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Sandia National Laboratories

Livermore, CA, USA
asariyu@sandia.gov

Ali Pinar
Sandia National Laboratories

Livermore, CA, USA
apinar@sandia.gov

ABSTRACT
Discovering dense subgraphs and understanding the rela-
tions among them is a fundamental problem in graph min-
ing. We want to not only identify dense subgraphs, but
also build a hierarchy among them (e.g., larger but sparser
subgraphs formed by two smaller dense subgraphs). Peel-
ing algorithms (k-core, k-truss, and nucleus decomposition)
have been effective to locate many dense subgraphs. How-
ever, constructing a hierarchical representation of density
structure, even correctly computing the connected k-cores
and k-trusses, have been mostly overlooked. Keeping track
of connected components during peeling requires an addi-
tional traversal operation, which is as expensive as the peel-
ing process. In this paper, we start with a thorough survey
and point to nuances in problem formulations that lead to
significant differences in runtimes. We then propose efficient
and generic algorithms to construct the hierarchy of dense
subgraphs for k-core, k-truss, or any nucleus decomposition.
Our algorithms leverage the disjoint-set forest data structure
to efficiently construct the hierarchy during traversal. Fur-
thermore, we introduce a new idea to avoid traversal. We
construct the subgraphs while visiting neighborhoods in the
peeling process, and build the relations to previously con-
structed subgraphs. We also consider an existing idea to find
the k-core hierarchy and adapt for our objectives efficiently.
Experiments on different types of large scale real-world net-
works show significant speedups over naive algorithms and
existing alternatives. Our algorithms also outperform the
hypothetical limits of any possible traversal-based solution.

1. INTRODUCTION
Graphs are used to model relationships in many applications
such as sociology, the WWW, cybersecurity, bioinformat-
ics, and infrastructure. Although the real-world graphs are
sparse (|E| << |V |2), vertex neighborhoods are dense [23].
Clustering coefficients [50], and transitivity [49] of real-world
networks are also high and suggest the micro-scale dense
structures. Literature is abundant with the benefits of dense
subgraph discovery for various applications [30, 22]. Exam-
ples include finding communities in web [29, 13], and social
networks [26], detecting spam groups in web [20], discover-
ing migration patterns in stock market [14], improving soft-
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ware understanding by analyzing static structure of large-
scale software systems [55], analyzing gene co-expression
networks [54], finding DNA motifs [16], quantifying the sig-
nificance of proteins [53] and discovering molecular com-
plexes [4] in protein interaction networks, identifying real-
time stories in microblogging websites [3], and improving
the throughput of social-networking sites [21].
k-core [43, 34], k-truss [39, 10, 56, 47, 44, 57, 26], and

their generic variant for larger cliques, nucleus decomposi-
tion [42], are deterministic algorithms which are effective
and efficient solutions to find dense subgraphs and creat-
ing hierarchical relations among them. They also known as
peeling algorithms due to their iterative nature to reach the
densest parts of the graph. Hierarchy has been shown to be
a central organizing principle of complex networks, which
is useful to relate communities of a graph and can offer in-
sight into many network phenomena [9]. Peeling algorithms
do not aim to find a single optimum dense subgraph, but
rather gives many dense subgraphs with varying sizes and
densities, and hierarchy among them, if supported by a
post-processing traversal step [34, 42].

1.1 Problem, Misconception and Challenges
We focus on undirected, unattributed graphs. Hierarchy of
dense subgraphs is represented as the tree structure where
each node is a subgraph, each edge shows a containment
relation, and the root node is the entire graph. The aim is
to efficiently find the hierarchy by using peeling algorithms.

Misconception in the literature: Recent studies on
peeling algorithms has interestingly overlooked the connec-
tivity condition of k-cores and k-trusses. In the original def-
inition of k-core, Seidman states that k-core is the maximal
and connected subgraph where any vertex has at least degree
k [43]. However, almost all the recent papers on k-core algo-
rithms [8, 18, 19, 6, 36, 32, 28, 52, 51, 32] did not mention
that k-core is a connected subgraph although they cite Seid-
man’s seminal work [43]. On the k-truss side, the idea is in-
troduced independently by Saito et al. [39] (as k-dense), Co-
hen [10] (as k-truss), Zhang and Parthasarathy [56] (as trian-
gle k-core), and Verma and Butenko [47] (as k-community).
They all define k-truss as a subgraph where any edge is in-
volved in at least k triangles. Regarding the connectivity,
Cohen [10], and Verma and Butenko [47] defined the k-truss
as a single component subgraph, while others [39, 56] ig-
nored the connectivity. In practice, overlooking the con-
nectedness limits the contributions of most previous work
regarding the performance and semantic aspects. More de-
tails are given in Section 3.

Finding k-cores requires traversal on the graph after the
peeling process, where maximum k-core values of vertices
are found. It is same for k-truss and nucleus decompositions
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Table 1: Speedups with our best algorithms for each
decomposition. Starred columns (*) show lower bounds,
when the other algorithm did not finish in 2 days or
did a partial work. Best k-truss and (3,4) algorithms
are significantly faster than alternatives, and also more
efficient than the hypothetically best possible algorithm
(Hypo) that does traversal to find the hierarchy.

k-core k-truss (3, 4) nucleus
Naive Hypo Naive TCP∗ [26] Hypo Naive∗

Stanford3 25.50x 1.10x 12.58x 3.41x 1.48x 1321.89x
twit-hb 27.89x 1.33x 16.24x 3.27x 1.78x 38.96x
uk-2005 58.02x 1.68x 90.50x 11.07x 1.24x 1.98x

where the traversal is done on higher order structures. Con-
structing the hierarchy is only possible after that. However,
it is not easy to track nested structure of subgraphs dur-
ing a single traversal over entire graph. Traversing k-cores
is cheap by a simple breadth-first search (BFS) in O(|E|)
time. When it comes to k-truss and higher order peeling
algorithms, however, traversal becomes much costly due to
the larger clique connectivity constraints.

1.2 Contributions
Motivated by the challenging cost of traversals and hierarchy
construction, we focus on efficient algorithms to find the k-
cores, k-trusses or any nuclei in general. Our contributions
are as follows:

• Thorough literature review: We provide a detailed
review of literature on peeling algorithms to point the
misconception about k-core and k-truss definitions. We
highlight the implications of these misunderstandings on
the proposed solutions. We also stress the lack of under-
standing on the hierarchy construction and show that it
is as expensive as the peeling process.

• Hierarchy construction by disjoint-set forest: We
propose to use disjoint-set forest data structure (DF) to
track the disconnected substructures that appear in the
same node of the hierarchy tree. Disjoint-set forest is in-
corporated into the hierarchy tree by selectively process-
ing the subgraphs in a particular order. We show that our
algorithm is generic, i.e., works for any peeling algorithm.

• Avoiding traversal: We introduce a new idea to build
the hierarchy without traversal. In the peeling process,
we construct the subgraphs while visiting neighborhoods
and bookkeep the relations to previously constructed sub-
graphs. Applying a lightweight post-processing operation
to those tracked relations gives us all the hierarchy, and
it works for any peeling algorithm.

• Experimental evaluation: All the algorithms we pro-
posed are implemented for k-core, k-truss and (3, 4)-nucle-
us decompositions, in which peeling is done on triangles
and the four-clique involvements. Furthermore, we bring
out an idea from Matula and Beck’s work [34], and adapt
and implement it for our needs to solve the k-core hierar-
chy problem more efficiently. Table 1 gives a summary of
the speedups we get for each decomposition. Our k-core
hierarchy algorithm adaptation outperforms naive base-
line by 58 times on uk-2005 graph. The best k-truss and
(3, 4) algorithms are significantly faster than alternatives.
They also beat the hypothetically best possible algorithm
(Hypo) that does traversal to find hierarchy. It is a strik-
ing result to show the benefit of our traversal avoiding
idea.

Table 2: Summary of notations

Symbol Description

Kr r-clique; complete graph of r vertices
ωs(u) Ks-degree of u; number of s-cliques containing u
ωr,s(H) min{ωs(u) : u ∈ H}; min Ks-degree of a Kr in H
Hu max k-(r, s) nucleus associated with the Kr u
λs(u) ωr,s(Hu); max k-(r, s) number of the Kr u
λr,s(H) min{λs(u) : u ∈ H}; min λs of a Kr in graph H
Tr,s sub-(r, s) nucleus; maximal union of Krs of same λs

2. PRELIMINARIES
This section presents building blocks for our work.

2.1 Nucleus decomposition
Let G be an undirected and simple graph. We start by
quoting the Definitions 1 and 2 from [42]. We use Kr to
denote an r-clique.

Definition 1. Let r < s be positive integers and S be a
set of Kss in G.

• Kr(S) is the set of Krs contained in some C ∈ S.

• The number of C ∈ S containing u ∈ Kr(S) is the
Ks-degree of u.

• Two Krs u, u′ are Ks-connected if there exists a se-
quence u = u1, u2, . . . , uk = u′ in Kr(S) such that for
each i, some Ks C ∈ S contains ui ∪ ui+1.

These definitions are generalizations of the standard ver-
tex degree and connectedness. Indeed, setting r = 1 and
s = 2 (so S is a set of edges) yields exactly that. The main
definition is as follows.

Definition 2. Let k, r, and s be positive integers such
that r < s. A k-(r, s) nucleus is a maximal union S of Kss
such that:

• The Ks-degree of any u ∈ Kr(S) is at least k.

• Any u, u′ ∈ Kr(S) are Ks-connected.

Figure 1: 2-(2,3) and 2-(2,4) nuclei on left and right.

Figure 1 gives an example for 2-(2,3) and 2-(2,4) nucleus.
For r = 1, s = 2, a k-(1,2) nucleus is a maximal (induced)
connected subgraph with minimum vertex degree k. This is
exactly k-core [43]. Setting r = 2, s = 3 gives maximal sub-
graphs where every edge participates in at least k triangles,
and edges are triangle-connected. This is almost the same
definition of k-dense [39], k-truss [10], triangle-cores [56] and
k-community [47]. The difference is on the connectivity con-
dition; [10, 47] defines k-truss and k-community as a con-
nected component, whereas [39, 56] do not mention connect-
edness, implicitly allowing disconnected subgraphs. The k-
truss community defined by Huang et al. [26] is the same
as the k-(2,3) nucleus: both require any pair of edges to be
triangle-connected. More details can be found in Section 3.
In the rest of the paper, we will be generic and present all
our findings for the k-(r, s) nucleus decomposition, which
subsumes k-core and k-truss definitions.

For an r-clique Kr u, ωs(u) denotes the Ks-degree of u.
For a subgraph H ⊆ G, ωr,s(H) is defined as the minimum
Ks-degree of aKr inH, i.e., ωr,s(H) = min{ωs(u) : u ∈ H}.
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Definition 3. The maximum k-(r,s) nucleus associ-
ated with a Kr u, denoted by Hu, is the k-(r, s) nucleus that
contains u and has the largest k = ωr,s(Hu) (i.e., @ H s.t.
u ∈ H ∧ H is an l-(r, s) nucleus ∧ l > k).

The maximum k-(r, s) number of the r-clique u, denoted
by λs(u), is defined as λs(u) = ωr,s(Hu).

Throughout the paper, λs(u) implies that u is a Kr. We also
abuse the notation as λ(u) when r and s are obvious. The
maximum k-(1, 2) nucleus is same as the maximum k-core,
defined in [41]. For a vertex, v, λ2(v) is also equal to the
maximum k-core number of v [41], or core number of v [8,
36]. Likewise, for an edge e, λ3(e) is previously defined as
the trussness of an edge in [26].

Building the (r, s) nucleus decomposition of a graph G is
finding the λs of all Krs in G and building the k-(r, s) nuclei
for all k. The following corollary shows that given the λs of
all Krs, all (r, s) nuclei of G can be found.

Corollary 1. Given λs(v) for all Kr v ∈ G and assum-
ing λs(u) = k for a Kr u, the maximum k-(r, s) nucleus of
u, denoted by Hu, consists of u as well as any Kr v that has
λs(v) ≥ k and is reachable from u via a path P of Kss such
that ∀C∈P , λr,s(C) ≥ k, where λr,s(C) = min{λs(u) : u ⊂
C (u is a Kr)}.

Corollary 1 is easy to see for the k-core case, when r =
1, s = 2. All the traversed vertices are in Hu due to maxi-
mality property of k-cores, and all the vertices in Hu are tra-
versed due to the connectivity condition, both mentioned in
Definition 2. For the maximum k-(2, 3) nucleus, we can also
see the equality by Definition 2. For all edges e, λ3(e) ≥ k
satisfies the first condition, and the path of triangles, which
does not contain any edge whose λ3 is less than k, implies
the second condition of Definition 2.

Corollary 2. Hu can be found by traversing G starting
at the Kr u and including each Kr v to Hu if

• λs(v) ≥ k
• ∃ a Ks C s.t. v ⊂ C ∧ λr,s(C) ≥ k.

Repeating this traversal for all Krs u ∈ G gives all the k-
(r, s) nuclei of G.

Traversal is trivial for k-(1, 2) nucleus (k-core): include
every vertex with greater or equal λ2. For r = 2, s = 3,
maximum k-(2, 3) nucleus is found by doing traversal on
edges. Assuming the λ3 value of the initial edge is k, the next
edge in the traversal should have the λ3 value ≥ k; should be
in the same triangle; and all the edges of this triangle should
have λ3s greater-than or equal to k. Similar for r = 3, s = 4;
traversal is done on triangles, and neighborhood condition
is on the containment of triangles in four-cliques.

In summary, (r, s) nucleus decomposition problem has two
phases: (1) peeling process which finds the λs values of Krs,
(2) traversal on the graph to find all the k-(r, s) nuclei. For
r = 1, s = 2 case, the algorithm for finding λ2 of vertices
is based on the following property, as stated in [34]: to find
the vertices with the λ2 of k, all vertices of degree less than
k and their adjacent edges are recursively deleted. For first
phase, we provide the generic peeling algorithm in Alg. 1,
which has been introduced in our earlier work [42], and for
the second phase, we give the generic traversal algorithm in
Alg. 2, which is basically the implementation of Corollary 2.
The final algorithm, outlined in Alg. 3 combines the two.

Lastly, we define sub-(r, s) nucleus and strong Ks -connec-
ted ness to find the Krs with same λs values. We will use
them to efficiently locate all the k-(r, s) nuclei of given graph.

Algorithm 1: Set-λ(G, r, s)

1 Enumerate all Krs in G(V,E)
2 For every Kr u, set ωs(u) as the number of Kss containing u
3 Mark every Kr as unprocessed
4 for each unprocessed Kr u with minimum ωs(u) do
5 λs(u) = ωs(u), maxλ = λs(u)
6 Find set S of Kss containing u
7 for each C ∈ S do
8 if any Kr v ⊂ C is processed then continue
9 for each Kr v ⊂ C, v 6= u do

10 if ωs(v) > ωs(u) then ωs(v) = ωs(v)− 1

11 Mark u as processed

12 return array λs(·) and maxλ

Algorithm 2: Traversal(G, r, s, λ(·),maxλ)
1 for each k ∈ [1,maxλ] do
2 visited[v] = false, ∀ Kr v ∈ G
3 for each Kr u ∈ G do
4 if λs(u) = k and not visited[u] then
5 Q← empty queue, Q.push(u)
6 S ← empty set, S.add(u)
7 visited[u]← true
8 while not Q.empty() do
9 u← Q.pop()

10 for each Kr v s.t.
(u∪ v ⊂ C)∧ (C is a Ks)∧ (λr,s(C) ≥ k) do

11 if not visited[v] then
12 Q.push(v), S.add(v)
13 visited[v]← true

14 report S // output the k-(r, s) nucleus

Algorithm 3: NucleusDecomposition(G, r, s)

1 λs(·), maxλ← Set-λ(G, r, s)// Finding λs of Krs
2 Traversal(G, r, s, λ(·),maxλ)// Finding all (r, s) nuclei

Definition 4. Two Krs u, u′ with λs(u) = λs(u′) are
strongly Ks-connected if there exists a sequence u = u1, u2

, . . . , uk = u′ such that:

• ∀i, λs(ui) = λs(u)

• ∀i,∃ C s.t.

– C is a Ks

– (ui ∪ ui+1) ⊂ C
– λr,s(C) = λs(u).

Definition 5. sub-(r,s) nucleus, denoted by Tr,s, is a
maximal union of Krs s.t. ∀ Kr pair u, v ⊂ S,

• λs(u) = λs(v)

• u and v are strongly Ks-connected

The sub-(1, 2) nucleus is defined as the subcore in [41, 40].
All the notations are given in Table 2.

2.2 Disjoint sets problem
Disjoint-set data structure, also known as union-find, keeps
disjoint dynamic sets, and maintains upon the operations
that modifies the sets [11]. Each set has a representative.
There are two main operations: Union (x, y) merges the
dynamic sets with ids x and y, and creates a new set, or
just merge one of the sets into the other. Find (x) returns
the representative of the set which contains x.

Disjoint-set forest is introduced with two powerful heuris-
tics [45]. In the disjoint-set forest, each set is a tree, each
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Algorithm 4: Disjoint-Set Forest

Link(x, y): // x and y are nodes in the tree
if x.rank > y.rank then y.parent ← x
else

x.parent ← y
if x.rank = y.rank then y.rank ← y.rank + 1

Find(x):
S ← empty set
while x.parent is not null do x← x.parent, S.add(x)
for each u ∈ S do u.parent ← x
return x
Union(x, y): Link(Find(x), Find(y))

node in the tree is an element of the set, and the root of
each tree is the identifier of that set. To keep the trees
flat, two heuristics are used that complement each other.
First is union-by-rank, which merges the shorter tree under
the longer one. Second heuristic is path-compression that
makes each node on the find path point directly to the root.
Time complexity with union-by-rank and path-compression
heuristics isO((m+n)log∗n), where log∗n is the inverse Ack-
ermann function which is almost linear [45]. Pseudocode for
Find and Union operations are given in Alg. 4.

3. LITERATURE AND MISCONCEPTIONS
In this section, we present a detailed review of related work
on peeling algorithms. We point some misconceptions about
the definitions and the consequences. Our focus is on peeling
algorithms and their output, so we limit our scope to k-
core and k-truss decompositions and their generalizations.
Detailed literature review of dense subgraph discovery can
be found in [22, 30].

3.1 k-core decomposition
The very first definition of a k-core related concept is given
by Erdős and Hajnal [15] in 1966. They defined the degen-
eracy as the largest maximum core number of a vertex in
the graph. Matula introduced the min-max theorem [35] for
the same thing, highlighting the relationship between de-
gree orderings of the graph and the minimum degree of any
subgraph, and its applications to graph coloring problem.
Degeneracy number has been rediscovered numerous times
in the context of graph orientations and is alternately called
the coloring number [33], and linkage [17].

First definition of the k-core subgraph is given by Seid-
man [43] for social networks analysis, and also by Matula
and Beck [34], as k-linkage, for clustering and graph color-
ing applications, in the same year of 1983. Seidman [43]
introduced the core collapse sequence, also known as degen-
eracy ordering of vertices, as an important graph feature.
He states that k-cores are good seedbeds that can be used
to find further dense substructures. Though, there is no
algorithm in [43] on how to find the k-cores. Matula and
Beck [34], on the other hand, gives algorithms for finding
λ2 values of vertices, and also finding all the k-cores of a
graph (and their hierarchy) by using these λ2 values, be-
cause there can be multiple k-cores for same k value. Both
papers defined the k-core subgraph as follows:

“A connected and maximal subgraph H is k-core
(k-linkage) if every vertex in H has at least de-
gree k.” [43, 34]

The connectedness is an important detail in this definition
because it requires a post-processing traversal operation on
vertices to locate all the k-cores of the graph. Figure 2 shows

this. There are two 3-cores in the graph, and there is no way
to distinguish them at the end of the peeling process by just
looking at the λ values of vertices.

2-core

3-core

3-core

Figure 2: Multiple 3-cores

Batagelj and Zaversnik introduced an efficient implemen-
tation that uses bucket data structure to find the λ values
of vertices [5]. They defined the k-core as a not necessar-
ily connected subgraph, in contrast to previous work they
cited [43, 34]. With this assumption, they claimed that their
implementation finds all the k-cores of the graph.

Finding the relationships between k-cores of a graph has
gained a lot of interest. Nested structure of k-cores reveals
a hierarchy, and it has been shown to be useful for visu-
alization [1] and understanding the underlying structure of
complex networks arising in many domains. Carmi et al. [7]
and Alvarez-Hamelin et al. [2] investigated the k-core hi-
erarchy of internet topology at autonomous systems (AS)
level. Healy et al. [25] compared the k-core hierarchies of
real-world graphs in different domains and some generative
models.

Given the practical benefit and efficiency of k-core decom-
position, there has been a lot of recent work to adapt k-core
algorithms for different data types or setups. Out of memory
computation is an important topic for many graph analytic
problems that deal with massive graphs not fitting in mem-
ory. Cheng et al. [8] introduced the first external-memory
algorithm. Wen et al. [51] and Khaouid et al. [28] provided
further improvements in this direction. Regarding the dif-
ferent type of graphs, Giatsidis et al. adapted the k-core de-
composition for weighted [19] and directed [18] graphs. To
handle the dynamic nature of real-world data, Sariyuce et
al. [41] introduced the first streaming algorithms to main-
tain k-core decomposition of graphs upon edge insertions
and removals. They recently improved these algorithms fur-
ther by leveraging the information beyond 2-hop [40]. Li et
al. [32] also proposed incremental algorithms for the same
problem. More recently, Wu et al. [52] approached dynamic
data from a different angle, and adapted k-cores for tem-
poral graphs where possibly multiple interactions between
entities occur at different times. Motivated by the incom-
plete and uncertain nature of the real network data, O’Brien
and Sullivan [36] proposed new methods to locally estimate
core numbers (λ values) of vertices when entire graph is not
known, and Bonchi et al. [6] showed how to efficiently do
the k-core decomposition on uncertain graphs, which has
existence probabilities on the edges.

One common oversight in all those recent work (except
[41, 42]) is that they ignore the connectivity of k-cores.
This oversight does not change their results, but limit their
contributions: they adapt/improve the peeling part of k-
core decomposition, which finds the λs of vertices, not the
entire k-core decomposition which also needs traversal to
locate all the (connected) k-cores. Considering the exter-
nal memory k-core decomposition algorithms [8, 28, 51],
existing works only focused on how to compute the λ val-
ues of vertices. However, the additional traversal operation
in external memory is not taken into consideration which
is at least as expensive as finding λ values. Finding the
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Figure 3: k-dense [39] (triangle k-core [56]), k-truss [10]
(k-community [47]) and k-truss community [26] (k-(2, 3)
nucleus [42]) on the same graph for k=2. Each subgraph
given by the corresponding algorithm is shown in dashed.

k-dense
triangle k-core

k-truss
k-community

k-truss community
k-(2,3) nucleus

(connected) k-cores and constructing the hierarchy among
them efficiently in the external memory computation model
is not a trivial problem and will limit the performance of
proposed algorithms for finding k-core subgraphs and con-
structing the hierarchy. Similar argument can be considered
for weighted [19], probabilistic [6], and temporal [52] k-core
decompositions, all of which have some kind of threshold-
based adaptations on weights, probabilities and timestamps,
respectively. On the other hand, connectedness definition
is semantically unclear for some existing works like the di-
rected graph core decomposition [18]. It is only defined that
in- and out-degrees of vertices can be considered to find
two λ values, but traversal semantic is not defined for find-
ing subgraphs or constructing the hierarchy. One can think
about building the hierarchy by considering the edges from
lower level k-cores to higher level ones, or the opposite. To
remedy those misconceptions, we focus on the efficient com-
putation of traversal part for k-core decomposition and its
higher-order variants.

3.2 k-truss decomposition
k-truss decomposition is inspired by the k-core and can be
thought as the same peeling problem in a higher level that
deals with triangles. It is independently introduced, with
subtle differences, by several researchers. Chronologically,
the idea is first proposed by Saito et al. [39], to the best of
our knowledge, in 2006:

“k-dense is a subgraph S if each adjacent vertex
pair in S has more than or equal to (k-2) com-
mon adjacent vertices in S.”

In other words, each edge in S should be involved in at least
k-2 triangles. Nothing is mentioned about the connectedness
of the vertices and edges, which implies that a k-dense sub-
graph might have multiple components. Saito et al. argue
that k-dense is a good compromise between easy to com-
pute k-cores and high quality k-cliques, and it is useful to
detect communities in social networks. In 2008, Jonathan
Cohen introduced the k-truss as a better model for cohesive
subgraphs in social networks [10], which became the most
popular naming in the literature:

“k-truss is a one-component subgraph such that
each edge is reinforced by at least k-2 pairs of
edges making a triangle with that edge.”

In 2012, Zhang and Parthasarathy [56] proposed a new defini-
ton for visualization purposes:

“triangle k-core is a subgraph that each edge is
contained within at least k triangles in the sub-
graph.”

Again there was no reference to the connectedness, implying
multiple components can be observed in a triangle k-core.
In the same year, Verma and Butenko [47] introduced the
following:

“k-community is a connected subgraph if every
edge is involved in at least k triangles.”

The subtle difference between those papers is the con-
nectedness issue. k-dense [39] and triangle k-core [56] defi-
nitions allow the subgraph to be disconnected whereas the
k-truss [10] and k-community [47] are defined to be con-
nected. All of these works only provided algorithms to find
the λ3 values of edges. k-dense and triangle k-cores can
be found this way since they can be disconnected. How-
ever, finding the k-truss and k-community subgraphs re-
quires a post-processing traversal operation, which increases
the cost. As a stronger alternative to the k-truss, Huang et
al. [26] introduced the k-truss community. The only differ-
ence is that each edge pair in a k-truss community is directly
or transitively triangle-connected, where two edges should
reside in the same triangle to be triangle-connected. The
generic k-(r, s) nucleus, proposed by Sariyuce et al. [42], for
r = 2, s = 3 gives the exact same definition. This brings a
stronger condition on the connectivity structure, and shown
to result in denser subgraphs than the classical k-truss def-
inition [26]. However, it has an extra overhead of post-
processing traversal operation that requires to visit trian-
gles, which is more expensive than the traditional traversal.
Authors devised TCP index, a tree structure at each vertex,
to remedy this issue [26]. Figure 3 highlights the difference
between those definitions on a simple example.
k-truss decomposition serves as a better alternative to the

k-core. For most applications that k-core is useful for, k-
truss decomposition performs better. Gregori et al. [24] in-
vestigated the structure of internet AS-level topologies by
looking at the k-dense subgraphs, similar to Carmi et al. [7]
and Alvarez-Hamelin et al. [2] who used k-core for same
purpose. Orsini et al. [37] also investigated the evolution
of k-dense subgraphs in AS-level topologies. It has been
also used to understand the global organization of clusters
in complex networks [44]. Colomer-de-Simon et al. used
the hierarchy of k-dense subgraphs to visualize real-world
networks, as Healy et al. [25] used the k-cores for the same
objective.

Proven strength of k-truss decomposition drew further in-
terest for adapting to different data types and setups, sim-
ilar to the k-core literature. Wang and Cheng introduced
external memory algorithms [48] and more improvements
are provided by Zhao and Tung [57] for visualization pur-
poses. More recently, Huang et al. [27] introduced proba-
bilistic truss decomposition for uncertain graphs.

Similar to the k-core case, overlooking the connectivity
constraints limits the contributions in the k-truss literature
as well. For example, external memory k-truss decomposi-
tion [48] would be more expensive and require more intricate
algorithms if it is done to find connected subgraphs by do-
ing the traversal in external memory model. We believe
that our algorithms for efficiently finding the k-trusses and
constructing the hierarchy will be helpful to deal with this
issue.
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3.3 Generalizations
Given the similarity between k-core and k-truss decompo-
sitions, people have been interested in unified schemes to
generalize the peeling process for a broader set of graph
substructures.

Saito et al. pointed a possible direction of generalization
in their pioneering work [39], where they defined k-dense
subgraphs. Their proposal is as follows:

“Subgraph S is a h-level k-dense community
if the vertices in every h-clique of S is adjacent
to at least h-k common vertices.” [39]

In other words, h-level k-dense community is the set of h-
cliques where each h-clique is contained in at least h − k
number of (h+ 1)-cliques. Note that, there is no connectiv-
ity constraint in the definition. h-level k-dense community
subsumes the disconnected k-core, which contains multiple
k-cores, for h = 1. For h = 2, it is their k-dense defini-
tion [39]. They claimed that h-level k-dense communities
for h > 2 are more or less same with h = 2 and incurs
higher computation cost. So they did not dive into more
algorithmic details and stick with h = 2.

Sariyuce et al. [42] introduced a broader definition to unify
the existing proposals, which can be found by a generic peel-
ing algorithm. As explained in Section 2.1, their definition
subsumes k-core and k-truss community [26] concepts. It is
also more generic than h-level k-dense community of [39],
since (1) it allows to look for involvement of cliques whose
size can differ by more than one, (2) enforces a stronger con-
nectivity constraint to get denser subgraphs. h-level k-dense
community can be expressed as the k-(r, r+1) nucleus which
does not have any connectivity constraint (k is actually h−k
and it does not matter). Well-defined theoretical notion of
k-(r, s) nucleus enables to provide a unified algorithm to find
all the nuclei in graph, as explained in Section 2.1.

Sariyuce et al. [42] also analyzed the time and space com-
plexity of (r, s)-nucleus decomposition. For the first phase,
they report that finding λ values of nuclei (Alg. 1) requires
O(RTr(G)+

∑
v ωr(v)d(v)s−r) time with O(|Kr(G)|) space,

where RTr(G) is Kr enumeration time, and second part is
searching each Ks that a Kr is involved in (ωr(v) is the num-
ber of Krs containing vertex v, d(v) is the degree of v, and
|Kr(G)| is the number of Krs in G). For the second phase,
traversal on the entire graph needs to access each Kr and
examine all the Kss it is involved. Its time complexity is the
same as the second part of first phase: O(

∑
v ωr(v)d(v)s−r)

which also gives the total time complexity.

4. ALGORITHMS
In this part, we first highlight the challenging aspects of
the traversal phase, then introduce two algorithms for faster
computation of (r, s)-nucleus decomposition to meet those
challenges.

4.1 Challenges of traversal
As mentioned in the previous section, time complexity of the
traversal algorithm for (r, s) nuclei is O(

∑
v ωr(v)d(v)s−r).

However, designing an algorithm that constructs the hierar-
chy with this complexity is challenging. In [42], it is stated
that finding the nuclei in the reverse order of λ is better since
it enables to discover previously found components, thus
avoiding repetition. No further details are given, though.
This actually corresponds to finding all Tr,s (sub-(r, s) nu-
clei of Definition 5), connected Krs with the same λ value,

and incorporating the relations among them. But, keeping
track of all the Tr,s in a structured way is hard. Figure 4
shows a case for k-core (r = 1, s = 2). Traversal algorithm
needs to understand the relation between T1,2s of equal λ
that are not directly connected. For instance, Tr,s A and E
are in the same 2-core, but the traditional BFS will find 3
other Tr,s (F, D, G) between those two. During the traver-
sal operation, there is a need to detect each k-(r, s) nucleus,
determine containment relations and construct the hierar-
chy. One solution that can be thought is to construct the
- expectedly smaller - supergraph which takes all the Tr,s

as vertices and their connections as edges. Then, repeti-
tive traversals can be performed on this supergraph to find
each k-(r, s) nucleus and the hierarchy. However, it is not
guaranteed to get a significantly smaller supergraph which
can be leveraged for repetitive traversal. The Tr,s structure
of real-world networks, which are investigated in Section 5,
also verify this concern. It is clear that there is a need for
a lightweight algorithm/data structure that can be used on-
the-fly, so that all the k-(r, s) nuclei can be discovered with
the hierarchy during the traversal algorithm.

The other challenge with the traversal algorithm is the
high computational cost for r ≥ 2 cases. Consider the (2, 3)
case. We need to traverse on edges, and determine the ad-
jacencies of edges by looking at their common triangles. At
each step, it requires to find the common neighbors of the
vertices on extremities (of the edge), check whether each
adjacent edge is previously visited, and push to queue if
not. As explained at the end of Section 3.3, complexity be-
comes O(3 ∗ |4|). Cost is getting much higher if we look
for (3, 4) nuclei, which is shown to give denser subgraphs
with more detailed hierarchy. Ideally we are looking to com-
pletely avoid the costly traversal operation.

4.2 Disjoint-set forest idea
We propose to use disjoint-set forest data structure (DF)
to track the disjoint Tr,s (of equal λ), and construct the
hierarchy where Tr,s with smaller λ is on the upper side, and
greater λ is on the lower side. DF has been used to track
connected components of a graph and fits perfectly to our
problem where we need to find the connected components
at multiple levels.

DF-Traversal algorithm, outlined in Alg. 5, is used to
replace the naive Traversal (Alg. 2) in NucleusDecom-
position (Alg. 3). Basically it finds all the Tr,s in the de-
creasing order of λ. We construct the hierarchy-skeleton tree
by using Tr,ss. Each node in the hierarchy-skeleton is a Tr,s.
We define subnucleus struct to represent a Tr,s. It consists
of λ, rank, parent and root fields. λ field is the λ(v) for
v ∈ Tr,s, rank is the height of the node in the hierarchy-
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Figure 4: Example of T1,2s for λ = 2 and λ = 3. Hierarchy
tree is shown on the right with participating T1,2s. λs are
shown in red. Traversal algorithm needs to infer that,
for instance, components A and E are in the same 2-core.
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skeleton, parent is a pointer to the parent node and root is
a pointer to the root node of the hierarchy-skeleton. De-
fault values for parent and root are null, and rank is 0.
Figure 5 shows an example hierarchy-skeleton obtained by
Alg. 5. Thin edges show the disjoint-set forests consisting
of Tr,ss of equal λ value. The hierarchy of all (r, s) nuclei,
the output we are interested, can be obtained by using the
hierarchy-skeleton easily: we just take the child-parent links
for which the λ values are different.

In the DF-Traversal algorithm, we store the subnuclei

in hrc list (line 1) which also represents the hierarchy-skele-
ton. Krs in a Tr,s are stored by inverse-indices; comp keeps
subnucleus index of each Kr in hrc (line 2). We also use
visited to keep track of traversed Krs (line 3). Main idea
is to find each Tr,s in decreasing order of λ (in lines 4-7). We
construct the hierarchy-skeleton in a bottom-up manner this
way and it lets us to use DF to find the representative Tr,s,
i.e., the greatest ancestor, at any time. At each iteration
we find an un-visited Kr with the λ value in order (line 6)
and find its Tr,s by SubNucleus algorithm (line 7), which
also updates the hierarchy-skeleton.

Algorithm 5: DF-Traversal(G, r, s, λ(·),maxλ)
1 hrc← list of subnuclei in a tree structure
2 comp(.) ∀ Kr ∈ G // subnucleus id for each Kr

3 visited[v] = false // lazy init
4 for each k ∈ [maxλ, 1] do
5 for each Kr u ∈ G do
6 if λ(u) = k and not visited[u] then
7 SubNucleus (u,G, r, s, λ(·), visited, comp, hrc)

8 root← subnucleus, with λ = 0
9 for each s ∈ hrc do

10 if s.parent is null then s.parent ← root

11 hrc.add(root) and Report All the Nuclei by hrc,comp

Algorithm 6: SubNucleus(u,G, r, s, λ(·),
visited, comp, hrc)

1 sn← subnucleus, with λ = λ(u), hrc.add(sn)
2 comp(u)← sn, k ← λ(u)
3 marked[v] = false // lazy init
4 merge← list of subnuclei, merge.add(sn)
5 Q← empty queue, Q.push(u)
6 visited[u]← true
7 while not Q.empty() do
8 u← Q.pop(), comp(u)← sn
9 for each Kr v s.t.

(u ∪ v ⊂ C) ∧ (C is a Ks) ∧ (λr,s(C) = k) do
10 if λ(v) = k then
11 if not visited[v] then
12 Q.push(v), visited[v]← true
13 comp(v)← sn

14 else
15 s← comp(v) // λ(v) > k
16 if not marked[s] then
17 marked[s] = true
18 s← Find-r(s)
19 if not marked[s] ∧ s 6= sn then
20 if hrc(s).λ > k then
21 hrc(s).parent ← hrc(s).root ← sn

22 else merge.add(s) // hrc(s).λ = k
23 marked[s] = true

24 for each m,n ∈ merge do
25 Union-r(m,n)

Figure 5: A graph shown with Tr,s regions on the left
and the corresponding hierarchy-skeleton on the right.
λ values of Tr,ss are the white numbers. Thin edges are
disjoint-set forests.
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SubNucleus (Alg. 6) starts by creating a subnucleus,
with λ of the Kr of interest. We will store the discovered
Krs in this subnucleus (by inverse indices). We put this
subnucleus into hrc (line 1) and assign its comp id (line 2).
We use marked (line 3) to mark the adjacent subnuclei en-
countered during traversal so that unnecessary computation
is avoided in lines 16-23. We do traversal (lines 7-23) by us-
ing a queue. At each step of the traversal, we process the
next Kr in the queue. First, we assign its comp id as the
new subnucleus (line 8) and then visit the adjacent Krs
residing in same Kss, in which min λ of Kr is equal to λ(v)
(line 9). This is exactly the condition for Tr,s, given in Defi-
nition 5. For each adjacent Kr, its λ is either equal (line 10)
or greater (line 14) by definition of Tr,s. If it is equal and
not visited before, we visit it, put into queue (line 12) and
also store in the current subnucleus (line 13). Otherwise,
we find an adjacent subnucleus s with greater λ (line 15),
that is already in hierarchy-skeleton, and can update the
hierarchy-skeleton (lines 18-23) unless we had encountered
s before (line 16).

Location of the subnucleus s in the hierarchy-skeleton
is important. If it is parentless, we can just make it a
child of the current subnucleus we build. If not, it means
subnucleus s is a part of a larger structure and we should
relate our current subnucleus to the representative of this
large structure, which is the greatest ancestor of s that
is guaranteed to have greater or equal λ (by line 9). So,
hierarchy-skeleton update starts by finding the greatest an-
cestor of the s in line 18. Find-r procedure is defined in
Alg. 7. Its difference from Find of Alg. 4 is that we use
root field, not parent. root of a node implies its greatest
ancestor in the hierarchy-skeleton, i.e., either it is the great-
est ancestor or a few steps of root iterations would find the
greatest ancestor. parent of a node, on the other hand,
represents the links in hierarchy-skeleton, and not modified
in Find-r. After finding the root and making sure that it
is not processed before (line 19), we can merge the current
subnucleus to the hierarchy-skeleton. If the root has greater
λ, we make it a child of our current subnucleus (line 21),
by assigning both root and parent fields. Otherwise, we
defer merging to the end (line 22), where we merge all
subnuclei with equal λ by Union-r operations (lines 24-
25), defined in Alg. 7. Union-r is slightly different than
Union of Alg. 4 in that it uses Find-r instead of Find and
sets the root field of child node to the parent (in Link-r).

Figure 5 displays the resulting hierarchy-skeleton for the
Tr,s regions shown on the left. We process Tr,s in alpha-
betical order, which also conforms with decreasing order of
λ. Consider the Tr,s O, which is found and processed last.
O finds the adjacent Tr,ss I, J and K, during lines 9-23 of
Alg. 6. All have greater λ values, so we focus on lines 14-
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23. Greatest ancestor of I is G, and we make G child of O
(line 21) since its λ is greater. Greatest ancestors of J and
K are L and N, respectively, and they have equal λ values.
So, we merge L and N with O in lines 24-25. Say we merge
O and N first and O becomes parent of N since its rank is
higher. Then, we merge O and L. Their ranks are equal and
we arbitrarily choose L as the parent.

After traversing all the Tr,s, we create a root subnucleus to
represent entire graph and make it parent to all the par-
entless nodes (lines 8-11 in Alg. 5). Time complexity of
DF-Traversal does not change, i.e., O(

∑
v ωr(v)d(v)s−r).

Additional space is required by the auxiliary data structures
in DF-Traversal. hrc needs 4 · |Tr,s| (for four fields), and
comp and visited requires |Kr| space each. In addition,
SubNucleus might require at most 2 · |Tr,s| for marked and
merge, and at most |Kr| for Q, but reaching those upper
bounds in practice is quite unlikely. Overall, additional
space requirement of DF-Traversal at any instant is be-
tween 4 · |Tr,s| + 2 · |Kr| and 6 · |Tr,s| + 3 · |Kr|. An upper
bound for |Tr,s| can be given as |Kr|, when each Kr is as-
sumed to a subnucleus, but this case is also quite unlikely
as we show in Section 5.

4.3 Avoiding traversal
All the Tr,s can be detected without doing a traversal. A Kr

is said to be processed, if its λ is assigned. During the peeling

Algorithm 7: New Disjoint-Set Forest

Link-r(x, y): // x and y are nodes in the tree
if x.rank > y.rank then y.parent ← x, y.root ← x
else

x.parent ← y, x.root ← y
if x.rank = y.rank then y.rank ← y.rank + 1

Find-r(x):
S ← empty set
while x.root is not null do x← x.root, S.add(x)
for each u ∈ S do u.root← x
return x
Union-r(x, y): Link-r(Find-r(x), Find-r(y))

Algorithm 8: FastNucleusDecomposition(G, r, s)

1 Enumerate all Krs, mark them unprocessed, find their ωs

2 hrc← list of subnuclei in a tree structure
3 comp(v) = −1 ∀ Kr v ∈ G // subnucleus id for each Kr

4 ADJ← list of adjacent subnucleus pairs
5 for each unprocessed Kr u with minimum ωs(u) do
6 λ(u) = ωs(u), hrc.maxλ = λ(u)
7 sn← subnucleus with λ = λ(u)
8 Find set S of Kss containing u
9 for each C ∈ S do

10 if all Kr v ⊂ C is unprocessed then
11 for each Kr v ⊂ C, v 6= u do
12 if ωs(v) > ωs(u) then ωs(v) = ωs(v)− 1

13 else
14 D ← set of processed Krs ⊂ C
15 w ← v ∈ D with the smallest λ
16 if λ(w) = λ(u) then
17 if comp (u) = −1 then comp(u) = comp(w)
18 else Union-r (comp(u), comp(w))

19 else ADJ.add(comp(u), comp(w)) // λ(w) < λ(u)

20 if comp (u) = −1 then comp(u)← sn, hrc.add(sn)
21 Update all (−1, ·) ∈ ADJ with (comp(u), ·)
22 BuildHierarchy (ADJ, hrc) // postprocessing
23 create subnucleus root with λ = 0, tie to all existing roots
24 hrc.add(root) and Report All the Nuclei by hrc,comp

process, neighborhood of each Kr is examined, see lines 6-7
of Alg. 1, but processed neighbors are ignored (line 8). We
leverage those ignored neighbors to construct the Tr,s. We
introduce FastNucleusDecomposition algorithm (Alg. 8)
to detect Tr,s early in the peeling process so that costly
traversal operation is not needed anymore.

At each iteration of the peeling process, a Kr with the
minimum ω is selected and ω of its unprocessed neighbors
are decremented. No information about the surrounding
processed Krs is used. If we check the processed neigh-
bors, we can infer some connectivity information and use it
towards constructing all the Tr,s as well as the hierarchy-
skeleton. For example, assume we are doing k-core decom-
position and a vertex u with degree d is selected. We as-
sign λ(u) = d and check the unprocessed neighbors of u to
decrement their degree, if greater than d. We can also ex-
amine the processed neighbors. λ of any processed neighbor
is guaranteed to be less than or equal to d, by definition.
Say v is a neighbor with λ(v) = d. Then, we can say that
u and v are in the same Tr,s. Say w is another neighbor
with λ(w) < d. Then, we can infer that maximum d-(1, 2)
nucleus of w contains u, and Tr,s of u is an ancestor of Tr,s

of w in the hierarchy-skeleton. Leveraging these pairwise
relations enables us to find all the Tr,s and construct the
hierarchy-skeleton.

An important thing to note is that, it is not always possi-
ble to detect the Tr,s of aKr by only looking at the processed
neighbors. Consider k-core decomposition on a star graph,
for which all vertices has λ = 1. Center vertex is processed
in the last two steps of peeling, so it is not possible to infer
two connected vertices with equal λ until that time. We find
non-maximal Tr,ss (denoted as T ∗r,s) and combine them by
using the disjoint-set forest algorithm. The difference from
the DF-Traversal algorithm is that our hierarchy-skeleton
will have more nodes because of non-maximal Tr,s.

Colored lines 13-22 in Alg. 8 implements our ideas. For
each Ks we encountered (line 9), processed neighbors are
explored starting from line 13. Note that, there is no need
to check every adjacent and processed Kr in the same Ks,
since the relations among them are already checked in pre-
vious steps. It is enough to find and process the Kr w
with minimum λ, as in line 15. If w has an equal λ value
(line 16), we need to either put our Kr of interest to the
subnucleus of w (line 17) or merge to the subnucleus of w
by Union-r operation (line 18). In FastNucleusDecom-
position algorithm, we only build disjoint-set forests during
the peeling process (until line 22). If λ(w) happens to have

Algorithm 9: BuildHierarchy(ADJ, hrc)

1 binned ADJ← hrc.maxλ # of empty lists // to bin ADJ
2 for each (s, t) ∈ ADJ do // hrc(s).λ > hrc(t).λ
3 binned ADJ[hrc(t).λ].add(s, t)

4 for each list l ∈ binned ADJ in [hrc.maxλ ... 1] order do
5 merge← empty list of subnucleus pairs
6 for each (s, t) ∈ l do
7 s← Find-r(s), t← Find-r(t)
8 if s 6= t then
9 if hrc(s).λ > hrc(t).λ then

10 hrc(s).parent = hrc(s).root = t

11 else merge.add(s, t)

12 for each (s, t) ∈ merge do
13 Union-r (s, t)

104



Table 3: Statistics for the real-world graphs. Largest graph in the dataset has more than 37M edges. |4| is the number
of triangles, |K4| is the number of four-cliques. Ratios of s-cliques to r-cliques are shown in columns 6,7,8, for s ≤ 4
and s− r = 1. Columns 9 to 14 show sub-(r, s) nuclei numbers (|Tr,s|) and non-maximal sub-(r, s) nuclei numbers (|T ∗r,s|),
artifact of Alg. 8, for the (r, s) values we interested. Last two columns are the number of connections from T ∗r,ss with
higher λ values to the ones with lower λ values.

|V | |E| |4| |K4| |E|
|V |

|4|
|E|

|K4|
|4| |T1,2| |T ∗1,2| |T2,3| |T ∗2,3| |T3,4| |T ∗3,4| |c↓(T ∗2,3)| |c↓(T ∗3,4)|

skitter(SK) 1.7M 11.1M 28.8M 148.8M 6.54 2.59 5.17 1.1M 1.2M 2.1M 2.7M 1.4M 2M 8.0 M 8.2 M
Berkeley13(BE) 22.9K 852.4K 5.3M 26.6M 37.22 6.30 4.96 8.6K 9.3K 106.3K 137.7K 206.0K 261.1K 1.4 M 1.9 M
MIT(MIT) 6.4K 251.2K 2.3M 13.7M 39.24 9.44 5.77 2.7K 2.8K 27.3K 34.6K 77.6K 105.7K 509.1 K 1.3 M
Stanford3(ST) 11.6K 568.3K 5.8M 37.1M 49.05 10.27 6.37 4.7K 4.9K 56.8K 72.5K 185.2K 255.1K 1.2 M 2.9 M
Texas84(TX) 36.4K 1.6M 11.2M 70.7M 43.74 7.03 6.33 13.5K 14.9K 210.0K 266K 395.5K 498.9K 2.6 M 3.7 M
twit-hb(TW) 456.6K 12.5M 83.0M 429.7M 27.39 6.63 5.18 341.4K 350K 2.9M 3.3M 5.6M 7.3M 27.2 M 59.5 M
Google(GO) 916.4K 4.3M 13.4M 39.9M 4.71 3.10 2.98 408.7K 508.3K 386.9K 568.4K 251.4K 382.8K 982.8 K 814.7 K
uk-2005(UK) 129.6K 11.7M 837.9M 52.2B 90.60 71.35 62.36 1.5K 1.7K 837 837 836 836 0 0
wiki-0611(WK) 3.1M 37.0M 88.8M 162.9M 11.76 2.40 1.83 2.4M 2.5M 7.9M 9.7M 6.7M 9.3M 45.1 M 45.0 M

a smaller value (line 19), we put the pair of subnuclei to a
list (ADJ), which will be used to build the hierarchy-skeleton
after the peeling. We do not process the relations between
subnuclei of different λ right away for two reasons: (1)
subnucleus of the Kr of interest might not be assigned yet
(comp(u) is -1), (2) order of processing subnuclei relations
is crucial to build the hierarchy-skeleton correctly and effi-
ciently. Regarding (1), we take care of the Krs not belonging
to a subnucleus in lines 20 and 21. For (2), we have the
BuildHierarchy function (line 22), defined in Alg. 9.

In BuildHierarchy, we create maxλ number of bins to
distribute the subnuclei pairs based on the smaller λ of
the subnucleus pair. The reason is same with our reverse
order discovery of subnuclei in DF-Traversal (Alg. 5):
we construct the hierarchy-skeleton in a bottom-up man-
ner and it enables us to use disjoint-set forest algorithm
to locate the k-(r, s) nuclei that we need. Distribution is
done in lines 2-3. Then, we just process the binned list
(binned ADJ) in reverse order of λ values (line 4). We do the
same operations to build the hierarchy-skeleton: lines 7-11
of BuildHierarchy and lines 18-22 of SubNucleus algo-
rithm (Alg. 6) are almost same. Once we finish each list in
binned ADJ, we union the accumulated subnuclei of equal
λ values (lines 12-13), as we did in lines 24-25 of SubNu-
cleus algorithm. Finally, in FastNucleusDecomposition
we create a subnucleus to represent entire graph, make it
parent to all parentless subnuclei, and give the hierarchy.

Avoiding traversal does not change the time complexity of
overall algorithm, since the peeling part was already taking
more time. Auxiliary data structures in FastNucleusDe-
composition requires additional space, though. hrc needs
4 · |T ∗r,s| in which subnuclei are not necessarily maximal,
and comp needs |Kr|. ADJ structure corresponds to the con-
nections from T ∗r,ss with higher λ values to the ones with
lower λ values, which we denote as c↓(T

∗
r,s). The upper

bound for |c↓(T ∗r,s)| is
(
s
r

)
|Ks|, when each Kr is assumed to

be a T ∗r,s and their λ values are adversary (see the end of
Section 3.3 for details). However, it is unlikely as we show
in Section 5. binned ADJ in BuildHierarchy is just an or-
dered version of ADJ, and needs the same amount of space;
|c↓(T ∗r,s)|. Lastly, merge in BuildHierarchy might require
another |c↓(T ∗r,s)| at most, but it is quite unlikely. Overall,
additional space requirement of FastNucleusDecomposi-
tion at any instant is 4 · |T ∗r,s| + 2 · |c↓(T ∗r,s)| + |Kr| and
additional |c↓(T ∗r,s)| might be needed. Section 5 gives more
details on T ∗r,s structure of real-world networks and their
impact to the memory cost.

5. EXPERIMENTS
We evaluated our algorithms on different types of real-world
networks, obtained from SNAP [31], Network Repository [38]
and UF Sparse Matrix Collection [12]. Our dataset includes
an internet topology network (skitter), facebook friendship
networks of some universities (Berkeley13, MIT, Stanford3,
Texas84) [46], follower network of Twitter users tweeted
about Higgs boson-like particle discovery (twit-hb), web
networks (Google, uk-2005) and network of wikipedia pages
(wiki-0611). We ignore the directions for directed graphs.
Important statistics of the networks are given in Table 3.
|Ks|/|Kr| ratio gives an estimate for the k-(r, s) nucleus de-
composition runtime, as explained at the end of Section 3.3,
and we put them in columns 6-8 to show the challenging
and diverse characteristics of the networks in our dataset.
Note that most of the networks have relatively high edge
density in the realm of real-world networks and it makes
the computation more expensive. We also included graphs
with various |Ks|/|Kr| ratios to diversify our dataset. Last
eight columns are shown to explain the runtime and memory
costs of our algorithms. All the algorithms are implemented
in C++ and compiled using gcc 5.2.0 at -O2 optimization
level. All experiments are done on a Linux operating system
running on a machine with Intel Xeon Haswell E5-2698 2.30
GHz processor with 128 GB of RAM.

Nucleus decomposition has been shown to give denser sub-
graphs and more detailed hierarchies for s − r=1 cases, for
fixed s [42]. We implemented and tested our algorithms
for s − r=1 cases where s ≤ 4: giving us (1, 2), (2, 3) and
(3, 4) nucleus decompositions. (1, 2)-nucleus decomposition
is same as the k-core decomposition [43] and (2, 3) corre-
sponds to k-truss community finding [26] (stronger defini-
tion of k-truss decomposition [10]). We consider the k-(r, s)
nucleus as a set of Krs. In our algorithms, we find the k-
(r, s) nuclei for all k values and determine the hierarchy tree
among those nuclei. We report the total time of peeling and
traversal (or post-processing) that takes the graph as input
and gives all the nuclei with an hierarchy.

5.1 k-core decomposition (or (1, 2) nuclei)
Peeling phase of the k-core decomposition, which finds λ
values of vertices, is well studied, and most efficient imple-
mentation is used in our work. As mentioned before, traver-
sal part, however, is mostly overlooked and there is no true
algorithm to serve as a baseline.

In their pioneering work, Matula and Beck [34] introduced
a high-level algorithm, named LCPS (Level Component Pri-
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Table 4: k-core decomposition results. Hypo is the hy-
pothetical limit for the best possible traversal based al-
gorithm. Naive is Alg. 3, DFT is the one using Alg. 5,
FND is the Alg. 8 and LCPS is our adaptation from [34].
Right-most column is the runtimes of fastest algorithm
and rest are its speedups over other algorithms.

speedups with respect to time (s)
(1,2)-nuclei Hypo Naive DFT FND LCPS

skitter 0.41x 5.94x 2.79x 1.33x 1.94
Berkeley13 0.82x 19.74x 1.68x 2.77x 0.05
MIT 0.82x 17.51x 1.74x 2.80x 0.01
Stanford3 0.78x 25.50x 1.76x 2.19x 0.03
Texas84 0.78x 23.01x 1.61x 2.57x 0.11
twit-hb 0.80x 27.89x 1.94x 2.60x 1.18
Google 0.15x 3.45x 0.40x 0.27x 3.83
uk-2005 0.86x 58.02x 2.61x 3.32x 0.17
wiki-0611 0.52x 10.09x 1.96x 1.41x 7.79
avg 0.66x 21.24x 1.83x 2.14x best

ority Search), to detect k-cores and the hierarchy among
them. LCPS algorithm traverses the vertices based on λ val-
ues in a selective order and outputs them with interspersed
brackets. The vertices enclosed by paired brackets at depth
k+ 1 are the vertices of a k-core in G. The traversal can be
started from any vertex, and neighbors are discovered and
put in a priority queue along with their λ values. At each
step, vertex with the maximum λ is chosen from the queue,
and processed. Closed/open brackets are interspersed ac-
cording to the λ values of consecutively processed vertices.
Authors argue that time complexity of LCPS is O(|E|), but
an implementation may not always be possible owing to the
difficulty of maintaining an appropriate priority queue [34].

We adapt and implement the LCPS algorithm for our
objectives. We alleviate the problem of maintaining an ap-
propriate priority queue by using the bucket data structure,
known by the bucket sort [11]. During the traversal, we
place the discovered vertices in the bucket according to their
λ values, and find the one with the maximum λ value in O(1)
time. We also adapted the placing brackets part to have the
tree hierarchy, where each node is a T1,2. If the λ value of
vertex of interest is equal to the one in the previous step,
we stay in the same node. If it is greater, we go down in the
tree by creating a chain of new nodes, otherwise we climb up
in the tree. Number of these new nodes (or steps to climb)
is the difference between λs of current and previous vertex.
As a result, we create a tree hierarchy with as many levels
as the max λ in the graph.

Table 4 gives the total k-core decomposition runtimes for
experimented algorithms; the fastest one shown on the right-
most column and its speedups over other algorithms given
on the corresponding columns. Naive is the base nucleus
decomposition algorithm, given in Alg. 3, and uses the naive
traversal to find all k-cores. DFT is the algorithm that uses
DF-Traversal (Alg. 5) and FND is the FastNucleusDe-
composition algorithm (Alg. 8). LCPS denotes the run-
time of our LCPS adaptation. Note that we are not aware
of any other adaptation/implementation of the LCPS algo-
rithm in [34]. We also have a hypothetical runtime, shown
as Hypo, which is the peeling time plus a BFS traversal
on the entire graph. Hypo is a limit for the most efficient
traversal (plus regular peeling) that can be done on a given
graph. Although it does not compute the hierarchy and find
k-cores, it shows the best that can be done with a traversal-
based nucleus decomposition algorithm. Peeling phases of
Hypo, Naive, DFT, and LCPS are same.

Results show that our LCPS adaptation outperforms other

alternatives. Detailed timings suggest that traversal time is
almost same with peeling, satisfying the linear complexity
in the number of edges. On average, LCPS is 21.24x faster
than Naive algorithm. Speedups over DFT and FND are
1.83x and 2.14x. Our LCPS adaptation also runs in only
66% time of the theoretical limit of Hypo, where the over-
head is due to the bucket data structure.

5.2 (2, 3) nuclei
Table 5 gives the runtime comparison for entire (2, 3) nu-
cleus decomposition, where rightmost column is the fastest
algorithm and other columns are its speedups over other
algorithms. To start with, we state that our peeling imple-
mentation for (2, 3) nucleus decomposition is quite efficient;
for instance [48] computes λ values of skitter graph in 281
secs where we can do it in 74 secs. We also tested wiki-Talk

graph just to compare with [26], and we get 41/13 = 3.15
times faster results despite our less powerful CPU. Apart
from Naive, DFT and FND algorithms, we give Hypo as
the bound for the best possible traversal-based nucleus de-
composition algorithm that traverses graph over edges and
triangles. In addition, we implemented the TCP index con-
struction algorithm introduced by Huang et al. [26]. In that
work, authors devise TCP index on vertices which enable
fast traversal to answer max-(2, 3) nucleus queries on ver-
tices. TCP index is a tree structure at each vertex, which is
actually the maximum spanning forest of each ego-network.
TCP index is constructed after the peeling process to be
ready for incoming queries. Note that our implementation
of TCP index construction is also quite efficient that is 1.8x
faster than [26] for the dataset in their work. In Table 5, we
show the time only for peeling plus TCP index construction.
Entire graph still needs to be traversed using TCP to find
all the (2, 3) nuclei and the hierarchy among them. Peeling
phases of Hypo, Naive, TCP and DFT are same.

Before checking the fastest, we look at the DFT algo-
rithm, which is the second best. It is 2.4x and 122.4x faster
than TCP and Naive algorithms, respectively. Note that,
TCP time is even before the traversal. In 40% of the time
that TCP spends for being ready to answer queries, DFT
is able to give all the answers, i.e, (2, 3) nuclei and the hi-
erarchy. This shows the benefit of using disjoint-set forests
to detect the nuclei and construct the hierarchy. One of our
initial objectives was to meet the computational complexity
of traversal phase by true design and implementation. DFT
does that by keeping the traversal time close to the peeling
time; traversal takes only 23% more time than peeling on av-
erage. Figure 6 shows the comparison, where we normalize
runtimes with respect to total DFT. Also, DFT performs
only 34% slower than the hypothetical bound (Hypo).

The fastest algorithm is FND. It is 215x faster than Naive
on average and gives 1729 speedup on Google. It outper-
forms TCP by 4.3x on average and up to 11x (on uk-2005).
FND also works 1.76x faster than DFT and Figure 6 shows
the detailed comparison. For DFT, peeling is Alg. 1 and
postprocessing is the traversal time (Alg. 5). For FND,
postprocessing is the BuildHierarchy algorithm (Alg. 9)
and peeling is the rest in Alg. 8. FND is able to keep the
total time comparable to the peeling of DFT; it is only 29%
slower! This is exactly the benefit of avoiding traversal by
early discovery of non-maximal T2,3. On uk-2005 graph,
benefit of avoiding traversal is most apparent; DFT per-
forms worst compared to FND. Because there are only 837
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Table 5: (2,3) and (3,4) nucleus decomposition results. Right-most column for each is the runtimes of the fastest
algorithm and rest are its speedup over other algorithms. Starred numbers (*) show lower bounds, when the algorithm
did not finish in 2 days. Hypo is the hypothetical limit for the best possible traversal based algorithm. For (2,3), it
is done on edges and triangle connections, and for (3,4) it is on triangles and four-clique connections. Naive is Alg. 3
and TCP* is the indexing algorithm proposed by [26] and does not even include (2, 3) nuclei finding. DFT is the one
using Alg. 5 and FND is the Alg. 8.

(2,3)-nuclei (3,4)-nuclei
speedups with respect to time (s) speedups with respect to time (s)

Hypo Naive TCP*[26] DFT FND Hypo Naive DFT FND

skitter 1.54x 45.62x 3.69x 2.04x 91.3 1.78x 163.91∗x 1.96x 1054.2
Berkeley13 1.13x 10.76x 3.41x 1.40x 7.3 1.42x 1812.47∗x 1.52x 95.3
MIT 1.10x 11.68x 3.45x 1.33x 2.8 1.45x 3848.02∗x 1.53x 44.9
Stanford3 1.10x 12.58x 3.41x 1.36x 7.8 1.48x 1321.89∗x 1.58x 130.7
Texas84 1.10x 14.41x 3.35x 1.37x 16.8 1.49x 679.06∗x 1.57x 254.5
twit-hb 1.33x 16.24x 3.27x 1.49x 255.5 1.78x 38.96∗x 1.81x 4434.9
Google 1.31x 1729.93x 3.90x 1.59x 13.0 1.35x 1083.02∗x 1.43x 159.6
uk-2005 1.68x 90.50x 11.07x 3.64x 562.5 1.24x 1.98∗x 1.98∗x 87329.6
wiki-0611 1.53x 7.06x 3.37x 1.63x 584.9 1.82x 23.00∗x 1.91x 7513.5
avg 1.31x 215.4x 4.32x 1.76x best 1.53x > 996.92x > 1.70 x best

T2,3s which means no work is done by disjoint-set forest and
all the time is spent on traversal (see Figure 6). As men-
tioned in Section 4, extended peeling in FND finds non-
maximal T2,3, and the count might be much larger than the
number of T2,3s. However, it is not the case. Last 6 columns
of Table 3 show that there is no significant difference; on av-
erage non-maximal T2,3s are 24% more than T2,3s.

DFT and FND algorithms require additional memory, as
mentioned at the end of Section 4.2. The upper bound of
additional space for DFT is 6 · |T2,3|+ 3 · |E|, and takes at
most ∼650MB for any graph in our dataset, where int is
used to store each number (four bytes). Although the upper
bound of |T2,3| is |E|, we observed that it is only 13.1%
of |E| on average, which can be calculated from Table 3.
Regarding the FND, upper bound is given as 4 · |T ∗2,3|+ 3 ·
|c↓(T ∗2,3)|+|E| (see Section 4.3) and it takes at most ∼1.4GB
for the experimented graphs (two ints for each connection
in c↓(T

∗
2,3)). We observed that uk-2005 graph have so many

edges with no triangles that results in isolated T ∗2,3s (and
T ∗3,4s), so |c↓(T ∗2,3)| = |c↓(T ∗3,4)| = 0. For the rest, we see

that |c↓(T ∗2,3)| is only 8.7% of the upper bound (
(
3
2

)
|4|), on

average.
Lastly, we check FND vs. Hypo. FND is faster on all in-

stances, and 1.31x on average, meaning that it outperforms
any possible traversal-based algorithm for (2, 3) nucleus
decomposition. This is so important to show the strength of
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Figure 6: (2,3) [top] and (3,4) [bottom] nucleus decom-
position comparison for DFT (the one using Alg. 5 for
traversal) and FND (shown in Alg.8). Two main results:
(1) Traversal part of DFT is close to the peeling part,
(2) FND is able to keep the total runtime comparable to
the peeling part of DFT

(1) detecting the non-maximal T2,3 early to avoid traversal,
(2) using disjoint-set forest data structure to handle on-the-
fly computation.

5.3 (3, 4) nuclei
Table 5 and Figure 6 gives the comparison of all algorithms
on (3, 4)-nucleus decomposition, which has been shown to
give subgraphs with highest density and most detailed hi-
erarchy [42]. Results are similar to the (2, 3) case: FND is
the best and speedups are sharper. Naive algorithm could
not be completed in 2 days for any graph. DFT also could
not finish its computation on uk-2005 graph in that time.
Regarding the memory requirement, we see that DFT and
FND take at most ∼10GB and ∼3.5GB for the graphs in
our dataset. Also, |T3,4| and |c↓(T ∗3,4)| are far from the upper
bounds, only of 3.9% and 2.5% on average. Overall, FND
outperforms all others. Figure 6 shows that total time of
FND is only 21% more than the peeling time of DFT and
only 2% slower on wiki-0611. Most significantly, FND is
1.53x faster than hypothetical limit (Hypo) of any possible
traversal-based (3, 4) nucleus decomposition algorithm.

6. CONCLUSION
In this work, we focused on computing the hierarchy of dense
subgraphs given by peeling algorithms. We first provided a
detailed review of previous work and pointed misconceptions
about k-core and k-truss decompositions. We proposed two
generic algorithms to compute any nucleus decomposition.
Our idea to leverage disjoint-set forest data structure for
hierarchy computation works well in practice. We further
improved the performance by detecting the subgraphs dur-
ing peeling process to avoid traversal. We also adapted and
implemented an existing idea for k-core decomposition hi-
erarchy, and showed its benefit. Overall, our algorithms
significantly outperformed the existing alternatives.

There are two open questions that might be worth to look
at. First is about the analysis. Nested structures given by
the resulting hierarchy only show the k-(r, s) nuclei. Instead
looking at the Tr,ss, which are many more than the k-(r, s)
nuclei, might reveal more insight about networks. This actu-
ally corresponds to the hierarchy-skeleton structure that our
algorithms produce. Second is regarding the performance.
We believe that adapting the existing parallel peeling algo-
rithms for the hierarchy computation can be helpful.
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[15] P. Erdős and A. Hajnal. On chromatic number of graphs and
set-systems. Acta Mathematica Hungarica, 17:61–99, 1966.

[16] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou.
Motifcut: regulatory motifs finding with maximum density
subgraphs. In ISMB, pages 156–157, 2006.

[17] E. C. Freuder. A sufficient condition for backtrack-free search.
J. ACM, 29(1):24–32, Jan. 1982.

[18] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating
cooperation in communities with the k-core structure. In
ASONAM, pages 87–93, 2011.

[19] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. D-cores:
measuring collaboration of directed graphs based on
degeneracy. Knowl. Inf. Syst., 35(2):311–343, 2013.

[20] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In VLDB, pages 721–732, 2005.

[21] A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and I. Weber.
Piggybacking on social networks. PVLDB, 6(6):409–420, 2013.

[22] A. Gionis and C. E. Tsourakakis. Dense subgraph discovery:
Tutorial. In KDD, pages 2313–2314, 2015.

[23] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community
methods. In KDD, pages 597–605, 2012.

[24] E. Gregori, L. Lenzini, and C. Orsini. k-dense communities in
the internet as-level topology. In COMSNETS, pages 1–10,
2011.

[25] J. Healy, J. Janssen, E. Milios, and W. Aiello. Characterization
of Graphs Using Degree Cores, pages 137–148. Springer Berlin
Heidelberg, 2008.

[26] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying
k-truss community in large and dynamic graphs. In SIGMOD,
pages 1311–1322, 2014.

[27] X. Huang, W. Lu, and L. V. Lakshmanan. Truss decomposition
of probabilistic graphs: Semantics and algorithms. In
SIGMOD, pages 77–90, 2016.

[28] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo. K-core
decomposition of large networks on a single PC. PVLDB,
9(1):13–23, 2015.

[29] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
Trawling the web for emerging cyber-communities. In WWW,
pages 1481–1493, 1999.

[30] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of
algorithms for dense subgraph discovery. In Managing and
Mining Graph Data, volume 40. 2010.

[31] J. Leskovec and A. Krevl. SNAP Datasets, June 2014.

[32] R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in
large dynamic graphs. IEEE TKDE, 26(10):2453–2465, 2014.

[33] D. Lick and A. White. k-degenerate graphs. Canadian Journal
of Mathematics, 22:1082–1096, 1970.

[34] D. Matula and L. Beck. Smallest-last ordering and clustering
and graph coloring algorithms. JACM, 30(3):417–427, 1983.

[35] D. W. Matula. A min-max theorem for graphs with application
to graph coloring. SIAM Review, 10(4):481–482, 1968.

[36] M. P. O’Brien and B. D. Sullivan. Locally estimating core
numbers. In ICDM, pages 460–469, 2014.

[37] C. Orsini, E. Gregori, L. Lenzini, and D. Krioukov. Evolution
of the internet k-dense structure. IEEE/ACM Trans. Netw.,
22(6):1769–1780, 2014.

[38] R. Rossi and N. Ahmed. The network data repository with
interactive graph analysis and visualization. In AAAI, pages
4292–4293, 2015.

[39] K. Saito and T. Yamada. Extracting communities from
complex networks by the k-dense method. In ICDMW, 2006.
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