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ABSTRACT
This paper proposes BEAS, a resource-bounded scheme for
querying relations. It is parameterized with a resource ratio
α ∈ (0, 1], indicating that given a big dataset D, we can only
afford to access an α-fraction of D with limited resources.
For a query Q posed on D, BEAS computes exact answers
Q(D) if doable and otherwise approximate answers, by ac-
cessing at most α|D| amount of data in the entire process.
Underlying BEAS are (1) an access schema, which helps us
identify and fetch the part of data needed to answer Q, (2) an
accuracy measure to assess approximate answers in terms of
their relevance and coverage w.r.t. exact answers, (3) an Ap-
proximability Theorem for the feasibility of resource-bounded
approximation, and (4) algorithms for query evaluation with
bounded resources. A unique feature of BEAS is its ability to
answer unpredictable queries, aggregate or not, using bounded
resources and assuring a deterministic accuracy lower bound.
Using real-life and synthetic data, we empirically verify the
effectiveness and efficiency of BEAS.

1. INTRODUCTION
It is costly to compute answers Q(D) to a query Q in a big

dataset D. It is NP-complete to decide whether a tuple is in
Q(D) even for SPC query Q (selection, projection, Cartesian
product) [6]. It easily takes hours to join tables with millions
of tuples [36]. One might think that parallelism would solve
the problem. However, there are queries for which the running
time cannot be substantially reduced when we add more
processors [24]. Moreover, small businesses can often afford
limited resources such as processors.

Is it feasible to query big data with bounded resources?

We tackle this challenge by proposing a resource-bounded
scheme for approximate query answering. It takes a resource
ratio α ∈ (0, 1] as a parameter, indicating that our available
resources can only access an α-fraction of a big dataset D.
Given α, D and a query Q over D, it identifies DQ ⊆ D, and
computes approximate answers, denoted by Q(DQ), and an
accuracy lower bound η ∈ (0, 1] such that

(1) |DQ| 6 α|D|, where |DQ| is the size of DQ; and

(2) accuracy(Q(DQ), Q,D) > η.
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Intuitively, it computes Q(DQ) by accessing at most α|D|
tuples in the process. Thus it can scale with D when D grows
big by setting α small. Moreover, Q(DQ) assures a determin-
istic lower bound η such that under query relaxation [15,29],
(a) for each tuple s ∈ Q(DQ), there exists an exact answer
t that is within distance at most η from s, and (b) for each
exact answer t, there exists s ∈ Q(DQ) within distance η
from t. That is, Q(DQ) includes only “relevant” answers and

“covers” all exact answers within distance η. It finds sensible
answers in users’ interest, and suffices for exploratory queries,
e.g., real-time problem diagnosis on logs [8].

The objective is ambitious. Nonetheless, it is feasible under
an access schema A, a set of access templates. An access
template is a combination of a cardinality constraint and an
index. It helps us control how data is fetched from a dataset.

Example 1: (1) Consider a database schema R0 with re-
lations (a) person(pid, city, address), stating that pid lives at
address in city, (b) friend(pid, fid), recording a friend fid of
pid, and (c) poi(address, type, city, price), describing the type,
price and city of POI. A query Q1 is to find me hotels that
cost at most $95 per night and are in a city where one of my
friends lives, from Graph Search of Facebook [21]:

select h.address, h.price
from poi as h, friend as f, person as p
where f.pid = p0 and f.fid = p.pid and p.city = h.city

and h.type = “hotel” and h.price 6 95
where p0 indicates “me”. It is costly to compute Q1(D0) in a
“big” instance D0 of R0, e.g., Facebook has billions of users
and trillions of friend links [25]. Is it possible to answer Q1

in D0 given a small α, e.g., 10−4, i.e., when our available
resources can afford to access at most 10−4 ∗ |D0| tuples?

This is doable by using an access schema. There are many
choices of access schema. To illustrate the idea, below we use
A0 consisting of the following access templates:

◦ ψ1: poi({type, city} → {price, address}, 1, (e1
p, e

1
a)),

. . .
◦ ψm: poi({type, city} → {price, address}, 2m, (emp , ema )),

◦ ϕ1: friend(pid→ fid, 5000, 0),

◦ ϕ2: person(pid→ city, 1, 0),

Here m = dlog2 Me and M is the maximum number of dis-
tinct poi tuples in D0 grouped by (type, city). For i ∈ [1,m],
ψi says that given any (type, city)-value (ct, cc), there exists
a set T of at most 2i (price, address) values in poi of D0.
Moreover, for each poi tuple (c′a, ct, cc, c

′
p) in D0, there exists

(cp, ca) ∈ T such that the (price, address)-value (c′p, c
′
a) differs

from (cp, ca) within distance (eip, e
i
a). That is, T represents

(price, address) values that correspond to (ct, cc) with at most
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2i tuples, subject to distances (eip, e
i
a), for i 6 dlog2 Me. In

addition, an index is built on (type, city) for T to be efficiently
fetched. Note that by using the index for ψm, we can fetch
all exact (price, address) values from D0, i.e., with distance
(emp , e

m
a ) = (0, 0); this is why we set m = dlog2 Me.

Similarly, ϕ1 states that each pid has at most 5000 friends,
a limit enforced by Facebook [25], and these fid’s can be
fetched by using an index for ϕ1; and ϕ2 says that each pid
lives in 1 city, which can be fetched via an index for ϕ2. The
indices fetch exact values, as indicated by distance 0.

Assume α|D0| > 10000, as in Facebook datasets D0. Then
underA0, we can find hotels by accessing at most α|D0| tuples
as follows: (a) fetch a set T1 of fid’s with p0 by accessing at
most 5000 friend tuples using ϕ1; (b) for each fid in T1, fetch
1 associated city with ϕ2, yielding a set T2 of at most 5000
city values; (c) for each city c in T2, fetch at most 2kα (price,
address) pairs corresponding to (“hotel”, c) by using ψkα ,
where kα = blog2(α|D0| − 10000)c; and (d) return a set S of
those (price, address) values with price at most (95 + ekαp ), as
approximate answers to Q1 in D0.

Note that the entire process accesses at most 5000 + 5000
+ 2kα 6 α|D0| tuples in total. Moreover, the set S of answers
is accurate: (1) for each hotel h0(cp, ca) in the exact answers
Q(D0), there exists (c′p, c

′
a) in S that are within distance ekαp

and ekαa of cp and ca, respectively; and (2) for each hotel
h′(c′p, c

′
a) in S, its price c′p exceeds 95 by at most ekαp , e.g.,

ekαp = 4 and c′p = 99, and c′a is the address of hotel h′.

(2) Consider query Q2 to find the cities where my friends live:

select p.city
from friend as f, person as p
where f.pid = p0 and f.fid = p.pid

Then steps (a) and (b) above compute Q2(D) by using ϕ1 and
ϕ2 alone, and by accessing at most 10000 tuples no matter
how big D0 grows. That is, the resource-bounded scheme is
able to compute exact answers for certain queries. 2

Contributions. This paper proposes BEAS (Boundedly
EvAluable Sql), a resource-bounded framework for querying
big relations. Given an application, it finds an access schema
A for its dataset D. Under a resource ratio α, to answer Q
in D, it identifies an α-fraction DQ by reasoning about the
cardinality constraints in A, and fetches DQ by using the
indices of A. It computes approximate answers Q(DQ) that
are assured above a deterministic accuracy lower bound.

(1) Access schema (Section 2). We extend the access schema
of [11,22] with access templates to support approximate query
answering with bounded resources. With the extension, we
formalize query plans under a resource ratio α.

(2) Accuracy measure (Section 3). We propose an RC-
measure for accuracy under the assumption that query re-
laxation [15, 29] is allowed. As opposed to prior accuracy
metrics [17, 26, 27, 33], the RC measure assesses approximate
answers in terms of both their relevance and coverage w.r.t. ex-
act answers, and allows a deterministic accuracy lower bound
for query answers computed by resource-bounded algorithms.

(3) BEAS: foundation and architecture (Section 4). We for-
malize the resource-bounded approximation scheme. We
present the Approximability Theorem. It assures that for any
dataset D, there exists an access schema A such that D con-
forms to A, and for all resource ratios α ∈ (0, 1] and queries
Q over D, aggregate or not, BEAS identifies DQ ⊆ D and an

RC bound η such that |DQ| 6 α|D| and accuracy(Q(DQ), Q,
D) > η. Moreover, the larger α is, the higher η is.

We also show how BEAS can be readily built on top of
commercial DBMS, such that with bounded resources, it com-
putes exact answers Q(D) when possible, and approximate
answers Q(DQ) otherwise with a deterministic η.

(4) Algorithms (Sections 5–7). We show the Approximability
Theorem in three steps. We start with a resource-bounded ap-
proximation algorithm for answering SPC queries (Section 5).
We then extend the algorithm to RA (relational algebra, Sec-
tion 6). We show how to support set difference (universal
quantification) when the resource ratio forbids us to scan the
entire dataset. Finally, we study RA extended with aggregate
functions and group-by construct. We show that the theorem
also holds on aggregate queries (Section 7).

(5) Empirical study (Section 8). Using real-life and synthetic
data, we experimentally verify the effectiveness of BEAS. We
find the following. (a) BEAS computes approximate answers
with accuracy η > 0.85 for SPC, and η > 0.82 for RA, aggre-
gate or not, when α > 5.5× 10−4. Better yet, η gets higher
when α increases, or when D grows bigger under the same α.
(b) BEAS is able to find exact answers when α is as small as
2.6×10−6 for SPC and 4.1×10−6 for RA on a dataset of 60GB.
(c) BEAS is efficient, taking at most 10.2 seconds on datasets
of 200 million tuples when α is 5.5×10−4, as opposed to more
than 3 hours by PostgreSQL and MySQL. (d) BEAS outper-
forms sampling [17], histograms [27] and BlinkDB [8] under
RC measure and MAC measure [27]. When α is 1.5× 10−4,
its RC (resp. MAC) accuracy is 24, 3.4 and 2.0 (resp. 18.25,
2.4 and 1.9) times better than the other three, respectively.

A unique feature of BEAS is its ability to (1) answer unpre-
dictable and generic queries, (2) comply with any resource
ratio α, and (3) guarantee a deterministic accuracy lower
bound η. Queries are unpredictable if we assume no prior
knowledge about work load, query predicates or the frequency
of columns used for grouping and filtering (QCS) [8]. A query
is generic if it is aggregate or not. The ability is promising for
providing small businesses with a functionality of big data
analysis, despite their limited resources.

Related work. We classify related work as follows.

Bounded evaluation. This work is an extension of the study
of bounded evaluation [11–13, 22, 23]. Under a set A of ac-
cess constraints introduced in [23] a query Q is boundedly
evaluable [22] if for all datasets D that satisfy A, there exists
DQ ⊆ D such that Q(D) = Q(DQ) and the time for identify-
ing DQ (and hence |DQ|) is determined by A and Q, indepen-
dent of |D|. The problem for deciding whetherQ is boundedly
evaluable was studied in the absence of A [23], under A [22],
and with views [12]. The problem is shown undecidable for
Q in RA and EXPSPACE -hard for Q in SPC [22]. In light
of the complexity, an effective syntax was developed in [11]
to characterize boundedly evaluable RA queries, analogous
to the study of (undecidable) safe relational calculus queries.
Algorithms were provided to check the bounded evaluability,
and if so, generate bounded query plans to compute exact
answers, for SPC [13] and RA queries [11].

BEAS computes exact answers of boundedly evaluable
queries by using the algorithms of [11] for checking bounded
evaluability and generating bounded query plans. In addition,
it supports resource-bounded approximate query answering,
and differs from the prior work in the following.
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(a) One-size-fit-all (b) Dynamic reduction

Figure 1: Data reduction schemes

(1) Access schema. The access constraints of [11–13, 22, 23]
are a special case of access templates with distance 0 (see
Section 2). All queries on a dataset can be “covered” by
access templates and approximately answered with bounded
resources (Approximability Theorem). In contrast, not all
queries are boundedly evaluable under access constraints.

(2) Approximate query answer. BEAS takes a resource ratio
α as a parameter, and computes approximate answers to all
queries under α with an accuracy bound, aggregate or not.
In contrast, bounded evaluation is not parameterized by α;
it handles only RA queries that are boundedly evaluable.

(3) Techniques. Resource-bounded approximation is quite
different from bounded evaluation. BEAS uses the chase [6] to
generate query plan, enforces set difference without scanning
the entire data, and handles aggregate functions and group-by.
These issues were not studied in [11–13,22,23].

Approximation. Approximate query answering is typically
based on either (a) synopsis [7, 14,16, 27, 28], or (b) dynamic
sampling (e.g., [8, 9, 19, 30]). The former is to compute a
synopsis D′ of a dataset D, and use D′ to answer all queries
posed on D. Closer to our work is BlinkDB [8]. Assuming
predictable QCSs, i.e., “the frequency of columns used for
grouping and filtering does not change over time”, BlinkDB
selects samples from historical QCS patterns, and caches
them as views. It answers restricted aggregate queries using
the samples instead of D, and offers probabilistic error rates.

Our scheme radically differs from the prior work as follows.

(1) Queries. Prior approaches “substantially limit the types
of queries” [8]; they often target aggregate (on a single
attribute) queries over a star-schema with key-foreign-key
joins, and assume that workload, query predicates or group-
by attributes are known in advance [8, 18, 19]. In contrast,
BEAS works on unpredictable queries, aggregate or not.

(2) Accuracy. Prior methods give either no accuracy guaran-
tee, or estimate probabilistic “error bars” for approximation
of a single aggregate attribute [8, 19, 30]. In contrast, we
assure deterministic accuracy on each approximate answer.

(3) Techniques. As shown in Fig. 1, BEAS adopts dynamic
data reduction that identifies DQ for each input query Q
via bounded data access, as opposed to an one-size-fit-all
synopsis D′ [7, 14, 16, 27, 28]. While [8, 19, 30] use dynamic
sampling, [19, 30] do not support bounded data access; [8]
employs stratified sampling; given an error bar on the value
distribution of an aggregate attribute, [19] builds samples
accordingly. As remarked above, all these target restricted
aggregate queries, and warrant no deterministic accuracy.
Moreover, they require the entire set of exact values on group-
by attributes, which may not be doable under small α.

Access patterns. Related is also query answering under ac-
cess patterns, which require a relation to be accessed only
by providing certain combinations of attributes [10, 32, 34].
This work differs from the prior work as follows. (a) Unlike
access patterns, an access template imposes both cardinality
constraints and “restricted” data accesses via indices. It is

not required to cover all the attributes of a relation and hence,
allows us to fetch partial tuples and reduce redundancy (see
Section 2). (b) We target approximate query answering under
a resource ratio α, and guarantee to answer all queries under
access templates. Hence the results and techniques of BEAS
are quite different from those for access patterns.

2. ACCESS SCHEMA AND BOUNDED
QUERY PLANS

We start with access schema and bounded query plans.

2.1 Access Schema for Approximation
A database schema R is a collection (R1, . . . , Rn) of rela-

tion schemas. Each R(A1, . . . , Ah) in R has attributes Ai of
domain Ui for i ∈ [1, h]. We assume a function disAi : Ui×Ui
→ R to measure the distance between two Ai-attribute val-
ues, where R denotes real numbers. As usual, we assume that
the function disAi satisfies the triangle inequality.

For instance, for poi(address, type, city, price) of Example 1,
disprice(95, 99) = 99−95 by subtraction; and disaddress measures
physical distance between two locations.

It is not necessary to define disA for each A. Its default
is a trivial distance function, defined as disA(x, y) = +∞ if
x 6= y and disA(x, y) = 0 otherwise, e.g., for ID attributes.

Access schema. An access template over R has the form

ψ = R(X → Y,N, d̄Y ),

where R is a relation schema in R, X and Y are sets of
attributes of R, N is a positive integer, and d̄Y , referred to
as the resolution tuple of ψ, is a tuple of attributes Y with
real numbers, i.e., for each B ∈ Y , d̄Y [B] is a value of R.

Let DY (X = ā) = {t[Y ] | t ∈ D, t[X] = ā}; i.e., it is the
set of all Y -values corresponding to X-value ā in D.

An instance D of R conforms to ψ, denoted by D |= ψ, if
there exists an index on D such that given any X-value ā,

◦ it accesses and returns a set D̃N
Y (X = ā) of at most N

distinct tuples in DY (X = ā), and

◦ for each t ∈ DY (X = ā), there exists t′ ∈ D̃N
Y such that

disA(t[B], t′[B]) 6 d̄Y [B] for each attribute B ∈ Y ,

Intuitively, ψ enforces a constraint: for each X-value ā,
there is a sample D̃N

Y of no more than N distinct tuples that
represents DY (X = ā) and satisfies resolution d̄Y . Moreover,
the sample can be efficiently fetched via the index.

The access constraints of [11,23] are a special case of access

template when d̄Y = 0̄, i.e., D̃N
Y (X = ā) = DY (X = ā). It

is to fetch exact values DY (X = ā) corresponding to ā.
For instance, ϕ1, ϕ2 and ψi’s of Example 1 are access

templates, while ϕ1 and ϕ2 are access constraints of [11, 23].

An access schema A overR is a set of access templates over
R. An instance D of R conforms to A, denoted by D |= A,
if D conforms each access template in A.

2.2 Query Plans under Access Schema
We use access schema A over R to control accesses to

instances of R and comply to resource ratio α. We formalize
the idea in terms of query plans under A. Consider an RA
query Q over R with selection σ, projection π, Cartesian
product ×, union ∪, set difference − and renaming ρ.

Bounded query plans. A plan ξ under A is a sequence of
RA operators and an operator fetch(X ∈ T,R, Y, ψ), where
ψ is an access template R(X → Y,N, d̄Y ) in A and T is an
intermediate relation returned by some operator prior to the
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fetch in ξ. The fetch retrieves a set Wā = D̃N
Y (X = ā) for

each ā ∈ T from D; it returns
⋃
ā∈T {(ā, b̄) | b̄ ∈Wā}.

Intuitively, ξ executes its operations one by one on a dataset
D [11], each computing a relation to be used by subsequent
operators. Its result ξ(D) is the relation of the last operation.
It controls data access in a quantified manner via fetch, using
indices in access templates of A.

A query plan for Q under A is a plan ξ such that (a) all
constants in ξ are from Q, and (b) for all instances D |= A of
R, ξ(D) = Q(D) if for each fetch operation of ξ with access
template ψ, the resolution d̄ of ψ is upgraded to 0̄.

That is, when ξ were allowed to fetch data without “errors”
(when N in ψ is large), it would compute exact answers Q(D).
Bounded plans for Q under A are defined solely based on
their output and do not have to share the structure of Q.

For a resource ratio α ∈ (0, 1], a plan ξ for Q under A
is α-bounded in D if it accesses at most α|D| tuples in D,
where the number of tuples accessed by ξ can be deduced
from constants N ’s in the templates used in ξ.

For instance, Example 1 gives an α-bounded plan for Q1 in
D0. It picks template ψkα based on α. The larger α is, the
smaller ekαp and ekαa are, and the more accurate S is. When
kα = dlog2 Me, the plan computes exact Q1(D0). Intuitively,
we control the amount of data fetched by constants N in A,
and retrieve the data using the indices of A.

Bounded evaluation of [11–13,22, 23] can be modeled as a
special case of bounded query plans under access schema A.
A query Q is boundedly evaluable under A if it has a query
plan ξ under A that uses access constraints only. For any
D |= A, ξ computes exact answers Q(D).

For instance, Q2 of Example 1 is boundedly evaluable.

3. ACCURACY MEASURE
To assess the quality of a set S of approximate answers to

a query Q in dataset D, we propose an accuracy measure,
assuming that query relaxation is allowed to explore sensible
answers. The new measure is characterized by two functions:

◦ coverage distance δcov(Q,S, t) to measure how well an
exact answer t ∈ Q(D) is “covered” by S; and
◦ relevance distance δrel(Q,D, s) to measure how relevant

each approximate answer s ∈ S is to Q in D.

With these, we define accuracy(S,Q,D), referred to as
the RC-measure of S to Q in D, in terms of coverage ratio
Fcov(S,Q,D) and relevance ratio Frel(S,Q,D) as follows:

Fcov(S,Q,D) = 1
1+maxt∈Q(D)δcov(Q,S,t)

,

Frel(S,Q,D) = 1
1+maxs∈Sδrel(Q,D,s)

,

accuracy(S,Q,D) = min(Frel(S,Q,D),Fcov(S,Q,D)).

In particular, (1) when Q(D) = ∅, we define Fcov(S,Q,D) =
1 for any S, empty or not; and (2) when S = ∅, we let Fcov(S,
Q,D) = 0 if Q(D) 6= ∅ and hence accuracy(S,Q,D) = 0.

Below we define the distance functions. We start with RA
queries under set semantics (Section 3.1). We then extend to
aggregate queries, coping with bag semantics (Section 3.2).

3.1 Distance Functions for RA Queries
We define distance d(t, t′) = maxA∈R|disA(t[A], t′[A])| for

tuples t and t′ of relation R, the worst of attribute differences.

Coverage. For a tuple t ∈ Q(D), we define its coverage
distance δcov(Q,S, t) to approximate answers S for RA Q as

mins∈Sd(s, t).

It assesses how well S covers an exact answer t ∈ Q(D).

Relevance. One might want to define δrel(Q,D, s) as
mint∈Q(D)d(s, t), the minimum distance between s and exact
answers in Q(D). This, however, denies sensible answers that
are overlooked by Q, e.g., hotel of $99 per night for Q1 of
Example 1. To rectify this, we use relaxed query Qr instead
of Q, along the same lines as query relaxation [15,29].

The relaxed query Qr of Q with a positive number r is de-
rived from Q such that all selections σA=c and σA=B in Q are
replaced with σ|disA(A,c)|6r and σ|disA(A,B)|62r, respectively.

Intuitively, Qr relaxes selection conditions in Q to explore
sensible answers. Bound r controls the quality of Qr(D) w.r.t.
Q: (a) σ|disA(A,c)|6r ensures that the A-attribute values in
Qr(D) are within distance r to constant c in Q; and (b)
σ|disA(A,B)|62r allows both A and B attributes to be relaxed
by r, and hence their difference is bounded by 2r.

The relevance distance δrel(Q,D, s) of s to Q in D is

minr>0max(r,mint∈Qr(D)d(s, t)).

That is, δrel(Q,D, s) measures how relevant s is as an an-
swer to Q in D, by striking a balance between (a) relaxation
range r, and (b) the distance of s to the closest ones in Qr(D).
By taking the minimum of the two, it determines range r,
i.e., how far selections in Q should be relaxed.

When query relaxation is not allowed, we can fix r = 0
in δrel(Q,D, s), and the RC-measure remains intact.

Observe the following: (1) accuracy(S,Q,D) is determin-
istic: each answer s ∈ S is warranted relevant. (2) Both
Frel(S,Q,D) and Fcov(S,Q,D) are in the range (0, 1]. The
larger they are, the more accurate S is. (3) Both Frel(S,Q,
D) and Fcov(S,Q,D) are 1 if S = Q(D), the exact answers.

Justification. Several accuracy measures have been studied
for approximation, classified as (a) counting-based, e.g., F-
measure and regret ratio [33]; (b) distance-based, e.g., Haus-
dorff distance [26] and MAC [27], using distance functions
to measure either the gap between approximate and exact
answers [27], or the “losslessness” of a synopsis; and (c) con-
fidence probabilities for aggregate queries, e.g., BlinkDB [8]
and sampling-based synopses [7, 17]. However, they do not
work well on resource-bounded approximation for generic
queries, or do not give a deterministic accuracy.

Example 2: Recall query Q1 and access schema A0 from
Example 1. Consider our familiar F-measure F (S,Q,D) =

2 precs(S,Q,D) recall(S,Q,D)
precs(S,Q,D)+recall(S,Q,D)

, where precs(S,Q,D) = |S∩Q(D)|
|S|

and recall(S,Q,D) = |S∩Q(D)|
|Q(D)| . Even with the indices of A0,

any deterministic algorithms that access only α|D| tuples
may return approximate answers S with F -measure F (S,Q,
D) = 0. This happens when S includes no hotels of price
at most $95. That is, by the F-measure, the approximation
answers (algorithms) are no “good” for Q1 w.r.t. α.

In contrast, S may include sensible answers, e.g., hotels
of $99 per night, even by looking up the indices of A0 alone.
This is reflected by its RC-measure with a non-0 value. 2

In light of these, we propose to use relevance to measure
how well approximate answers S serve users’ need. The RC-
measure is bi-criteria, assessing both the relevance of S and
its coverage of exact answers Q(D). As opposed to measures
of type (a) above, it assures a non-zero accuracy bound for
nonempty S so that we can compare the quality of different
approximations. Its coverage subsumes metrics of type (b),
and its relevance explains why a tuple is in S. Unlike (c),
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it works on generic queries beyond aggregates and offers
deterministic accuracy, instead of probabilistic error rates.

3.2 Distance Functions for Aggregate Queries
We now extend the distance functions to aggregate queries.

We consider RAaggr [20], an extension of RA with a group-by
construct. It has the form Q = gpBy(Q′, X, agg(V )), where
(a) Q′ is an RA query, (b) X is a set of attributes in the
output schema RQ′ of Q′, (c) V is an attribute in RQ′ , and
(d) agg is one of max, min, avg, sum or count. The output
of Q is a relation of schema RQ, consisting of agg(V ) and
attributes in X. Written in SQL, Q is as follows:

select X, agg(V )
from R1, . . . , Rl
where C group by X

Distances for RAaggr. Consider an RAaggr query Q.

(1) Q is gpBy(Q′, X, agg(V )), when agg is min or max .

◦ δrel(Q,D, s) = δrel(Q
′, D, s) if there is no s′ ∈ S such

that s 6= s′ and s[X] = s′[X], and it is +∞ otherwise.

◦ δcov(Q,S, t) = δcov(Q
′, S, t).

Intuitively, (a) the condition for δrel(Q,D, s) enforces the
group-by semantics, i.e., there exist no duplicated X-values
in S; and (b) for min and max, δrel(Q,D, s) and δcov(Q,S, t)
inherit δrel(Q

′, D, s) and δcov(Q
′, S, t), respectively, since ap-

proximate answer s to Q in D is also an approximate answer
to Q′ in D. Observe that the semantics of min and max is
enforced by the coverage distance on attribute V .

(2) Q is gpBy(Q′, X, agg(V )) when agg is avg, count or sum.

◦ δrel(Q,D, s) = δrel(πX(Q′), D, s[X]) if there is no s′ ∈ S
with s 6= s′ and s[X] = s′[X], and it is +∞ otherwise.

◦ δcov(Q,S, t) = mins∈Sdagg(s, t), where dagg(s, t) =
max{maxA∈X |disA(s[A], t[A])|+ fagg(t[V ], s[V ])}.

Here fagg() is a distance function on the aggregate values,
e.g., fagg(v, v′) = |v − v′| as commonly found in practice.

In contrast to case (1) above, for avg, count and sum, aggre-
gate values t[V ] and s[V ] may not be in the active domain of
D. Hence δrel(Q,D, s) is determined by δrel(πX(Q′), D, s[X]),
which measures how “qualified” s is to Q in D. For coverage,
we measure how well S covers t via an extended coverage
distance δcov(Q

′, S, t) with fagg on the aggregated attribute
V , which enforces the semantics of aggregation.

Example 3: Consider an RAaggr query Q′1 = gpBy(Q1, h.city,
count(h.address)), to find the numbers of hotels specified in
Q1 (Example 1) grouped by city, replacing h.price with h.city
in the select clause of Q1. Assume for instance that Q′1(D) is
{t1 = (NYC, 100), t2 = (Chicago, 140)}, and S is {s1 = (NYC,
80), s2 = (Chicago, 150)}. Then for i ∈ [1, 2], δrel(Q

′
1, D, si) =

δrel(πh.city(Q1), D, si[city]) = 0, i.e., si is relevant to Q′1; and
δcov(Q

′
1, D, t1) = max{0, |100 − 80|} = 20, δcov(Q

′
1, D, t2) =

{0, |140− 150|} = 10, measuring the difference in count. 2

4. RESOURCE BOUNDED EVALUATION
We next introduce the resource-bounded approximation

scheme (Section 4.1) and the framework BEAS (Section 4.2).

4.1 Resource Bounded Approximation
A resource-bounded approximation scheme under an access

schema A is an algorithm ΓA such that for any RAaggr query
Q, resource ratio α ∈ (0, 1] and dataset D |= A, it generates
(a) an α-bounded query plan ξα for Q in D and (b) a bound

η ∈ [0, 1] such that the RC-measure accuracy(ξα(D), Q,D) >
η, assuming that query relaxation is allowed.

The approximation scheme has the following properties.

(1) It takes resource ratio α as a parameter, allowing us to
query big D with bounded resources by setting α small.

(2) Algorithm ΓA computes plan ξα without accessing D. It
takes only Q, A and budget α|D| as input. It generates plan
ξα that computes ξα(D) by accessing at most α|D| tuples,
and guarantees relevance and coverage of at least η.

(3) As shown in Fig. 1, ΓA is based on dynamic data reduction:
for each input query Q, it generates a (different) ξα guided
by Q and A, as opposed to one-size-fit-all synopsis.

Approximability. We now justify the feasibility.

Theorem 1 [Approximability Theorem]: (1) For any
dataset D, there exists an access schema A such that D |= A.

(2) Under A, there exists an approximation scheme ΓA such
that for any ratio α ∈ (0, 1] and any RAaggr query Q, ΓA
computes an α-bounded plan ξα for Q in D and accuracy
bound ηα ∈ [0, 1] such that when query relaxation is allowed,

◦ accuracy(ξα(D), Q,D) > ηα; and

◦ if α1 > α2, then ηα1 > ηα2 . 2

That is, on any database D, we can build access schema A.
For any resource ratio α and all RAaggr queries Q, A allows
us to answer Q with an α-bounded plan ξα. The larger α we
can afford, the better approximate answers ξα(D) we get.

As a proof of Theorem 1(1), we give a simple access schema
At. Consider the schema R of D. For a relation R ∈ R, let
DR be the instance of R in D, |DR| be the number of tuples
in DR,MR = dlog2 |DR|e, and attr(R) be the set of attributes
of R. Then for each R ∈ R, At includes access templates ψRk
= R(∅→ attr(R), 2k, d̄k) for all k ∈ [0, 2MR ].

Intuitively, At provides MR levels of granularity for ap-
proximation of DR, while ψRMR is an access constraint with

d̄MR = 0̄. Note that the total size of indices for all the MR

templates is at most 2|DR|. Under At, given a query Q and
a ratio α, ΓA generates a plan ξα and fine-tunes k in ψRk for
each D, to maximize the accuracy. We will provide resource-
bounded approximation schemes for SPC, RA and RAaggr in
Sections 5–7, respectively, as a proof of Theorem 1(2).

Choice of access schema. The simple At just aims to show
the existence of resource-bounded approximation. As will be
seen in Sections 5–7, over any access schema that subsumes
At, our approximation algorithms can find an α-bounded
plans ξα for queries and deduce accuracy bound η.

In practice we extend At with more access templates and
constraints, user-defined or discovered from D, which improve
accuracy η. In other words, η deduced from At is a lower
bound for the accuracy of approximate answers.

As suggested in [11], algorithms for discovering functional
dependencies can be extended to mine access constraints.
This method can be extended to discover access templates,
with aggregates to compute cardinality bounds and sampling
to pick representative tuples.

Implementation. For each relation R ∈ R and instance DR
of R, we can build indices on DR for templates ψR1 , . . . ,
ψRMR in three steps as follows. (1) Build a K-D tree [35]
TD of DR by treating tuples as mR-dimensional points
w.r.t. distance functions, where mR = |attr(R)|. (2) For
each k ∈ [1,MR], the index for ψRk is a table TRk (I, attr(R))
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Figure 2: Workflow of BEAS

such that πI(T
R
k ) = {k} and πattr(R)(T

R
k ) consists of tuples

at the k-th level of TD. For each attribute B of R, d̄k[B]
= maxt∈πattr(R)(T

R
k

)maxt1,t2∈desc(t)|disB(t1[B], t2[B])|, i.e., the

maximum error on attribute B introduced by representing
D with the index for ψk, where desc(t) is the set of tuples
that are descendants of t in TD. (3) Store the indices for ψR1 ,
. . . , ψRMR in a single table TR(I, attr(R)) by taking the union
of Tk’s, and build an hash index on I over TR.

The indices can be readily extended to incorporate access
constraints and access templates that extend At.

There are other approaches to constructing the indices
of At. We adopt K-D trees for two reasons. (1) K-D trees
are easy to implement and maintain [35]. (2) When zooming
in to the next level, i.e., when our budget allows us to
“upgrade” from access template ψRk with 2k representative
tuples to ψRk+1 with 2k+1 tuples, K-D trees assure that we
can maximize the gain in resolution d̄k+1 − d̄k, as indicated
by how d̄k[B] is defined above.

4.2 BEAS: A Resource Bounded Framework
We next present BEAS, a framework for querying (big)

relations. It is to be built on top of DBMS and extend DBMS

with a functionality of resource-bounded query evaluation.
As shown in Fig. 2, BEAS consists of two parts. Given an

application with dataset D, it works as follows.

(1) Offline algorithms. As offline preprocessing, algorithms
for discovering access schema A can be plugged into BEAS,
to enrich At. BEAS builds indices IA for A on D (C1). It
also maintains IA in response to updates to D (C2).

(2) Online algorithms. For any RAaggr query Q posed
on D with a requested resource ratio α, BEAS invokes a
resource-bounded approximation scheme ΓA to compute an
α-bounded plan ξα for Q in D, and an accuracy bound ηα for
ξα (Theorem 1; C3). It executes ξα by the DBMS, accessing
at most α|D| tuples (C4). It returns (ξα(D), η). Underlying
the approximation scheme are the algorithms for C3, to be
given in Sections 5, 6 and 7. The plan ξα is executed directly
by the underlying DBMS (C4).

5. APPROXIMATING SPC QUERIES
As a step to prove Theorem 1(2), we develop a resource-

bounded approximation scheme for SPC queries (with σ, π,
× and ρ operators). It works under any access schema A that
subsumes At given in the proof of Theorem 1(a).

One might want to have an “optimal” approximation
scheme that can find α-bounded plans with the maximum
accuracy bound. This, however, is beyond reach in practice.

Theorem 2: Given an SPC query Q, an access schema A,
a database D, a resource ratio α and a predefined bound η, it
is Σp3-hard to decide whether there exists an α-bounded plan
ξα for Q in D under A with accuracy above η. 2

Algorithm BEASSPC

Input: SPC query Q, access schema A ⊇ At, and B = α|D|.
Output: An α-bounded plan ξα for Q under A and bound η.

1. ` := chase(Q,A, B); /* ` is a chasing sequence for Q */

2. generate a fetching plan ξF for Q from `;
3. generate an evaluation plan ξE for Q w.r.t. ξF ;
4. (ξαF , η) = chAT(ξF , Q,B,A);
5. return (ξα = (ξαF , ξE), η);

Procedure chAT

Input: ξF , Q, B and access schema A;
Output: An α-bounded fetching plan ξαF and accuracy bound η.

1. while tariff(ξF ) 6 α|D| do
2. ξα := (ξF , ξE); η := L(ξα);
3. find δ such that Lψδ

k
→ψδ

k+1
(ξα) > L

ψδ
′
k
→ψδ′

k+1
(ξα) (∀δ′);

4. replace template ψδk with ψδk+1 for fetch δ in ξα;
5. return (ξα, η);

Figure 3: Algorithm BEASSPC

Here Σp3 is the complexity class at the third level of the
polynomial hierarchy [37], beyond NP unless P = NP.

We show that the Σp3-hardness even when η = 1 and
A is At of Section 4.1, by reduction from the ∃∗∀∗∃∗CNF
problem, which is Σp3-complete [37]. The hardness comes
from the choices for what attributes to fetch, in what order
to fetch them, and what access templates to use, to comply
to resource ratio α and accuracy bound η.

Despite the challenge, below we provide a PTIME approxi-
mation scheme for SPC with a deterministic bound η.

Approximation scheme BEASSPC. The scheme is denoted
by BEASSPC and shown in Fig. 3. Given an SPC query Q, an
access schema A that subsumes At, and budget B = α|D|,
BEASSPC computes an α-bounded plan ξα for Q in D and a
ratio η such that accuracy(ξα(D), Q,D) > η. Here α ∈ (0, 1]
is a resource ratio, and |D| is the size of database D to be
queried. Note that D itself is not part of the input.

BEASSPC generates plan ξα in a canonical form (ξF , ξE),
where (a) ξF is a fetching plan for Q under A, which is a
sequence of fetch operations, and (b) ξE is an evaluation
plan for Q, which performs (relaxed) relational operations
of Q. That is, ξα first fetches necessary data DQ from D by
accessing at most α|D| amount of data, and then ξE computes
(approximate) answers Q(DQ) using DQ. Every SPC query
has a bounded query plan in this “normal form”.

Lemma 3: Under access schema A ⊇ At, every SPC query
Q has a canonical bounded plan. 2

BEASSPC works in two steps. (1) It generates an initial α-
bounded plan ξα = (ξF , ξE), where ξF uses either access con-
straints or templates with k = 0 as placeholders. (2) It then
improves the accuracy of ξα by picking the best templates
ψk (with largest N) for ξF , and keeps it α-bounded in D.

Step (1): getting initial α-bounded plan ξα = (ξF , ξE).
To compute ξF , BEASSPC builds a chasing sequence ` for Q
under A via chase(Q,A, B) (line 1, Fig. 3), from which ξF
is derived, observing B = α|D| (line 2). We revise the chase,
a classical tool for query optimization with dependencies [6],
such that each step in ` corresponds to a fetch operation in
ξF that uses an access constraint or a template in A.

The chase is defined on the tableau of Q. The tableau of an
SPC Q is a pair (T (Q), u(Q)), where (a) T (Q) is a collection
of tables in which tuple templates represent relation atoms in
Q; and (b) u(Q) is a tuple of variables specifying the output
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Figure 4: A chasing sequence for Q3 under A2

of Q. That is, T (Q) is a set of tuple templates with variables
to be mapped to attribute values, and u(Q) denotes projected
attributes. Computing Q(D) is essentially to fetch tuples in
D, match tuple templates in T (Q) and instantiate output
tuple u(Q) (see [6] for details of the chase).

For example, an SPC query Q3 and its tableau are at the
top of Fig. 4, in which constants and variables represent
attributes and specify the selection conditions in Q, e.g., x
encodes R[B] and P [E], and y denotes P [F ] and R[A].

Chase (line 1). More specifically, a chasing sequence for Q
under A is a sequence of annotated tableaux of T (Q) of Q:

T0(Q)
γ07−→ T1(Q)

γ17−→ · · ·
γm−17−−−−→ Tm(Q),

where each step indicates a fetch operation that retrieves
attribute values to instantiate variables in T (Q), using an
access constraint or template in A. More specifically, (a)
Ti(Q) is the same as T (Q), including all the tuples of T (Q),
except that it marks some tuples and variables exactly or
approximately covered (enclosed in square or circle for tuples,
and parentheses or square brackets for variables in Fig. 4);
and (b) γi is an access constraint or a template with k = 0
in A that is applied to Ti(Q) and triggers the marking.

The chasing starts with T0(Q) = T (Q), without any mark.

Each step Ti(Q)
γi7−→ Ti+1(Q) applies γi = R(X → Y,N, d̄i)

to Ti(Q) by one of the following two rules, which either marks
a tuple template t in Ti(Q) or a variable of t, to get Ti+1(Q).

(a) Variable marking. If t[X] (possibly empty) consists of
constants or variables marked in prior steps, then variables
in t[Y ] that are not yet exactly covered are marked (i) exactly
covered if no variables in t[X] are approximately covered and
γi is a constraint, and (ii) approximately covered otherwise.

(b) Tuple marking. If all variables in t are exactly covered by
γi, then tuple t is also marked exactly covered; otherwise, if
all its variables are covered, then t is approximately covered.

Intuitively, exactly covered variables can be instantiated
by a sequence of fetch operations with access constraints only,
while those approximately covered involve fetch with access
templates. A tuple is covered if its value can be retrieved via
fetch, exact or approximate depending on its mark.

An approximately covered variable (tuple) can possibly be
“upgraded” to exactly covered but not the other way around.

One can verify the following.

Lemma 4: Under any A ⊇ At, for any SPC query Q, all
chasing sequences terminate with the same Tm(Q), in which
all tuple templates are covered, exactly or approximately. 2

Example 4: Consider query Q3 and access schema A2 given
in Fig. 4. A chasing sequence of 5 steps for Q3 under A2

is depicted at the bottom of Fig. 4. It marks the following:

(1) x is exactly covered (by access constraint ϕ1); (2) t1 is
exactly covered (by ϕ1 since variable x is covered); (3) y is
exactly covered (by access constraint ϕ2 with exactly covered
variable x); (4) t2 is exactly covered (by ϕ1 with exactly
covered variable y); (5) z is approximately covered (by access
template ψ1); and (6) t3 is approximately covered (by ψ1).
In Fig. 4, chase steps (1) and (2) are shown together in a
single step (the first step); similarly for (5) and (6). 2

The process also maintains the total number tariff of tu-
ples accessed. It is estimated by means of constants N
in access constraints applied, without accessing D. Apply-
ing a constraint increases tariff with the number of tu-
ples fetched; if tariff exceeds budget B, we use template
R(∅ → attr(R), 20, d̄0) instead. Each template ψk applied
increases the count tariff only by 1 since we start with k = 0.

Fetching plan from chase (line 2). Given a chasing sequence
`, an α-bounded fetching plan for Q in D is derived as follows.

(1) For each tuple tR of relation R in T (Q), let Ti(Q)
γi7−→

Ti+1(Q) be the chase step that marks tR covered. Then a
fetching plan ξRF for relation R in Q includes (T1 = ξ(V ),
T2 = fetch(X → T1, R, Y, γi)), where V is the set of constants
and covered variables for T1[X], and ξ(V ) is the plan that
fetches variables in V (possibly using × and πY ). (2) The
fetching plan ξF for Q under A simply collects all such ξFR
for all relation names R used in Q.

Intuitively, for each relation R in Q, the part of chasing
sequence that marks tR of R in T (Q) covered is directly
translated into a fetching plan for R, as illustrated below.

Example 5: From the chasing sequence of Fig. 4, a fetching
plan ξQ3

F for Q3 under A2 is derived as follows:

T1 = fetch(A ∈ {2}, R,B, ϕ1) (/*fetch x and t1 of R*/);
T2 = fetch(CE ∈ {1} × πB(T1), P, F, ϕ2) (/*fetch y*/);
T3 = fetch(A ∈ πF (T2), R,B, ϕ1) (/*fetch t2 of R*/);
T4 = fetch(CEF ∈ T2, P,G, ψ1) (/*fetch z and t3 of P*/);

where ξ
R(2,B)
F = T1, ξPF = (T1, T2, T4), ξ

R(A,3)
F = (T1, T2, T3).

Here T1 fetches both variable y and R tuple t1 in T (Q3). 2

Evaluation plan ξE (line 3). The evaluation plan computes
answers to relaxed query Qr of Q using DQ fetched by ξF . It
performs the same relational operations in Q except that it
(1) uses fetched tuples for each relation in Q; and (2) relaxes
selection conditions on attributes fetched via access templates
ψ to accommodate the resolution of ψ: for each σA=c, if A
is fetched via R(X → Y, 2k, d̄k) in A, where A ∈ Y and c
is a constant, then replace σA=c with a relaxed condition
σ|disA(A,c)|6d̄k[A]; similarly for σA=B .

Note that only attributes that are fetched via access tem-
plates and used in selections are compensated by relaxation
with resolution, as opposed conventional approximate joins.
The targeted relaxation guarantees an accuracy bound.

For instance, given the fetching plan of Example 5, the
evaluation plan for Q3 under A2 conducts the same opera-
tions in Q3. No relaxation is needed since all attributes in
its selections are fetched with access constraints only. While
t3 is approximately covered, it does not affect the selections.

Step (2): choosing access templates for ξF . BEASSPC

next optimizes ξα by choosing access templates ψk with
higher resolution (i.e., larger N , smaller d̄) to increase its
accuracy, by invoking procedure chAT (line 4 of Fig. 3).
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Given ξα = (ξF , ξE), budget B = α|D| and access schema
A, chAT iteratively identifies a fetch operation δ in ξF such
that using access templates with higher resolution yields the
maximum accuracy improvement among all fetch operations
in ξF (lines 1-4). The tricky part is to assess the accuracy
with ξα and A only, without accessing D. To achieve this,
chAT uses a function L (to be given below) that computes a
lower bound for the accuracy of ξα in D.

More specifically, in each iteration, chAT first sets η =
L(ξF ) (line 2), and then identifies a fetch operation δ in
ξF with access template ψδk = R(X → Y, 2k, d̄k) such that
replacing ψδk with ψδk+1 = R(X → Y, 2k+1, d̄k+1) yields the
maximum accuracy improvement (break ties arbitrarily;
line 3), i.e., Lψδ

k
→ψδ

k+1
(ξF ) > L

ψδ
′
k
→ψδ′

k+1
(ξF ) for any other

fetch δ′ in ξF , where Lψδ
k
→ψδ

k+1
(ξF ) denotes L(ξ′F ), and ξ′F

revises ξF by replacing ψδk with ψδk+1. It replace ψδk in ξα
with ψδk+1 (line 4). This proceeds until the estimated amount
of data accessed by ξα (denoted by tariff(ξα)) exceeds the
budget B (line 1). It returns (ξα, η) after the iteration (line 5).

Lower bound function L(ξF ). Function L is given as 1/(1 +
max(drel, dcov)), where drel and dcov are upper bounds on the
relevance and coverage distances of approximate answers.

The upper bounds are inductively defined based on the
structure of query Q w.r.t. the fetching plan ξF of ξα. When
Q is σR[A]=c(Q

′), (a) dcov(Q) = dcov(Q
′), and (b) drel(Q) =

max{drel(Q
′), d̄k[A]} if R[A] is fetched using access template

R(X → Y, 2k, d̄k), and drel(Q) = drel(Q
′) otherwise.

Intuitively, the worst coverage distance of Q is the same as
that of Q′. The worst relevance distance in D for an approx-
imate answer s and Q is the worst between the distance for
s and Q′ in D and resolution d̄k[A] if s is approximately cov-
ered using a template with d̄k. If s is exactly covered, i.e., by
an access constraint, no extra distance is introduced by fetch.

The cases of R, σR[A]6c(Q
′), πY (Q′), σR[A]=R′[B](Q

′),
σR[A]6R′[B](Q

′) and Q1 ×Q2 are similar.

Example 6: Given Q1 and A0 from Example 1, BEASSPC re-
turns exactly the plan in Example 1 forQ1 underA0∪At, and
η = 1/(1 + max{ekαp , ekαa }). After fetching 10000 friend and
person tuples via constraints, it probes templates on poi one
by one starting from ψ1, until it gets to ψkα , which reaches
the budget α|D0|. It picks ψkα and adjusts dcov (resp. drel)
from 0 to max{ekαp , ekαa } (resp. ekαp ), which gives the η. 2

Analysis. We show the following about BEASSPC.

Theorem 5: For any SPC query Q, access schema A ⊇ At,
resource ratio α and dataset D |= A, BEASSPC generates an
α-bounded plan ξα and a bound η for Q under A in O(|Q|
min(||A||, ||Q|| logα|D|))-time, without accessing D, such that

(1) Frel(ξα(D), Q,D) > η and Fcov(ξα(D), Q,D) > η;

(2) η > 1/(1+maxϕ∈Ad̄
m
(ψ,k∗)), where k∗ = blog2

α|D|
||Q|| c−1;

(3) and if α1 > α2, then η1 > η2, where η1 and η2 are the
accuracy bounds returned by BEASSPC for Q in D with
resource ratios α1 and α2, respectively. 2

Here (1) for each ψk = R(X → Y, 2k, d̄k) in A0, we denote
maxA∈Y d̄k[A] as d̄m(ψ,k); (2) for a query Q and ||Q|| is the
number of relations in Q; and (3) ||A|| is the cardinality of A.

Observe the following. (1) The bound η returned by
BEASSPC is always correct and above 0, as it is above
1/(1 + maxϕ∈Ad̄

m
(ψ,k∗)) > 0. This verifies Theorem 1 for SPC.

(2) Both η and the lower bound 1/(1 + maxϕ∈Ad̄
m
(ψ,k∗)) for η

depend on Q since BEASSPC advocates dynamic data reduc-
tion guided by the structure of Q instead of an “one-size-fit-
all” synopsis (see Fig. 1). (3) As will be seen in Section 8,
BEASSPC returns η much higher than 1/(1 + maxϕ∈Ad̄

m
(ψ,k∗)).

This is because BEASSPC computes η based on the real reso-
lutions of the access templates actually used in ξα, instead
of maxϕ∈Ad̄

m
(ψ,k∗) estimated above by using Q and A alone

via BEASSPC. (4) BEASSPC may not use all templates in A,
as evidenced by min(||A||, logα|D|) in its complexity.

6. APPROXIMATING RA QUERIES
We continue with the proof of Theorem 1(2) by providing

a resource-bounded approximation scheme for RA. The chal-
lenge arises from set difference, to ensure that for any approx-
imate answer s returned for RA queries Q1 −Q2, s 6∈ Q2(D)
for any dataset D, without scanning the entire D.

Approximation scheme BEASRA. The scheme, denoted
by BEASRA, is shown in Fig. 5. It consists of two steps: (1)
generate an α-bounded plan ξα for Q under A in D; and (2)
compute a lower bound for the accuracy of ξα(D). We next
outline these steps, highlighting the difference from BEASSPC.

Step (1): generating α-bounded plan ξα = (ξF , ξE).
One can verify that Lemma 3 holds for RA. Hence BEASRA

also generates canonical bounded plans for RA queries.

Generating initial fetching plan ξF . Similar to BEASSPC,
BEASRA first generates an initial α-bounded fetching plan ξF
for Q (line 1), to fetch data for max SPC sub-queries of Q.
A max SPC sub-query of Q is a sub-query Qs of Q such that
(a) Qs is in SPC, and (b) there exists no SPC sub-query Q′s
of Q such that Qs is a sub-query of Q′s. BEASRA generates
fetching plans for all max SPC sub-queries of Q via BEASSPC,
and groups these plans together to make ξF for Q.

Intuitively, a fetching plan for all Qs’s of Q suffices to
retrieve all the data needed to compute Q(D).

Optimizing fetching plan. BEASRA then chooses access tem-
plates with higher resolution for ξF via chAT (step (2) of
BEASSPC), and generates an optimized fetching plan ξαF
(line 2). Here function L used by chAT is extended to set
difference in Q, by letting drel(Q) = drel(Q1) and dcov(Q) =
dcov(Q1) when Q = Q1 −Q2; similarly for union Q1 ∪Q2.

Generating evaluation plan ξE . Given ξαF , BEASRA generates
ξE to evaluate Q, and thus completes an α-bounded plan
ξα = (ξαF , ξE) for Q (line 3). To enforce the semantics of
set difference, given ξαF , it “implements” an RA query E(Q),
defined inductively based on the structure of Q as follows.

(1) When Q is R, σC(Q′), Q1×Q2, πY (Q′) or Q1∪Q2, E(Q)
is the same as the evaluation plan ξE for SPC in BEASSPC.

(2) When Q is Q1 −Q2, if relations in Q2 are fetched with
constraints, i.e., templates with d̄ = 0, then E(Q) = E(Q1)−
E(Q2). Otherwise E(Q) = E(Q1)− πRQ1

σC(E(Q1)× E(Q̂2)).
It enforces set difference by expanding Q2 to its maximal

induced query Q̂2, and by adding a selection condition C.

The maximal induced query Q̂ of Q “expands” Q by drop-
ping the negated part of set-differences in Q, such that

Q̂(D) ⊇ Q(D) for all D. The selection condition C in E(Q)
identifies and excludes answers to E(Q1) that are within a

“dangerous” distance δ(A) to E(Q̂2) on each attribute A in-
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Algorithm BEASRA

Input: RA query Q access schema A ⊇ At, and B = α|D|.
Output: An α-bounded plan ξα for Q under A and bound η.

1. generate an initial fetching plan ξF for Q under A;
2. ξαF := chAT(ξF , Q,B,A);

/*let dαr and dαc be the values of drel and dcov in L(ξF ) */

3. generate evaluation plan ξE w.r.t. ξαF ; /*let ξα=(ξαF ,ξE)*/

4. compute maximal induced Q̂ of Q, an SPC query;

5. generate α-bounded plan ξ̂α for Q̂ using BEASSPC w.r.t. ξF ;
/*let d̂αr and d̂αc be the values of drel and dcov in L(ξ̂α) */

6. S := ξα(D); Ŝ := ξ̂α(D); /* executing ξα and ξ̂α */

7. d′ := maxt∈S′mins∈Sδcov(Q̂, t, s); η′ := 1

1+max(dαr ,d
′+d̂αc )

;

8. return (ξα, η′);

Figure 5: Algorithm BEASRA

volved, such that for any D |= A, if t ∈ Q2(D) then t must

be in πRQ1
σC(E(Q1)× E(Q̂2))(D).

Step (2): computing accuracy bound η for ξα(D). In
contrast to BEASSPC for SPC, L may not serve as an accurate
lower bound on the coverage of ξα(D) due to the “loss” of
approximate answers to Q1 in Q = Q1 − Q2. To rectify

this, BEASRA first generates an α-bounded plan ξ̂α for the

maximal induced query Q̂ of Q using BEASSPC (lines 4-5).
It then replaces coverage distance bound dαc in L(ξF ) with

d̂αc + d′, where d′ = maxt∈ŝmins∈sδcov(Q̂, t, s), the “coverage

distance” between tuples in S and S′ for Q̂, in which S =

ξα(D) and Ŝ = ξ̂α(D), yielding a correct accuracy bound η′ =
1

1+max(dαr ,d
′+d̂αc )

(lines 6-7). Here d̂αc (resp. dαr ) is the coverage

bound in L(ξ̂F ) (resp. L(ξF )) chosen in line 2 (resp. line 5).

Intuitively, Q̂(D) is covered by ξ̂α(D) with distance d̂αc ; and

ξ̂α(D) is covered by ξα(D) with distance d′. Since Q(D) ⊆
Q̂(D), by the triangle inequality of distance functions, Q(D)

is covered by ξα(D) with distance d′ + d̂αc .

Example 7: Consider RA query Q4 = πB(R(1, B) −W (1,
B)). To enforce the semantics of set difference, BEASRA sets
E(Q4) = πB(R(1, B)−πR[AB]σC(R(1, B)×W (1, B))), where
C is |disB(R[B], W [B])| 6 d̄kW [B]. This excludes tuples
fetched for R(1, B) that are in W (1, B) via the maximum
induced query of W (1, B) (which is itself), since they are
within distance d̄kW [B] of some tuples fetched for S.

Assume that approximate answers to R and W are {t1 =
(1,1), t2 = (1,100)} and {t3 = (1,99)}, retrieved by fetch(A ∈
R,B,ψkR) and fetch(A ∈ W,B,ψkW ), respectively. By the
definition of L, dαc in BEASRA is d̄kR [B]. Assume that t2 is
removed by E(Q4) from the answers. Then dαc is not an upper
bound on the coverage distance δcov(Q4, t, s).

To rectify this, BEASRA computes upper bound d̂αc on cov-

erage of Q̂4 and the “coverage distance” d′ for using t1 only

to cover {t1, t2}. It takes d̂αc + d′ as an upper bound for
δcov(Q4, t, s); this makes a lower bound on the distance. 2

Analysis. With these, BEASRA guarantees the following.

Theorem 6: For any RA Q, access schema A ⊇ At, resource
ratio α and dataset D |= A, BEASRA generates an α-bounded
plan ξα for Q under A in O(|Q|min(||A||, ||Q|| logα|D|))-time
without accessing D, and computes a bound η such that

(1) Frel(ξα(D), Q,D) > η and Fcov(ξα(D), Q,D) > η;

(2) Frel(ξα(D), Q,D) > 1/(1 + maxψ∈Ad̄
m
(ψ,k∗)), in which

k∗ = blog2
α|D|
||Q|| c − 1;

(3) η > 0 when ξα(D) 6= ∅;
(4) if α1 > α2, then η1 > η2; and
(5) if Q = Q1 −Q2 and t ∈ Q2(D), then t 6∈ ξα(D),

where µC , µv, d̄m(ψ,k∗), αi, and ηi (i ∈ {1, 2}) are the same
as their counterparts in Theorem 5. 2

BEASRA guarantees the following. (1) It returns η above 0,
and answers with accuracy at least η. Moreover, the larger
α is, the better accuracy is. This verifies Theorem 1 for RA.
(2) Both η and the lower bound depends on Q, by employing
dynamic reduction. Moreover, similar to BEASSPC, the actual
bound η and the accuracy of ξα(D) are much better than
the lower bound estimated. (3) The set difference semantics
is strictly enforced, by accessing α|D| tuples only.

7. APPROXIMATING AGGREGATION
We next extend the approximation scheme to RAaggr

queries, denoted by BEASagg, under access schema A that
subsumes At of Section 4.1, accommodating bag semantics.

Handling max and min. We start with RAaggr queries Q
defined with max and min. One can verify that Lemma 3 also
holds on Q. BEASagg generates canonical bounded plans ξα
= (ξF , ξE) for Q. It works in the same way as BEASRA except
the following extensions. Let Q = gpBy(Q′, X, agg(V )).

Lower bound function L revised. The relevance and cover-
age upper bounds in L are drel(Q) = drel(Q

′) and dcov(Q)
= dcov(Q

′). Using the revised L, it generates an α-bounded
fetching plan ξF via chAT just like in BEASRA.

Evaluation plan ξE . It defines E(Q) = gpBy(E(Q′), X,
agg(V )). The rest remains the same as BEASRA (see Section 6
for E(Q)). That is, the group-by and aggregate functions of
Q are executed on approximate answers to Q′.

Corollary 7: For ξα and η generated by BEASagg, the lower
bounds and properties on ξα and η specified in Theorem 6
remain the same for any RAaggr query with min and max. 2

For RAaggr queries including sum, avg and count, we need
to extend access schema to keep track of the number of
duplicated attribute values. In a template R(X → Y,N, d̄Y ),
given an X-value ā, its index additionally returns the number
of occurrences of each returned Y -value b̄, by aggregating
over all the Y -values in D “represented” by b̄. Under this
extension, BEASagg can be extended.

8. EXPERIMENTAL STUDY
Using real-life and synthetic data, we conducted five sets

of experiments to evaluate (1) the quality of approximate
answers; (2) bound η; (3) resource ratios for exact answers;
(4) index size; and (5) the efficiency and scalability of BEAS.

Experimental setting. We used two real-life datasets. (1)
AIRCA integrates Flight On-Time Performance data [1] and
Carrier Statistic data [2] for US air carriers from 1987 to
2014. It consists of 7 tables, 358 attributes, and over 162
million tuples, about 60GB of data. (2) TFACC is a dataset
of road accidents that happened in the UK from 1979 to
2005 [3], and National Public Transport Access Nodes [4].
It has 19 tables with 113 attributes, and over 89.7 million
tuples, about 21.4GB of data. We also used (3) synthetic
data (TPCH) generated by TPC-H dbgen [5], varying scale
factor σ from 5 to 25, about 200 million tuples when σ = 25.

Access schema. We picked 7, 12 and 9 access constraints
for AIRCA, TFACC and TPCH, respectively, from those
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used in [11, 13]. For each access constraint R(X → Y,N,
0), we added access templates R(XY → Z, 2i, d̄i) for i ∈ [0,
dlog2 maxā∈DXY |DZ(XY = ā)|e, where Z = attr(R) \ XY .
We also included templates in At of Section 4, yielding
a total of 617, 573 and 440 access templates, respectively.
These constitute 24, 31 and 20 distinct templates when
grouped by their X and Y attributes. For these templates,
we built their indices as described in Section 4.

Queries. We generated 90 queries (30 for each dataset),
among which 30% are aggregate SPC queries; the others
are RA queries, each with 0-3 set differences. Half of the at-
tributes in the queries are from the access constraints. The
queries varied in (a) the number #-sel of predicates in the
selection condition σC of Q, in the range of [3, 7], and (b)
the number #-prod of Cartesian products in Q, in the range
of [0, 4]. For AIRCA and TFACC, we drew attributes values
for the queries randomly from the datasets. For TPCH, we
derived 30 RAaggr queries from its built-in SQL queries.

Algorithms. We implemented the following: (1) BEAS for SPC
and RA (aggregate or not), denoted by BEASSPC and BEASRA,
respectively, based on the algorithms of Sections 5, 6 and 7; (2)
Sampl, an extension of sampling approximation of [17] that
samples α|D| tuples and answers queries using the sample;
(3) Histo, which creates multi-dimensional histograms of size
α|D| and uses it to answer queries [27].

We also compared BEAS with (4) BlinkDB, which sup-
ports aggregate SPC queries (no min/max) with restricted
joins [8]. For each access template R(X → Y,N, d̄Y ), we cre-
ated a sample for BlinkDB by using “create table R Sample

as select distinct X, Y from R c”, where c ∈ [1, N
||R[XY ]|| ],

and ||R[XY ]|| is the number of tuples in πXY (R). As such,
we provided BlinkDB with indices of our access schema as
samples. Although BlinkDB claims to be able to quantify
controls on running time and accessed data [8], we could
not configure it following its available document. Thus we
manually simulated its stratified sampling strategy [7,8] and
controlled its accessed data via the size of sample tables.

We evaluated each method using all queries it supports:
(a) RA for BEAS and Sampl, aggregate or not, (b) SPC for
Histo, aggregate or not, and (c) restricted aggregate SPC for
BlinkDB. This is in favor of Histo and BlinkDB since RA
queries are harder to approximate, while Histo and BEAS
can achieve good accuracy on simpler queries. We used full
datasets in the experiments unless stated otherwise.

The experiments were conducted on an Amazon EC2

d2.xlarge instance with 4 EC2 compute units, 30.5GB mem-
ory and 4TB HDD storage, using PostgreSQL (9.6devel) and
MySQL 5.7 as underlying DBMS. All the experiments were
run 3 times, and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Accuracy of approximate answers. We evalu-
ated the accuracy of all these methods using three accuracy
measures: (a) MAC [27], the measure of Histo (Section 3, nor-
malized to [0, 1]), (b) F-measure, and (c) RC-measure. We
did not experiment with the measures of Sampl and BlinkDB
since (1) Sampl does not evaluate the accuracy of set-valued
answers; and (2) BlinkDB adopts confidence intervals to mea-
sure accuracy; it only works on restricted group-by aggregate
queries; it requires to access all exact values of the group-
by attributes, and is not always possible under a resource

ratio α; moreover, it is developed for probabilistic sampling
approaches, as opposed to BEAS.

We evaluated the RC measure with full TPCH, TFACC and
AIRCA. For MAC, we only used synthetic TPCH to illustrate
the impact of |D|; the results on the real-life datasets are
consistent. We found that F-measure is 0 in all cases for most
queries, and hence do not show it in the figures.

(1) Varying α. Varying α from 1.5× 10−4 to 5.5× 10−4, we
evaluated its impact on the average accuracy of the methods.

(A) RC-measure. We find the following. As reported in Fig-
ures 6(a), 6(b), 6(c), (a) the approximate answers computed
by BEAS are accurate. BEASSPC and BEASRA are consistently
above 0.72; BEASSPC is above 0.85 when α > 3.5 × 10−4,
4.5 × 10−4 and 5.5 × 10−4 on TFACC, AIRCA and TPCH,
respectively; and BEASRA is above 0.82 in the same setting;
(b) BEAS outperforms Sampl, Histo and BlinkDB; e.g., when
α is 1.5× 10−4 on TPCH, on average BEASRA is 24, 3.4 and
2.0 times more accurate than Sampl, Histo and BlinkDB, re-
spectively, and the gap for BEASSPC is larger; the results on
the other datasets are similar. (c) The larger α is, the more
accurate BEAS is. This is because when BEAS generates α-
bounded plans, it can inspect more tuples guided by input
query Q to pick more relevant tuples. In contrast, Sampl and
Histo use one-size-fit-all synopses and are less sensitive to α.
While BlinkDB dynamically select samples, it does not work
very well on queries with joins, max or min. These verify the
benefit of dynamic data reduction of BEAS.

(B) MAC measure. As shown in Fig. 6(d), under MAC, (a)
BEASSPC and BEASRA also perform better than the others:
18.3, 2.4, and 1.9 times more accurate than Sampl, Histo
and BlinkDB on TPCH, respectively, when α = 1.5× 10−4.
Their MAC accuracy is even a bit higher than their RC ac-
curacy. This is because the RC-measure subsumes the MAC
measure with coverage Fcov (Section 3), and additionally as-
sesses relevance. (b) Histo still falls behind BEASSPC, BEASRA

and BlinkDB, since it uses the same synopsis of size α|D|
for all queries, as opposed to BEAS and BlinkDB. Its gap
from BlinkDB is smaller than its RC accuracy since Histo is
optimized for MAC. (c) The MAC accuracy of BlinkDB is
lower than BEASSPC and BEASRA, although also a bit higher
than its RC accuracy, e.g., when α > 4.5 × 10−4, BlinkDB
is 0.45 while BEASRA and BEASSPC are above 0.73 and 0.86,
respectively, for the same reason as under the RC measure.

(2) Varying |D|. Fixing α = 5.5× 10−4, we varied the scale
factor σ of TPCH from 5 to 25, to assess the impact of |D|.
(A) RC-measure. As shown in Fig. 6(e), (a) BEASSPC and
BEASRA are above 0.75 all the time. (b) BEAS performs
better than Sampl, Histo and BlinkDB. This is more evident
on larger datasets: BEASSPC and BEASRA are above 0.82
when σ > 0.8. In contrast, Sampl, Histo and BlinkDB are not
very sensitive to |D|. This is because when D grows, BEAS
takes advantage of the larger budget α|D| to find tuples
more relevant to query Q, and hence improve S. In contrast,
Sampl and Histo do not benefit much from larger D, since
their searches are confined to a (larger) predefined synopsis;
similarly for BlinkDB due to its restricted sample selection.

(B) MAC measure. As shown in Fig. 6(f), (a) BEASSPC and
BEASRA have the highest MAC accuracy among all. Histo
and Sampl fall behind, but Histo is closer to BlinkDB than
its RC accuracy. (b) BEAS benefits more from larger |D|. For
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(d) TPCH: varying α(×10−4)
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Figure 6: Accuracy and scalability of BEAS, the resource-bounded approximation framework

instance, when σ varies from 5 to 25, BEASSPC increases from
0.72 to 0.93, while it is from 0.31 to 0.36 for Histo; similarly
for BlinkDB. The results are consistent with Fig. 6(d).

(3) Varying Q. Fixing α = 5.5 × 10−4, we varied #-sel, #-
prod and the types of queries Q to evaluate the impact of
Q. We report the RC accuracy on TFACC in Figures 6(g),
6(h) and 6(i); the results on AIRCA and TPCH are consistent,
under either RC or MAC measure (not shown). We treat the
accuracy of Histo for RA as 0 since it does not support RA;
similarly for BlinkDB on non-aggregate queries.

We find the following. (1) BEAS does better with larger
#-sel, since its query plans are guided by relevance to Q
(see Section 5). In contrast, Histo and Sampl are indifferent
to #-sel since their searches are confined to one-size-fit-all
synopses, and do not explore selection conditions to improve
accuracy. The accuracy of BlinkDB also benefits from #-sel,
but not as much as BEAS. (2) BEAS and BlinkDB perform
worse with larger #-prod since Cartesian products scale up
distances of values (see Section 3). Histo and Sampl also
degrade with larger #-prod, but are less sensitive as their
accuracy is dominated by synopses. (3) BEAS outperforms
Histo, Sampl and BlinkDB, and does the best for SPC.

Exp-2: Accuracy of bounded η. We evaluated the quality
of estimated lower bound η, denoted by BEASSPC(η) and
BEASRA(η) for SPC and RA, respectively, aggregate or not.

In the same setting as Exp-1, the results are reported in
Figures 6(a), 6(b), 6(c) (varying α), Figure 6(e) (varying |D|)
and Figures 6(g), 6(h) and 6(i) (varying Q). These verify
that the lower bound η estimated by BEAS is close to the
accuracy of answers. For instance, when BEASSPC is 0.92 on
TFACC with α = 5.5× 10−4, BEASSPC(η) is 0.85. The other
methods do not compute an accuracy bound like η.

Exp-3: Resource ratio for exact answers. Varying the
scale |D| of TPCH as in Exp-1(2), we evaluated the average
αexact for BEAS to find exact answers for queries in Exp-1(2).

As shown in Fig. 6(j), the larger |D| is, the smaller αexact

is. On full TPCH, αexact is 2.6× 10−6 for SPC and 4.1× 10−6

for RA. Indeed, (a) the majority of queries that are answered
exactly in Exp-2(b) are boundedly evaluable [11]. Their plans
access a bounded amount of data independent of |D|, which
is typically very small. (b) For those queries that are not
bounded, BEAS applies access constraints as much as possible;
the remaining parts amount for only a small part of D for
approximation with access templates.

Exp-4: Index size. We also examined the indices of access
schema. As reported in Fig. 6(k), in all three datasets, the
indices for access constraints take less than 7% of the size
|D| of the dataset D in all three cases, and its entire indices
(with templates) are in c|D| for 5.7 < c < 8.8, among which
the indices of access schema that are actually used by BEAS
for answering queries account for less than 64% of |D|.

We remark the following. (1) The compared methods use
about the same amount of indices, e.g., BlinkDB also em-
ploys all the indices as its samples in order to achieve the
accuracy reported. (2) The total index size is comparable to
typical indices of traditional DBMS, e.g., 3-5 times of |D| for
TPCH [31]. (3) To answer a query, BEAS accesses at most
α|D| tuples no matter whether the tuples are from the indices
of an access schema or the original D, and no matter how
big D and the indices are. (4) It is possible to reduce indices
by using “optimal access schema”, as BEAS only needs to
use a fraction of the simple access schema tested.

Exp-5: Efficiency and scalability. Finally, we evaluated
(a) the efficiency of BEAS for generating α-bounded plans;
and (b) the scalability of the plans. For all queries, BEAS
generates α-bounded plans in less than 200ms. In the same

983



setting as Exp-2(b), we report the scalability of the plans. As
shown in Fig. 6(l), the plans scale well with |D|, as expected,
as they access only an α-fraction of D. They took at most
10.2 seconds on full datasets, while both PostgreSQL and
MySQL could not finish within 3 hours (hence not shown).

Summary. We find the following. (1) The RC-measure
quantifies the quality of approximate answers and reflects the
changes to resource ratio α, as opposed to, e.g., F-measure.
(2) BEAS has accuracy consistently above 0.85 when α >
5.5× 10−4 on all three datasets for SPC queries, and above
0.82 for RA, aggregate or not, under both RC-measure and
MAC measure. Better still, the RC-measure gets higher when
either dataset D or resource ratio α grows larger. (3) BEAS
is able to find exact answers for RA queries under α as small
as 4.1×10−6 on AIRCA. (4) BEAS is efficient and scalable. It
generates α-bounded plans in 200ms, and the plans compute
answers for all queries within 10.2 seconds for α = 5.5 ×
10−4, even on AIRCA of 60GB and TPCH with 200 million
tuples, while conventional PostgreSQL and MySQL cannot
terminate within 3 hours. (5) The bound η estimated by
BEAS is accurate. (6) While Histo, Sampl and BlinkDB are
effective when answering simple aggregate queries, they are
not as accurate as BEAS for full (aggregate) SPC and RA,
especially on queries with multiple selections or joins.

9. CONCLUSION
We have proposed BEAS, a framework for querying (big)

relations with bounded resources. Its novelty consists of ac-
cess templates, a new accuracy measure, a resource-bounded
approximation scheme, and resource-bounded algorithms for
answering SPC, RA and RAaggr queries with a deterministic
accuracy lower bound. Our experimental study has verified
that BEAS is promising for answering unpredictable queries,
aggregate or not, under a small resource ratio.

The work is a step towards striking a balance between
available resources and accuracy. We are currently deploying
and evaluating BEAS at sites of our industry collaborators.
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