributes.
For instance, it has been found that communities with homoge-
neous attributes among nodes more accurately predict protein com-
plexes [15]. Furthermore, we might wish to query, not just using
query nodes, but also using query attributes. To illustrate, consider
searching for communities containing the nodes {q1, q2}. Based on
structure alone, the subgraph H shown in Figure 1 is a good can-
didate answer for this search, as it is densely connected. However,
attributes of the authors in this community are not homogeneous:
the community is a mix of authors working in different topics –
DB, DM, IR, and ML. Previous community search methods include
those based on k-core [32, 26, 10], k-truss [19], and 1.0-quasi-k-
clique-`-adjacent community [9]. A k-core [26] is a subgraph in
which each vertex has at least k neighbors within the subgraph.
A k-truss [19] is a subgraph in which each edge is contained in at
least (k−2) triangles within the subgraph. The 1.0-quasi-k-clique-
`-adjacent community model [9] allows two k-cliques overlapping
in ` vertices to be merged into one community. In Figure 1, for
k = 4 and ` = 3, all these community models will report H as the
top answer and are thus unsatisfactory. Thus, in general, commu-
nities found by most previous community search methods can be
hard to interpret owing to the heterogeneity of node attributes. Fur-
thermore, the communities reported could contain smaller dense
subgraphs with more homogeneity in attributes, which are missed
by most previous methods. A recent work [13] proposed an at-
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Figure 2: Attributed Communities for queries on different query nodes Vq and query attributes Wq .

tributed community model. A detailed comparison of [13] with our
model appears in Section 3.

Consider now querying the graph of Figure 1 with query nodes
{q1, q2} and attributes (i.e., keywords) {DB, DM}. We would ex-
pect this search to return subgraph H2 (Figure 2(b)). On the other
hand, for the same query nodes, if we search with attribute {DB}
(resp., {DM}), we expect the subgraph H1 (resp., H3) to be re-
turned as the answer (Figure 2(a)&(c)). Both H1 and H3 are dense
subgraphs where all authors share a common topic (DB or DM).

Given a query consisting of nodes and attributes (keywords), one
may wonder whether we can filter out nodes not having those at-
tributes and then run a conventional community search method on
the filtered graph. To see how well this may work, consider query-
ing the graph in Figure 1 with query node q1 and query attribute
ML. Filtering out nodes without attribute ML and applying com-
munity search yields the chain consisting of v10, q1, v8, which is
not densely connected. On the other hand, the subgraph induced
by {q1, v8, v9, v10} is a 3-truss in Figure 2(d). Even though it in-
cludes one node without ML it is more densely connected than the
chain above and is a better answer than the chain as it brings out
denser collaboration structure among the authors in the community.
Thus, a simple filtering based approach will not work.

In sum, attributed graphs present novel opportunities for com-
munity search by combining dense structure of subgraphs with the
level of homogeneity of node attributes in the subgraph. Most
previous work in community search fails to produce satisfactory
answers over attributed graphs, while keyword search based tech-
niques do not find dense subgraphs. This raises the following ma-
jor challenges for community search in attributed graphs. Firstly,
how should we combine dense connectedness with the distribution
of attributes over the community nodes? We need a community
definition that promotes dense structure as well as attribute homo-
geneity. However, there can be tension between these goals: as il-
lustrated in the example above, some denser subgraphs may be less
homogeneous in their node attributes than some sparser ones. Sec-
ondly, the definition should capture the intuition that the more input
attributes that are covered by a community, the better the commu-
nity. Finally, the query processing algorithm should be efficient for
large graphs.

To tackle these challenges, we propose an attributed truss com-
munity (ATC) model. Given a query Q = (Vq,Wq) consisting of
a set of query nodes Vq and a set of query attributes Wq , a good
community H must be a dense subgraph which contains all query
nodes and attributes Wq must be contained in numerous nodes of
the community. The more nodes with attribute w ∈ Wq , the more
importance to w commonly accorded by the community members.
Additionally, the nodes must share as many attributes as possible.
Notice that these two conditions are not necessarily equivalent.
Capturing these intuitions, we define an attribute score function
that strikes a balance between attribute homogeneity and coverage.
Moreover, as a qualifying cohesive and tight structure, we define
a novel concept of (k, d)-truss for modeling a densely connected
community. A (k, d)-truss is a connected k-truss containing all

query nodes, where each node has a distance no more than d from
every query node. This inherits many nice structural properties,
such as bounded diameter, k-edge connectivity, and hierarchical
structure. Thus, based on attribute score function and (k, d)-truss,
we propose a novel community model as attributed truss com-
munity (ATC), which is a (k, d)-truss with the maximum attribute
score. In this paper, we make the following contributions.

• We motivate the problem of attributed community search,
and identify the desiderata of a good attributed community
(Section 2).

• We propose a novel dense and tight subgraph, (k, d)-truss,
and design an attribute score function satisfying the desider-
ata set out above. Based on this, we propose ATC community
model, and formulate the problem (Section 4).

• We analyze the structural properties of ATC and show that
it is non-monotone, non-submodular and non-supermodular,
which signal huge computational challenges. We also for-
mally prove that the problem is NP-hard (Section 5).

• We develop a greedy algorithmic framework to find an ATC
containing given query nodes w.r.t. given query attributes.
It first finds a maximal (k, d)-truss, and then iteratively re-
moves nodes with smallest attribute score contribution. For
improving the efficiency and quality, we design a revised at-
tribute marginal gain function and a bulk removal strategy
for cutting down the number of iterations (Section 6).

• For further improving efficiency, we explore the local neigh-
borhood of query nodes to search an ATC. This algorithm
first generates a Steiner tree connecting all query nodes, and
then expands the tree to a dense subgraph with the insertion
of carefully selected nodes, that have highly correlated at-
tributes and densely connected structure (Section 7).

• We conduct extensive experiments on 7 real datasets, and
show that our attributed community model can efficiently
and effectively find ground-truth communities and social cir-
cles over real-world networks, significantly outperforming
previous work (Section 8).

We discuss related work in Section 3, and conclude the paper
with a summary in Section 9. For lack of space, some proofs and
additional experiments are omitted. The complete details can be
found in the full version of the paper [18].

2. PRELIMINARIES AND DESIDERATA
2.1 Preliminaries

We consider an undirected, unweighted simple graph G = (V,
E) with n = |V (G)| vertices and m = |E(G)| edges. We de-
note the set of neighbors of a vertex v by N(v), and the degree
of v by d(v) = |N(v)|. We let dmax = maxv∈V d(v) denote
the maximum vertex degree in G. W.l.o.g. we assume that the
graphs we consider are connected. Note that this implies that m ≥
n − 1. We consider attributed graphs and denote the set of all
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attributes in a graph by A. Each node v ∈ V contains a set of
zero or more attributes, denoted by attr(v) ⊆ A. The multiset
union of attributes of all nodes in G is denoted attr(V ). Note that
|attr(V )| =

∑
v∈V |attr(v)|. We use Vw ⊆ V to denote the set of

nodes having attribute w, i.e., Vw = {v ∈ V | w ∈ attr(v)}.

2.2 Desiderata of a good community
Given a query Q = (Vq,Wq) with a set of query nodes Vq ⊆ V

and a set of query attributes Wq , the attributed community search
(ACS) problem is to find a subgraph H ⊆ G containing all query
nodes Vq , where the vertices are densely inter-connected, cover
as many query attributes Wq as possible and share numerous at-
tributes. In addition, the communication cost of H should be low.
We call the queryQ = (Vq,Wq) an ACS query. Before formalizing
the problem, we first identify the commonly accepted desiderata of
a good attributed community.
Criteria of a good attributed community: Given a graphG(V,E)
and a ACS queryQ = (Vq,Wq), an attributed community is a con-
nected subgraph H = (V (H), E(H)) ⊆ G that satisfies:

1. (Participation) H contains all query nodes as Vq ⊆ V (H);

2. (Cohesiveness) A cohesiveness function coh(H) that mea-
sures the cohesive structure of H is high.

3. (Attribute Coverage and Correlation) An attribute score func-
tion f(H,Wq) that measures the coverage and correlation of
query attributes in vertices of H is high.

4. (Communication Cost) A communication cost function
com(H) that measures the distance of vertices in H is low.

The participation condition is straightforward. The cohesiveness
condition is also straightforward since communities are supposed
to be densely connected subgraphs. One can use any notion of
dense subgraph previously studied, such as k-core, k-truss, etc.
The third condition captures the intuition that more query attributes
covered by H , the higher f(H,Wq); also more attributes shared by
vertices ofH , the higher f(H,Wq). This motivates designing func-
tions f(., .) with this property. Finally, keeping the communication
cost low helps avoid irrelevant vertices in a community. This is
related to the so-called free rider effect, studied in [19, 34]. Intu-
itively, the closer the community nodes to query nodes, subject to
all other conditions, the more relevant they are likely to be to the
query. Notice that sometimes a node that does not contain query
attributes may still act as a “bridge” between other nodes and help
improve the density. A general remark is that other than the first
condition, for conditions 2–4, we may either optimize a suitable
metric or constrain that the metric be above a threshold (below a
threshold for Condition 4). We formalize this intuition in Section 4
and give a precise definition of an attributed community .

3. RELATED WORK
Work related to this paper can be classified into community search,

keyword search, team formation, and community detection in at-
tributed graphs. Table 1 shows a detailed comparison of represen-
tative works on these topics.

Community Search. Community search on a graph aims to find
densely connected communities containing query nodes, and has
attracted a great deal of attention recently. Various models based
on different dense subgraphs [32, 16, 31] have been proposed and
studied: quasi-clique [9], densest subgraph [34], k-core [32, 10,
3] and k-truss [16, 19]. All these works focus on the structure of
the community while ignoring node attributes. This can result in
communities with poor cohesion in the attribute sets of the com-
munity nodes. In particular, while [16, 19] use k-truss as the basis

Table 1: A comparison of representative works on keyword
search (KS), team formation (TF), community search (CS) and
attributed community search (ACS).

Method Topic Participation Attribute Cohesiveness Communication
Condition Function Constraint Cost

[4] KS χ X χ X
[25] KS χ X χ X
[24] TF χ X χ X
[21] TF χ X χ X
[32] CS X χ X X
[19] CS X χ X X
[13] ACS X X X χ
Ours ACS X X X X

structure of communities, the k-truss communities they find are not
guaranteed to have high cohesion in the attribute sets of the nodes.

Keyword Search. Keyword search in relational databases has been
extensively studied. Most of the works focus on finding minimal
connected tuple trees from a relational database [1, 14, 20, 11].
Keyword search over graphs finds a substructure containing all or a
subset of the input keywords. The works [25, 29] report subgraphs
instead of trees as keyword search answers. However, keyword
search does not consider the cohesive structure involving the query
nodes and keywords.

Team Formation. Lappas et al. [24] introduced the problem of
discovering a team of experts from a social network, that satisfies
all attributed skills required for a given task with low communica-
tion cost. Most of the team formation studies [21] focus on a tree
substructure, as opposed to densely connected subgraph required
by community search. Compared with our problem, these studies
do not consider both dense structure and distance constraint at the
same time, and also have no constraint on query nodes.

Community Detection in Attributed Graphs. Community de-
tection in attributed graphs is to find all densely connected compo-
nents with homogeneous attributes [37, 6, 30, 17]. A survey of
clustering on attributed graphs can be found in [5]. It is practi-
cally hard and inefficient to adapt the above community detection
approaches [37, 36, 17, 30] for online attributed community search:
community detection is inherently global and much of the work in-
volved may be irrelevant to the community being searched.

Recently, Yang et al. [13] have proposed a model for community
search over attributed graphs based on k-cores. The key distinction
with our work is as follows. (1) Our community model is based on
k-trusses, which have well-known advantages over k-cores such
as denser structure. A connected k-core has no guarantee to be
2-edge-connected, even with a large core value k. (2) Our search
supports multiple query nodes whereas theirs is limited to a sin-
gle query node. (3) Their approach may miss useful communities.
E.g., consider the example graph in Figure 1 with query node {q2}
and attributes {DB, DM}, and parameter k = 3. Their model will
return the subgraphs H1 (Figure 2(a)) and H3 (Figure 2(c)) as an-
swers. However, the subgraph H2 (Figure 2(a)) will not be dis-
covered, due to their strict homogeneity constraints. (4) Finally,
unlike them, we validate our model with experiments over datasets
with ground-truth communities.

4. ATTRIBUTED COMMUNITY MODEL
In this section, we develop a notion of attributed community by

formalizing the the desiderata discussed in Section 2. We focus our
discussion on conditions 2–4.

4.1 (k, d)-truss
In the following, we introduce a novel definition of dense and

tight substructure called (k, d)-truss by paying attention to cohe-
siveness and communication cost.
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Cohesiveness. While a number of definitions for dense subgraphs
have been proposed over the years, we adopt the k-truss model,
proposed by Cohen [8], which has gained popularity and has been
found to satisfy nice properties.

A subgraph H ⊆ G is a k-core, if every vertex in H has degree
at least k. A triangle in G is a cycle of length 3. We denote a
triangle involving vertices u, v, w ∈ V as 4uvw. The support of
an edge e(u, v) ∈ E in G, denoted supG(e), is the number of
triangles containing e, i.e., supG(e) = |{4uvw : w ∈ V }|. When
the context is obvious, we drop the subscript and denote the support
as sup(e). Since the definition of k-truss [8, 33] allows a k-truss
to be disconnected, we define a connected k-truss below.

DEFINITION 1 (CONNECTED K-TRUSS). Given a graph G
and an integer k, a connected k-truss is a connected subgraph
H ⊆ G, such that ∀e ∈ E(H), supH(e) ≥ (k − 2).

Intuitively, a connected k-truss is a connected subgraph in which
each connection (edge) (u, v) is “endorsed” by k − 2 common
neighbors of u and v [8]. A connected k-truss with a large value of
k signifies strong inner-connections between members of the sub-
graph. In a k-truss, each node has degree at least k − 1, i.e., it is a
(k − 1)-core.

Consider the graphG (Figure 1). The edge e(v1, v2) is contained
in three triangles4q1v1v2 ,4q2v1v2 and4v3v1v2 , thus its support
is supG(e) = 3. Consider the subgraph H3 of G (Figure 2(c)).
Every edge of H3 has support ≥ 2, thus H3 is a 4-truss. Note
that even though the edge e(v1, v2) has support 3, there exists no
5-truss in the graph G in Figure 1.

Communication Cost. For two nodes u, v ∈ G, let distG(u, v)
denote the length of the shortest path between u and v in G, where
distG(u, v) = +∞ if u and v are not connected. The diameter
of a graph G is the maximum length of a shortest path in G, i.e.,
diam(G) = maxu,v∈G{distG(u, v)}. We make use of the notion
of graph query distance in the following.

DEFINITION 2 (QUERY DISTANCE [19]). Given a graph G
and query nodes Vq ⊆ V , the vertex query distance of vertex
v ∈ V is the maximum length of a shortest path from v to a query
node q ∈ Vq in G, i.e., distG(v, Vq) = maxq∈Vq distG(v, q).
Given a subgraph H ⊆ G and Vq ⊆ V (H), the graph query dis-
tance of H is defined as distH(H,Vq) = maxu∈H distH(u, Vq)
= maxu∈H,q∈Vq distH(u, q).

Given a subgraph H ⊆ G, the query distance distH(H,Vq)
measures the communication cost between the members of H and
the query nodes. A good community should have a low communi-
cation cost with small distH(H,Vq).

For the graph G in Figure 1 and query nodes Vq = {q1, q2},
the vertex query distance of v7 is distG (v7, Vq) = maxq∈Vq

{distG(v7, q)} = 2. Consider the subgraph H1 in Figure 2(a).
Then graph query distance of H1 is distH1(H1, Vq) = distH1 (q1,
q2) = 2. The diameter of H1 is diam(H1) = 2.

(k, d)-truss. We adapt the notions of k-truss and query distance,
and propose a new notion of (k, d)-truss capturing dense cohesive-
ness and low communication cost.

DEFINITION 3 ((k, d)-truss). Given a graph H , query nodes
Vq , and numbers k and d, we say that H is a (k, d)-truss iff H is a
connected k-truss containing Vq and distH(H,Vq) ≤ d.

By definition, the cohesiveness of a (k, d)-truss increases with
k, and its proximity to query nodes increases with decreasing d.
For instance, the community H1 in Figure 2 (a) for Vq = {q1, q2}
is a (k, d)-truss with k = 4 and d = 2.

4.2 Attribute Score Function
We first identify key properties that should be obeyed by a good

attribute score function for a community. Let f(H,Wq) denote the
attribute score of community H w.r.t. query attributes Wq . We say
that a node v ofH covers an attribute w ∈Wq , if w ∈ attr(v). We
say that a node of H is irrelevant to the query if it does not cover
any of the query attributes.
Principle 1: The more query attributes that are covered by some
node(s) of H , the higher should be the score f(H,Wq). The ratio-
nale is obvious.
Principle 2: The more nodes contain an attribute w ∈ Wq , the
higher the contribution of w should be toward the overall score
f(H,Wq). The intuition is that attributes that are covered by more
nodes ofH signify homogeneity within the community w.r.t. shared
query attributes.
Principle 3: The more nodes of H that are irrelevant to the query,
the lower the score f(H,Wq).

We next discuss a few choices for defining f(H,Wq) and an-
alyze their pros and cons, before presenting an example function
that satisfies all three principles. Note that the scores f(H,Wq)
are always compared between subgraphs H that meet the same
structural constraint of (k, d)-truss. An obvious choice is to de-
fine f(H,Wq) :=

∑
w∈Wq

score(H,w), where score(H,w), the
contribution of attributew to the overall score, can be viewed as the
relevance ofH w.r.t. w. This embodies Principle 1 above. Inspired
by Principle 2, we could define score(H,w) := |V (H) ∩ Vw|,
i.e., the number of nodes of H that cover w. Unfortunately, this
choice suffers from some limitations by virtue of treating all query
attributes alike. Some attributes may not be shared by many com-
munity nodes while others are and this distinction is ignored by the
above definition of f(H,Wq). To illustrate, consider the commu-
nity H1 in Figure 2(a) and the query Q = ({q1}, {DB}); H1 has
5 vertices associated with the attribute DB and achieves a score
of 5. The subgraph H of the graph G shown in Figure 1 also has
the same score of 5. However, while the community in Figure 2(a)
is clearly a good community, as all nodes carry attribute DB, the
subgraph H in Figure 1 includes several irrelevant nodes without
attribute DB. Notice that both H1 and H are 4-trusses so we have
no way of discriminating between them, which is undesirable.

An alternative is to define score(H,w) as |Vw∩V (H)|
|V (H)| as this

captures the popularity of attribute w. Unfortunately, this fails
to reward larger commumities. For instance, consider the query
Q = ({q1, v4}, {DB}) over the graph G in Figure 1. The sub-
graph H1 in Figure 2(a) as well as its subgraph obtained by remov-
ing q2 is a 4-truss and both will be assigned a score of 1.

In view of these considerations, we define f(H,Wq) as a weighted
sum of the score contribution of each query attribute, where the
weight reflects the popularity of the attribute.

DEFINITION 4 (ATTRIBUTE SCORE). Given a subgraphH ⊆
G and an attribute w, the weight of an attribute w is θ(H,w) =
|Vw∩V (H)|
|V (H)| , i.e., the fraction of nodes ofH coveringw. For a query

Q = (Vq,Wq) and a community H , the attribute score of H is
defined as f(H,Wq) =

∑
w∈Wq

θ(H,w) × score(H,w), where
score(H,w) = |Vw ∩ V (H)| is the number of nodes covering w.

The contribution of an attributew to the overall score is θ(H,w)×
score(H,w) = |Vw∩V (H)|2

|V (H)| . This depends not only on the number
of vertices covering w but also on w’s popularity in the commu-
nity H . This choice discourages vertices unrelated to the query
attributes Wq which decrease the relevance score, without neces-
sarily increasing the cohesion (e.g., trussness). At the same time, it
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permits the inclusion of essential nodes, which are added to a com-
munity to reduce the cost of connecting query nodes. They act as
an important link between nodes that are related to the query, lead-
ing to a higher relevance score. We refer to such additional nodes
as steiner nodes. E.g., consider the query Q = ({q1}, {ML}) on
the graph G in Figure 1. As discussed in Section 1, the community
H4 in Figure 2(d) is preferable to the chain of nodes v8, q1, v10.
Notice that it includes v9 with attribute DM (but not ML); v9 is
thus a steiner node. It can be verified that f(H4,Wq) = 9

4
which is

smaller than the attribute score of the chain, which is 3. However,
H4 is a 3-truss whereas the chain is a 2-truss. It is easy to see that
any supergraph of H4 in Figure 1 is at most a 3-truss and has a
strictly smaller attribute score.

The more query attributes a community has that are shared by
more of its nodes, the higher its attribute score. For example, con-
sider the query Q = ({q1}, {DB,DM}) on graph of Figure 1.
The communities H1, H2, H3 in Figure 2 are all potential answers
for this query. We find that f(H1,Wq) = 5 · 1 + 2 · 2

5
= 5.8;

by symmetry, f(H3,Wq) = 5.8; on the other hand, f(H2,Wq) =
5 · 5

8
+ 5 · 5

8
= 6.25. Intuitively, we can see that H1 and H3 are

mainly focused in one area (DB or DM) whereas H2 has 5 nodes
covering DB and DM each and also has the highest attribute score.

REMARK 1. We stress that the main contribution of this sub-
section is the identification of key principles that an attribute score
function must satisfy in order to be effective in measuring the good-
ness of an attributed community. Specifically, these principles cap-
ture the important properties of high attribute coverage and high
attribute correlation within a community and minimal number of
nodes irrelevant to given query. Any score function can be em-
ployed as long as it satisfies these principles. The algorithmic
framework we propose in Section 6.1 is flexible enough to handle
an ATC community model equipped with any such score function.

We note that a natural candidate for attribute scoring is the
entropy-based score function, defined as fentropy(H,Wq) =

∑
w∈Wq

− |Vw∩V (H)|
|V (H)| log |Vw∩V (H)|

|V (H)| . It measures homogeneity of query
attributes very well. However, it fails to reward larger commu-
nities, specifically violating Principle 1. E.g., consider the query
Q = ({q1, v4}, {DB}) on the graph G in Figure 1. The subgraph
H1 in Figure 2(a) and its subgraph obtained by removing q2 are
both 4-trusses and both are assigned a score of 0. Clearly, H1 has
more nodes containing the query attribute DB.

4.3 Attributed Truss Community Model
Combining the structure constraint of (k, d)-truss and the at-

tribute score function f(H,Wq), we define an attributed truss com-
munity (ATC) as follows.

DEFINITION 5. [Attribute Truss Community] Given a graph G
and a query Q = (Vq,Wq) and two numbers k and d, H is an
attribute truss community (ATC), if H satisfies the following con-
ditions:

1. H is a (k, d)-truss containing Vq .

2. H has the maximum attribute score f(H,Wq) among sub-
graphs satisfying condition (1).

In terms of structure and communication cost, condition (1) not
only requires that the community containing the query nodes Vq be
densely connected, but also that each node be close to the query
nodes. In terms of query attribute coverage and correlation, condi-
tion (2) ensures that as many query attributes as possible are cov-
ered by as many nodes as possible.

EXAMPLE 1. For the graph G in Figure 1, and query Q =
({q1, q2}, {DB,DM}) with k = 4 and d = 2, H2 in 2(b) is
the corresponding ATC, since H2 is a (4, 2)-truss with the largest
score f(H,Wq) = 6.25 as seen before.

The ATC-Problem studied in this paper can be formally formu-
lated as follows.

Problem Statement: Given a graphG(V,E), queryQ = (Vq,Wq)
and two parameters k and d, find an ATCH , such thatH is a (k, d)-
truss with the maximum attribute score f(H,Wq).

5. PROBLEM ANALYSIS
In this section, we analyze the complexity of the problem and

show that it is NP-hard. We then analyze the properties of the struc-
ture and attribute score function of our problem. Our algorithms for
community search exploit these properties.

5.1 Hardness
Our main result in this section is that the ATC-Problem is NP-

hard (Theorem 2). The crux of our proof idea comes from the hard-
ness of finding the densest subgraph with ≥ k vertices [22]. Un-
fortunately, that problem cannot be directly reduced to our ATC-
Problem. To bridge this gap, we extend the notion of graph density
to account for vertex weights and define a helper problem called
WDalK-Problem – given a graph, find the subgraph with maxi-
mum “weighed density” with at least k vertices.

Weighted Density. Let G = (V,E) be an undirected graph. Let
w(v) be a non-negative weight associated with each vertex v ∈
V . Given a subset S ⊆ V , the subgraph of G induced by S is
GS = (S,E(S)), where E(S) = {(u, v) ∈ E | u, v ∈ S}. For a
vertex v in a subgraph H ⊆ G, its degree is degH(v) = |{(u, v) |
(u, v) ∈ E(H)}|. Next, we define:

DEFINITION 6 (WEIGHTED DENSITY.). Given a subset of ver-
tices S ⊆ V of a weighted graph G, the weighted density of sub-

graph GS is defined as χ(GS) =
∑
v∈S

degGS
(v)+w(v)

|S| .

Recall that traditional edge density of an induced subgraph GS
is ρ(GS) = |E(S)|

|S| =
∑
v∈S

degGS
(v)

2|S| [22, 2]. That is, ρ(GS) is
twice the average degree of a vertex inGS . Notice that in Definition
6, if the weight of v is w(v) = 0, ∀v, then the weighted density
χ(GS) = 2ρ(GS). It is well known that given a number k,
finding the maximum density of a subgraph GS containing at least
k vertices is NP-hard [22].

Define the weight of a vertex v in a graph G as its degree in G,

i.e., w(v) = degG(v). Then, χ(GS) =
∑
v∈S

degGS
(v)+degG(v)

|S| =

2ρ(GS) +
∑
v∈S

degG(v)

|S| . We define a problem, the WDalK-
Problem, as follows: given a graph G with weights as defined
above, and a density threshold α, check whether G contains an
induced subgraph H with at least k vertices such that χ(H) ≥ α.

THEOREM 1. WDalK-Problem is NP-hard.

PROOF. We reduce the well-known NP-hard problem of Maxi-
mum Clique (decision version) to this problem. A complete proof
is reported in the arXiv article [18].

THEOREM 2. ATC-Problem is NP-hard.

PROOF. We reduce the WDalK-Problem to ATC-Problem. The
complete proof is available in [18].
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In view of the hardness, a natural question is whether efficient
approximation algorithms can be designed for ATC-Problem. Thus,
we investigate the properties of the problem in the next subsections.
Observe that from the proof, it is apparent that the hardness comes
mainly from maximizing the attribute score of a ATC.

5.2 Properties of (k, d)-truss
Our attribute truss community model is based on the concept of

k-truss, so the communities inherit good structural properties of
k-trusses, such as k-edge-connected, bounded diameter and hier-
archical structure. In addition, since the attribute truss community
is required to have a bounded query distance, it will have a small
diameter, as explained below.

A k-truss community is (k−1)-edge-connected, since it remains
connected whenever fewer than k − 1 edges are deleted from the
community [8]. Moreover, a k-truss based community has hierar-
chical structure that represents the hearts of the community at dif-
ferent levels of granularity [16], i.e., a k-truss is always contained
in some (k − 1)-truss . In addition, for a connected k-truss with
n vertices, the diameter is at most b 2n−2

k
c [8]. Small diameter is

considered an important property of a good community [12].
Since the distance function satisfies the triangle inequality, i.e.,

for all nodes u, v, w, distG(u, v) ≤ distG(u,w)+distG(w, v), we
can express the lower and upper bounds on the community diameter
in terms of the query distance as follows.

OBSERVATION 1. For a (k, d)-trussH and a set of nodes Vq ⊆
H , we have d ≤ diam(H) ≤ min{ 2|V (H)|−2

k
, 2d}.

Note that another definition of dense subgraph, k-(r,s)-nucleus
[31], is a generalized concept of k-truss, which can achieve very
dense strucutre. However, whenever s > 3, finding k-(r,s)-nucleus
is more expensive than computing k-trusses [18].

5.3 Properties of attribute score function
We next investigate the properties of the attribute score function,

in search of prospects for an approximation algorithm for finding
ATC. From the definition of attribute score function f(H,Wq), we
can infer the following useful properties.

Positive influence of relevant attributes. The more relevant at-
tributes a community H has, the higher the score f(H,Wq). E.g.,
consider the community H4 and Wq = {ML} in Figure 2 (d). If
the additional attribute “ML” is added to the vertex v9, then it can
be verified that the score f(H4, {ML}) will increase. We have:

OBSERVATION 2. Given a ATC H and a vertex v ∈ H , let a
new input attributew ∈Wq \attr(v) be added to v, andH ′ denote
the resulting community. Then f(H ′,Wq) > f(H,Wq).

In addition, we have the following easily verified observation.

OBSERVATION 3. Given a ATCH and query attribute setsWq

⊆Wq′ , we have f(H,Wq) ≤ f(H,Wq′).

Negative influence of irrelevant vertices. Adding irrelevant ver-
tices with no query attributes to a ATC will decrease its attribute
score. For example, for Wq = {DB}, if we insert the vertex
v7 with attribute IR into the community H1 in Figure 2(b), it de-
creases the score of the community w.r.t. the above query attribute
Wq = {DB} , i.e., f(H1 ∪ {v7}, {DB}) < f(H1, {DB}). The
following observation formalizes this property.

OBSERVATION 4. Given two ATC’sH andH ′ whereH ⊂ H ′,
suppose ∀v ∈ V (H ′) \ V (H) and ∀w ∈ Wq , attr(v) ∩ Vw = ∅.
Then f(H ′,Wq) < f(H,Wq).

Non-monotone property and majority attributes. The attribute
score function is in general non-monotone w.r.t. the size of the
community, even when vertices with query related attributes are
added. For instance, for the community H1 in Figure 2(a), with
Wq = {DB, IR}, f(H1,Wq) = 4 · 4

4
= 4. Let us add vertex

v7 with attribute IR into H1 and represent the resulting graph as
H5, then f(H5,Wq) = 4 · 4

5
+ 1 · 1

5
= 17

5
< f(H1,Wq). If

vertex v7 has attribute DB instead of IR, then it is easy to verify
that the attribute score of the resulting graph w.r.t. Wq is strictly
higher than 4. Thus, f(., .) is neither monotone nor anti-monotone.
This behavior raises challenges for finding ATC with the maximum
attibute score. Based on the above examples, we have the following
observation.

OBSERVATION 5. There exist ATC’sH andH ′ with V (H ′) =
V (H) ∪ {v}, and attr(v) ∩ Wq 6= ∅, such that f(H ′,Wq) <
f(H,Wq), and there exist ATC’sH andH ′ with V (H ′) = V (H)∪
{v}, and attr(v) ∩Wq 6= ∅, for which f(H ′,Wq) > f(H,Wq).

The key difference between the two examples above is that DB
is a “majority attribute” in H1, a notion we formalize next. For-
mally, given a community H and query Wq , we say that a set of at-
tributesX includes majority attributes ofH , and θ(H,Wq ∩X) =∑
w∈Wq∩X θ(H,w) ≥ f(H,Wq)

2|V (H)| . Recall that θ(H,w) is the frac-
tion of vertices of H containing the attribute w. We have:

LEMMA 1. Let H be a ATC of a graph G. Suppose there is
a vertex v 6∈ V (H) such that the set of attributes Wq ∩ attr(v)
includes the majority attributes ofH and that adding v toH results
in a ATCH ′ of G. Then f(H ′,Wq) > f(H,Wq) holds.

PROOF. Suppose Wq = {w1, ..., wl} and w.l.o.g., let Wq ∩
attr(v) = {w1, ..., wr}, where 1 ≤ r ≤ l. Let |V (H)| = b,
and for each attribute wi ∈ Wq , let |V (H) ∩ Vwi | = bi. Since
Wq ∩ attr(v) includes the majority attributes of H , θ(H,Wq ∩
attr(v)) =

∑r
i=1 bi
b

≥ f(H,Wq)

2b
, so we have

∑r
i=1 2bi ≥ f(H,Wq).

We have f(H,Wq) =
∑l
i=1

|V (H)∩Vwi
|2

|V (H)| =
∑l
i=1

b2i
b

, and

f(H ′,Wq) =
∑r
i=1

(bi+1)2

b+1
+
∑l
i=r+1

b2i
b+1

. As a result, f(H ′,Wq)

− f(H,Wq) =
b·
∑r

i=1(2bi+1)−
∑l

i=1 b
2
i

b(b+1)
≥ b·f(H,Wq)+rb−b·f(H,Wq)

b(b+1)

= r
b+1

> 0.

This lemma will be helpful in designing bottom-up algorithms,
by iteratively adding vertices with majority attributes to increase
attribute score.

Non-submodularity and Non-supermodularity. A set function
g : 2U → R≥0 is said to be submodular provided for all sets
S ⊂ T ⊂ U and element x ∈ U \ T , g(T ∪ {x}) − g(T ) ≤
g(S ∪ {x}) − g(S), i.e., the marginal gain of an element has the
so-called “diminishing returns” property. The function g(.) is said
to be supermodular if−g(.) is submodular. Optimization problems
over submodular functions lend themselves to efficient approxima-
tion. We thus study whether our attribute score function f(., .) is
submodular w.r.t. its first argument, viz., set of vertices.

Consider the graph G in Figure 1 and query Wq = {DB,DM}
with k = 2. Let the induced subgraphs of G by the vertex sets
S1 = {q1, v4} and S2 = {q1, v4, v5} respectively be denoted G1

and G2; G1 ⊆ G2. Let v∗ be a vertex not in G2. Let us compare
the marginal gains f(G1 ∪ {v∗},Wq) − f(G1,Wq) and f(G2 ∪
{v∗},Wq)− f(G2,Wq), from adding the new vertex v∗ to G1 and
G2. Suppose v∗ = v6 with attribute “DB”, then we have f(G2 ∪
{v6},Wq) − f(G2,Wq) = (4 + 1/4) − (3 + 1/3) = 11/12 >
f(G1 ∪ {v6},Wq)− f(G1,Wq) = (3 + 1/3)− (2 + 1/2) = 5/6,
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violating submodularity of the attribute score function f(., .). On
the other hand, suppose v∗ = q2 with attributes “DB” and “DM”.
Then we have f(G2 ∪ {q2},Wq)− f(G2,Wq) = (4 + 1)− (3 +
1/3) = 5/3 < f(G1∪{q2},Wq)−f(G1,Wq) = (3+4/3)−(2+
1/2) = 11/6, which violates supermodularity. We just proved:

LEMMA 2. The attribute score function f(H,Wq) is neither
submodular or supermodular.

In view of this result, we infer that the prospects for an efficient
approximation algorithm are not promising.

6. TOP-DOWN GREEDY ALGORITHM
In this section, we develop a greedy algorithmic framework for

finding a ATC. It leverages the notions of attribute score contri-
bution and attribute marginal gain that we define. Our algorithm
first finds a (k, d)-truss, and then iteratively removes vertices with
smallest attribute score contribution. Then, we analyze the time
and space complexity of our algorithm. We also propose a more
efficient algorithm with better quality, based on attribute marginal
gain and bulk deletion.

6.1 Basic Algorithm
We begin with attribute score contribution. Given a subgraph

H ⊂ G, a vertex v ∈ V (H), and attribute query Wq , let us exam-
ine the change to the score f(H,Wq) from dropping v.

f(H − {v},Wq) =
∑

w∈Wq

|Vw ∩ (V (H)− {v})|2

|V (H)| − 1

=
∑

w∈Wq−attr(v)

|Vw ∩ V (H)|2

|V (H)| − 1
+

∑
w∈Wq∩attr(v)

(|Vw ∩ V (H)| − 1)2

|V (H)| − 1

=
∑

w∈Wq

|Vw ∩ V (H)|2

|V (H)| − 1
−

∑
w∈attr(v)∩Wq

|Vw ∩ V (H)|2

|V (H)| − 1
+

+
∑

w∈Wq∩attr(v)

(|Vw ∩ V (H)| − 1)2

|V (H)| − 1

=
∑

w∈Wq

|Vw ∩ V (H)|2

|V (H)| − 1
−

∑
w∈Wq∩attr(v)

2|Vw ∩ V (H)| − 1

|V (H)| − 1

=
f(H,Wq) · |V (H)|
|V (H)| − 1

−

∑
w∈Wq∩attr(v)(2|Vw ∩ V (H)| − 1)

|V (H)| − 1

The second term represents the drop in the attribute score of H
from removing v. We would like to remove vertices with the least
drop in score. This motivates the following.

DEFINITION 7 (ATTRIBUTE SCORE CONTRIBUTION). Given
a graphH and attribute queryWq , the attribute score contribution
of a vertex v ∈ V (H) is defined as fH(v,Wq) =

∑
w∈Wq∩attr(v)

2|Vw ∩ V (H)| − 1.

The intuition behind dropping a vertex v from H is as follows.
Since f(H,Wq) is non-monotone (Section 5.3), the updated score
from dropping v from H may increase or decrease, so we check if
f(H − v,Wq) > f(H,W ).

Algorithm overview. Our first greedy algorithm, called Basic, has
three steps. First, it finds the maximal (k, d)-truss of G as a candi-
date. Second, it iteratively removes vertices with smallest attribute
score contribution from the candidate graph, and maintains the re-
maining graph as a (k, d)-truss, until no longer possible. Finally, it
returns a (k, d)-truss with the maximum attribute score among all
generated candidate graphs as the answer.

The details of the algorithm follow. First, we find the maximal
(k, d)-truss of G as G0. Based on the given d, we compute a set of

Algorithm 1 Basic (G, Q)
Input: A graph G = (V,E), a query Q = (Vq ,Wq), numbers k and d.
Output: A (k, d)-trussH with the maximum f(H,Wq).
1: Find a set of vertices S0 having the query distance≤ d, i.e., S0 = {u :

distG(u,Q) ≤ d}.
2: Let G0 be the induced subgraph of S, i.e., G0 = (S0, E(S0)), where
E(S0) = {(v, u) : v, u ∈ S0, (v, u) ∈ E}.

3: Maintain G0 as a (k, d)-truss.
4: Let l← 0;
5: while connectGl

(Q) = true do
6: Compute the attribute score of f(Gl,Wq);
7: Compute fGl

(u,Wq) by Def. 7;
8: u∗ ← argminu∈V (Gl)−Vq

fGl
(u,Wq);

9: Delete u∗ and its incident edges from Gl;
10: Maintain Gl as a (k, d)-truss.
11: Gl+1 ← Gl; l← l + 1;
12: H ← argmaxG′∈{G0,...,Gl−1} f(G

′,Wq);

vertices S having query distance no greater than d, i.e., S0 = {u :
distG(u,Q) ≤ d}. Let G0 ⊂ G be the subgraph of G induced
by S0. Since G0 may contain edges with support < (k − 2), we
invoke the following steps to prune G0 into a (k, d)-truss.

(k, d)-truss maintenance: repeat until no longer possible:
(i) k-truss: remove edges contained in < (k − 2) triangles;
(ii) query distance: remove vertices with query distance > d,
and their incident edges;
Notice that the two steps above can trigger each other: remov-

ing edges can increase query distance and removing vertices can
reduce edge support. In the following, we start from the maximal
(k, d)-truss Gl where l = 0, and find a (k, d)-truss with large at-
tribute score by deleting a vertex with the smallest attribute score
contribution.

Finding a (k, d)-truss with large attribute score. G0 is our first
candidate answer. In general, given Gl, we find a vertex v ∈
V (Gl) \ Vq with the smallest attribute score contribution and re-
move it from Gl. Notice that v cannot be one of the query vertices.
The removal may violate the (k, d)-truss constraint so we invoke
the (k, d)-truss maintenance procedure above to find the next can-
didate answer. We repeat this procedure until Gl is not a (k, d)-
truss any more. Finally, the candidate answer with the maximum
attribute score generated during this process is returned as the fi-
nal answer, i.e., arg maxG′∈{G0,...,Gl−1} f(G

′,Wq). The detailed
description is presented in Algorithm 1.

EXAMPLE 2. We apply Algorithm 1 on the graph G in Figure
1 with query Q = ({q1}, {DB,DM}), for k = 4 and d = 2.
First, the algorithm finds the (k, d)-truss G0 as the subgraph H
shown in Figure 1. Next, we select vertex v7 with the minimum
attribute score contribution fG0(v7,Wq) = 0 and remove it from
G0. Indeed it contains neither of the query attributes. Finally, the
algorithm finds the ATC H2 with the maximum attribute score in
Figure 2(b), which, for this example, is the optimal solution.

6.2 Complexity Analysis
In each iteration i of Algorithm 1, we delete at least one vertex

and its incident edges from Gi. Clearly, the number of removed
edges is no less than k − 1, and so the total number of iterations is
t ≤ min{n− k,m/(k − 1)}. We have:

THEOREM 3. Algorithm 1 takes O(mρ +t(|Wq|n + |Vq|m))
time and O(m + |attr(V )|) space, where t ∈ O(min{n,m/k}),
and ρ is the arboricity of graph G with ρ ≤ min{dmax,

√
m}.

Proof Sketch: The time cost of Algorithm 1 mainly comes from
three key parts: (1) query distance computation takes O(t|Vq|m)
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time by BFS traversals; (2) k-truss maintenance takes O(ρ · m)
time; (3) attribute score computation takes O(t|Wq| · n) time. A
complete proof is available in [18]. It was shown in [7] that ρ ≤
min{dmax,

√
m}.

6.3 An improved greedy algorithm
The greedy removal strategy of Basic is simple, but suffers from

the following limitations on quality and efficiency. Firstly, the at-
tribute score contribution myopically considers the removal vertex
v only, and ignores its impact on triggering removal of other ver-
tices, due to violation of k-truss or distance constraints. If these
vertices have many query attributes, it can severely limit the effec-
tiveness of the algorithm. Thus, we need to look ahead the effect
of each removal vertex, and then decide which ones are better to be
deleted. Secondly, Basic removes only one vertex from the graph
in each step, which leads to a large number of iterations, making
the algorithm inefficient.

In this section, we propose an improved greedy algorithm called
BULK, which is outlined in Algorithm 2. BULK uses the notion of
attribute marginal gain and a bulk removal strategy.

Attribute Marginal Gain. We begin with a definition.

DEFINITION 8 (ATTRIBUTE MARGINAL GAIN). Given a
graphH , attribute queryWq , and a vertex v ∈ V (H), the attribute
marginal gain is defined as gainH(v,Wq) = f(H,Wq) − f(H −
SH(v),Wq), where SH(v) ⊂ V (H) is v together with the set of
vertices that violate (k, d)-truss after the removal of v from H .

Notice that by definition, v ∈ SH(v). For example, consider the
graph G in Figure 1 and the query Q = ({q1}, {ML}), with
k = 3 and d = 2. The vertex v9 has no attribute “ML”, and
the attribute score contribution is fG(v9,Wq) = 0 by Definition 7,
indicating no attribute score contribution by vertex v9. However,
the fact is that v9 is an important bridge for connections among the
vertices q1, v8, and v10 with attribute “ML”. The deletion of v9
will thus lead to the deletion of v8 and v10, due to the 3-truss con-
straint. Thus, SG(v9) = {v8, v9, v10}. The marginal gain of v9 is
gainG(v9,Wq) = f(G,Wq)− f(G−SG(v9),Wq) = 3

4
− 1

9
> 0.

This shows that the deletion of v9 from G decreases the attribute
score. It illustrates that attribute marginal gain can more accurately
estimate the effectiveness of vertex deletion than score attribute
contribution, by naturally incorporating look-ahead.

One concern is that gainH(v,Wq) needs the exact computation
of SH(v), which has to simulate the deletion of v from H by in-
voking (k, d)-truss maintenance, which is expensive. An impor-
tant observation is that if vertex v is to be deleted, its neighbors
u ∈ N(v) with degree k − 1 will also be deleted, to maintain k-
truss. Let PH(v) be the set of v′s 1-hop neighbors with degree
k − 1 in H , i.e., PH(v) = {u ∈ N(v) : degH(u) = k − 1}.
We propose a local attribute marginal gain, viz., ˆgainH(v,Wq) =
f(H,Wq) − f(H − PH(v),Wq), to approximate gainH(v,Wq).
Continuing with the above example, in graph G, for deleting ver-
tex v9, note that deg(v8) = deg(v10) = 2 = k − 1, so we have
PG(v9) = {v8, v9, v10}, which coincides with SG(v9). In general,

ˆgainH(v,Wq) serves as a good approximation to gainH(v,Wq)
and can be computed more efficiently.

Bulk Deletion. The second idea incorporated in BULK is bulk
deletion. The idea is that instead of removing one vertex with the
smallest attribute marginal gain, we remove a small percentage of
vertices from the current candidate graph that have the smallest at-
tribute marginal gain. More precisely, let Gi be the current candi-
date graph and let ε > 0. We identify the set of vertices S such that

Algorithm 2 BULK (G, Q)
Input: A graph G = (V,E), a query Q = (Vq ,Wq), numbers k and d,
parameter ε.
Output: A (k, d)-trussH with the maximum f(H,Wq).
1: Find the maximal (k, d)-truss G0.
2: Let l← 0;
3: while connectGl

(Q) = true do
4: Find a set of vertices S of the smallest ˆgainGl

(v,Wq) with the size
of |S| = ε

1+ε
|V (Gi)|;

5: Delete S and their incident edges from Gl;
6: Maintain the (k, d)-truss of Gl;
7: Gl+1 ← Gl; l← l + 1;
8: H ← argmaxG′∈{G0,...,Gl−1} f(G

′,Wq);

|S| = ε
1+ε
|V (Gi)| and the vertices in S have the smallest attribute

marginal gain, and remove S from Gi .

7. INDEX-BASED SEARCH ALGORITHM
While the BULK algorithm based on the framework of Algo-

rithm 1 has polynomial time complexity, when the graph G is large
and the query Q has many attributes, finding ATCs entails several
ATC queries, which can be expensive. To help efficient processing
of ATC queries, we propose a novel index called attributed-truss
index (ATindex). It maintains known graph structure and attribute
information.

7.1 Attributed Truss Index
The ATindex consists of two components: structural trussness

and attribute trussness.

Structural Trussness. Recall that trusses have a hierarchical struc-
ture, i.e., for k ≥ 3, a k-truss is always contained in some (k− 1)-
truss [16]. For any vertex or any edge, there exists a k-truss with
the largest k containing it. We define the trussness of a subgraph,
an edge, and a vertex as follows.

DEFINITION 9 (TRUSSNESS). Given a subgraphH ⊆G, the
trussness of H is the minimum support of an edge in H plus 2, i.e.,
τ(H) = 2 + mine∈E(H){supH(e)}. The trussness of an edge
e ∈ E(G) is τG(e) = maxH⊆G∧e∈E(H){τ(H)}. The trussness
of a vertex v ∈ V (G) is τG(v) = maxH⊆G∧v∈V (H) {τ(H)}.

Consider the graph G in Figure 1, the trussness of the edge
e(q1, v1) is 4, because there exists a 4-truss containing e(q1, v1) in
Figure 2(b), and any subgraph H containing e(q1, v1) has τ(H) ≤
4, i.e., τG(e(q1, v1)) = maxH⊆G∧e∈E(H) {τ(H)} = 4. Based
on the trussness of a vertex (edge), we can infer in constant time
whether there exists a k-truss containing it. Notice that for a graph
G, τ̄(∅) denotes the maximum structural trussness of G.

Attributed Trussness. Structural trussness index is not sufficient
for ATC queries. Given a vertex v in G with structural trussness
τG(v) ≥ k, there is no guarantee that v will be present in a (k, d)-
truss with large attribute score w.r.t. query attributes. E.g., consider
the graph G and vertex v1 with τG(v1) = 4 in Figure 1. Here, v1
will not be present in an ATC for query attributes Wq = {“ML”}
since it does not have attribute “ML”. On the contrary, v1 is in a
ATC w.r.t. Wq = {“DM”}. By contrast, v9 is not present in a
4-truss w.r.t. attribute “DM” even though it has that attribute. To
make such searches efficient, for each attribute w ∈ A, we con-
sider an attribute projected graph, which only contains the vertices
associated with attribute w, formally defined below.

DEFINITION 10. (Attribute Projected graph & Attributed Truss-
ness). Given a graph G and an attribute w ∈ A(V ), the projected
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Algorithm 3 LocATC (G, Q)
Input: A graph G = (V,E), a query Q = (Vq ,Wq).
Output: A (k, d)-trussH with the maximum f(H,Wq).
1: Compute an attribute Steiner tree T connecting Vq using attribute truss

distance as edge weight;
2: Iteratively expand T into graph Gt by adding adjacent vertices v, until
|V (Gt)| > η;

3: Compute a connected k-truss containing Vq of Gt with the largest
trussness k = kmax;

4: Let the kmax-truss as the new Gt.
5: Apply Algorithm 2 onGt to identify ATC with parameters k = kmax

and d = distGt (Gt, Vq).

graph of G on attribute w is the induced subgraph of G by Vw,
i.e., Gw = (Vw, EVw ) ⊆ G. Thus, for each vertex v and edge e
in Gw, the attributed trussness of v and e w.r.t. w in Gw are re-
spectively defined as τGw (v) = maxH⊆Gw∧v∈V (H) {τ(H)} and
τGw (e) = maxH⊆Gw∧e∈E(H){τ(H)}.

For instance, for the graph G in Figure 1, the projected graph
Gw of G on w = “DB” is the graph H1 in Figure 2(a). For ver-
tices v1 and v4, even though both have the same structural trussness
τG(v1) = τG(v4) = 4, in graph H1, vertex v4 has attribute truss-
ness τH1(v4) = 4 w.r.t. w = “DB”, whereas vertex v1 is not even
present in H1, indicating that vertex v4 is more relevant with “DB”
than v1.

7.2 Index-based Query Processing
In this section, we propose an ATindex-based query processing

algorithm by means of local exploration, called LocATC.

Algorithm overview. Based on the ATindex, the algorithm first ef-
ficiently detects a small neighborhood subgraph around query ver-
tices, which tends to be densely and closely connected with the
query attributes. Then, we apply Algorithm 2 to shrink the candi-
date graph into a (k, d)-truss with large attribute score. The outline
of the algorithm LocATC is presented in Algorithm 3. Note that,
when no input parameters k and d are given in LocATC, we design
an auto-setting mechanism for parameters k and d, which will be
explained in Section 8.

To find a small neighborhood candidate subgraph, the algorithm
starts from the query vertices Vq , and finds a Steiner tree connecting
the query vertices. It then expands this tree by adding attribute-
related vertices to the graph. Application of standard Steiner tree
leads to poor quality, which we next explain and address.

Finding attributed Steiner tree T . As discussed above, a Steiner
tree connecting query vertices is used as a seed for expanding into
a (k, d)-truss. A naive method is to find a minimal weight Steiner
tree to connect all query vertices, where the weight of a tree is the
number of edges. Even though the vertices in such a Steiner tree
achieve close distance to each other, using this tree seed may pro-
duce a result with a small trussness and low attribute score. For
example, for the query Q = ({q1, q2}, {DB}) (see Figure 1), the
tree T1 = {(q1, v1) , (v1, q2)} achieves a weight of 2, which is
optimal. However, the edges (q1, v1) and (v1, q2) of T1 will not
be present in any 2-truss with the homogeneous attribute of “DB”.
Thus it suggests growing T1 into a larger graph will yield a low at-
tribute score for Wq = “DB”. On the contrary, the Steiner tree T2

= {(q1, v4) , (v4, q2)} also has a total weight of 2, and both of its
edges have the attribute trussness of 4 w.r.t. the attribute “DB”, in-
dicating it could be expanded into a community with large attribute
score. For discriminating between such Steiner trees, we propose a
notion of attributed truss distance.

DEFINITION 11 (ATTRIBUTE TRUSS DISTANCE). Given an
edge e = (u, v) in G and query attributes Wq , let G = {Gw :
w ∈ Wq} ∪ {G}. Then the attribute truss distance of e is defined
as ˆdistWq (e) = 1+ γ(

∑
g∈G(τ̄(∅) − τg(e))), where τ̄(∅) is the

maximum structural trussness in graph G.

The set G consists of G together with all its attribute projected
graphs Gw, for w ∈ Wq and the difference (τ̄(∅) − τg(e)) mea-
sures the shortfall in the attribute trussness of edge e w.r.t. the
maximum trussness in G. The sum

∑
g∈G(τ̄(∅) − τg(e)) indi-

cates the overall shortfall of e across G as well as all its attribute
projections. Smaller the shortfall of an edge, lower its distance.
Finally, γ controls the extent to which small value of structural
and attribute trussness, i.e., a large shortfall, is penalized. Us-
ing ATindex, for any edge e and any attribute w, we can access
the structural trussness τG(e) and attribute trussness τGw (e) in
O(1) time. Since finding minimum weight Steiner tree is NP-
hard, we apply the well-known algorithm of [23, 28] to obtain a
2-approximation, using attributed truss distance. The algorithm
takes O(m|Wq| + m + n logn) ⊆ O(m|Wq| + n logn) time,
where O(m|Wq|) is the time taken to compute the attributed truss
distance for m edges.

Expand attribute Steiner tree T to Graph Gt. Based on the at-
tribute Steiner tree T built above, we locally expand T into a graph
Gt as a candidate (k, d)-truss with numerous query attributes. Re-
call that Lemma 1 gives a useful principle to expand the graph
with insertion of a vertex at a time, while increasing the attribute
score. Specifically, if θ(Gt,Wq ∩ attr(v)) ≥ f(Gt,Wq)

2|V (Gt)| , then graph
GT ∪ {v} has a larger attribute score than GT . We can identify
such vertices whose attribute set includes majority attributes of the
current candidate graph and add them to the current graph.

Now, we discuss the expansion process, conducted in a BFS
manner. We start from vertices in T , and iteratively insert adja-
cent vertices with the largest vertex attribute scores into Gt until
the vertex size exceeds a threshold η, i.e., |V (Gt)| ≤ η, where η is
empirically tuned. After that, for each vertex v ∈ V (Gt), we add
all its adjacent edges e into Gt.

Apply BULK on Gt with auto-setting parameters. Based on the
graph Gt constructed above, we apply Algorithm 2 with given pa-
rameters k and d on Gt to find an ATC. If input parameters k
and d are not supplied, we can set them automatically as follows.
We first compute a k-truss with the largest k connecting all query
vertices. Let kmax denote the maximum trussness of the subgraph
found. We set the parameter k to be kmax. We also compute the
query distance of Gt and assign it to d, i.e., d := distGt(Gt, Vq).
We then invoke the BULK algorithm onGt with parameters k, d to
obtain a ATC with large trussness and high attribute cohesiveness.

Friendly mechanism for query formulation. Having to set val-
ues for many parameters for posing queries using LocATC can
be daunting. To mitigate this, we make use of the auto-setting
of parameters k and d. Additionally, we allow the user to omit
the query attribute parameter Wq in a query Q(Vq,Wq) and write
Q(Vq, ). Thus, only query nodes need to be specified. Our algo-
rithm will automatically set Wq :=

⋃
v∈Vq

A(v) by default. The
rationale is that the algorithm will take the whole space of all pos-
sible attributes as input, and leverage our community search algo-
rithms to find communities with a proper subspace of attributes,
while achieving high scores. For example, consider the query Q =
({q1, q2}, ) on graph G in Figure 1, LocATC automatically sets
Wq := {DB,DM,ML}. The discovered community is shown in
Figure 2(b), which illustrates the feasibility of this strategy. This
auto-complete mechanism greatly facilitates query formulation to
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identify relative attributes for discovered communities, which ben-
efits users in a simple way.

Handling bad queries. In addition to auto-complete query formu-
lation, we discuss how to handle bad queries issued by users. Bad
queries contain query nodes and query attributes that do not consti-
tutes a community. Our solution is to detect outliers of bad queries
and then suggest good candidate queries for users. The whole
framework includes three steps. (1) It identifies bad queries. Based
on the structural constraint of (k, d)-truss, if query nodes span a
long distance and are loosely connected in the graph, the query
tends to be a bad query. In addition, if none of the query attributes
are present in the proximity of query nodes, it suggests there are no
communities with homogeneous attributes, from among the query
attributes, thus indicating the query is bad. (2) It recommends can-
didates for good queries. Due to outliers existing in bad queries,
we partition the given query into several small queries. Based on
the distribution of graph distance, graph cohesiveness, and query
attribute, we partition given query nodes into several disjoint good
queries. (3) Whenever a query does not admit a (k, d)-truss con-
taining query nodes or does not lead to a (k, d)-truss with attributes
relevant to the query, our algorithm can quickly detect this and re-
turn an empty answer. See [18] for experiments on handling bad
queries.

8. EXPERIMENTS
In this section, we test all proposed algorithms on a Linux Server

with Intel Xeon CUP X5570 (2.93 GHz) and 50GB main memory.

8.1 Experimental Setup
Datasets. We conduct experimental studies using 9 real-world net-
works with ground-truth communities.The network statistics are re-
ported in Table 2.

The preceding 4 datasets, Krogan, Facebook, Cornell, and Texas,
are real-world datasets with real attributes. Krogan is one PPI net-
work related to the yeast Saccharomyces cerevisiae [15]. The sec-
ond dataset is Facebook ego-networks [27]. For a given user id
X in Facebook network G, the ego-network of X , denoted ego-
facebook-X , is the induced subgraph of G by X and its neighbors.
Facebook dataset contains contains 10 ego-networks indicated by
its ego-user X , where X ∈ {0, 107, 348, 414, 686, 698, 1684,
1912, 3437, 3890}. For simplicity, we abbreviate ego-facebook-
X to fX , e.g., f698. Cornell and Texas are web graphs 1.

The other 5 networks, Amazon, DBLP, Youtube, LiveJournal
and Orkut, contain 5000 top-quality ground-truth communities.
However, since the vertices on these networks have no attributes,
we generate an attribute set consisting of |A| = 0.005 · |V | differ-
ent attribute values in each network G. The average number of at-
tribute/vertex |A||V | = 0.005 is less than the proportion of attributes
to vertices in datasets with real attributes (e.g., the value of 0.12
in Facebook) in Table 2. A smaller attribute pool A makes homo-
geneity of synthetic attributes in different communities more likely,
which stresses testing our algorithms. For each ground-truth com-
munity, we randomly select 3 attributes, and assign each of these
attributes to each of random 80% vertices in the community. In ad-
dition, to model noise in the data, for each vertex in the graph, we
randomly assign a random integer of [1, 5] attributes to it. Except
Krogan, Cornell, and Texas, all other datasets are available from
the Stanford Network Analysis Project.2

1
http://linqs.cs.umd.edu/projects/projects/lbc/

2
snap.stanford.edu

Table 2: Network statistics (K = 103 and M = 106)
Network |V | |E| dmax τ̄(∅) |A| |attr(V )|
Krogan 2.6K 7.1K 140 16 3064 28151
Facebook 1.9K 8.9K 416 29 228 3944
Cornell 195 304 94 4 1588 18496
Texas 187 328 104 4 1501 15437
Amazon 335K 926K 549 7 1674 1804406
DBLP 317K 1M 342 114 1584 1545490
Youtube 1.1M 3 M 28,754 19 5327 2163244
LiveJournal 4M 35M 14,815 352 11104 12426432
Orkut 3.1M 117M 33,313 78 9926 10373866
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Figure 3: Quality evaluation (F1 score) on networks with real
attributes and ground-truth communities

Algorithms Compared. We test our three algorithms – Basic,
BULK, and LocATC. Here, Basic is the Algorithm 1 that removes
single node in each iteration. BULK is an improved greedy al-
gorithm in Algorithm 2, which removes a set of nodes with size
ε

1+ε
|V (Gi)| from graph Gi in each iteration. We empirically set

ε = 0.03. LocATC is the bottom-up local exploration approach
in Algorithm 3. For all methods, we set the parameter k = 4 and
d = 4 by default.

In addition, to evaluate the effectiveness of the ATC model on at-
tributed graphs, we implemented three state-of-the-art community
search methods – ACC [13], MDC [32] and LCTC [19]. Note that
both MDC and LCTC only consider the graph structure and ignore
the attributes. ACC considers both graph structure and attributes,
but it only deals with a single query node with query attributes.

Queries. For each dataset, we randomly test 100 sets of queries
Q = (Vq,Wq), where we set both the number of query nodes |Vq|,
and the number of query attributes |Wq| to 2 by default.

Evaluation Metrics. To evaluate the quality of communities found
by all algorithms, we measure the F1-score reflecting the alignment
between a discovered community C and a ground-truth commu-
nity Ĉ. Given a ground-truth community Ĉ, we randomly pick
query vertices and query attributes from it and query the graph
using different algorithms to obtain the discovered community C.
Then, F1 is defined as F1(C, Ĉ) = 2·prec(C,Ĉ)·recall(C,Ĉ)

prec(C,Ĉ)+recall(C,Ĉ)
where

prec(C, Ĉ) = |C∩Ĉ|
|C| is the precision and recall(C, Ĉ) = |C∩Ĉ|

|Ĉ|
is the recall. For all efficiency experiments, we consistently report
the running time in seconds.

8.2 Quality and Efficiency Evaluation
To evaluate the effectiveness and efficiency of different commu-

nity models, we compare LocATC with three state-of-the-art meth-
ods – ACC, MDC and LCTC on attributed networks with ground-
truth communities.

Networks with real-world attributes. We experiment with the
Krogan, Cornell, Texas, and the 10 Facebook ego-networks, all
having real-world attributes. For every ground-truth community,
we randomly select a set of query nodes with size drawn uniformly
at random from [1, 16]. We use 2 representative attributes from
the community as query attributes. We choose attributes occurring
most frequently in a given community and rarely occurring in other
communities as representative attributes. We evaluate the accuracy
of detected communities and report the averaged F1-score over all
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Figure 5: Efficiency evaluation (query time in seconds) on net-
works with real attributes and ground-truth communities

queries on each network.
Figure 3 shows the F1-score results. Our method (LocATC)

achieves the highest F1-score on most networks, except for face-
book ego-networks f104 and f1684. The reason is that vertices
of ground-truth communities in f104 and f1684 are strongly con-
nected in structure, but are not very homogeneous on query at-
tributes. MDC and LCTC do not perform as well as LocATC,
because those community models only consider structure metrics,
and ignore attribute features. Note that for each query with multiple
query vertices, the attributed community search method ACC ran-
domly takes one query vertex as input. We make this explicit and
denote it as ACC-Q1 in Figure 3. For comparison, we apply the
same query on our method LocATC, and denote it as LocATC-
Q1. LocATC-Q1 clearly outperforms ACC-Q1 in terms of F1-
score, showing the superiority of our ATC model. In addition,
LocATC achieves higher score than LocATC-Q1, indicating our
method can discover more accurate communities with more query
vertices. Furthermore, we also compare the precision and recall of
all methods on f414 network in Figure 4. MDC perform the worst
on precision, since it considers no query attributes and includes
many nodes that are not in ground-truth communities. ACC-Q1 is
the winner on precision, which is explained by the strict attribute
constraints in its definition. On the other hand, in terms of recall,
ACC-Q1 is the worst method as it only identifies a small part of
ground-truth communities. Overall, LocATC achieves a good bal-
ance between precision and recall. This is also reflected in LocATC
achieving the best F1-score on most datasets (Figure 3).

Figure 5 shows the running time performance of all methods.
In terms of supporting multiple query vertices, LocATC runs up
to two orders of magnitude faster than MDC and LCTC on ego-
networks in Facebook, and LCTC is the winner on Cornell and
Texas networks. For one query vertex, ACC-Q1 runs faster than
LocATC-Q1, since k-cores can be computed quicker than k-trusses.

Networks with synthetic attributes. In this experiment, we test
on 5 large networks – DBLP, Amazon, Youtube, LiveJournal, and
Orkut, with ground-truth communities and synthetic attributes [35].
Following the testing procedures of query generation and F1-score
evaluation above, we observe similar results on datasets with syn-
thetic attributes in Figure 6 (a) and (b).

8.3 Parameter Sensitivity Evaluation
In this experiment, we vary various parameters used in the syn-

thetic data generation, query generation, and algorithm definitions,
and evaluate the quality and efficiency performance of LocATC.

Varying homogeneous attributes in synthetic datasets. For
each ground-truth community in Amazon, we randomly select 3
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attributes, and assign each of these attributes to each of Z% ver-
tices in the community, where Z is a random number in [50, Y ].
Note that different attributes may have different values of Z. The
parameter Y is varied from 60 to 90. As Y is increased, intuitively
the level of homogeneity in the network and in its communities
increases. The results of F1-score are shown in Figure 7. As ho-
mogeneous attributes in communities increase, MDC and LCTC
maintain the same F1-score, while the F1-score of all methods of
attributed community search – LocATC, LocATC-Q1, and ACC-
Q1 – increases as homogeneity increases. Once again, LocATC
is the best method even when the proportion of homogeneous at-
tributes falls in [50, 60]. LocATC-Q1 beats ACC-Q1 for all set-
tings of homogeneity. Similar results can be also observed on other
synthetic datasets.

Varying query vertex size |Vq|. We evaluate the various approaches
using different queries on f414 and DBLP. We test 5 different val-
ues of |Vq|, i.e., {1, 2, 4, 8, 16}. For each value of |Vq|, we ran-
domly generate 100 sets of queries, and report the average running
time. The results for f414 and DBLP are respectively shown in
Figure 8 (a) and (b). LocATC achieves the best performance, and
increases smoothly with the increasing query vertex size. BULK
is more effective than Basic, thanks to the bulk deletion strategy.
Most of the cost of BULK and Basic comes from computing the
maximal (k, d)-truss G0. All methods take less time on f414 than
on DBLP network, due to the small graph size of f414.

Varying parameters ε. We test the performance of LocATC by
varying ε. We used the same query nodes that are selected in Sec.
8.2 on f414 network. The results of F1-score and query time by
varying ε are respectively reported in Figure 9 (a) and (b). As
we can see, LocATC removes a smaller portion of nodes, which
achieves a higher F1-score using more query time.

8.4 Case Study on PPI network
Besides the quality evaluation, we also apply LocATC on the

protein-protein interaction (PPI) network Krogan to discover the
protein complexes and investigate biologically significant clues.
Figure 10(a) shows one complex “transcription factor TFIIIC com-
plex” in sccharomyces cerevisiae, which is identified by biologists
previously. The graph contains 6 nodes and 12 edges. Similar
with the procedure of good query generation in Sec. 8.2, we ran-
domly sample a query as Q = (Vq,Wq) where Vq ={854277,
856100} and Wq ={“GO:0001009”, “GO:0001041”}, and set the
parameters k = 3 and d = 3. To illustrate the importance of
the consideration of protein attributes in detecting protein com-
plexes, we simply use the structure and find the (3, 3)-truss shown
in Figure 10(b). This community contains 11 proteins including 6

959



 0.001

 0.01

 0.1

 1

 10

1 2 4 8 16

|Vq|

Basic
Bulk

LocATC

(a) f414

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16

|Vq|

Basic
Bulk

LocATC

(b) DBLP
Figure 8: Varying query vertex size |Vq|: Query Time

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

0.01 0.03 0.1 0.2 0.4

F
1

-s
c

o
re

ε

LocATC

(a) F1-score

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0.01 0.03 0.1 0.2 0.4

T
im

e
 (

in
 s

e
c

o
n

d
s

)

ε

LocATC

(b) Query Time
Figure 9: Varying ε on f414

proteins of the ground-truth complex of Figure 10(a). The other
5 proteins not present in the ground-truth complex are associated
with no query attributes, but have other attributes w3 and w4, as
shown in Figure 10(b). When we look up the database of Gene
Ontology3, we know that the attributes of “biological processes”
as “GO:0001009” and “GO:0001041” respectively represent “tran-
scription from RNA polymerase III hybrid type promoter” and “tran-
scription from RNA polymerase III type 2 promoter”. LocATC
is able to identify all proteins that perform the same biological
process of transcription from RNA polymerase. Overall, LocATC
successfully identifies all proteins that constitute the ground-truth
complex in Figure 10(a).

9. CONCLUSION
In this work, we propose an attributed truss community (ATC)

model that allows to find a community containing query nodes with
cohesive and tight structure, also sharing homogeneous query at-
tributes. The problem of finding an ATC is NP-hard. We also show
that the attribute score function is not monotone, submodular, or su-
permodular, indicating approximation algorithms may not be easy
to find. We propose several carefully designed strategies to quickly
find high-quality communities. We design an elegant and compact
index, ATindex, and implement an efficient query processing algo-
rithm, which exploits local exploration and bulk deletion. Exten-
sive experiments reveal that our model and algorithms significantly
outperform previous approaches.
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