
Scalable Asynchronous Gradient Descent Optimization for
Out-of-Core Models

Chengjie Qin‡∗ Martin Torres† Florin Rusu†
†University of California Merced, ‡GraphSQL, Inc.

{cqin3, mtorres58, frusu}@ucmerced.edu

ABSTRACT
Existing data analytics systems have approached predictive model
training exclusively from a data-parallel perspective. Data exam-
ples are partitioned to multiple workers and training is executed
concurrently over different partitions, under various synchroniza-
tion policies that emphasize speedup or convergence. Since mod-
els with millions and even billions of features become increasingly
common nowadays, model management becomes an equally im-
portant task for effective training. In this paper, we present a gen-
eral framework for parallelizing stochastic optimization algorithms
over massive models that cannot fit in memory. We extend the lock-
free HOGWILD!-family of algorithms to disk-resident models by
vertically partitioning the model offline and asynchronously updat-
ing the resulting partitions online. Unlike HOGWILD!, concur-
rent requests to the common model are minimized by a preemptive
push-based sharing mechanism that reduces the number of disk ac-
cesses. Experimental results on real and synthetic datasets show
that the proposed framework achieves improved convergence over
HOGWILD! and is the only solution scalable to massive models.

1. INTRODUCTION
Data analytics is a major topic in contemporary data manage-

ment and machine learning. Many platforms, e.g., OptiML [38],
GraphLab [26], SystemML [12], Vowpal Wabbit [1], SimSQL [2],
GLADE [4], Tupleware [7] and libraries, e.g., MADlib [15], Bis-
marck [11], MLlib [37], Mahout1, have been proposed to provide
support for parallel statistical analytics. Stochastic gradient de-
scent is the most popular optimization method used to train ana-
lytics models across all these systems. It is implemented – in a
form or another – by all of them. The seminal HOGWILD!-family
of algorithms [28] for stochastic gradient descent has received –
in particular – significant attention due to its near-linear speedups
across a variety of machine learning tasks, but, mostly, because of
its simplicity. Several studies have applied HOGWILD! to paral-
lelize classical learning methods [33, 11, 25, 9, 8, 5] by performing
model updates concurrently and asynchronously without locks.
∗Work mostly done while a Ph.D. student at UC Merced.
1https://mahout.apache.org

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

Due to the explosive growth in data acquisition, the current trend
is to devise prediction models with an ever-increasing number of
features, i.e., big models. For example, Google has reported models
with billions of features for predicting ad click-through rates [27]
as early as 2013. Feature vectors with 25 billion unigrams and
218 billion bigrams are constructed for text analysis of the English
Wikipedia corpus in [20]. Big models also appear in recommender
systems. Spotify applies Low-rank Matrix Factorization (LMF) for
24 million users and 20 million songs2, which leads to 4.4 billion
features at a relatively small rank of 100.

Since HOGWILD! is an in-memory algorithm, it cannot handle
these big models – models that go beyond the available memory
of the system – directly. In truth, none of the analytics systems
mentioned above support out-of-memory models because they rep-
resent the model as a single shared variable—not as a partitioned
dataset, which is the case for the training data. The only exception
is the sequential dot-product join operator introduced in [32] which
represents the model as a relational table. Parameter Server [22] is
an indirect approach that resorts to distributed shared memory. The
big model is partitioned across several servers, with each server
storing a sufficiently small model partition that fits in its local mem-
ory. In addition to the complexity incurred by model partitioning
and replication across servers, Parameter Server also has a high
cost in hardware and network traffic. While one can argue that
memory will never be a problem in the cloud, this is not the case
in IoT settings. The edge and fog computing paradigms3 push pro-
cessing to the devices acquiring the data which have rather scarce
resources and do not consider data transfer a viable alternative—for
bandwidth and privacy reasons. Machine learning training in such
an environment has to consider secondary storage, e.g., disk, SSD,
and flash cards, for storing big models.

Problem. In this work, we investigate parallel stochastic opti-
mization methods for big models that cannot fit in memory. Specif-
ically, we focus on designing a scalable HOGWILD! algorithm.
Our setting is a single multi-core server with attached storage, i.e.,
disk(s). There is a worker thread associated with each core in
the system. The training data as well as the model are stored on
disk and moved into memory only when accessed. Training data
are partitioned into chunks that are accessed and processed as a
unit. Several chunks are processed concurrently by multiple worker
threads—data-parallel processing. While access to the training data
follows a well-behaved sequential pattern, the access to the model
is unpredictable. Moreover, there are many model accesses for each
training example—the number of non-zero entries in the example.

2http://slideshare.net/MrChrisJohnson/algorithmic-music-
recommendations-at-spotify
3https://techcrunch.com/2016/08/02/how-fog-computing-pushes-iot-
intelligence-to-the-edge/

986

Thus, the challenge in handling big models is how to efficiently
schedule access to the model. In the worst case, each model access
requires a disk access. This condition is worsened in data-parallel
processing by the fact that multiple model accesses are made con-
currently by the worker threads—model-parallel processing.

Approach. While extending HOGWILD! to disk-resident mod-
els is straightforward, designing a truly scalable algorithm that sup-
ports model and data-parallel processing is a considerably more
challenging task. At a high-level, our approach targets the main
source that impacts performance – the massive number of con-
current model accesses – with two classical database processing
techniques—vertical partitioning and model access sharing.

The model is vertically partitioned offline based on the concept
of “feature occurrence” – we say a feature “occurs” when it has a
non-zero value in a training example – such that features that co-
occur together require a single model access. Feature co-occurrence
is a common characteristic of big models in many analytics tasks.
For example, textual features such as n-grams4 which extract a
contiguous sequence of n words from text generate co-occurring
features for commonly used sentences. Gene sequence patterns
represent an even more widespread example in this category. It is
important to notice that feature co-occurrence is fundamentally dif-
ferent from the feature correlation that standard feature engineering
processes [24, 41, 6, 17] try to eliminate. In feature engineering,
correlation between features is measured by coefficients such as
Pearson’s coefficient [13] instead of co-occurrence. In this work,
we are interested exclusively in what features co-appear together.
Thus, we refer to “feature co-occurrence” as “correlation”.

During online training, access sharing is maximized at several
stages in the processing hierarchy in order to reduce the number
of disk-level model accesses. The data examples inside a chunk
are logically partitioned vertically according to the model parti-
tions generated offline. The goal of this stage is to cluster together
accesses to model features even across examples—vertical parti-
tioning achieves this only for the features that co-occur in the same
example. In order to guarantee that access sharing occurs across
partitions, we introduce a novel push-based mechanism to enforce
sharing by vertical traversals of the example data and partial dot-
product materialization. Workers preemptively push the features
they acquire to all the other threads asynchronously. This is done
only for read accesses. The number of write accesses is minimized
by executing model updates at batch-level, rather than for every ex-
ample. This technique, i.e., HogBatch [31, 35], is shown to dramat-
ically increase the speedup of HOGWILD! – and its convergence –
for memory-resident models because it eliminates the “pingpong”
effect [35] on cache-coherent architectures.

Contributions. We design a scalable model and data-parallel
framework for parallelizing stochastic optimization algorithms over
big models. The framework organizes processing in two separate
stages – offline model partitioning and asynchronous online train-
ing – and brings the following major contributions:

• Formalize model partitioning as vertical partitioning and design
a scalable frequency-based model vertical partitioning algorithm.
The resulting partitions are mapped to a novel composite key-
value storage scheme.
• Devise an asynchronous method to traverse vertically the train-

ing examples in all the data partitions according to the model
partitions generated offline.
• Design a push-based model sharing mechanism for incremental

gradient computation based on partial dot-products.

4https://en.wikipedia.org/wiki/N-gram

• Implement the entire framework using User-Defined Aggregates
(UDA) which provides generality across databases.
• Evaluate the framework for three analytics tasks over synthetic

and real datasets. The results prove the scalability, reduced over-
head incurred by model partitioning, and the consistent superior
performance of the framework over an optimized HOGWILD!
extension to big models.

Outline. Preliminaries on stochastic optimization and vertical
partitioning are presented in Section 2, while HOGWILD! is in-
troduced in Section 3. The high-level approach of the proposed
framework is presented in Section 4, while the details are given in
Section 5 (offline stage) and Section 6 (online stage). Experimental
results are included in Section 7, related work in Section 8, while
concluding remarks and plans for future work are in Section 9.

2. PRELIMINARIES
In this section, we give an overview of several topics relevant

to the management and processing of big models. Specifically, we
discuss gradient descent optimization as the state-of-the-art in big
model training, key-value stores as the standard big model storage
manager, and vertical partitioning.

Big model training. Consider the following optimization prob-
lem with a linearly separable objective function:

Λ(~w) = minw∈Rd

N∑
i=1

f (~w, ~xi; yi) (1)

in which a d-dimensional model ~w has to be found such that the
objective function is minimized. The constants ~xi and yi, 1 ≤ i ≤
N , correspond to the feature vector of the ith data example and its
scalar label, respectively.

Gradient descent represents the most popular method to solve
the class of optimization problems given in Eq. (1). Gradient de-
scent is an iterative optimization algorithm that starts from an ar-
bitrary model ~w(0) and computes new models ~w(k+1), such that
the objective function, a.k.a., the loss, decreases at every step, i.e.,
Λ(w(k+1)) < Λ(w(k)). The new models ~w(k+1) are determined
by moving along the opposite gradient direction. Formally, the
gradient ∇Λ(~w) =

[
∂Λ(~w)
∂w1

, . . . , ∂Λ(~w)
∂wd

]
is a vector consisting of

entries given by the partial derivative with respect to each dimen-
sion. The length of the move at a given iteration is known as the
step size—denoted by α(k). With these, we can write the recursive
equation characterizing the gradient descent method:

~w(k+1) = ~w(k) − α(k)∇Λ
(
~w(k)

)
(2)

To increase the number of steps taken in one iteration, stochastic
gradient descent (SGD) estimates the Λ gradient from a subset of
the training dataset. Notice that the model update is applied only
to indices with non-zero gradient which correspond to the non-zero
indices in the training example. In order for SGD to achieve con-
vergence, the examples have to be processed in random order at
each iteration. Parallelizing SGD is not straightforward because
of a chain dependency on model updates, where the current gra-
dient relies on the previous update. Two classes of parallel SGD
algorithms stem from this problem. Model-merging SGD [43, 31]
simply ignores the dependencies across data partitions and aver-
ages the partial models. HOGWILD! [28, 35] is a parallel lock-free
SGD algorithm for shared-memory architectures that allows multi-
ple threads to update a single shared model concurrently, without
any synchronization primitives. The resulting non-determinism en-
hances randomness and guarantees convergence for sparse models.

987

In big model gradient descent optimization, the model ~w is too
large to fit in memory. There is no assumption about the relation-
ship between d andN—the number of examples can or cannot fit in
memory. This makes gradient computation and model update con-
siderably more complicated. In [32], the out-of-core dot-product
~w · ~xi is identified as the primordial operation for big model train-
ing. In order to compute the out-of-core dot-product, the model ~w
is range-based partitioned into pages on secondary storage. Each
training example ~xi accesses the model by requesting its corre-
sponding pages. A two stage solution is proposed to optimize the
dot-product computation. In the reordering stage, groups of exam-
ples ~xi are partially reordered to minimize the number of secondary
storage accesses to model ~w. In the batch stage, the requests made
to the same model partition are aggregated into a single mega-
request. This reduces the number of calls to the model storage
manager. However, the solution proposed in [32] has several lim-
itations. First, the dot-product join operator is serial, with each
dot-product ~w · ~xi being computed sequentially. Second, range-
based partitioning wastes memory since model entries are grouped
together rather arbitrarily, based on their index. Finally, it is as-
sumed that all the model pages accessed by an example ~xi fit in
memory. In this work, we address all these limitations and propose
a scalable model and data-parallel SGD algorithm. While our focus
is on disk-resident models, a similar problem exists between main
memory and cache—how to optimize model access to cache? We
let this topic for future work.

Key-value stores. Parameter Server [22] tackles the big model
problem by partitioning the model ~w over the distributed memory
of a cluster of “parameter servers”. Essentially, the model is stored
as (key, value) pairs inside a memory-resident distributed hash ta-
ble, with the model index as key and the model value as value. This
storage configuration allows the model to be accessed and modified
by individual indices and avoids the drawback of wasting memory
in range-based partitioning. Key-value representation is also more
compact when storing sparse models considering that only the non-
zero indices are materialized.

In this work, we focus on disk-resident key-value stores instead
of distributed memory hash tables. Disk-resident key-value stores
implement optimizations such as log-structured merge (LSM) trees.
LSM trees [29, 3] are data structures optimized for random writes.
They defer and batch disk writes, cascading the changes from mem-
ory to disk in an efficient manner reminiscent of merge sort. The
scalable write performance of LSM-trees can be particularly use-
ful for SGD since the model is updated frequently. Key-value
stores also provide concurrent access to key-value pairs by applying
sharding techniques on keys. Sharding splits the keys into differ-
ent partitions in the buffer manager, allowing concurrent lock-free
access to keys in distinct partitions. Key-value stores have a lim-
ited interface, where values are retrieved and updated using a sim-
ple get/put API. Even though get/put operations allow direct
access to every index of the model ~w, a large number of these oper-
ations have to be performed for big models. These can significantly
amplify the overhead of the API function calls. In this paper, we
study how to utilize the advantages of disk-based key-value stores
for big models in order to reduce the number of get/put calls.

Vertical partitioning. Vertical partitioning [16, 42] is a physi-
cal design technique to partition a given logical relation into a set
of physical tables that contain only a subset of the columns. One
extreme is column-store, where each column of a table is stored
as a partition. The other extreme is row-store, where there is only
one partition containing all the columns. The purpose of vertical
partitioning is to improve I/O performance for queries that access
only a subset of the columns of a wide table by reading smaller

vertical partitions instead of the full table. Vertical partitioning al-
gorithms seek to find the optimal partitioning scheme for a given
workload consisting of a set of SQL statements. The drawback of
vertical partitioning is that the workload has to be known before-
hand and extra cost is incurred when different vertical partitions
are joined back to reconstruct the original table. There has been an
abundance of work proposing vertical partitioning algorithms for
different scenarios. The survey and detailed comparison in [16] is
an excellent reference. In this work, we propose to use vertical
partitioning techniques in order to improve the I/O performance of
disk-based key-value stores by reducing the number of get/put
requests made to the model ~w. Moreover, different (key, value) pair
partitions can be accessed concurrently.

3. HOGWILD! FOR BIG MODELS
In this section, we introduce the original shared-memory HOG-

WILD! algorithm [28] for stochastic gradient descent optimization
and provide an immediate extension to big models. Then we iden-
tify the limitations of the straightforward algorithm and specify the
challenges that have to be addressed to make it scalable.

Algorithm 1 HOGWILD!

1. for i = 1 to N do in parallel
2. ~w(k+1) ← ~w(k) − α(k)∇Λ

(
~w(k), ~xη(i) ; yη(i)

)
HOGWILD! Conceptually, HOGWILD! is a very simple algo-

rithm. It iterates over the examples ~xi and applies the model up-
date equation (2). However, this is done in parallel and the order in
which examples are considered is random. Since there is no syn-
chronization, the model at step k + 1 can be written concurrently
by multiple threads. This happens, though, only for the common
non-zero entries—an example updates only its non-zero entries. As
long as the examples are sparse relative to the number of features in
the model, [28] proves that HOGWILD! achieves the same conver-
gence as the serial implementation of SGD. Due to the complete
lack of synchronization, it is expected that HOGWILD! achieves
linear speedup. However, this is not the case for modern multi-core
architectures because of the implicit cache-coherency mechanism
that triggers the “pingpong” effect [35]. Fortunately, this effect can
be eliminated by a simple modification to the algorithm—instead
of updating model ~w for every example, we update it only once for
a batch of examples. This technique is known as mini-batch SGD
and requires each thread to make a local copy of the model ~w.

Algorithm 2 Big Model HOGWILD!

1. for i = 1 to N do in parallel
2. for each non-zero feature j ∈ {1, . . . , d} in ~xη(i) do
3. get ~w(k)[j]

4. compute∇Λ
(
~w(k)[j], ~xη(i) ; yη(i)

)
5. end for
6. ~w(k+1) ← ~w(k) − α(k)∇Λ

(
~w(k), ~xη(i) ; yη(i)

)
7. for each non-zero feature j ∈ {1, . . . , d} in ~xη(i) do
8. put ~w(k+1)[j]
9. end for

10. end for

Naive HOGWILD! for big models. In the case of big mod-
els, the vector ~w cannot be fully stored in memory—not to men-
tion replicated across threads. Since only portions of the model are

988

 1 2 3 4

1
5 6

1

3 9
4

5

2

3 16
1 9 7

2 8 5

4 63

3 84
1

Disk

(x⃗12
)X

W

 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4

Partition 1 Partition 2

Model Index:

1.9

Model Value:

1.2 1.0 0.65 0.7 0.82

1 2 3 4 5 6

1 2 3 4 5 6

Data Index:

1.9 1.2 1.0 0.65 0.7 0.82

3

Zero Value Indices

Correlated Indices

Non-Zero Value Indices w⃗

 1 2 3 4 5 6

2 3 5
5 1 1
9 2

4 7 4

 1 2 3 4 5 6

Partition 3

(x⃗31
)

(x⃗33
)

(x⃗32
)

(x⃗11
)

(x⃗13
)

(x⃗14
)

(x⃗21
)

(x⃗24
)

(x⃗23
)

6

1

(x⃗34
)

(x⃗22
)

Figure 1: High-level approach in the proposed scalable HOGWILD! framework for big models.

cached in memory, every model access is potentially a disk access.
Thus, model accessing becomes a series of requests to the stor-
age manger—instead of simple memory references. This raises the
question of how to store and retrieve the model from disk, i.e., what
is the optimal model storage manager? Since the model is accessed
at index granularity, a key-value store, e.g., LevelDB, makes for
the perfect storage manager—the model index is the key and the
model value corresponds to the payload. While in-memory key-
value stores have been used before for model access due to their
simple get/put interface [22, 5], as far as we know, this is the
first attempt to use a disk key-value store for model management.

The immediate extension of HOGWILD! to big models – shown
in Algorithm 2 – requires a get and a put call for each non-zero
feature in an example, thus the explicit loops over the features.
Given that there are many such non-zero features for every exam-
ple, this puts tremendous pressure on the key-value store. The rel-
atively random distribution of non-zero features across examples
worsens the condition—to the point where the implicit sharding
characteristic to key-value stores becomes irrelevant. Moreover,
considering that half of the requests are put, the number of merge
operations incurred by the LSM-tree is also high. While the number
of put requests can be reduced with the mini-batch technique, this
is hardly sufficient for big models because each get may require
disk access. As with any other storage manager, key-value stores
resort to caching in order to reduce the latency of get/put oper-
ations. Thus, they are susceptible to cache thrashing because the
order in which get/put requests are issued matters. The naive
HOGWILD! extension does not consider the request order inside
a thread or across threads. Finally, the complete independence be-
tween threads in HOGWILD! becomes a limitation in the case of
big models because model access is considerably more expensive
than a memory reference. Copying a model index locally inside
a thread becomes necessary—not an option specific to mini-batch
SGD. This local copy provides an alternative for sharing that by-
passes the key-value store and has the potential to eliminate the
corresponding disk accesses from other threads.

4. SCALABLE HOGWILD!
We address the limitations of the naive HOGWILD! extension

to big models by designing a novel model and data-parallel SGD
framework specifically optimized for disk-based key-value stores.

In this section, we provide a high-level overview of the proposed
approach. The details are presented in subsequent sections.

Correlated indices. We illustrate the main idea of the proposed
framework based on the example depicted in Figure 1. The sparse
training examplesX = {~x11 , . . . , ~x14 , . . . , ~x31 , . . . ~x34} are orga-
nized in 3 partitions as shown in the figure. The dense big model ~w
is stored on disk with its working set W consisting of indices 1, 4,
5, and 6, respectively, kept in memory. It can be seen that partitions
have correlated features, i.e., indices that co-occur across (almost)
all the examples in the partition. For example, indices 2 and 3 in
partitions 1 and 3 co-occur in 3 examples, while indices 1 and 5
co-occur in all the examples of partition 2. While index correlation
is emphasized in Figure 1, this is a rather common characteristic of
big models across analytics tasks in many domains—several real
examples are provided in Section 1.

We design the scalable HOGWILD! framework by taking advan-
tage of index correlation in both how the model is stored on disk
and how it is concurrently accessed across threads. There are two
stages in the scalable HOGWILD! framework. The offline stage
aims to identify index correlations in the training dataset in order to
generate a correlation-aware model partitioning that minimizes the
number of get/put requests to the key-value store. In the online
training stage, the model partitioning is used to maximize access
sharing across threads in order to reduce the number of disk-level
model accesses. We illustrate how each stage works based on the
example in Figure 1.

Offline model partitioning. Existing solutions do not consider
index correlation for storing and organizing the model on disk.
They fall in two categories. In the first case, each index is as-
signed an individual key that is retrieved using the key-value store
get/put interface [22]. This corresponds to columnar partition-
ing and incurs all the limitations of the naive HOGWILD! exten-
sion. Range-based partitioning is the other alternative [32]. In this
case, indices that are adjacent are grouped together. For example,
the range-based partitioning of model ~w constrained to two indices
groups pairs {1, 2}, {3, 4}, and {5, 6}, respectively. However, this
partitioning does not reflect the correlated indices in the training
dataset, e.g., indices 2 and 3 still require two requests. An opti-
mal partitioning of the model ~w groups indices {1, 5}, {2, 3}, and
{4, 6}, so that indices 2 and 3 are concurrently accessed, effec-
tively minimizing the number of requests to the model. We propose

989

Model
Vertical

Partitioning
Algorithm

1 3 9

1 4 2

2 8 5

4 3 6

5 3 6 1

1 9 7

3 4 8

6 1 3 5

2 3 5

5 1 1

9 2

4 7 4

Index: 1 2 3 4 5 6
X

1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

Index Map
original index

mapped index1

2

3

4

5

6

a : (1), (5)

b : (2), (3)

c : (4)

d : (6)

Model

1

2

3

4

5

6

a
1

5

b
2

3

c 4

d 6

Vertical
Partitioned
Model

Figure 2: The offline model vertical partitioning stage.

a novel solution to find the optimal model partitioning by formal-
izing the problem as the well-known vertical partitioning [16] in
storage access methods (Section 5).

Asynchronous online training. Data and model partitioning fa-
cilitate complete asynchronous processing in online training—the
partitions over examples ~xi are processed concurrently and them-
selves access the model partitions generated in the offline stage
concurrently. This HOGWILD! processing paradigm – while op-
timal in shared-memory settings – is limited by the disk access la-
tency in the case of big models. Model partitioning alone reduces
the number of accesses for the correlated indices inside a training
example—partition 2 incurs a single access to indices 1 and 5 for
each example in Figure 1. However, it does not address correlated
index accesses across examples and across threads. In Figure 1, we
illustrate the case when data examples ~x11 , ~x21 , and ~x31 access the
model ~w concurrently. The order in which requests are made plays
an important role in enhancing cache locality. For example, if ~x11

and ~x21 request index 1 while ~x31 requests index 2, the opportu-
nity of sharing access to index 2 – used by all the examples – is
completely incidental. The same reasoning also applies to the ex-
amples inside a partition. At a first look, coordinating model access
across partitions seems to require synchronization between the cor-
responding threads—exactly the opposite of the HOGWILD! ap-
proach. This is not the case. We devise an asynchronous solution
that traverses the training examples in all the data partitions verti-
cally, according to the model partitions generated offline. This en-
hances cache locality by allowing the same model index to be used
by all the examples inside a partition. With this, partition 2 in Fig-
ure 1 incurs a single access to indices 1 and 5 for all the examples.
In order to guarantee access sharing across partitions, we design
an asynchronous mechanism in which partitions preemptively push
the indices they acquire to all the other concurrent partitions. This
is done only for get accesses. Following the example in Figure 1,
when ~x31 obtains index 2, it pushes it to ~x11 and ~x21 , effectively
eliminating their request for index 2. The online stage is presented
in Section 6.

Convergence considerations. We pay careful attention not to
impact the convergence characteristics of the original HOGWILD!
algorithm. Quite the opposite, the experimental results in Section 7
show that our use of correlation not only preserves the convergence
of HOGWILD!, but improves it. This is in line with the results
obtained in [40] where an orthogonal approach based on the con-
cept of conflict graph is proposed. Abstractly, model partitioning is
equivalent to the conflict graph—a partition corresponds to a con-
nected component in the graph. Both are considered as a unit in

model updates. As long as there is no interaction between parti-
tions, i.e., connected components, [40] proves that a higher con-
vergence rate than HOGWILD! can be achieved. When that is not
the case, we get the default HOGWILD! behavior. We improve
upon this by applying mini-batch updates. Instead of updating the
model for each example – extremely inefficient because of the mas-
sive number of expensive put calls – we execute a single put for
a batch. In order to avoid local model staleness [35], we precede
the put with a get to obtain the latest model. This technique is
shown to drastically improve convergence upon HOGWILD! [35].
To summarize, the proposed scalable HOGWILD! framework has
the convergence guarantees given in [40] when partitions do not
overlap and the HogBatch [35] behavior otherwise.

5. MODEL ACCESS MANAGEMENT
In this section, we present the offline model partitioning stage

which serves to identify correlated indices in the training exam-
ples. The goal is to generate a correlation-aware partitioning that
minimizes the number of model requests, i.e., get/put calls, for
the entire dataset. This translates into a corresponding reduction in
the number of disk accesses. To this end, we propose a compos-
ite storage scheme that maps correlated indices into a single key
in the key-value store. We find the correlated indices by formal-
izing model access as vertical partitioning. We design a scalable
frequency-based vertical partitioning algorithm able to cope with
the dimensionality of big models and the massive number of train-
ing examples. The complete process is illustrated in Figure 2.

Model storage. In a straightforward implementation, each in-
dex and value in the model are stored as a key-value pair. For ex-
ample, model index 2 in Figure 1 is represented as the key-value
pair (2 : 1.2), while model index 3 is mapped into (3 : 1.0).
Each of them is accessed independently with separate get/put
calls. We introduce a novel composite storage scheme that con-
siders index correlation and stores multiple indices under the same
key. Following the example, since model indices 2 and 3 are cor-
related, the key-value pairs (2 : 1.2) and (3 : 1.0) are grouped
together and stored as a composite payload under the new key
(a : (2 : 1.2), (3 : 1.0)). The key feature of the composite storage
scheme is that model indices are not stored individually, but clus-
tered based on the correlations among them. This composite key-
value mapping reduces the number of get requests to the key-value
store, thus the number of disk seeks. The tradeoff is an increase in
the payload size. We introduce a vertical partitioning algorithm that
quantifies this tradeoff when deciding to merge two indices. Al-
though we propose the composite scheme for disk-based key-value

990

stores, it may also be beneficial for in-memory hash tables since
grouped indices are fetched to cache with a single instruction.

Model vertical partitioning. Given the set of training examples,
the purpose of model partitioning is to identify the optimal compos-
ite key-value scheme. Specifically, we have to determine the num-
ber of keys and the payload corresponding to each key. The output
of model partitioning is an index map that assigns correlated origi-
nal indices to the same new index. For example, in Figure 2, index
2 co-occurs with index 3 seven times and index 1 co-occurs with
index 5 four times. In the index map, index 1 and 5 are mapped
to the same key a, while index 2 and 3 are mapped to key b. The
remaining indices, 4 and 6, are mapped individually to c and d, re-
spectively, even though index 6 co-occurs four times with index 2.
The strategy to manage the index map – which can be extremely
large for big models – is determined by the model partitioning al-
gorithm. We can rewrite the set of training examples based on the
computed index map as shown in Figure 3. Each training example
~xi contains at most four keys, each of which possibly being a com-
posite key. We emphasize that this rewriting is only logical—we do
not create a new copy of the training data. The mapping is applied
only during online training.

Our solution to model partitioning is inspired by vertical par-
titioning, where a similar problem is solved for optimal physical
design at a much smaller scale—the number of columns in a ta-
ble is rarely in the order of hundreds and the number of queries in
the workload is rarely in the millions. Model partitioning can be
mapped elegantly to vertical partitioning as follows. The training
data correspond to the query workload, with each sparse example
vector corresponding to a query and the non-zero indices to the ac-
cessed columns. The big model is equivalent to the logical relation
that has to be partitioned. The difference is that the big model is
essentially a one-row table that does not incur any join cost when
partitioned. However, the cost of having small model partitions
comes from the extra get requests made to the key-value store. As
far as we know, we are the first to identify model partitioning as a
vertical partitioning problem.

Vertical partitioning algorithm. We design a bottom-up model
vertical partitioning algorithm [16, 42], depicted in Algorithm 3. It
takes as input the model index set I , the sparse training examples
X , and the cost function cost(s) which computes the access cost for
a partition of size s. It returns a model partitioning that minimizes
the overall model access cost for the training set X . The algorithm
uses a bottom-up greedy strategy inspired by [14]. The main loop
is from line (2) to line (16). Initially, each model partition contains
a single index. At each iteration, a pair of partitions that generate
the largest reduction in the model access cost are merged together
into a partition. This pair of partitions are identified by examining
all the possible pairs of partitions in the current partitioning. The
process repeats until no pair of partitions can be found to reduce
the overall access cost.

Computing the reduction in cost of merging two partitions re-
quires a pass over the training vector X . This is time-consuming
when X contains a large number of examples—the case in analyt-
ics. Hill-Climb [14] alleviates this problem by pre-computing the
cost for all O(2d) partition pairs, where d is the dimensionality of
the model. Considering the size of d for big models, this method
is impractical. Instead of pre-computing all O(2d) partitions, we
compute an affinity matrix AF for the current partitioning at the
beginning of each iteration (lines (3)–(6)). An entry AF [i][j] in
the affinity matrix represents how many times partition i co-occurs
with partition j in the vector set X . Thus, the affinity matrix AF
is symmetric, with the diagonal value AF [i][i] representing how
many times partition i appears. Using the affinity matrix, the sub-

Algorithm 3 Model Vertical Partitioning

Require:
Model index set I = {1, 2, ..., d}
Sparse vector set X = {~x1, ~x2, ..., ~xn}
Cost function cost(s) for partition with size s

Ensure: Model partitions P = {P1, P2, ...}
1. for each index i ∈ I do Pi ← {i}

Main loop
2. while true do

Compute affinity matrix AF for partitions in P
3. for each vector ~xi ∈ X do
4. Collect partitions accessed by ~xi in P~xi
5. Compute affinity AF [i][j] for all pairs (Pi, Pj) in P~xi
6. end for
7. for each partition Pi ∈ P do
8. Compute cost Ci ← AF [i][i] · cost(|Pi|)

Select the best pair of partitions to merge
9. for each pair (Pi, Pj) in P do

10. Compute cost Cij for partition Pij = Pi ∪ Pj :
Cij = (AF [i][i] + AF [j][j] - AF [i][j]) · cost (|Pij |)

11. Compute reduction in cost if Pi and Pj are merged:
∆ij = Ci + Cj - Cij

12. end for
13. Pick the pair (Pi′ , Pj′) with largest reduction in cost ∆i′j′

14. if ∆i′j′ = 0 return partition P
15. else Merge Pi′ and Pj′
16. end while

sequent computation of the merging cost can be performed without
scanning the example set X for every candidate pair (lines (10)–
(11)). This is an important optimization because of the size of X .

Cost function. Assuming model indices are read from disk with
no caching, the cost of reading a single index i is ci = ts + tu,
where ts is the disk seek time and tu is the time to read a one
unit payload, i.e., one key-value pair. Assume also that only one
disk seek is required per read. When indices i and j are grouped
together under the same key, the cost of reading either of them is
ci = ts + 2 · tu. Essentially, combining two indices generates
a payload with twice the size, while the disk seek time stays the
same. Given a partition Pi, the cost of accessing it is cost(Pi) =
ts + |Pi| · tu. This is the cost function used in the model vertical
partitioning algorithm. Thus, the overall cost of accessing partition
Pi across the set X is AF [i][i] · cost(|Pi|).

Sampling & frequency-based pruning. The time complexity
of Algorithm 3 is O(Nd2), where N is the number of examples in
the vector set X and d is the dimensionality of the model. Given
the scale of N and d, this complexity is infeasible for practical
purposes. We propose a combined sampling and frequency-based
pruning technique to reduce the number of examples and model in-
dices considered by the algorithm. First, reservoir sampling [39]
is applied to extract a sample of N ′ � N examples. Second,
frequency-based dimension pruning is executed over the samples.
This involves computing the frequency of each model index oc-
curring in the training data. Only the top-k most frequent indices
are preserved and used in model partitioning. The non-extracted
indices are kept as individual partitions. The intuition behind prun-
ing is that infrequent indices have a reduced impact on reducing
the partitioning cost. In the extreme case, an index that does not
appear at all should not be considered for merging. Computing
top-k over big models is challenging due to the size of the domain,
i.e., the dimensionality of the model. Exact computation requires
disk access to preserve the counts for all the indices. A key-value

991

1 3 9

1 4 2

2 8 5

4 3 6

Index: 1 2 3 4 5 6
X

1

X
2

X
3

X
4

5 3 6 1

1 9 7

3 4 8

6 1 3 5

X
5

X
6

X
7

X
8

2 3 5

5 1 1

9 2

4 7 4

X
9

X
10

X
11

X
12

Partition
1

Partition
2

Partition
3

Index Map
from

offline stage

Partition
1

Partition
2

Partition
3

(1:1) (3:3) (4:9)

(2:1), (3:4) (6:2)

(5:5) (2:2), (3:8)

(1:4) (2:3), (3:6)

Index: a b c d

(1:5), (5:1) (2:3), (3:6)

(1:1), (5:7) (3:9)

(1:3), (5:8) (4:4)

(1:6), (5:3) (2:1) (6:5)

(1:2) (2:3), (3:5)

(5:1) (2:5) (6:1)

(2:9), (3:2)

(2:4), (3:7) (6:4)

Inverted indexes for partitions

a

X
5
, X

6

X
5
, X

6

b

W

Key-value
stored model

a b c d

1:1.9
5:0.7

2:1.2
3:1.0 4:0.65 6:0.82

Push-based
sharing

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
10

X
11

X
12

b

c

d

a

b

d

X
9
, X

10

X
9
, X

10
, X

11
, X

12

X
10

, X
12

a

X·W
4.9

5.2

13.9

17.2

19.8

15.8

0

0

12.4

6.7

12.8

11.8

X
1
, X

3
, X

4

X
1
, X

2
, X

3
, X

4

X
1

X
2

Figure 3: Online asynchronous training stage. Strikethrough dot-products are partial, while dashed indexes are pushed to other partitions.

store can be used for this purpose. Alternatively, approximate top-
k methods based on sketches [34] have been shown to be accurate
and efficient. This is what we use in our implementation.

6. ASYNCHRONOUS BIG MODEL SGD
In this section, we present how the scalable HOGWILD! frame-

work performs asynchronous updates on vertically partitioned big
models. Recall that the model indices are mapped to a smaller set
of new keys (Figure 2). Two challenges have to be addressed. The
first challenge is how to perform the SGD updates when the train-
ing data and the model have different representations. The index
map built in the offline stage is used to translate between the two
representations at runtime. The second major challenge is how to
efficiently access the partitioned model such that disk requests are
shared across partitions. We introduce a novel push-based mecha-
nism to enforce sharing by vertical traversals of the example data
and partial dot-product materialization.

On-the-fly data mapping. In order to accommodate the com-
posite model storage scheme generated offline, we map the exam-
ple vectors according to the index map. This is done on-the-fly,
when the example is used in training. For example, in Figure 3, ~x2

in partition 1, which originally has three non-zero indices (2 : 1),
(3 : 4), and (6 : 2), respectively, is mapped into a vector with only
two non-zero indices – (b : (2 : 1), (3 : 4)) and (d : (6 : 2)) –
in which b is a composite key. Due to the correlation-aware model
partitioning, the number of model requests made by example ~x2 is
effectively reduced by 1 with data mapping. During parallel pro-
cessing, data mapping is executed concurrently across all the active
partitions. Since data mapping is a read-only operation to the index
map, a single copy is shared across partitions.

Concurrent model access. Supporting the asynchronous HOG-
WILD! access – multiple data partitions request and update the
model concurrently, without any synchronization – is considerably
more difficult when the model is stored on disk than when it is
in memory because the overhead of accessing distinct model in-
dices differs dramatically. The overhead of accessing indices that
are in the key-value store cache is considerably smaller than the
overhead for indices on disk. We examine several alternatives to
this problem. Batching and reordering have been proposed to im-
prove disk-based model access locality in a serial scenario [32].
The idea is to buffer model requests and reorder them such that re-
quests to the same model indices are grouped together in order to
share model accesses. This technique not only reduces the number
of model requests, but also improves cache locality. We can ex-
tend the technique to parallel settings by aggregating requests from

multiple partitions and performing the serial algorithm. However,
this introduces synchronization between partitions – fast partitions
have to wait for slow partitions to finish their updates – and results
in poor speedup—not much higher than the serial baseline. A more
scalable strategy is to perform batching and reordering locally for
each partition and allow the model requests to proceed concurrently
without synchronization. Although this alternative provides higher
concurrency, it suffers from poor cache locality since the indices
requested by distinct partitions can be arbitrarily different.

Push-based model access sharing. We propose a novel push-
based sharing technique that supports scalable asynchronous model
access while achieving good cache locality. When a partition ac-
quires a model index, it preemptively pushes the corresponding
value to all the active partitions, before they start their own re-
quests. This is realized with an inverted index data structure. Push-
ing achieves better cache locality since, otherwise, the model value
may have been already evicted from the key-value store cache at the
time other partitions are requesting it. Push-based sharing is an op-
timistic strategy that assumes the same model index is required by
other partitions as well. When this is the case, it not only improves
cache locality, but also saves other partitions from requesting the
model, which increases contention to the key-value store. Reduc-
ing contention is a critical optimization in concurrent settings.

Inverted index. In order to further increase cache locality, a key-
to-vector inverted index is built for each partition, before starting to
request model indices. The inverted index is essentially a hash table
having as key the model index and as value the example vectors that
need the corresponding index. For example, in Figure 3, model in-
dex a is requested by examples ~x1, ~x3, and ~x4 in partition 1, shown
in the first entry of the inverted index for partition 1. The inverted
index guarantees that each model value required by a partition is re-
quested only once. Partitions start to access model values only after
they build their inverted index. Notice that preemptive model push-
ing happens concurrently with inverted index building, i.e., while a
partition is building the inverted index some of the entries can be
served by pushed model values from other partitions. Thus, highly-
concurrent operations on the inverted index data structure are criti-
cal in achieving high speedup. We realize this with the concurrent
cuckoo hash table [23] in our implementation.

We illustrate how the push-based model access strategy uses the
inverted indexes based on the example in Figure 3. At the time
instant shown in the figure, partitions 1, 2, and 3 have all finished
data mapping and have started to access the model concurrently.
Partitions 1 and 3 are ahead of partition 2 in that both of them
have completely built their inverted indexes and started to request

992

model values from the key-value store, while partition 2 has built an
inverted index only for examples ~x5 and ~x6. Assume that partition
1 is the first to request pair (a : (1 : 1.9), (5 : 0.7)) from the
key-value store. It subsequently pushes this pair to partitions 2
and 3, both of which are requiring key a. After getting key a,
partition 3 skips it and requests key b instead. Meanwhile, partition
2 continues building its inverted index. A similar action happens
when partition 3 gets key b. The pair (b : (2 : 1.2), (3 : 1.0)) is
pushed to partitions 1 and 2, saving partition 1 from requesting key
b again. The dashed arrows in Figure 3 denote the model pushing
directions. Notice that, even though partition 2 has not finished
building its inverted index, examples ~x5 and ~x6 are still able to
process indices a and b, respectively.

Asynchronous model updates. While preemptive pushing in-
creases concurrency, maintaining multiple copies of the model for
each partition is impractical given the scale of big models. We
avoid this by pre-aggregating the pushed model values for each ex-
ample vector. This is possible due to the nature of analytics tasks
having as primitive computation the dot-product between an ex-
ample vector and the model [32], i.e., ~xi · ~w. Dot-product is es-
sentially a sum over the product of non-zero indices in ~xi and ~w.
While [32] requires fetching in memory all the ~w indices corre-
sponding to non-zero indices in ~xi, in this work, we support partial
dot-product computation. Each example is attached a running dot-
product that is incrementally computed as indices are acquired—or
pushed by other partitions (Figure 3). Only when the dot-product
is complete, the example can proceed to gradient computation. In-
stead of applying the gradient to the model for each example vec-
tor, we accumulate the gradients within one partition and execute
batch model updates, i.e., mini-batch SGD. An inherent issue with
mini-batch SGD is that each partition can read stale model values
which do not reflect the updates from other partitions [35]. The
staleness is more problematic for big models because processing a
batch takes longer. In order to reduce staleness, we introduce an ad-
ditional get call before the model is pushed to the key-value store.
This get is only for the model indices updated inside the batch and
guarantees that correlated indices co-located in the same composite
key – but not accessed by the batch – are not overwritten with stale
values. This minor complication is the consequence of co-locating
correlated indices. From experiments, we observe that the addi-
tional get has a major impact on convergence, without increasing
the execution time.

7. EXPERIMENTAL EVALUATION
In this section, we evaluate the convergence rate, scalability, and

efficiency of the proposed HOGWILD! framework on four datasets
– two synthetic and two real – for three popular analytics tasks—
support vector machines (SVM), logistic regression (LR), and low-
rank matrix factorization (LMF). We also study the isolated effect
of model partitioning and push-based sharing on the number of disk
accesses. We take as a baseline for comparison the HogBatch ex-
tension of the naive HOGWILD! algorithm which is shown to be
considerably superior in practice [31, 35]. HogBatch buffers the
gradient for a batch and executes a single model update, effectively
reducing the number of put calls to one. Since this method is
logically equivalent to our proposed solution, it allows for a more
in-depth comparison for the same set of configuration parameters,
e.g., partition size and step size. We denote HogBatch as KV (key-
value) and the proposed method as KV-VP (key-value with vertical
partitioning) throughout all the results. The serial dot-product join
operator [32] corresponds to the KV-VP-1. We do not consider
distributed solutions based on Hadoop, Spark, or Parameter Server

because our focus is on single-node shared-memory parallelism.
Specifically, the experiments answer the following questions:

• What is the effect of model partitioning and push-based sharing
on the convergence rate and the number of disk accesses as a
function of the degree of parallelism available in the system?
• How do vertical model partitioning and push-based sharing im-

prove runtime and reduce disk access with respect to the baseline
HOGWILD!?
• How scalable is the proposed solution with the dimensionality

of the model, the degree of parallelism, and the key-value store
cache size?
• What is the sensitivity of offline model partitioning with respect

to the model dimensionality, the size of the training dataset, and
the frequency-based pruning?
• How much overhead does the key-value store incur compared to

an in-memory implementation for small models?

7.1 Setup
Implementation. We implement the proposed framework as

User-Defined Aggregates (UDA) in a parallel database system with
extensive support for executing external user code. We extend
the HOGWILD! UDAs from Bismarck [11] with support for big
models and implement the runtime optimizations presented in Sec-
tion 6. The database supports multi-thread parallelism and takes
care automatically of all the aspects related to data partitioning,
UDA scheduling, and resource allocation. The user has to pro-
vide only the UDA code containing the model to be trained and the
example data. The model is stored in HyperLevelDB [10]—an em-
bedded key-value store forked from LevelDB5 with improved sup-
port for concurrency. The UDAs access HyperLevelDB through the
standard get/put interface. There is a single HyperLevelDB in-
stance shared across the HOGWILD! UDAs. This instance stores
the shared model and manages access across all the HOGWILD!
UDAs. The inverted indexes are implemented using the highly-
concurrent cuckoo hashmap data structure [23]. Each HOGWILD!
UDA has an associated inverted index that is accessible to other
HOGWILD! UDAs for push-based sharing. The offline model par-
titioning algorithm is also implemented using UDAs. A UDA com-
putes approximate index frequencies using sketch synopses. These
are fed into the UDA for vertical model partitioning. Essentially,
our code is general enough to be executed by any database support-
ing UDAs.

System. We execute the experiments on a standard server run-
ning Ubuntu 14.04 SMP 64-bit with Linux kernel 3.13.0-43. The
server has 2 AMD Opteron 6128 series 8-core processors – 16 cores
– 28 GB of memory, and 1 TB 7200 RPM SAS hard-drive. Each
processor has 12 MB L3 cache, while each core has 128 KB L1 and
512 KB L2 local caches. The average disk bandwidth is 120 MB/s.

Table 1: Datasets used in the experiments.

Dataset #Dims #Examples Size Model
skewed 1B 1M 4.5 GB 12 GB
splice 13M 500K 30 GB 156 MB
matrix 10Mx10K 300M 4.5 GB 80 GB
MovieLens 6Kx4K 1M 24 MB 120 MB

Methodology. We perform all the experiments at least 3 times
and report the average value as the result. Each task is ran for 10
iterations and the reported time per iteration is the average value
across the 10 iterations. The convergence rate is measured by the
5https://rawgit.com/google/leveldb/master/doc/index.html

993

0 1000 2000 3000 4000 5000
0E+0

6E+7

KV-1 KV-8 KV-16

KV-VP-1 KV-VP-8 KV-VP-16

Time [sec]

L
o

s
s

 v
a

lu
e

1 2 4 8 16
0

500

1000

1500

2000
KV

KV-VP

threads

T
im

e
 p

e
r

it
e
ra

ti
o

n
 [

s
e
c
]

0 4 8 12 16
1

3

5

7

9
KV

KV-VP

threads

S
p

e
e

d
u

p
1 2 4 8 16

0E+0

1E+8

2E+8
KV KV-VP

threads

#
 r

e
q

u
e

s
ts

SVM on skewed

SVM on splice

LMF on matrix

LMF on MovieLens

1 2 4 8 16
0

1000

2000

3000

4000
KV

KV-VP

threads

T
im

e
 p

e
r

it
er

at
io

n
 [

s
e

c
]

0 4 8 12 16
1

2

3

4

KV

KV-VP

threads
S

p
e

e
d

u
p

1 2 4 8 16
0E+0

3E+8

5E+8
KV KV-VP

threads

#
 r

e
q

u
e

s
ts

1 2 4 8 16
0E+0

1E+4

2E+4

3E+4

4E+4

5E+4
KV

KV-VP

threads

T
im

e
 p

e
r

it
e

ra
ti

o
n

 [
s

e
c

]

0 4 8 12 16
0

1

2

3

4

5

6

7
KV

KV-VP

threads

S
p

e
e

d
u

p

1 2 4 8 16
0E+0

1E+8

2E+8

KV KV-VP

threads

#
 r

e
q

u
e

s
ts

0E+0 5E+4 1E+5 2E+5 2E+5 3E+5 3E+5
1E+14

2E+14

KV-1 KV-8 KV-16
KV-VP-1 KV-VP-8 KV-VP-16

Time [sec]

L
o

s
s

 v
a

lu
e

0E+0 7E+3 1E+4 2E+4 3E+4 4E+4
2E+6

1E+7

KV-1 KV-8 KV-16

KV-VP-1 KV-VP-8 KV-VP-16

Time [sec]

L
o

s
s

 v
a

lu
e

0 2500 5000 7500 10000
0E+0

7E+14

KV-1 KV-8 KV-16
KV-VP-1 KV-VP-8 KV-VP-16

Time [sec]

L
o

ss
 v

a
lu

e

1 2 4 8 16
0

1000

2000

3000

4000
KV

KV-VP

threads

T
im

e
 p

e
r

it
e

ra
ti

o
n

 [
s

e
c

]

0 4 8 12 16
0

2

4

6

8

10

12

14
KV
KV-VP

threads

S
p

e
e

d
u

p

1 2 4 8 16
0E+0

2E+6

4E+6

KV KV-VP

threads

#
 r

e
q

u
e

s
ts

(a) (d)(c)(b)

Figure 4: (a) Convergence over time. (b) Time per iteration. (c) Speedup over serial KV. (d) Number of key-value store requests.

994

objective function value at the end of each iteration. The time to
evaluate the objective function value is not included in the iteration
time. We always enforce data to be read from disk in the first itera-
tion by cleaning the file system buffers before execution. Memory
constraints are enforced by limiting the HyperLevelDB cache size
to 1 GB across all the executions. Even with this hard restriction,
HyperLevelDB uses considerably more memory – up to double the
cache size – in the LSM-tree merging phase. This limitation guar-
antees that disk access is incurred for the large models used in the
experiments. While the small models can be cached entirely by
HyperLevelDB, in this case the results clearly show the benefit of
reducing the number of model requests.

Measurements. We report the following measurements:

• loss over time represents the objective value as a function of the
execution time. This measurement is taken for configurations
with 1, 8, and 16 threads. The loss over time characterizes the
convergence rate and how it changes with the number of threads.
The purpose of the experiments is to identify the difference be-
tween the proposed method and HogBatch for a given set of con-
figuration parameters, not to find the optimal hyper-parameters
that give the best convergence rate.
• speedup is measured by dividing the execution time per iteration

to the serial (1 thread) execution time for the baseline method.
We do this for configurations with 1, 2, 4, 8, and 16 threads,
respectively, and also report the average time per iteration sepa-
rately. Speedup shows how scalable each method is.
• number of requests corresponds to the number of calls to the key-

value store, while number of reduced requests to the number of
requests saved by vertical partitioning.
• model partitioning time quantifies the overhead of the offline ver-

tical partitioning stage.

Datasets and tasks. We run experiments over four datasets—
two synthetic and two real. Table 1 depicts their characteristics.
skewed contains sparse example vectors with dimensionality 1
billion having non-zero entries at random indices. The frequency
of non-zero indices is extracted from a zipfian (zipf) distribution
with coefficient 1.0. The index and the vectors are randomly gen-
erated. We do not enforce any index correlation in generating the
example vectors. However, the high frequency indices are likely to
be correlated. On average, there are 300 non-zero entries for each
vector. The size of the model is 12 GB. matrix is generated fol-
lowing the same process, with the additional constraint that there
is at least a non-zero entry for each index—if there is no rating
for a movie/song, then it can be removed from the data altogether.
splice [1] is a real openly-available dataset for distributed gradi-
ent descent optimization with much higher index frequency than
skewed—close to uniform. MovieLens [11] is a small real
dataset—both in terms of number of examples and dimensions. We
emphasize that the model size, i.e., dimensionality, is the main per-
formance driver and the optimizations proposed in this paper are
targeting the model access efficiency. The number of examples,
i.e., size, has only a linear impact on execution time. We execute
SVM and LR over skewed and splice – we include only the
results for SVM due to lack of space; the LR results are similar
– and LMF with rank 1000 over matrix and MovieLens. We
choose the dataset-task combination so that we cover a large set of
configurations that illustrate the proposed optimizations.

7.2 Results
The results for online model training are depicted in Figure 4.

We discuss the main findings for each measurement across all the
experimental configurations to facilitate comparative analysis.

Convergence rate. The convergence rate over time of the base-
line (KV) and the proposed scalable HOGWILD! (KV-VP) for three
degrees of parallelism (1, 8, and 16) are depicted in the (a) subplots
of the figure. KV-VP achieves similar – and even better – loss than
KV at each iteration. This is also true for all the thread configura-
tions and is especially clear for splice, which does not achieve
convergence in the figure. Thus, parallelism does not seem to de-
grade convergence. The reason is our mini-batch implementation
of SGD. While KV-VP converges faster as we increase the number
of threads, this is not always true for KV – 16 threads are slower
than 8 threads – due to a larger time per iteration. KV-VP always
outperforms KV for the same number of threads. Even more, KV-
VP-8 outperforms KV-16 in all the configurations. As a result, KV-
VP achieves the same loss 2X faster for splice and matrix,
3X for skewed, and 7X faster for MovieLens. The gap is es-
pecially wide for MovieLens, where even the 1 thread KV-VP
solution outperforms KV-16. This happens because LMF models
exhibit massive index correlation that is successfully exploited by
vertical model partitioning—we generate matrix without corre-
lation. The 1 thread results isolate perfectly the effect of model
partitioning since there is no sharing. When index correlation is
high – the case for skewed and MovieLens – KV-VP signifi-
cantly outperforms KV.

Time per iteration. The execution time per iteration is depicted
in the (b) subplots of Figure 4. As the number of threads doubles,
the execution time roughly halves. This is generally true up to 8
threads. At this point, the number of concurrent model requests
overwhelms HyperLevelDB. The effect is considerably stronger
for the baseline solution—the time goes up for 16 threads, ex-
cept for matrix. Due to reducing the number of model requests
through push-based sharing, KV-VP-16 still manages to improve
upon KV-VP-8—at a lower rate, though. The isolated impact of
vertical model partitioning is best illustrated by the 1 thread exe-
cution time. In this case, KV-VP is exactly the same as KV, plus
model partitioning. The more index correlation in the training ex-
amples, the higher the impact of model partitioning. skewed and
MovieLens clearly exhibit this with execution times that are as
much as 3X faster for KV-VP than KV.

Speedup. The speedup corresponding to the time per iteration is
shown in the (c) subplots of Figure 4. The reference is the execu-
tion time for KV-1. The speedup ranges between 4X for splice
and 14X (almost linear) for MovieLens. In the case of LMF, the
number of model requests is two times the rank, e.g., 2000. While
KV has to execute this number of requests for each training ex-
ample, model partitioning reduces the requests to 2 – in the best
scenario – for KV-VP. The three orders of magnitude – probably
less, on average – difference in the number of requests is the main
reason for the (almost) linear MovieLens speedup. Push-based
sharing is reflected in the KV-VP speedup over its serial instance
KV-VP-1. This follows the same trend as the speedup over KV-1
and is in line with the execution time per iteration.

Number of key-value store requests. The effect of model ac-
cess sharing across threads is depicted in the (d) subplots of Fig-
ure 4. Independent of the number of threads, KV issues the same
number of requests. Sharing is only incidental—in the Hyper-
LevelDB buffer manager. The number of requests in KV-VP de-
creases with increasing the number of threads. This shows that
push-based sharing is able to reuse a model index across multiple
threads. The reuse is larger for the correlated datasets skewed
and MovieLens. The reduction in the number of requests be-
tween KV-1 and KV-VP-1 is entirely due to offline model verti-
cal partitioning. It ranges between 4X and 100X—for the highly-
correlated MovieLens dataset.

995

100 500 1000
0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

6E+7 skewed
splice
matrix
MovieLens

K

#
 r

e
q

u
e

s
ts

 r
e

d
u

c
e

d

Figure 5: Key-value store requests
eliminated by KV-VP.

100MB 1GB 10GB
0E+0

1E+4

2E+4

3E+4

4E+4

5E+4
KV
KV-VP

key-value cache size

T
im

e
 p

e
r

it
e
ra

ti
o

n
 [

s
e
c
]

matrix

100MB 1GB 10GB
0

200

400

600

800

1000
KV
KV-VP

key-value cache size

T
im

e
 p

e
r

it
e
ra

ti
o

n
 [

s
e
c
]

skewed

Figure 6: Key-value store cache size effect.

splice MovieLens
0

200

400

600

800

1000
KV
KV-VP
in-memory

T
im

e
 p

e
r

it
e

ra
ti

o
n

 [
s

e
c

]

Figure 7: Key-value store over-
head over in-memory.

Offline vertical partitioning impact on the number of key-
value store requests. Figure 5 depicts the reduction in the number
of model index requests for three values of K used in frequency-
based pruning. The baseline is K = 0 which corresponds to no
partitioning, i.e., each index is a separate key. The results show
that the number of model requests is reduced by a very significant
margin – as much as 4 · 107 – even when only the most frequent
100 indices are considered in partitioning. Thus, we use K = 100
to generate the model partitions for the experiments in Figure 4.

Key-value store cache size effect on big models. Figure 6
depicts the time per iteration as a function of the cache size for
skewed and matrix – the big models in the experiments – with
16 threads. As expected, with the increase of the cache size, the ex-
ecution time decreases because more data can be kept in memory.
A small cache of 100 MB increases the KV execution time dra-
matically, especially for matrix. While a 10 GB cache provides
improvement, this is relatively small—a factor of 2X or less.

Key-value store vs. in-memory implementation. We compare
a memory-based key-value store with the HOGWILD! implemen-
tation in Bismarck [11] for the small models that fit in memory—
splice and MovieLens. There is no difference in our code,
except that the key-value store is mapped to tmpfs6—a memory-
based file system. The goal is to identify the overhead incurred
by the function calls to the key-value store. Figure 7 depicts the
time per iteration for 16 threads. While the execution time of both
KV and KV-VP improves when compared to the disk-based key-
value store (Figure 4), KV-VP is hardly slower than the in-memory
HOGWILD! This proves that storing the model in an optimized
key-value store incurs minimal overhead – less than 5% – over a
stand-alone solution.

Table 2: Vertical partitioning time (in seconds).

K skewed splice matrix MovieLens

100 722 79 52 55
500 2028 1404 224 181

1000 3054 4075 344 600

Vertical partitioning time. The time to perform the offline ver-
tical model partitioning algorithm (Algorithm 3) is shown in Ta-
ble 2. It is important to emphasize that this algorithm is executed
only once for a given dataset. Moreover, this happens offline, not
during training. Since Algorithm 3 is iterative, the execution time
depends on the number of iterations performed – which are strongly
6https://en.wikipedia.org/wiki/Tmpfs

dependent on the training dataset – and the number of samples N ′

considered by the algorithm. We observe experimentally that a 1%
sample provides a good tradeoff between running time and parti-
tioning quality. Table 2 shows that – as the pruning criteria is re-
laxed, i.e., K increases – the partitioning time increases. This is
because the number of candidate partitions becomes larger. With
the most restrictive pruning (K = 100), model partitioning takes
roughly a KV-VP-16 iteration.

8. RELATED WORK
In-database analytics. There has been a sustained effort to add

analytics functionality to traditional database servers over the past
years. MADlib [15] is a library of analytics algorithms built on top
of PostgreSQL. It implements the HOGWILD! algorithm for gen-
eralized linear models, such as LR and LMF, using the UDF-UDA
extensions. Due to the strict PostgreSQL memory limitations, the
size of the model – represented as the state of the UDA – can-
not be larger than 1 GB. GLADE [31] follows a similar approach.
Distributed learning frameworks such as MLlib [37] and Vowpal
Wabbit [1] represent the model as a program variable and allow the
user to fully manage its materialization. Thus, they cannot handle
big models directly. The integration of relational join with gra-
dient computation has been studied in [18, 19, 36]. In all these
solutions, the model fits entirely in memory and they work exclu-
sively for batch gradient descent (BGD), not SGD. The Gamma
matrix [30] summarizes the training examples into a d× d matrix.
While Gamma matrix provides significant size reductions when
d < N , it cannot be applied in our setting where d is extremely
large. Moreover, SGD does not benefit from the Gamma matrix
because an update is applied for every example, while Gamma ma-
trix summarizes all the examples across each dimension.

Big models. Parameter Server [21, 22] is the first system that ad-
dresses the big model analytics problem. Their approach is to parti-
tion the model across the distributed memory of multiple parameter
servers—in charge of managing the model. In STRADS [20], pa-
rameter servers are driving the computation, not the workers. The
servers select the subset of the model to be updated in an iteration
by each worker. Instead of partitioning the model across machines,
we use secondary storage. Minimizing the number of secondary
storage accesses is the equivalent of minimizing network traffic in
Parameter Server. The dot-product computation between training
data and big models stored on disk is considered in [32]. Batch-
ing and reordering are proposed to improve disk-based model ac-
cess locality in a serial scenario. Moreover, model updates require
atomic dot-product computation. The proposed framework is both

996

model and data-parallel, does not reorder the examples, and sup-
ports incremental dot-product evaluation.

Stochastic gradient descent. SGD is the most popular opti-
mization method used to train analytics models. HOGWILD! [28]
implements SGD by performing model updates concurrently and
asynchronously without locks. Due to this simplicity – and the
near-linear speedup – HOGWILD! is widely used in many analyt-
ics tasks [33, 11, 25, 9, 8, 5]. HogBatch [35] provides an in-depth
analysis of the asynchronous model updates in HOGWILD! and in-
troduces an extension – mini-batch SGD – that is more scalable for
cache-coherent architectures. This is our baseline for comparison.
[40] partitions the training examples based on the conflict graph
which corresponds to a model partitioning. This reduces model
update conflicts across data partitions and results in higher speedup
and faster convergence. While the proposed framework also applies
model partitioning, the method and the target are different—reduce
the number of model requests. Model averaging [43] is an alter-
native method to parallelize SGD that is applicable to distributed
settings. Only HOGWILD! can be extended to big models. Aver-
aging requires multiple model copies – one for each thread – that
cannot be all cached in memory. A detailed experimental compari-
son of these methods is provided in [31].

9. CONCLUSIONS AND FUTURE WORK
In this paper, we present a general framework for parallelizing

stochastic optimization algorithms over big models that cannot fit
in memory. We extend the lock-free HOGWILD!-family of algo-
rithms to disk-resident models by vertically partitioning the model
offline and asynchronously updating the resulting partitions online.
The experimental results prove the scalability and the superior per-
formance of the framework over an optimized HOGWILD! exten-
sion to big models. In future work, we plan to explore two di-
rections. First, we will investigate how the offline model parti-
tioning can be integrated with online training. Second, we plan to
explore how similar techniques can be applied when moving data
from memory to cache.

Acknowledgments. This work is supported by a U.S. Depart-
ment of Energy Early Career Award (DOE Career). We want to
thank the anonymous reviewers for their insightful comments that
improved the quality of the paper significantly.

10. REFERENCES[1] A. Agarwal et al. A Reliable Effective Terascale Linear Learning
System. Machine Learning Research, 15(1):1111–1133, 2014.

[2] Z. Cai et al. Simulation of Database-Valued Markov Chains using
SimSQL. In SIGMOD 2013.

[3] F. Chang et al. Bigtable: A Distributed Storage System for Structured
Data. ACM TOCS, 26(2):4, 2008.

[4] Y. Cheng, C. Qin, and F. Rusu. GLADE: Big Data Analytics Made
Easy. In SIGMOD 2012.

[5] T. Chilimbi, Y. Suzue et al. Project Adam: Building an Efficient and
Scalable Deep Learning Training System. In OSDI 2014.

[6] D. Crankshaw, P. Bailis et al. The Missing Piece in Complex
Analytics: Low Latency, Scalable Model Management and Serving
with Velox. CoRR, abs/1409.3809, 2014.

[7] A. Crotty et al. Tupleware: Redefining Modern Analytics. CoRR,
abs/1406.6667, 2014.

[8] J. Dean et al. Large Scale Distributed Deep Networks. In NIPS 2012.
[9] J. Duchi, M. I. Jordan, and B. McMahan. Estimation, Optimization,

and Parallelism When Data Is Sparse. In NIPS 2013.
[10] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A Distributed,

Searchable Key-Value Store. In SIGCOMM 2012.
[11] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a Unified

Architecture for in-RDBMS Analytics. In SIGMOD 2012.

[12] A. Ghoting et al. SystemML: Declarative Machine Learning on
MapReduce. In ICDE 2011.

[13] M. Hall. Correlation-Based Feature Selection for Discrete and
Numeric Class Machine Learning. In ICML 2000.

[14] R. Hankins and J. M. Patel. Data Morphing: An Adaptive,
Cache-Conscious Storage Technique. In VLDB 2003.

[15] J. Hellerstein et al. The MADlib Analytics Library: Or MAD Skills,
the SQL. PVLDB, 5(12):1700–1711, 2012.

[16] A. Jindal, E. Palatinus, V. Pavlov, and J. Dittrich. A Compararison of
Knives for Bread Slicing. In VLDB 2013.

[17] A. Kumar, R. McCann et al. Model Selection Management Systems:
The Next Frontier of Advanced Analytics. SIGMOD Record,
44(4):17–22, 2015.

[18] A. Kumar, J. Naughton, and J. M. Patel. Learning Generalized Linear
Models Over Normalized Data. In SIGMOD 2015.

[19] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu. To Join or Not to
Join? Thinking Twice about Joins before Feature Selection. In
SIGMOD 2016.

[20] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing.
On Model Parallelization and Scheduling Strategies for Distributed
Machine Learning. In NIPS 2015.

[21] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and
A. Smola. Parameter Server for Distributed Machine Learning. In
Big Learning NIPS Workshop 2013.

[22] M. Li et al. Scaling Distributed Machine Learning with the Parameter
Server. In OSDI 2014.

[23] X. Li and D. Andersen et al. Algorithmic Improvements for Fast
Concurrent Cuckoo Hashing. In EuroSys 2014.

[24] H. Liu and L. Yu. Toward Integrating Feature Selection Algorithms
for Classification and Clustering. IEEE TKDE, 17(4):491–502, 2005.

[25] J. Liu, S. Wright, V. Bittorf, and S. Sridhar. An Asynchronous
Parallel Stochastic Coordinate Descent Algorithm. In ICML 2014.

[26] Y. Low et al. GraphLab: A New Parallel Framework for Machine
Learning. In UAI 2010.

[27] B. McMahan et al. Ad Click Prediction: A View from the Trenches.
In KDD 2013.

[28] F. Niu, B. Recht, C. Ré, and S. J. Wright. A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent. In NIPS 2011.

[29] P. O’Neil et al. The Log-Structured Merge-Tree (LSM-Tree). Acta
Informatica, 33(4):351–385, 1996.

[30] C. Ordonez, Y. Zhang, and W. Cabrera. The Gamma Matrix to
Summarize Dense and Sparse Data Sets for Big Data Analytics.
IEEE TKDE, 28(7):1905–1918, 2016.

[31] C. Qin and F. Rusu. Speculative Approximations for Terascale
Distributed Gradient Descent Optimization. In DanaC 2015.

[32] C. Qin and F. Rusu. Dot-Product Join: An Array-Relation Join
Operator for Big Model Analytics. CoRR, abs/1602.08845, 2016.

[33] B. Recht, C. Ré, J. Tropp, and V. Bittorf. Factoring Non-Negative
Matrices with Linear Programs. In NIPS 2012.

[34] P. Roy, A. Khan et al. Augmented Sketch: Faster and More Accurate
Stream Processing. In SIGMOD 2016.

[35] S. Sallinen et al. High Performance Parallel Stochastic Gradient
Descent in Shared Memory. In IPDPS 2016.

[36] M. Schleich, D. Olteanu, and R. Ciucanu. Learning Linear
Regression Models over Factorized Joins. In SIGMOD 2016.

[37] E. Sparks et al. MLI: An API for Distributed Machine Learning. In
ICDM 2013.

[38] A. Sujeeth et al. OptiML: An Implicitly Parallel Domain-Specific
Language for Machine Learning. In ICML 2011.

[39] J. S. Vitter. Random Sampling with a Reservoir. ACM TOMS,
11(1):37–57, 1985.

[40] P. Xinghao, M. Lam et al. CYCLADES: Conflict-free Asynchronous
Machine Learning. CoRR, abs/1605.09721, 2016.

[41] C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations for
Feature Selection Workloads. ACM TODS, 41(1):2, 2016.

[42] W. Zhao, Y. Cheng, and F. Rusu. Vertical Partitioning for Query
Processing over Raw Data. In SSDBM 2015.

[43] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized
Stochastic Gradient Descent. In NIPS 2010.

997

