
Morton Filters: Faster, Space-Efficient Cuckoo Filters via
Biasing, Compression, and Decoupled Logical Sparsity

Alex D. Breslow
Advanced Micro Devices, Inc.

AMD Research
2485 Augustine Drive

Santa Clara, CA 95054
Alex.Breslow@amd.com

Nuwan S. Jayasena
Advanced Micro Devices, Inc.

AMD Research
2485 Augustine Drive

Santa Clara, CA 95054
Nuwan.Jayasena@amd.com

ABSTRACT
Approximate set membership data structures (ASMDSs) are
ubiquitous in computing. They trade a tunable, often small,
error rate (ε) for large space savings. The canonical ASMDS
is the Bloom filter, which supports lookups and insertions
but not deletions in its simplest form. Cuckoo filters (CFs),
a recently proposed class of ASMDSs, add deletion support
and often use fewer bits per item for equal ε.

This work introduces the Morton filter (MF), a novel AS-
MDS that introduces several key improvements to CFs. Like
CFs, MFs support lookups, insertions, and deletions, but
improve their respective throughputs by 1.3× to 2.5×, 0.9×
to 15.5×, and 1.3× to 1.6×. MFs achieve these improve-
ments by (1) introducing a compressed format that permits
a logically sparse filter to be stored compactly in memory,
(2) leveraging succinct embedded metadata to prune un-
necessary memory accesses, and (3) heavily biasing inser-
tions to use a single hash function. With these optimiza-
tions, lookups, insertions, and deletions often only require
accessing a single hardware cache line from the filter. These
improvements are not at a loss in space efficiency, as MFs
typically use comparable to slightly less space than CFs for
the same ε.

PVLDB Reference Format:
Alex D. Breslow and Nuwan S. Jayasena. Morton Filters: Faster,
Space-Efficient Cuckoo Filters via Biasing, Compression, and De-
coupled Logical Sparsity. PVLDB, 11(9): 1041-1055, 2018.
DOI: https://doi.org/10.14778/3213880.3213884

1. INTRODUCTION
As time has progressed, systems have added many more

levels to the memory hierarchy. In today’s enterprise servers,
it is not uncommon to have three to four levels of hardware
cache, a vast pool of DRAM, several SSDs, and a pool of
disks. With each successive level of the hierarchy, latency
and bandwidth typically increase by one or more orders of
magnitude. To avoid accessing a slower medium unnecessar-
ily, many applications make use of approximate set member-
ship data structures (ASMDSs). An ASMDS like a set data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 9
Copyright 2018 VLDB Endowment 2150-8097/18/05... $ 10.00.
DOI: https://doi.org/10.14778/3213880.3213884

structure answers set membership queries (i.e., is an item
e an element of the set S?). However, unlike a set, which
always reports with certitude whether e is in S, an ASMDS
is able to report false positives (i.e., falsely state that e is in
S) with a worst-case expected error rate of 0 ≤ ε ≤ 1. An
ASMDS does not report false negatives [29]: if an ASMDS
reports e not in S, then it certainly is not. A core benefit of
an ASMDS is that its error rate ε is typically independent of
the size of the data items that are encoded, so an ASMDS
can often reside one or two levels higher in the memory hi-
erarchy than the slow medium to which it filters requests.

The most common ASMDS is the Bloom filter [7], which in
its simplest form supports insertions and a likely contains
lookup primitive. Deletions and counting occurrences of an
item are supported via a number of different Bloom fil-
ter variants, albeit with an increase in the storage cost
(where a 2× to 4× increase is not uncommon [10, 30]).
Bloom filters have been used in data storage systems such as
Google’s BigTable [17], distributed analytics platforms such
as Apache Impala [41], bioinformatics applications such as
the counting of k-mers during DNA sequencing [49], diverse
networking applications [14], and more. One of the pitfalls of
the Bloom filter is that its simplest version exhibits poor lo-
cality of reference, and more cache-friendly blocked variants
are typically less space efficient [14].

Consequently, a number of other filters have been pro-
posed, of which two of the most practical are the quotient
filter [6, 59] and cuckoo filter [29]. Both the quotient filter
and the cuckoo filter differ from the Bloom filter in that they
store fingerprints, short hashes that each typically have a
one-to-one correspondence with an item e that is encoded
by the filter as belonging to a set S. Both cuckoo filters and
quotient filters support deletions and when filled to high
load factors (i.e., a 95% full filter) use less space than an
equivalent Bloom filter when the desired false positive rate
is less than about 1% to 3%, the usual case for a wide array
of applications.

In this work, we focus on the cuckoo filter (CF) and
present a novel variant, the Morton filter (MF).1 Like a
CF, MFs’ storage is organized as a linear array of buckets,
with each bucket containing a fixed number of slots that can
each store a single fingerprint. Fingerprints are mapped to
the table by emplacing the fingerprint in one of two can-
didate buckets, whose indices are independently determined
by two hash functions (H1 and H2) that each operate on the
key and output a different bucket index. Provided that one
candidate bucket has spare capacity, the insertion trivially
succeeds. Conflicts where both candidate buckets are full are

1Named after a certain elephant’s half-bird baby [23].

1041

resolved via cuckoo hashing [58], a hashing technique that
triggers a recursive chain of evictions.

Despite these similarities, MFs differ in several key ways.
In contrast to CFs, MFs are able to more heavily bias in-
sertions in favor of H1. This biasing makes subsequent re-
trieval of fingerprints require fewer hardware cache accesses
because most of the time, the fingerprint is found in the
first bucket. For negative lookups (queries to keys that were
never inserted into the table), the filter employs an Over-
flow Tracking Array (OTA), a simple bit vector that tracks
when fingerprints cannot be placed using H1. By checking
the OTA, most negative lookups only require accessing a
single bucket, even when the filter is heavily loaded. This
biasing and tracking means that regardless of the type of
lookup (positive, false positive, or negative), typically only
one bucket needs to be accessed. When buckets are resident
in a cache line, most often only 1 cache access is needed per
probe of the filter and at most 2, a savings of close to 50%.

In addition to biasing, MFs decouple their logical repre-
sentation from how their data are stored in virtual mem-
ory. They logically underload the filter and apply a simple
compression algorithm that replaces storage of space-hungry
empty slots with a series of fullness counters that track the
load of each logical bucket. With fullness counters, reads and
updates to an MF happen in-situ without explicit need for
materialization. This zero-compression makes logically un-
derloading the filter (1) space efficient because many mostly
empty buckets can be packed into a single cache block and
(2) high performance because accesses occur directly on the
compressed representation and only on occupied slots.

With logically underloaded buckets, most insertions only
require accessing a single cache line from the MF. For exam-
ple, with an MF block of 60 slots, of which 59 are occupied,
an insertion to any bucket is likely to directly succeed. How-
ever, with those same 60 slots arranged as 15 4-slot buck-
ets in a CF, that same insertion operation only has a 1/15
chance of direct success (i.e., where no accesses to additional
buckets are necessary). Consequently, MFs much more effi-
ciently utilize scarce cache and memory bandwidth and sus-
tain high insertion throughput at much heavier loads than a
CF (e.g., 3× to 15× higher for load factors exceeding 0.75,
a filter that is more than 75% full).

Further, an MF typically performs many fewer fingerprint
comparisons than a CF, with fewer than one fingerprint
comparison per lookup not uncommon, even when the fil-
ter is heavily loaded. Instead, many lookups can be fully or
partially resolved simply by examining one or two fullness
counters and a bit in the OTA.

Due to this compression, sparsity, and biasing, MFs at-
tain improved throughput, space usage, and flexibility. With
fewer comparisons and a reduced number of cache accesses,
MFs boost lookup, deletion, and insertion throughputs, re-
spectively, by as much as 2.5×, 1.6×, and 15.5× over a stock
CF. Similarly, these traits permit using shorter fingerprints
because false positives are integrally tied to the number of
fingerprint comparisons. Consequently, the space overhead
of the fullness counters and OTA can largely be hidden, and
space per item can often be reduced by approximately 0.5
to 1.0 bits over a CF with the same ε.

Our contributions are as follows:

1. We present the design of and empirically evaluate the
Morton filter, a novel ASMDS that uses compression,
sparsity, and biasing to improve throughput without
sacrificing on space efficiency or flexibility. MFs im-
prove performance over CFs by making accesses to
fewer cache lines during filter reads and updates.

2. We greatly ameliorate the insertion throughput perfor-
mance collapse problem for fingerprint-based ASMDSs
at high loads (>100× for a CF) by decoupling the log-
ical representation of the filter from how it is stored.

3. We present a fast algorithm for computing reductions
on fullness counters that is the key to the high perfor-
mance and which can be applied in other contexts.

4. We present a hashing mechanism that reduces TLB
misses, row buffer misses, and page faults and does
away with requiring the total buckets be a power of 2.

5. We intend to release a C++ MF implementation to
the wider research community, which we have tested
on AMD and Intel X86 server processors on Linux.

2. CUCKOO FILTERS
In this section, we describe the cuckoo filter (CF) [29], the

ancestor of the MF.

2.1 Baseline Design
CFs are hash sets that store fingerprints, where each fin-

gerprint is computed by using a hash function HF , which
takes as input a key representing an item in the set and
maps it to a fixed-width hash. The filter is structured as a
2D matrix, where rows correspond to fixed-width associative
units known as buckets and cells within a row to slots, with
each slot capable of storing a single fingerprint. Prior work
typically uses 4-slot buckets [29].

To map each key’s fingerprint to the filter and to largely
resolve collisions, Fan et al. encode a key’s membership in
the set by storing its fingerprint in one of two candidate
buckets. The key’s two candidate buckets are independently
computed using two hash functions H1 and H2. H1 takes
the key as input and produces the index of one candidate
bucket, and H2 operates on the same key and produces the
index of the other candidate bucket [29].

2.2 Insertions
On insertions, provided that at least one of the eight slots

is empty across the two candidate buckets, the operation
completes by storing the fingerprint in one of the empty lo-
cations. If no slot is free, cuckoo hashing [58] is employed.
Cuckoo hashing picks a fingerprint within one of the two
buckets, evicts that fingerprint and stores the new finger-
print in the newly vacated slot. The evicted fingerprint is
then rehashed to its alternate bucket using its alternate hash
function. To compute the alternate hash function simply by
using the bucket index and fingerprint as inputs, they de-
fine a new hash function H ′, which takes the fingerprint and
its current bucket as input and returns the other candidate
bucket. So, if the fingerprint is currently found in the first
candidate bucket given by H1(key), H ′ yields the alternate
candidate given by H2(key) and vice versa. Provided that
the alternate candidate has a free slot, the evicted key is
emplaced, and the operation succeeds. If no such slot ex-
ists, the initial evicted fingerprint takes its place, and the
operation continues until a free slot is found.

Two example insertions are shown in Figure 1. The first is
for key Kx, which succeeds because H2 maps its fingerprint
x to a Bucket 0, which has a vacant slot. The second is for
key Ky, where it initially fails to find a vacant slot in ei-
ther candidate bucket (6 and 4), and therefore uses cuckoo
hashing to displace a chain of fingerprints beginning with
1011 in Bucket 6 and ending with 1101 in Bucket 2 moving
to one of the free slots in Bucket 1. Note that in practice,
the series of displacements may occur in reverse order in an
optimized implementation to avoid storing displaced finger-
prints at each step.

1042

Figure 1: Insertion of two different keys Kx and Ky

into the filter by storing their respective fingerprints
x and y. Empty slots are shown in gray. Kx’s inser-
tion only involves accessing its two candidate buck-
ets (4 and 0) since 0 has a free slot, but Ky’s can-
didates (6 and 4) are both full, so a series of fin-
gerprints are displaced each to their alternate can-
didate to make an empty slot for y in bucket 6. The
updated filter is shown in Figure 2.

Figure 2: Lookup of two different keys Kx and Ky

following the successful insertion of their respective
fingerprints x and y in Figure 1. For Ky, steps 4 and
5 can optionally be skipped, since y is found in the
first candidate bucket.

2.3 Lookups
On lookups, the algorithm computes H1 and H2 on the

key to compute its candidate buckets, and HF to determine
its fingerprint. If the fingerprint appears in any of the eight
slots across the two candidate buckets, the lookup returns
LIKELY IN SET , else NOT IN SET . The certitude of
LIKELY IN SET is subject to an expected error rate ε
that is tunable by assigning an appropriate bit-width to each
fingerprint. Increasing the width of each fingerprint by one
bit roughly halves ε. It is worth noting that the actual inci-
dence of false positives will interpolate between 0 (all queries
are to items inserted in the filter) to roughly ε (none of the
queried items were inserted in the filter) subject to whether
lookups are to true members of the encoded set.

Figure 2 follows the insertion of keys Kx and Ky into
the filter in Figure 1. Even though Ky triggered a series of
displacements, since it is only allowed to insert y in one of
its two candidate buckets, only Buckets 6 and 4 need to be
searched. The same holds for any other queried key: at most
two buckets need to be probed.

2.4 Modeling the Error Rate and Space Use
In this section, we present formulae for calculating the

error rate of a cuckoo filter, its space usage per item, and
show how the insights from this study can be leveraged to

Table 1: Glossary of Symbols

ε - false positive rate
S - slots per bucket
b - buckets searched per negative lookup
α - the load factor
f - fingerprint length in bits
I - bits per item in the filter

design an MF (see Section 3 for a high-level MF description).
Table 1 provides a glossary of symbols.

A CF has an error rate ε which reports the expected ra-
tio of false positives to total likely contains queries that
are true negatives (i.e., no risk of a false positive on a true
positive). To understand how ε is calculated given a filter,
we first introduce several terms: S the slots per bucket, b
the expected number of buckets that need to be searched
per negative lookup, α the load factor, and f the bits per
fingerprint. When comparing an f -bit fingerprint to a fin-
gerprint stored in a bucket, the occurrence of aliasing (i.e.,
falsely matching on a fingerprint inserted by another key)
is 1/2f if all fingerprint values are equally probable. There
are 2f potential values and only one of those can alias. To
compute the net probability of an alias, prior work by Fan
et al. [29] observes that there are S slots per bucket, b is
fixed at 2 (they always search both buckets), and therefore
the rate of aliasing is ε = 1− (1− 1/2f)bS , so the necessary
f for a target ε is roughly f = log2(bS/ε), which for their
parameters of S = 4 and b = 2 is f = 3 + log2(1/ε).

However, what this model discounts is the effect of α,
that is, if one is careful and clearly marks empty slots (by
reserving one of the 2f states to encode an empty slot),
then there is no way that empties can alias when performing
a lookup. Marking empties changes the math slightly, to
ε = 1− (1− 1/(2f − 1))αbS , which alters f to approximately

f = log2(αbS/ε) (1)

for typical values of f (i.e., f > 6). For underloaded filters, it
turns out that that extra α term is important because since
0 ≤ α ≤ 1, its logarithm is less than or equal to zero. For
instance, filling the filter half full (α = 0.5) means that α
in the numerator decreases f ’s required length by log2(α =
0.5) = 1 bit for a target ε. Further, this effect is amplified
in the savings in bits per item (shown in Equation 2). With
the additional α and a fixed ε, α = 0.5 would decrease the
required bits per item by log2(0.5)/0.5 = 2 bits over Fan et
al.’s more pessimistic model.

I = f/α = log2(αbS/ε)/α (2)

However, because the α in the denominator of Equation 2
dwarfs the impact of the α in the numerator, prior work
largely ignores this space savings opportunity. In particular,
α needs to be close to 1 for a CF to be space-competitive
with a Bloom filter [7], which largely negates the positive
impact of the α in the numerator. To obtain a large value
of α (e.g., > 0.95), there are several options for b and S,
but practical constraints limit the viable options. For b, a
high-performance implementation is limited to selecting 2.
A value of b = 1 cannot yield a sufficiently high α even
for large values of S. b > 2 is also undesirable because it
results in additional memory traffic (e.g., b = 3 triggers an
additional memory request per lookup). For S, larger values
improve α but at the expense of a worsening error rate given
a fixed f . With each additional fingerprint comparison, the
likelihood of a false positive increases. In practice, S = 4
is the minimum value that permits an α that exceeds 0.95.
Larger values of S could be used at the expense of increased
bits per item. As we will see in the proceeding sections, our
work gets around these limitations. For further analysis of

1043

feasible parameters, we point the reader to Erlingsson et
al.’s work on cuckoo hash tables (an analogous hash table
rather than an approximate hash set) [26], which provides a
concise table showing the trade-offs of b and S.

2.5 Bloom Filters and Relative Optimality
Given b = 2, S = 4, and α = 0.95, we examine a CF’s

relative space and performance optimality. CFs make very
efficient use of space. Whereas a Bloom filter uses approx-
imately log2(1/ε)/ln(2) ≈ 1.44log2(1/ε) bits per item [14],
these parameters for b, S, and α place the bits per item
at about 3.08 + 1.05log2(1/ε), clearly asymptotically bet-
ter and not too far off from the information theoretic limit
of log2(1/ε) (see Carter et al. [15]). Fan et al. show that
the leading constant can be further improved via Bonomi
et al.’s semi-sort optimization [11], which sorts fingerprints
within a bucket by a fixed-width prefix and then replaces
those prefixes with a code word. With 4-bit prefixes, four
prefixes can be replaced with a 12-bit code word, a savings
of one bit per fingerprint. That reduces the bits per item to
2.03 + 1.05log2(1/ε), albeit with reduced performance from
sorting, compression, and decompression (see Section 7).

On the performance front, an ideal filter only requires ac-
cessing a single cache line from the filter for each lookup,
insertion, or deletion. For lookups, the CF is 2× off of opti-
mal since each invocation examines two buckets, which with
high probability are in different cache lines. Deletions are
better, since ASMDSs only permit deletions to items in the
filter (otherwise, false negatives are possible), the expected
cost is typically 1 plus the fraction of items that are inserted
using H2. Insertions are often the furthest from optimal. At
a heavy load factor, it can take many cache accesses to insert
a single item. In the proceeding sections, we will show how
to largely get around these limitations and achieve lookups,
insertions, and deletions that typically only access a single
cache line from the filter. For a comparative analysis of MFs,
which discusses the decoupling of the log2(α) term in the nu-
merator from the α term in the denominator in Equation 2,
see Section 5.

3. MORTON FILTERS
This section describes the MF and elaborates on the prin-

cipal features that differentiate it from a cuckoo filter.

3.1 Optimizing for the Memory Hierarchy
The MF is a reengineered CF that is tuned to make more

efficient use of cache and memory bandwidth. Today’s mem-
ory systems move data in coarse-grain units known as cache
lines that are typically 64 to 128 bytes. On a load or store
instruction, the entire cache line is fetched and brought up
through the memory hierarchy to the L1 data cache. Subse-
quent accesses to words in the same cache line that occur in
short sequence (known as temporal locality [5,35]) are cheap
because they likely hit in the high-bandwidth, low-latency
L1 data cache. Typical ASMDS workloads are often cache-
or memory-bound because they employ pseudorandom hash
functions to set bits or fingerprints within the filter, which
limits their data reuse and taxes the comparatively limited
bandwidth of lower level caches (e.g., L3 or L4) and band-
width to off-chip memory. In contrast to a CF, which opti-
mizes for latency at the expense of performing two random
memory accesses per lookup query, an MF probe performs
a single cache access most of the time and at most two.
In bandwidth-limited scenarios, these efficiency gains corre-
spond to significant speedups (see Section 7). We point the
interested reader to prior work by Ross [65], Polychroniou

and Ross [61], and Breslow et al. [13] for the related discus-
sion of latency and bandwidth tradeoffs in hash tables.

3.2 Logical Interpretation
Like a cuckoo filter, the MF maintains a set of buckets

and slots, fingerprints encoding keys are computed using HF
and mapped to one of two candidates using one of H1 or H2.
Collisions are resolved using a variant of cuckoo hashing (see
Section 4.2 and Figure 7).

3.3 Compressed Structure: The Block Store
The MF stores its data in parameterizable units known as

blocks. Blocks have a compressed storage format that stores
both the fingerprints from a fixed number of buckets and
accompanying metadata that permits recovering the MF’s
logical interpretation while solely performing in-situ reads
and updates to the block. Blocks are stored sequentially in
a structure known as the Block Store. Block size within the
Block Store is dictated by the physical block size of the
storage medium for which the MF is optimized. If the filter
resides entirely in cache and system memory, then block
sizes that evenly divide a cache line are the natural choice
(e.g., 256- or 512-bit blocks for 512-bit hardware cache lines).
Similarly, block sizes that evenly divide an SSD block are
logical choices when the filter is primarily SSD-resident.

3.4 Block Components

Figure 3: A sample block in an MF that is perfor-
mance optimized for 512-bit cache lines. The block
has a 46-slot FSA with 8-bit fingerprints, a 64-slot
FCA with 2-bit fullness counters (64 3-slot buckets),
and a 16-bit OTA with a single bit per slot.

Each MF block has three principal components (shown in
Figure 3), which we detail below:

Fingerprint Storage Array (FSA) - The FSA is the
array that stores the fingerprints from a block. Fingerprints
from consecutive buckets within a block are stored one after
another in compact, sequential order with no gaps. Empty
slots within the FSA are entirely at the end of the buffer.
An FSA typically has many fewer slots than the total log-
ical slots across all buckets that it stores from the logical
interpretation. For instance, in Figure 3, there are 46 slots
for fingerprints in the FSA but a total of 64 * 3=192 slots
across the 64 buckets whose fingerprints it stores. Thus, the
filter can be logically highly underloaded while allowing the
FSA to be mostly full and accordingly conserve space.

Fullness Counter Array (FCA) - The FCA encodes
the logical structure of the block by associating a fullness
counter with each of its buckets that tracks how many slots
are occupied by fingerprints. It enables in-situ reads and
writes to the serialized buckets in the FSA without the need
to materialize a full logical view of the associated block by
summing the loads of the buckets prior to the bucket of
interest to determine an offset in the FSA where reading
should begin. Further, with an FCA, vacant slots in the log-
ical interpretation no longer have to be stored in the FSA,
and our implementation uses the FCA to completely skip
comparisons to empty fingerprint slots.

Overflow Tracking Array (OTA) - The OTA in its sim-
plest form is a bit vector that tracks overflows from the block
by setting a bit every time a fingerprint overflows (see Sec-
tion 3.8). By querying the OTA, queries determine whether

1044

Figure 4: An MF’s Block Store and a sample block’s
compressed format and logical interpretation, with
corresponding buckets labeled 0 to 5. The FCA and
FSA state dictates the logical interpretation of the
block. Buckets and fingerprints are ordered right to
left to be consistent with logical shift operations.

accessing a single bucket is sufficient for correctness or if
both candidates need to be checked.

3.5 Accessing a Bucket
A sample block and its logical representation are shown in

Figure 4. In the example, the least significant bit of the block
is the farthest to the right. Fullness counters and fingerprints
are labeled with the bucket to which they correspond. To
show how in-situ lookups are possible, we consider the case
where we want to examine the contents of bucket 4. Bucket
4 contains the fingerprints 5, 3, and 6. To determine where
to read in the FSA, we can add the loads of buckets 0 to 3 to
provide an offset. These are 1 + 0 + 2 + 1 or 4, so the first
fingerprint 5 appears at FSA[4]. We know to stop reading at
FSA[6] because FCA[4] = 3, and so we have already read
all three fingerprints. See Section 4.1 for a more in-depth
description of the algorithm with an accompanying figure.

Note that in the example, the logical interpretation of the
block has 18 slots of which a mere 8 are occupied. In a CF,
if the block were representative of the average load on the
filter, then the bits per item would be f/(8/18) ≈ 2.25f .
However, in the MF, 8 of 10 FSA slots are occupied, so the
block’s actual load is much higher, and the actual bits per
item is 1.25f + FCA bits + OTA bits, clearly asymptoti-
cally better. Thus, heavily logically underloaded MFs with
densely filled FSAs conserve space while allowing inexpen-
sive lookups and updates that are typically localized to a
single block and thus a single cache line.

3.6 Primacy
In contrast to a CF, we differentiate between the two hash

functions H1 and H2. We call H1 the primary hash function
and for a given key say that a bucket is its primary bucket
if its fingerprint would be stored there on an insertion using
H1. We call H2 the secondary hash function and for a given
key say that a bucket is its secondary bucket if its fingerprint
would be stored there on an insertion using H2. When in-
serting a fingerprint into an MF, we always first try to place
it into its primary bucket and only fall back to the secondary
function H2 when that fails. By heavily biasing insertions in
this way, most items in the MF can be found by examining
a single bucket, and thus a single hardware cache line.

3.7 Filtering Requests to Secondary Buckets
For negative lookups (i.e., where the queried key never had

its fingerprint inserted into the table), biasing still helps per-
formance. The OTA tracks all overflows from a block. When
H2 gets used to map a key K’s fingerprint to a bucket, we
set a bit in the OTA corresponding to the block containing
K’s primary bucket. We select the bit’s index by computing
a hash function HOTA on K. On a subsequent query to a key
K′ that was never inserted into the filter but whose primary
bucket is in the same block as K’s, we compute HOTA on
K′. If we hash to an unset bit in the OTA, then the lookup
only requires a single bucket access. A set bit requires ac-
cessing the other candidate bucket (likely two different cache

lines). Bits in the OTA that are previously set remain set
on additional overflows that hash to the same bit.

3.8 Types of Overflows
At the time of filter initialization, all OTAs across all

blocks begin zeroed out. When fingerprints are first inserted,
they are inserted exclusively using H1 and accordingly into
their primary buckets. It is only after some time that one
of two events will trigger the setting of a bit in the OTA.
The first event is a bucket overflow. Bucket overflows oc-
cur when a key’s fingerprint maps to a bucket for which
there is no spare logical capacity, that is, when its associ-
ated counter in the FCA has already hit its maximum value.
The second event is a block overflow, which occurs when a
key’s fingerprint is mapped to a bucket where its block has
no spare FSA slots. In both cases, one fingerprint needs to
be remapped from the block to make room for the new fin-
gerprint. A bucket overflow requires the evicted fingerprint
to come from the new fingerprint’s candidate bucket; how-
ever, when a block overflow occurs that is not also a bucket
overflow, any fingerprint within the block’s FSA may be
evicted. As it turns out, for most parameter values for the
slots per bucket, the overwhelming vast majority of over-
flows are purely block overflows. With common fingerprint
sizes of several to a few tens of bits, this affords tens of po-
tential fingerprints to evict on any overflow and makes the
filter particularly robust during insertions. See Section 4.2
for further detail.

3.9 Interplay Between Buckets and Blocks
The addition of the block abstraction is one of the defin-

ing features of the MF. By aggregating the loads across the
many underloaded buckets that they store, blocks improve
the space efficiency of the filter while permitting smaller, less
heavily loaded buckets (e.g., a 3-slot bucket with fewer than
1 occupied slot). With small buckets that are mostly empty,
most lookups require much fewer loads and comparisons and
are thus cheaper. For example, an MF that employs the
block parameters in Figure 3 requires fewer than 0.8 finger-
print comparisons per likely contains query even when
95% of the FSA slots are full, an improvement of more than
10× over a stock CF that checks 8 slots.

Further, small, underloaded buckets afford greater oppor-
tunity to batch work from multiple lookups and insertions
of multiple items into a shared set of SIMD instructions [31]
(see Section 4.1 for further discussion).

The large block size greatly benefits insertions. Because
the logical interpretation of the filter is sparsely filled, bucket
overflows are infrequent because most fullness counters never
max out. As such, provided the block has at least one free
slot, most insertions are likely to succeed on the first at-
tempt. Thus, overwhelmingly most items are hashed with
H1 (>95% for the parameters in Figure 3 for FSA occupan-
cies less than or equal to 0.95), so most insertions, deletions,
and lookups only access a single cache line from the MF.

3.10 Hashing
The MF employs a different method for calculating H ′

and H2 than a stock CF that reduces TLB misses and page
faults. We show H2 and H ′ below, where K is an arbitrary
key, B is the buckets per block, β is the bucket index where
K’s fingerprint is placed, n is the total buckets, H is a hash
function like MurmurHash [3], map(x, n) maps a value x
between 0 and n−1 inclusive, and HF (K) is K’s fingerprint:
H1(K) = map(H(K), n)

H2(K) = map(H1(K)+(−1)H1(K)&1 ∗offset(HF (K)), n)

1045

Figure 5: An example of checking for the presence
of fingerprint Fx once the logical bucket index lbi
within the block is known.

H ′(β,HF (K)) = map(β + (−1)β&1 ∗ offset(HF (K)), n)
offset(Fx) = [B + (Fx%OFF RANGE)] | 1

This formulation logically partitions the filter into two
halves: the even buckets and odd buckets. If a bucket is
even, then we add an offset to the primary bucket. If it is
odd, then we subtract that offset. Offsets are always odd (the
|1 term) to enforce switching between partitions. By parti-
tioning in this way, it makes it possible to compute H ′(K)
and remap K’s fingerprint without knowing K itself. This
property is also true of Fan et al.’s original scheme, which
XORs H1(HF (x)) with the fingerprint’s current bucket to
determine its alternate candidate. However, their approach
requires the number of buckets in the filter to be a power of
two, which in the worst case increases memory use by almost
2×. Our approach does not make this assumption. Rather,
we only mandate that the number of buckets be a multiple
of two so that H ′ is invertible.

Our offset calculation has several nice properties. By
adding B to the offset, it guarantees that for any key, its two
candidate buckets fall in different blocks. This property en-
sures that rehashing a fingerprint always removes load from
the originating block, which is crucial during block overflows.
Further, the offset is at most ±(B+ OFF RANGE). Thus,
by tuning this value so that it is much less than the num-
ber of buckets in a physical memory page, we ensure that
most pairs of candidate buckets fall within the same page of
memory. This optimization improves both TLB and DRAM
row buffer hit ratios, which are crucial for maximizing per-
formance [8, 39, 83]. Further, we select an OFF RANGE
that is a power of two so that modulo operations can be
done with a single logical AND. The map(x, n) primitive is
implemented two different ways that both get around per-
forming an integer division. The first method [44] is given
by map(x, n) = (x∗n) >> k, where x is a k-bit integer that
is uniformly random between 0 and 2k − 1. For the second
method, because the offset is bounded, provided that it is
smaller the total buckets in the MF, we do the following:
if x ≥ 0 && x ≤ n− 1, then map(x, n) = x
else if x < 0, then map(x, n) = x+ n
else, then map(x, n) = x− n

4. ALGORITHMS
In this section, we describe the MF’s core algorithms.

4.1 Lookups
This section describes how to determine the presence of

a key Kx’s fingerprint Fx in an MF. A simplified algorithm
is presented in Algorithm 1. We first both compute the pri-
mary hash function H1 on Kx to determine the global bucket
index for its primary bucket (call it glbi1) for Fx. Dividing
glbi1 by the buckets per block B yields the block index.
Computing mod(glbi1, B) produces the block-local bucket
index lbi1. From here, we check for the presence of x in
its bucket using table read and compare, which performs
an in-situ check for Fx on Kx’s block. No materialization to
a logical representation of the block is necessary.

Algorithm 1 Algorithm for LIKELY CONTAINS function

1: function likely contains(MF,Kx)
2: Fx = HF (Kx)
3: glbi1 = H1(Kx)
4: block1 = MF.BlockStore[glbi1/B]
5: lbi1 = mod(glbi1, B)
6: match = table read and cmp(block1, lbi1, Fx)
7: if (match or OTA bit is unset(block1, lbi1)) then
8: return match
9: else

10: glbi2 = H2(Kx)
11: block2 = MF.BlockStore[glbi2/B]
12: lbi2 = mod(glbi2, B)
13: return table read and cmp(block2, lbi2, Fx)

Algorithm 2 Algorithm for INSERT function

1: function insert(MF,Kx)
2: Fx = HF (Kx)
3: glbi1 = H1(Kx)
4: block1 = MF.BlockStore[glbi1/B]
5: lbi1 = mod(glbi1, B)
6: success = table simple store(block1, lbi1, Fx)
7: if (success) then
8: return success
9: else

10: set OTA(block1, lbi1)
11: glbi2 = H2(Kx)
12: block2 = MF.BlockStore[glbi2/B]
13: lbi2 = mod(glbi2, B)
14: success = table simple store(block2, lbi2, Fx)

15: if (success) then
16: return success
17: return res conflict(MF, block1, block2, lbi1, lbi2, Fx)

Figure 5 shows table read and compare in action. 1 We
first compute Kx’s bucket’s offset in fingerprints from the
start of its primary block. In the example, Kx’s lbi is 4, so
we sum the loads of all buckets that appear before bucket
4 (0 through 3 inclusive), which yields an offset (off) of
5 fingerprints. 2 Since we use zero indexing, that indicates
that bucket 4’s first fingerprint appears at index 5. Since the
FCA[lbi] = 2, that means that bucket 4 has 2 fingerprints.
Therefore, since we begin reading at index 5, we stop reading
prior to index off + FCA[lbi] = 5 + 2 = 7 (index 6). If any
of the fingerprints in the queried range (i.e., 19 or 48) match
Fx, then we return true, else false.

Having returned to Algorithm 1, we then check if a match
was successful or if lbi1 maps to an unset bit in the OTA. If
either hold, then we return the result. Otherwise, we probe
the bucket in the second block and return the result.

To achieve high performance with this algorithm, we mod-
ify it slightly to perform multiple lookups in a flight. All
lookups first compute prior to the if statement, we gather
those lookups for which the statement evaluated to false,
and then perform the else statement for the subset where
accessing the secondary bucket is necessary. This batching
improves performance by permitting improved SIMD vector-
ization of the code and by reducing the number of branch
mispredictions [69]. Batching is akin to the vectorized query
processing employed in columnar databases [9] and loop
tiling [47,57,78] in high-performance computing.

4.2 Insertions
Algorithm 2 shows the high-level algorithm for insertions.

We first attempt to insert into the first candidate bucket at
glbi1 (lines 2 through 6). The function table simple store

1046

Figure 6: An example of inserting a fingerprint Fx
into its logical bucket at index lbi within the block.
The updated block is shown below. We leave out the
OTA for clarity.

Figure 7: Insertion of a key Kx into an MF (visual-
ized as the logical interpretation). This insertion is
atypical as it requires two levels of evictions to re-
solve the conflict. In contrast, most insertions only
need to update a single block and no cuckoo hashing
is necessary, even when blocks are heavily loaded.

succeeds if both the candidate bucket and its block’s FSA
have spare capacity (i.e., no block nor bucket overflow). If
table simple store fails, then the algorithm proceeds to the
second candidate bucket (lines 10 through 14). Provided the
block and candidate have sufficient capacity, the insertion
succeeds. Otherwise, we proceed to the conflict resolution
stage (line 17). In this stage, a series of cuckoo hashing dis-
placements are made.

Figure 6 shows the block-local updates that occur dur-
ing an insertion of a key Ky’s fingerprint Fy (the bulk of
table simple store). 1 We begin by computing the bucket
offset within the FSA. In this case, Ky’s block-local bucket
index lbi is 3, so we sum all fullness counters before index
3, which correspond to the loads in fingerprints of the 0th,
1st, and 2nd buckets in the block. 2 Next, we shift all fin-
gerprints to the left of the end of the bucket (at an offset of
off + FCA[lbi]) to the left by one slot to vacate a slot for
Fy. These operations are inexpensive because many elements
are shifted via a single low-latency logical shift instruction,
and because Block Store blocks are sized to evenly divide a
cache line, only one cache line from the Block Store is ac-
cessed per block-level read or update. 3 Fy is then stored
at FSA[off + FCA[lbi]]. 4 The final step is to increment
the fullness counter at the bucket’s logical index.

Figure 7 shows the core functionality of the function
res conflict, with the series of displacements that occur
when inserting a sample key Kx’s fingerprint x into its pri-
mary bucket. 1 In the example, Kx maps to a bucket that
is full (a bucket overflow) within a block that has spare ca-

Figure 8: An example of checking for the presence
of fingerprint Fy once the logical bucket index lbi
within the block is known and deleting it on a match.
The updated block is shown below. We leave out the
OTA for clarity.

pacity. Cuckoo hashing evicts one of the fingerprints in Kx’s
candidate (F0). 2 F0 is remapped to its other candidate
bucket, which is found in block Bj and 3 the OTA in block
Bi is updated by setting the bit that HOTA specifies to 1. In
the example, blocks have capacity for 10 fingerprints, so Bj
is already full even though F0’s other candidate has spare
capacity. In this case, Bj experiences a block overflow. In a
block overflow without a bucket overflow, any of the existing
fingerprints can be evicted to make space for F0. 4 In the
example, F1 is evicted from the bucket proceeding F0’s other
candidate. F1 remaps to its alternate candidate, a bucket in
Bk, and because Bk is under capacity and F1’s new bucket
has a spare slot, the displacement completes. 5 The OTA in
Bj is then updated by setting a bit to record F1’s eviction.

We stress that these complex chains of displacements are
infrequent in an MF, contrary to a CF, even at high load
factors (e.g., 0.95). With the proper choice of parameters
(see Section 5), over 95% of items are trivially inserted in
their first or second buckets without triggering evictions.

4.3 Deletions
Deletions proceed similarly to lookups. Our example pro-

ceeds by deleting the fingerprint Fy that we inserted in Fig-
ure 6. We first compute H1 on the key (call it Ky) to deter-
mine the primary bucket and HF (Ky) to calculate Fy. From
there, we compute the block index and block-local bucket
index. The next step is to search the key’s primary bucket
and delete its fingerprint provided there is a match. Figure 8
shows the block-local operations. 1 We first sum the fullness
counters from index 0 to lbi−1 inclusive, which gives us the
offset of the primary bucket’s fingerprints within the FSA.
2 We then perform a comparison between Fy and all the
fingerprints in the primary bucket. 3 On a match, we right
shift all fingerprints to the left of the matching fingerprint,
which has the effect of deleting the fingerprint. If there are
two or more matching fingerprints, we select one and delete
it. 4 Finally, we update the FCA to reflect the primary
bucket’s new load by decrementing its fullness counter (at
index lbi in the FCA) and return.

When the fingerprint is not found in the primary bucket,
we calculate H2(Kx) to produce the secondary bucket’s
global logical index and proceed as before by computing
the block ID and block-local bucket index. We then repeat
the process in Figure 8 and delete a single fingerprint on a
match. Note that contrary to lookups, we did not need to
check the OTA before proceeding to the secondary bucket.
Because ASMDSs only permit deletions to items that have
actually been stored in the filter (otherwise false negatives
are possible), a failure to match in the primary bucket means
the fingerprint must be in the alternate candidate and that
the secondary deletion attempt will succeed [29].

1047

Note, our implementation does not clear OTA bits. Re-
peat insertions and deletions will lead to a growing number
of set bits. We combat this effect by biasing block overflows
so that they overwhelmingly set the same bits in the OTA by
biasing evictions on block overflows from lower order buck-
ets. Given that typically only several percent of fingerprints
overflow at load factors at or below 0.95 (less than 5% for
the design in Figure 4), cotuning the OTA’s length and the
MF’s load factor is sufficient for many applications.

For supporting many repeat deletions while sustaining
near-maximal load factors (e.g., ≥ 0.95), one robust ap-
proach is to prepend each fingerprint with a bit that speci-
fies whether the fingerprint is in its primary (or secondary)
bucket and force all overflows from a block that map to the
same OTA bit to remap to the same alternate block (but
very likely different buckets). On deletions of a secondary
item x, it is then possible to clear x’s corresponding bit
in its primary block’s OTA if no other fingerprints in its
secondary block are simultaneously secondary, would map
back to x’s originating block, and would hash to the same
bit that x would have set in the OTA when it overflowed. A
probabilistic variant that saves space by forgoing tagging fin-
gerprints at the expense of not being able to as aggressively
clear OTA bits is also possible. We leave the implementation
to future work.

4.4 Fast Reductions for Determining Bucket
Boundaries in the FSA

One of the keys to a high-throughput MF is implement-
ing fast reductions on the FCA. Specifically, determining the
start of each bucket in the block requires summing all the
counts of all fingerprints in buckets that precede it within
its block’s FSA. A core challenge is that buckets at different
indices require summing differing numbers of fullness coun-
ters in the FCA. A naive implementation that issues a vari-
able number of instructions will lead to poor performance.
Instead, a branchless algorithm with a fixed instruction se-
quence is necessary. At first, we considered doing a full ex-
clusive scan (i.e., for every bucket computing the number of
fingerprints that precede it). Efficient branchless parallel al-
gorithms like Kogge-Stone [40] exist that require O(log(n))
time and map well to the SIMD instruction sets of modern
processors (e.g., SSE [64] and AVX variants [46]).

However, it turns out that a class of more efficient algo-
rithms is possible that consists entirely of simple logic op-
erations (e.g., NOT, AND, and OR), logical shifts, and the
population count primitive (popcount for short). Popcount
is a native instruction on almost every major processor and
is a high-throughput, low-latency primitive [53]. Further,
high-performance SIMD implementations of popcounts exist
that use a combination of lookup tables and permute oper-
ations, so even if there is no native popcount instruction,
performance-competitive workarounds like Mu la et al.’s al-
gorithm and AVX2 implementation are possible [53]. Pop-
count takes as input a multibyte integer and returns the
number of bits that are set to 1. Prior work by González et
al. [34] leverages the popcount primitive as part of a high-
performance rank and select algorithm. Our algorithm gen-
eralizes these primitives to arrays of fixed-width counters.

Our approach is shown in Algorithm 3 which, given a
bucket at bucket index lbi within the block, computes and
returns the number of fingerprints that precede the bucket’s
fingerprints in the block’s FSA.

We first perform a masked copy of the FCA where all
counters that appear at lbi or greater are cleared (lines 2-3).
This masking ensures that we only count fingerprints that
precede the bucket at lbi. In our implementation, this op-

Algorithm 3 This algorithm takes as input a block’s full-
ness counter array FCA, a bucket index lbi within the block,
the width of each counter in bits w, and then returns the
index of the bucket’s initial element in the FSA.

1: function exclusiveRedViaPopCount(FCA, lbi, w)
2: fullnessCounterArrayMask = (1 << (w ∗ lbi))− 1
3: mFCA = FCA&fullnessCounterArrayMask
4: pcMask = getPopCountMask(w)
5: sum = 0
6: for (bitPos = 0; bitPos < w; bitPos+ +) do
7: sum += popCnt(mFCA&pcMask) << bitPos
8: pcMask <<= 1

return sum

eration also masks out fingerprints that are packed into the
same word as the fullness counter array. We next call getPop-
CountMask (line 4), which for w-bit fullness counters, returns
a mask where the LSB and every wth bit thereafter are set to
1 and the remaining bits to 0. This mask when anded with
the masked fullness counter array mFCA selects out all bits
that occur in the zeroth position of each of the counters and
zeroes out the other digits. For instance, with 4-bit counters,
four buckets per block, and hence a 16-bit fullness counter
array, the mask pcMask would be 0b0001000100010001
or equivalently 0x1111. For any value of bitPos between
0 and w − 1 inclusive, shifting the pcMask to the left by
bitPos selects out the bitPosth least significant digit of each
w-bit counter (line 8).

The next phase incrementally counts each fingerprint that
appears prior to the bucket digit-by-digit across all remain-
ing counters in the masked copy. We initialize the sum to
zero (line 5). During the bitPosth pass of the algorithm
(line 7), we count the bitPosth least significant bit of each
counter. That sum is then shifted left by the exponent of
the power of two to which the digit corresponds (bitPos)
before applying it to the growing partial sum sum, which
we ultimately return once all passes are complete. Note that
loop unrolling will eliminate the branch on line 6.

5. MODELING
In this section, we describe a set of models that are used

to select the parameters for a filter given a set of constraints.
Table 2 lists the parameters that we use in our models.

Table 2: MF Glossary of Symbols

• B - buckets per block
• C - the multiplicative slot compression ratio, where
C = 0.25 corresponds to four slots in the logical
interpretation for each physical slot in the FSAs
• S - logical slots per bucket
• αL - logical load factor (e.g., αL = 0.5 for 4-slot

buckets where on average two slots are full)
• αC - block load factor (e.g., αC = 0.8 for blocks with

40-slot FSAs where on average 35 slots are occupied)
• O - number of bits in the OTA of each block
• m - expected number of items that overflow a block
• b - expected buckets accessed per negative lookup
• M - total fingerprints (net total occupied FSA slots)

5.1 False Positives and Storage Costs
The false positive rate ε for an MF is given by Equation 3.

ε = 1− (1− 1/2f)αLbS (3)

From Equation 3, we derive Equation 4 the formula for
the fingerprint length f in bits for a target ε.

f ≈ log2((αLbS)/ε) = log2((αCbCS)/ε) (4)

1048

0.0 0.2 0.4 0.6 0.8 1.0
Compression Ratio (C)

0

1

2

3

4

5

Ad
di

tiv
e

Co
ns

ta
nt

 (K
1
)

MF S=1
MF S=2
MF S=3

MF S=7
MF S=15
MF S=31

CF
ss-CF
RSQF

Figure 9: An MF for some values of C and S uses
fewer bits per item than a CF, a CF with semi-
sorting (ss-CF), and a rank-and-select quotient filter
(RSQF). αC = 0.95 for the MFs and α = 0.95 for the
RSQF, ss-CF, and CF. For the MFs, we set the block
size at 512 bits, and O = 16 and f = 8.

The bits per item is given by Equation 5, with the trans-
formed expression obtained by substituting αCC in for αL.

I = OTA bits/item+ FCA bits/item+ FSA bits/item

=
O

αLBS
+
log2(S + 1)

αLS
+
Cf

αL

=
O/(BCS)+log2(S+1)/(CS)+log2((αCbCS)/ε)

αC

(5)

The OTA bits per item is O divided by the expected oc-
cupied fingerprint slots in an FSA (αLBS). The log2(S +
1)/(αLS) term counts the bits per FCA counter per item in
the filter, and the (Cf)/αL scales the fingerprint length f
by the block load factor αC as (Cf)/αL = f/αC . For the
FSA bits per item term (f/αC), the αL in the numerator
(i.e., f = log2((αLbS)/ε)) works to reduce f by typically
being a small value such that log2(αL) shortens f by 1 to
3 bits while the αC in f/αC ’s denominator can be tuned to
be close to 1 if the MF’s workload is known a priori. These
gains are primarily from the FCA and FSA working in con-
cert, which allows us to select αL to be small (e.g., 0.2) and
to shrink S from 4 to 3 or less, all while using comparable
or slightly less space than a CF. Further, the OTA helps by
reducing b from 2 to close to 1, enough to hide the OTA’s
space cost while also permitting some space savings.

If we fix all parameters except ε, I becomes I = K1 +
K2log2(1/ε), where K1 and K2 are constants. Figure 9 shows
how K1 varies with the compression ratio C and slots per
bucket S for a fixed block load factor αC of 0.95. We coplot
the associated K1 constants for a S = 4 b = 2 cuckoo filter
(CF), a rank-and-select quotient filter, and a S = 4 b = 2
cuckoo filter with semi-sort compression (ss-CF) all at a load
factor of 0.95. At this design point, K2log2(1/ε) is the same
for all filters. The figure demonstrates several key points:
(1) MFs use a comparable amount of storage to other filters,
(2) there is a fair amount of flexibility when choosing the
compression ratio without adversely affecting space usage
when the slots per bucket is small, (3) optimizing for space
as buckets scale in size requires reducing C, and (4) large
buckets may be used with MFs with an additional storage
overhead of 1 or 2 bits. This latter point contrasts with CFs,
which use an extra bit for each power of two increase in S.

5.2 Lookup Costs
An important parameter when modeling the expected cost

of each lookup in total buckets is m, the number of items
expected to overflow an MF block. Equation 6 presents an
approximation for m, which models both block and bucket
overflows, as well as their intersection (i.e., an overflow that
is both a block and bucket overflow). We ignore cascading
evictions due to cuckoo hashing since they are not prevalent

(e.g., <1%) for typical parameter values. In our approxi-
mation, we model bucket and block overflows using models
derived from the Poisson distribution. For S ≥ 2, block over-
flows typically overwhelmingly dominate.

m ≈ bucket overflows+ block overflows− bucket and block overflows

≈ αLBS∗[
ΣM

x=S+1(x−S)Pr(αLS,x)

αLS
+

ΣM
x=CBS+1(x−CBS)Pr(αLBS,x)

αLBS

− 1
αLBS

M∑
x=CBS+1

(x− CBS)Pr(αLBS, x)
x∑

y=S+1

(y−S)Pr(x/B,y)
x/B

]

where Pr(λ, x) =
λxe−λ

x!
(6)

For lookups that are correctly characterized as negatives
(excluding false positives), the cost of each such lookup is b.
b is one plus the fraction of OTA bits that are set on average
for each block. For instance, with a 12-bit OTA per block,
if the mean bits that are set is 2, then b would be 1 + 2/12
(i.e., about 1.167 buckets are expected to be accessed per
lookup query that returns false).

The number of set bits is dependent on the mean finger-
prints per block that overflow. These overflows occur both
when a bucket does not have sufficient capacity (i.e., when
its fullness counter maxes out) and when the block becomes
full. Assuming m overflows per block, then Equation 7 gives
the expected negative lookup cost in buckets.

negative lookup cost≈ b = 1 + 1− (1− 1
O

)m = 2− (O−1
O

)m (7)

The final term is the expected fraction of OTA bits that
are unset. It is also the probability that a single bit within
the OTA is unset. We derive the model by using a balls-into-
bins model (see Mitzenmacher and Upfal [52]) where each of
the O bits in the OTA are bins and balls are the m overflow
items. With m balls thrown uniformly randomly into O bins,
the likelihood that an unset bit remains unset after one ball
is thrown is O−1

O
, and we exponentiate by m because the m

balls are thrown independently of one another.
For positive lookups (excluding false positives), the lookup

cost is shown in Equation 8 and is approximately one plus
the expected fraction of items that overflow a block.

positive lookup cost ≈ 1 + (1− 1

2f
)αLS ∗ m

αLBS
(8)

αLBS is the mean occupied fingerprint slots in the FSA per
block. The first term in the product corrects for an alias
that occurs on the primary bucket when the item’s actual
fingerprint is in the secondary bucket. Equation 8 is also
the expected cost of a deletion since well-formed deletions
always succeed (otherwise, false negatives are possible).

The lookup cost for false positives is shown in Equation 9,
which interpolates between 1.5 (the cost of a false positive
with a completely full OTA) and 1.0 (the cost of a false pos-
itive with an empty OTA). For example, if zeros constitute
three quarters of the OTA’s bits, then we expect 1.5 - 0.5 *
(0.75)=1.125 buckets to need to be checked.

false positive lookup cost ≈ 1.5− 0.5 ∗ (1− 1

O
)m (9)

Given P , a ratio of true positives to total lookups, we
can compute the expected lookup cost of Equation 10, the
weighted average of the individual lookup costs.

expected lookup cost = P ∗ positive lookup cost+
(1− P)(1− ε) ∗ negative lookup cost+
(1− P)(ε) ∗ false positive lookup cost

(10)

6. EXPERIMENTAL METHODOLOGY
We conduct our experiments on an AMD RyzenTM

ThreadripperTM 1950X processor, which is composed of two
8-core dies for a total of 16 cores, each with 2-way simulta-
neous multithreading [74, 75]. Each core has a 32 KB L1

1049

data cache, a 64 KB L1 instruction cache, a 512 KB L2,
and there is a 32 MB L3 that is shared among all cores. We
fix the CPU’s frequency at 3400 Mhz. Each 8-core die has
two memory channels for a total of four. The machine has
128 GB of RAM that is clocked at 2133 MHz, and it runs
Ubuntu 16.04.4 LTS (Linux 4.11.0).

We compare the MF’s throughput to three other filters
and implementations from prior work. These are Fan et al.’s
cuckoo filter (CF) [28,29], Fan et al.’s CF with semi-sorting
(ss-CF) [11,28,29], and Pandey et al.’s rank-and-select quo-
tient filter (RSQF) [59, 60]. Fan et al. [29] already demon-
strated the CF to be faster than Bloom filters [7], blocked
Bloom filters [62], and d-left counting Bloom filters [10,11],
so we do not evaluate these designs.

Unless stated otherwise, we run experiments on filters
with 128 * 1024 * 1024 slots. We configure the MF to use
8-bit fingerprints, and to have a 46-slot FSA, a 128-bit FCA
(64 x 2-bit counters), and a 16-bit OTA, for a total of 512
bits. It thus contains 64 buckets (each with three logical
slots) and has a slot compression ratio (C) of about 0.24.
The configuration is the same as the one in Figure 3 and at
a load factor of αC = 0.95 produces an MF that uses 512
/ (46 * 0.95) = 11.71 bits per item. We thus compare our
implementation to a CF that uses 12-bit fingerprints since
Fan et al.’s code does not support 11-bit fingerprints [28,29].
Both filters have roughly equivalent error rates for similar
load factors (αC in the case of the MF).

We generate 64-bit random integers using C++’s standard
library and benchmark the performance of each filter by run-
ning separate trials where we fill the filter up to a load factor
that is a multiple of 0.05 and then proceed to insert, delete,
or look up a number of fingerprints equal to 0.1% of the to-
tal slots in the filter. Both the generation of large filters that
do not fit into cache and of uniformly random fingerprints
are consistent with the evaluations of Fan et al. [29] and
Pandey et al. [59]. We rebuild filters from scratch after each
trial with a new set of random fingerprints to reduce noise.
Results are the average of 5 trials. Filters are compiled using
g++ (version 5.4.0-6) with the -Ofast -march=native flags,
as they yield the best performance. We plot throughput in
millions of operations per second (MOPS).

Fan et al.’s implementation packs four 12-bit fingerprints
into every 64-bit word and pads the remaining 16 bits. Thus,
their CF uses 8 bytes for every four 4 fingerprint slots [29].
The MF uses 64 bytes for every 46 fingerprint slots. Thus,
the MF is about 186.7 MB in size whereas the CF is 256
MB (192 MB if it did not pad).

7. EVALUATION
In this is section, we present our results, which show our

MF implementation to sustain higher throughput than a CF
for lookups, insertions, and deletions.

7.1 Lookup Throughput
Figure 10 presents the throughput of the MF when 100%

of the lookups are true positives. In this configuration, at a
load factor of 0.95, a mere 1.05 cache lines from the filter
are accessed per query, a reduction of close to 50% over a
CF. We observe that at low load factors, the MF is over 2×
faster than a CF and upwards of 1.6× at high loads.

Figure 11 presents the throughput of the MF when 100%
of the lookups are true negatives (a mix of negatives and
false positives). The filter achieves a throughput that is 1.3×
to 2.5× faster. At a load factor of 0.95, the 16-bit OTA has
about 11% to 12% of its bits set to 1, so lookups require
accessing about 1.11 cache lines (approximately twice as

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

0

10

20

30

40

50

Lo
o
ku

p
s

(M
O

P
S
)

MF CF ss-CF RSQF

Figure 10: An MF is approximately 1.6× to 2.4×
faster than a CF for queries that are true positives.

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

0

10

20

30

40

50

Lo
o
ku

p
s

(M
O

P
S
)

MF CF ss-CF RSQF

Figure 11: An MF is approximately 1.3× to 2.5×
faster than a CF for queries that are true negatives.

many secondary lookups are required as the positive lookup
case). This difference explains why positive lookups sustain
higher throughput than negative lookups at heavy loads. To
counter this drop in throughput and approximately match
the performance of positive lookups, we could double the
length of the OTA or reduce the load factor to 0.9.

On an idealized machine and implementation, perfor-
mance would only drop by about 5% to 11% (i.e., in line with
additional data movement). However, it is difficult to achieve
that performance in practice due to microarchitectural lim-
itations (e.g., branch mispredictions) and practical trade-
offs in software engineering (e.g., trading off between writing
code quickly that is cross-platform versus hand-tuning code
for a specific processor). Since approximately 90% or more
of the lookups never have to perform a secondary access, we
focused our efforts on making that fast. An industrial imple-
mentation with hand tuned assembly or vector intrinsics is
likely to achieve speedups at high load that are much closer
to the reductions in pseudorandom cache accesses.

7.2 Insertion Throughput
Like lookups, MF insertion throughput realizes large im-

provements over CFs for most load factors. Figure 12 demon-
strates that an MF is able to sustain high throughput for
much longer than a CF. At high loads (e.g., a load factor of
0.75 or higher), the MF is approximately 3× to 15× faster
than a comparable CF. This difference matches the simple
intuition that buckets with empty slots are easier to insert
into than those that are full. Imagine an MF with blocks
with 48-slot FSAs and a sample block in which only a single
FSA slot is free. Even in this extreme case, provided αL is
low, it is very likely that the block can receive another fin-
gerprint (i.e., very few, if any, of the buckets are likely full).
However, if we arrange those same 48 slots into 12 4-slot
CF buckets, the probability that we map to a bucket with
a free slot is 1/12. Thus, whereas the MF very likely only
needs to access one cache line from the filter’s storage, the
CF is expected to access two or more for 11 out of every
12 insertions, as it needs to access at least one secondary
bucket. The MF’s reduction in accesses is the key to im-
proving throughput, as cache and memory bandwidth (the

1050

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

0

10

20

30

40

50
In

se
rt

io
n
s

(M
O

P
S
) MF CF ss-CF RSQF

Figure 12: An MF is approximately 0.9× to 15.5×
faster for insertions than a CF.

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

0

10

20

30

40

50

D
e
le

ti
o
n
s

(M
O

P
S
) MF CF ss-CF RSQF

Figure 13: An MF is approximately 1.3× to 1.6×
faster for deletions than a CF.

typical bottlenecks for an ASMDS) are much more efficiently
used.

7.3 Deletion Throughput
MF deletion throughput is about 1.3× to 1.6× higher than

a CF’s (Figure 13). Like lookups and insertions, the improve-
ment is driven by reducing cache and memory traffic per op-
eration. With these parameters, over 95% of deletions never
access more than one MF cache line (even for αC=0.95).

7.4 Throughput Impact of Optimizations
In Figure 14, we explore the vital role that batching

and the branchless popcount-accelerated reduction opti-
mizations play in yielding a high-performance MF imple-
mentation. For our baseline MF, we perform one opera-
tion at a time and use a naive accumulator loop for sum-
ming fullness counters to determine bucket starting offsets in
the FSA. Adding batching improves throughput by roughly
2× (except for insertions). Replacing the naive accumulator
loop with Algorithm 3 yields another 2× to 3× improve-
ment. Insertion results are the net throughput from filling
an MF from empty to a block load factor αC of 0.95. All
other results are the throughput at αC = 0.95. The opti-
mized MF fills to a load factor of 0.95 about 3× faster than
the CF.

7.5 Flexibility
Figure 15 plots lookup, insertion, and deletion throughput

when varying fingerprint length. Despite the wide range in
fingerprint lengths, throughput is relatively constant.

Figure 16 shows how throughput changes per operation as
the slots per bucket is varied. As an MF logically underloads
its buckets, the expected number of slots that require checks
remains small, and throughput is only modestly affected.

7.6 Cross-Platform Performance Portability
In this section, we demonstrate the MF’s strong per-

formance portability across different microarchitectures by
benchmarking on a Skylake-X server. Since the MF and CF
were also the fastest on this platform, we leave out the RSQF
and ss-CF, as their throughput as compared to the CF’s and
MF’s did not appreciably change.

Pos. Lookups Neg. Lookups Insertions Deletions
0
5

10
15
20
25
30
35

T
h
ro

u
g
h
p
u
t

(M
O

P
S
)

CF Baseline MF +Batching +Popcount Opt.

Figure 14: MF throughput surges with the cumula-
tive addition of optimizations (αC = 0.95).

10 15 20 25 30
Fingerprint Length (Bits)

0

10

20

30

40

50

T
h
ro

u
g
h
p
u
t

(M
O

P
S
) Pos. Lookup

Neg. Lookup
Delete
Insert

Figure 15: An MF sustains high throughput for a
range of fingerprint lengths (C ≈ 0.24, S = 3, O = 16,
and αC = 0.95).

3 7 15
SLOTS

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

LO
A

D

45.2 42.4 40.8
44.6 40.3 38.4
43.8 38.7 36.4
43.6 37.4 34.9
43.1 37.0 33.9
42.1 36.2 33.0
42.0 35.3 32.7
41.5 35.4 32.6
40.4 35.0 32.5
40.4 34.6 32.0
39.2 34.6 31.4
39.1 33.1 31.1
38.8 34.2 30.7
38.2 33.8 30.3
37.1 33.6 28.8
36.3 32.8 28.9
35.2 31.7 27.6
33.0 30.5 25.4
30.3 27.9 22.9

(a) Pos.

3 7 15
SLOTS

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

LO
A

D
47.1 43.7 44.3
46.1 41.4 41.0
45.3 39.5 38.4
44.7 38.8 36.9
44.3 37.1 35.6
43.6 36.1 34.7
43.1 35.5 33.7
42.4 34.9 33.1
41.7 34.5 32.7
41.2 34.4 32.6
40.5 33.7 32.6
39.7 33.6 32.2
39.0 33.8 31.6
38.2 33.3 31.2
37.1 32.5 30.5
35.3 31.1 29.0
32.7 28.4 26.9
29.2 24.6 23.8
24.9 20.0 19.6

(b) Neg.

3 7 15
SLOTS

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

LO
A

D

21.4 20.2 19.0
20.3 19.7 18.7
19.9 19.6 18.3
19.6 19.1 17.7
19.8 18.9 17.8
19.7 18.9 17.7
19.4 18.8 17.6
18.8 18.7 17.5
18.5 18.5 17.4
18.6 18.4 17.3
18.2 18.4 17.2
18.1 18.4 17.1
17.7 18.0 17.0
17.1 17.8 16.3
16.3 16.9 16.1
14.2 15.1 14.6
11.4 12.3 11.9
7.6 8.4 8.2
3.5 4.7 4.4

(c) Insert

3 7 15
SLOTS

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

LO
A

D

37.6 35.7 33.0
36.3 33.5 31.5
34.5 31.2 29.2
32.7 29.0 27.7
31.5 28.8 26.9
31.0 27.1 26.4
30.5 28.2 25.8
30.1 27.3 25.1
29.4 27.4 24.6
29.1 27.0 24.4
28.7 26.8 24.2
28.3 26.6 23.9
28.0 26.1 23.4
27.7 26.1 23.0
27.2 26.0 22.6
26.7 25.6 22.0
25.9 24.7 21.1
24.7 24.3 19.8
23.2 22.6 18.1

(d) Delete

Figure 16: MF throughput in MOPS as we covary
the slots per bucket (S) and block load factor (αC).
High throughput is achieved even for large S.

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

MF True Neg.

CF True Neg.

MF True Pos.

CF True Pos.

(a) Lookup Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Load Factor

0.0

0.5

1.0

1.5

2.0
N

o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

MF Insert

CF Insert

MF Delete

CF Delete

(b) Update Throughput

Figure 17: On a Skylake-X server, MF lookup
throughput is on par with or nearly 1.8× higher than
a CF’s. MF deletion throughput is about 20% higher
than a CF’s. MF insertion throughput is about 2/3
to 3× that of a CF. Results are normalized to a CF’s
lookup throughput on a Skylake-X CPU.

For Skylake-X, we perform no additional tuning of our MF
implementation, yet despite that, it is still in many cases sig-
nificantly faster than the CF; the MF’s disciplined conserva-
tion of cache and memory bandwidth give it the edge. Given
that the CF was developed and performance tuned on an In-
tel processor like the Skylake-X, it is logical that its perfor-
mance relative to an MF improves. For lookups (Figure 17a),
the MF attains throughput that matches or exceeds the CF
even though it uses fewer bits per item for an equivalent
ε. Deletion throughput is roughly 1.2× higher (Figure 17b),
and insertion throughput (Figure 17b) is higher for load fac-
tors at or exceeding 0.5 (up to ≈3× better).

1051

8. RELATED WORK
There continues to be significant interest in the design and

application of ASMDSs. Bloom first proposed his epony-
mous filter in 1970 [7]. Since then it has been used in many
different contexts and has evolved into many different vari-
ants [1, 18, 21, 30, 66, 80]. Broder and Mitzenmacher provide
a survey of some variants and their applications in computer
networking [14]. Fan et al. propose the counting Bloom filter
(CBF) for use in SummaryCache [30]. Cohen et al. develop
the spectral Bloom filter [18], which like the CBF provides
deletions and counting but is more resistant to skew.

ASMDS Use in Databases and Data Stores - In the
database domain, Bloom filters have seen widespread use in
accelerating hashed semijoins (e.g., the Bloomjoin [12, 48]).
PostgreSQL [70] supports using a Bloom filter as an index
and is visible as an SQL extension [68].

RocksDB employs Bloom filters and partitioned Bloom fil-
ters to speed querying of large data blocks [22]. OceanStore
uses a multi-layer attenuated Bloom filter [42]. Similar hi-
erarchies of Bloom filters are commonly found in Log-
Structured Merge-trees [56,67]. LSM-trees are employed in a
number of data stores such as RocksDB [22], BigTable [17],
LevelDB [20], HBase [33], and Cassandra [43].

Fingerprint-based ASMDSs - A number of filters exist
that use fingerprints in lieu of setting individual bits. Cuckoo
filters [25,29], d-left counting Bloom filters [10], quotient fil-
ters [6, 59], and TinySet [24] are some examples. TinySet
truncates fingerprints to avert overflows that would reduce
locality. As such, repeat deletions increase its error rate.
d-left counting Bloom filters leverage the improved load dis-
tribution properties of d-left hashing [76] to improve space
utilization approximately 2× over a counting Bloom filter.

Compression for Sparse Matrices - The com-
pression method used by the MF shares similarities
with approaches for sparse matrices such as com-
pressed sparse rows (CSR) [36, 73] and compressed sparse
columns (CSC) [73] but requires less metadata because po-
sitional information within a row (such as in CSR) or within
a column (such as in CSC) does not need to be encoded.

Sparse and Succinct Data Structures - Prior works
present methods for storing sparse data structures [32,38,55,
63,72]. Many use clever hashing or bit vectors with rank and
select (see Jacobson [38] and Navarro [54]). Common appli-
cations are compressing sparse trees [38,81] or tables [55,72].

Compressed Bitmap Indices - Our compression ap-
proach differs from the typical compressed bitmap algo-
rithms like BBC [2] and the WAH variants which primarily
use run length encoding [16,19,37,77,79]. Since fingerprints
are approximately uniformly random, the main compression
opportunity is eliminating storing empty slots, which our
simpler approach already does well.

Compression in Prior ASMDSs - Other ASMDSs have
used compression in the past. Semi-sorting, a form of com-
pression where a portion of each fingerprint is compressed
has been proposed in the context of d-left counting Bloom
filters [10, 11] and cuckoo filters [29]. Semi-sorting could be
added to an MF to save additional space. We chose not
to use semi-sorting because the gains in space come at sig-
nificant cost to performance. Further, our implementation
would have required additional complexity since we would
have had to support encoding and decoding for differing
numbers of occupied slots per bucket since empty slots are
not explicitly stored. Mitzenmacher provides detailed anal-
ysis of design tradeoffs when compressing Bloom filters and
discusses its applicability to web caching [50].

Cuckoo Hash Tables - A CF is highly related to cuckoo
hash tables (CHTs) [58] and variants [13, 65, 71]. Rather
than storing fingerprints, a CHT stores key-value pairs. Like
CFs, CHTs typically have two candidate buckets with four
or eight slots [13,26,27,45,65,82]. A commonality of a base-
line CF and CHT is that as the load on the table increases,
insertion throughput decreases due to a rapid increase in the
prevalence and mean length of cuckoo evictions. Prior work
addresses this reduction in throughput in several ways. Li et
al. employ a breadth-first search (BFS) to reduce the maxi-
mum chain length to one that is logarithmic in the maximum
number of slots that are checked before declaring failure [45].
Their concurrent CHT outperforms MemC3’s [27] that uses
2-choice hashing [4, 51] with the random kickout algorithm
employed in Fan et al.’s CF [29]. A concurrent MF would
likely similarly benefit from using BFS. Sun et al. [71] add
metadata that explicitly tracks the graph-theoretic state of
the table to prune the search space for cuckoo hashing. Our
design avoids this complexity by using blocks that support
storing tens of fingerprints. Horton tables [13] convert the
final slot of buckets that overflow into a remap entry ar-
ray (REA) that enables lookups that access close to a single
bucket, provides many bucket candidates (e.g., 8), and keeps
a worst-case lookup cost of two buckets. We implement the
OTA as a bit vector rather than an REA for simplicity.

9. CONCLUSION
We have presented a high-throughput filter that supports

improved throughput for lookups, insertions, and deletions
without increasing memory usage. Perhaps most notable
is that an MF’s insertion throughput is about 3× to 15×
higher than a comparable CF for load factors at or above
0.75. Further, lookup and deletion throughput are up to
2.5× and 1.6× faster, respectively. These properties are
achieved while also using comparable or fewer bits per item
than a CF for a target false positive rate. Key to these ad-
vances is the block abstraction and its compressed format,
which allows for hiding the storage cost of additional meta-
data structures by logically underloading the filter and using
smaller buckets. The OTA further decreases these costs by
reducing aliasing that would require increasing the length
of fingerprints by filtering out unnecessary accesses to sec-
ondary buckets. With the OTA and a reduction in bucket
overflows due to packing many underloaded buckets into a
single cache line, lookups most often only have to access a
single bucket (one hardware cache line) even when the filter
is heavily loaded. We look forward to applying the MF in
a variety of contexts due to its memory friendliness. Fur-
ther, the innovations of this work like the compression and
performance optimizations can be applied to a broad range
of other data structures such as hash tables (e.g., a cuckoo
hash table), various fingerprint-based filters, and algorithms
that employ reductions or scans on fixed-width narrow fields
or counters.

10. ACKNOWLEDGMENTS
We thank the VLDB reviewers and our kind colleagues

Shaizeen Aga, Joseph L. Greathouse, and Gabriel Loh for
their time and superb feedback which substantially im-
proved the paper’s clarity and quality. We also thank John
Kalamatianos and Jagadish Kotra for giving us access to
the Skylake-X server and Karen Prairie for her copy edits.
AMD is a trademark of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification
purposes only and may be trademarks of their respective
companies.

1052

11. REFERENCES
[1] P. S. Almeida, C. Baquero, N. M. Preguiça, and

D. Hutchison. Scalable Bloom filters. Information
Processing Letters, 101(6):255–261, 2007.

[2] G. Antoshenkov. Byte-aligned bitmap compression. In
Data Compression Conference, 1995. DCC ’95.
Proceedings, pages 476–, March 1995.

[3] A. Appleby. MurmurHash.
https://sites.google.com/site/murmurhash, 2008.
Accessed: 2018-02-05.

[4] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. SIAM Journal of Computing,
29(1):180–200, 1999.

[5] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[6] M. A. Bender, M. Farach-Colton, R. Johnson,
R. Kraner, B. C. Kuszmaul, D. Medjedovic,
P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don’t thrash: how to cache your hash on flash.
PVLDB, 5(11):1627–1637, 2012.

[7] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[8] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database architecture optimized for the new
bottleneck: memory access. In Proceedings of the 25th
International Conference on Very Large Data Bases,
VLDB ’99, pages 54–65, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[9] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: hyper-pipelining query execution. In
CIDR 2005, Second Biennial Conference on
Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2005, Online Proceedings, pages
225–237, 2005.

[10] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,
and G. Varghese. An improved construction for
counting Bloom filters. In ESA, volume 6, pages
684–695. Springer, 2006.

[11] F. Bonomi, M. Mitzenmacher, R. Panigraphy,
S. Singh, and G. Varghese. Bloom filters via d-left
hashing and dynamic bit reassignment extended
abstract. In Forty-Fourth Annual Allerton Conference,
Illinois, USA, pages 877–883, 2006.

[12] K. Bratbergsengen. Hashing methods and relational
algebra operations. In Proceedings of the 10th
International Conference on Very Large Data Bases,
VLDB ’84, pages 323–333, San Francisco, CA, USA,
1984. Morgan Kaufmann Publishers Inc.

[13] A. D. Breslow, D. P. Zhang, J. L. Greathouse,
N. Jayasena, and D. M. Tullsen. Horton tables: fast
hash tables for in-memory data-intensive computing.
In A. Gulati and H. Weatherspoon, editors, 2016
USENIX Annual Technical Conference, USENIX ATC
2016, Denver, CO, USA, June 22-24, 2016., pages
281–294. USENIX Association, 2016.

[14] A. Z. Broder and M. Mitzenmacher. Network
applications of Bloom filters: a survey. Internet
Mathematics, 1(4):485–509, 2003.

[15] L. Carter, R. Floyd, J. Gill, G. Markowsky, and
M. Wegman. Exact and approximate membership
testers. In Proceedings of the Tenth Annual ACM
Symposium on Theory of Computing, STOC ’78, pages
59–65, New York, NY, USA, 1978. ACM.

[16] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better
bitmap performance with Roaring bitmaps. Software:
Practice and Experience, 46(5):709–719, 2016.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. BigTable: a distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[18] S. Cohen and Y. Matias. Spectral Bloom filters. In
A. Y. Halevy, Z. G. Ives, and A. Doan, editors,
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pages 241–252.
ACM, 2003.

[19] A. Colantonio and R. D. Pietro. Concise: compressed
’n’ composable integer set. Information Processing
Letters, 110(16):644–650, 2010.

[20] J. Dean and S. Ghemawat. LevelDB: a fast persistent
key-value store.
https://opensource.googleblog.com/2011/07/
leveldb-fast-persistent-key-value-store.html,
July 27, 2011. Accessed: 2017-01-25.

[21] F. Deng and D. Rafiei. Approximately detecting
duplicates for streaming data using Stable Bloom
filters. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, pages
25–36, 2006.

[22] S. Dong, M. Callaghan, L. Galanis, D. Borthakur,
T. Savor, and M. Strum. Optimizing space
amplification in RocksDB. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems
Research, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings, 2017.

[23] Dr. Seuss. Horton Hatches the Egg. Random House,
1940.

[24] G. Einziger and R. Friedman. TinySet - an access
efficient self adjusting Bloom filter construction.
IEEE/ACM Transactions on Networking,
25(4):2295–2307, 2017.

[25] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and
M. R. Torres. 2-3 cuckoo filters for faster triangle
listing and set intersection. In Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2017, Chicago,
IL, USA, May 14-19, 2017, pages 247–260, 2017.

[26] U. Erlingsson, M. Manasse, and F. McSherry. A cool
and practical alternative to traditional hash tables. In
Proc. 7th Workshop on Distributed Data and
Structures (WDAS06), 2006.

[27] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
compact and concurrent memcache with dumber
caching and smarter hashing. In N. Feamster and
J. C. Mogul, editors, Proceedings of the 10th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April
2-5, 2013, pages 371–384. USENIX Association, 2013.

[28] B. Fan, D. G. Andersen, and M. Kaminsky. Cuckoo
filter. https://github.com/efficient/cuckoofilter,
2017. Accessed: 2017-11-19.

[29] B. Fan, D. G. Andersen, M. Kaminsky, and
M. Mitzenmacher. Cuckoo filter: practically better
than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking
Experiments and Technologies, CoNEXT 2014,

1053

Sydney, Australia, December 2-5, 2014, pages 75–88,
2014.

[30] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder.
Summary Cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[31] M. J. Flynn. Some computer organizations and their
effectiveness. IEEE Transactions on Computers,
C-21(9):948–960, Sept 1972.

[32] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with 0(1) worst case access time.
Journal of the ACM, 31(3):538–544, June 1984.

[33] L. George. HBase: the definitive guide: random access
to your planet-size data. O’Reilly Media, Inc., 2011.

[34] R. González, S. Grabowski, V. Mäkinen, and
G. Navarro. Practical implementation of rank and
select queries. In Poster Proc. Volume of 4th
Workshop on Efficient and Experimental Algorithms
(WEA), pages 27–38, 2005.

[35] J. R. Goodman. Using cache memory to reduce
processor-memory traffic. In Proceedings of the 10th
Annual International Symposium on Computer
Architecture, ISCA ’83, pages 124–131, New York,
NY, USA, 1983. ACM.

[36] J. L. Greathouse and M. Daga. Efficient sparse
matrix-vector multiplication on GPUs using the CSR
storage format. In T. Damkroger and J. J. Dongarra,
editors, International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2014, New Orleans, LA, USA, November
16-21, 2014, pages 769–780. IEEE Computer Society,
2014.

[37] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A
tunable compression framework for bitmap indices. In
IEEE 30th International Conference on Data
Engineering, Chicago, ICDE 2014, IL, USA, March
31 - April 4, 2014, pages 484–495, 2014.

[38] G. Jacobson. Space-efficient static trees and graphs. In
30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989, pages 549–554,
1989.

[39] M. Kandemir, H. Zhao, X. Tang, and M. Karakoy.
Memory row reuse distance and its role in optimizing
application performance. In Proceedings of the 2015
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS ’15, pages 137–149, New York, NY,
USA, 2015. ACM.

[40] P. M. Kogge and H. S. Stone. A parallel algorithm for
the efficient solution of a general class of recurrence
equations. IEEE Transactions on Computers,
100(8):786–793, 1973.

[41] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus,
J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: a modern, open-source SQL engine
for Hadoop. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2015, Online
Proceedings, 2015.

[42] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski,
P. R. Eaton, D. Geels, R. Gummadi, S. C. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Y.
Zhao. OceanStore: an architecture for global-scale
persistent storage. In L. Rudolph and A. Gupta,
editors, ASPLOS-IX Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
Cambridge, MA, USA, November 12-15, 2000., pages
190–201. ACM Press, 2000.

[43] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. Operating
Systems Review, 44(2):35–40, 2010.

[44] D. Lemire. A fast alternative to the modulo reduction.
https://lemire.me/blog/2016/06/27/
a-fast-alternative-to-the-modulo-reduction/,
June 27, 2016. Accessed: 2017-07-01.

[45] X. Li, D. G. Andersen, M. Kaminsky, and M. J.
Freedman. Algorithmic improvements for fast
concurrent cuckoo hashing. In Ninth EuroSys
Conference 2014, EuroSys 2014, Amsterdam, The
Netherlands, April 13-16, 2014, pages 27:1–27:14,
2014.

[46] C. Lomont. Introduction to Intel advanced vector
extensions. Intel White Paper, pages 1–21, 2011.

[47] D. B. Loveman. Program improvement by
source-to-source transformation. Journal of the ACM,
24(1):121–145, Jan. 1977.

[48] L. F. Mackert and G. M. Lohman. R* optimizer
validation and performance evaluation for distributed
queries. In Proceedings of the 12th International
Conference on Very Large Data Bases, VLDB ’86,
pages 149–159, San Francisco, CA, USA, 1986.
Morgan Kaufmann Publishers Inc.

[49] P. Melsted and J. K. Pritchard. Efficient counting of
k-mers in DNA sequences using a Bloom filter. BMC
Bioinformatics, 12:333, 2011.

[50] M. Mitzenmacher. Compressed Bloom filters. In
Proceedings of the Twentieth Annual ACM Symposium
on Principles of Distributed Computing, PODC 2001,
Newport, Rhode Island, USA, August 26-29, 2001,
pages 144–150, 2001.

[51] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distribributed Systems, 12(10):1094–1104,
2001.

[52] M. Mitzenmacher and E. Upfal. Probability and
Computing: randomization and Probabilistic
Techniques in Algorithms and Data Analysis.
Cambridge University Press, 2017.

[53] W. Mula, N. Kurz, and D. Lemire. Faster population
counts using AVX2 instructions. The Computer
Journal, 61(1):111–120, 2018.

[54] G. Navarro. Compact data structures: a practical
approach. Cambridge University Press, 2016.

[55] D. Okanohara and K. Sadakane. Practical
entropy-compressed rank/select dictionary. In
Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 60–70. Society for Industrial
and Applied Mathematics, 2007.

[56] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil.
The Log-Structured Merge-tree (LSM-tree). Acta
Informatica, 33(4):351–385, 1996.

1054

[57] D. A. Padua and M. J. Wolfe. Advanced compiler
optimizations for supercomputers. Communications of
the ACM, 29(12):1184–1201, Dec. 1986.

[58] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[59] P. Pandey, M. A. Bender, R. Johnson, and R. Patro.
A general-purpose counting filter: making every bit
count. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 775–787, 2017.

[60] P. Pandey and R. Johnson. A general-purpose
counting filter: counting quotient filter.
https://github.com/splatlab/cqf, 2017. Accessed:
2017-11-09.

[61] O. Polychroniou, A. Raghavan, and K. A. Ross.
Rethinking simd vectorization for in-memory
databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1493–1508, New York, NY, USA,
2015. ACM.

[62] F. Putze, P. Sanders, and J. Singler. Cache-, hash-,
and space-efficient Bloom filters. ACM Journal of
Experimental Algorithmics, 14, 2009.

[63] R. Raman, V. Raman, and S. S. Rao. Succinct
indexable dictionaries with applications to encoding
k-ary trees and multisets. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’02, pages 233–242,
Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics.

[64] S. K. Raman, V. Pentkovski, and J. Keshava.
Implementing streaming SIMD extensions on the
Pentium III Processor. IEEE Micro, 20(4):47–57, July
2000.

[65] K. A. Ross. Efficient hash probes on modern

processors. In R. Chirkova, A. Dogac, M. T. Özsu,
and T. K. Sellis, editors, Proceedings of the 23rd
International Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April
15-20, 2007, pages 1297–1301. IEEE Computer
Society, 2007.

[66] O. Rottenstreich, Y. Kanizo, and I. Keslassy. The
variable-increment counting Bloom filter. IEEE/ACM
Transactions on Networing, 22(4):1092–1105, 2014.

[67] R. Sears and R. Ramakrishnan. bLSM: a general
purpose Log Structured Merge tree. In K. S. Candan,
Y. Chen, R. T. Snodgrass, L. Gravano, and
A. Fuxman, editors, Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2012, Scottsdale, AZ, USA, May
20-24, 2012, pages 217–228. ACM, 2012.

[68] T. Sigaev, A. Korotkov, and O. Bartunov.
PostgreSQL 10 documentation: F.5. bloom. https:
//www.postgresql.org/docs/10/static/bloom.html,
2017. Accessed: 2018-01-25.

[69] J. E. Smith. A study of branch prediction strategies.
In Proceedings of the 8th Annual Symposium on
Computer Architecture, ISCA ’81, pages 135–148, Los
Alamitos, CA, USA, 1981. IEEE Computer Society
Press.

[70] M. Stonebraker, L. A. Rowe, and M. Hirohama. The
implementation of POSTGRES. IEEE Transactions
on Knowledge and Data Engineering, 2(1):125–142,
1990.

[71] Y. Sun, Y. Hua, S. Jiang, Q. Li, S. Cao, and P. Zuo.
SmartCuckoo: a fast and cost-efficient hashing index
scheme for cloud storage systems. In 2017 USENIX
Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017., pages
553–565. USENIX Association, 2017.

[72] R. E. Tarjan and A. C. Yao. Storing a sparse table.
Communications of the ACM, 22(11):606–611, 1979.

[73] W. F. Tinney and J. W. Walker. Direct solutions of
sparse network equations by optimally ordered
triangular factorization. Proceedings of the IEEE,
55(11):1801–1809, 1967.

[74] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting choice:
instruction fetch and issue on an implementable
simultaneous multithreading processor. In Proceedings
of the 23rd Annual International Symposium on
Computer Architecture, Philadelphia, PA, USA, May
22-24, 1996, pages 191–202, 1996.

[75] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: maximizing on-chip
parallelism. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
ISCA ’95, Santa Margherita Ligure, Italy, June 22-24,
1995, pages 392–403, 1995.

[76] B. Vöcking. How asymmetry helps load balancing. In
40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York,
NY, USA, pages 131–141, 1999.

[77] J. Wang, C. Lin, Y. Papakonstantinou, and
S. Swanson. An experimental study of bitmap
compression vs. inverted list compression. In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17,
pages 993–1008, New York, NY, USA, 2017. ACM.

[78] M. Wolfe. More iteration space tiling. In Proceedings
of the 1989 ACM/IEEE Conference on
Supercomputing, Supercomputing ’89, pages 655–664,
New York, NY, USA, 1989. ACM.

[79] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with efficient compression. ACM
Transactions on Database Systems, 31(1):1–38, 2006.

[80] M. Yoon. Aging Bloom filter with two active buffers
for dynamic sets. IEEE Transactions on Knowledge
and Data Engineering, 22(1):134–138, 2010.

[81] H. Zhang, H. Lim, V. Leis, D. G. Andersen,
M. Kaminsky, K. Keeton, and A. Pavlo. SuRF:
practical range query filtering with fast succinct tries.
In Proceedings of the 2018 ACM SIGMOD
International Conference on Management of Data,
2018.

[82] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and
X. Zhang. Mega-KV: a case for GPUs to maximize the
throughput of in-memory key-value stores. PVLDB,
8(11):1226–1237, 2015.

[83] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts
and exploit data locality. In Proceedings 33rd Annual
IEEE/ACM International Symposium on
Microarchitecture. MICRO-33 2000, pages 32–41,

2000.

1055

