
An Optimal and Progressive Approach to Online Search of
Top-K Influential Communities

Fei Bi†, Lijun Chang§, Xuemin Lin†, Wenjie Zhang†
† University of New South Wales, Australia § The University of Sydney, Australia

f.bi@student.unsw.edu.au, Lijun.Chang@sydney.edu.au
{lxue,zhangw}@cse.unsw.edu.au

ABSTRACT
Community search over large graphs is a fundamental problem in
graph analysis. Recent studies propose to compute top-k influen-
tial communities, where each reported community not only is a
cohesive subgraph but also has a high influence value. The ex-
isting approaches to the problem of top-k influential community
search can be categorized as index-based algorithms and online
search algorithms without indexes. The index-based algorithms,
although being very efficient in conducting community searches,
need to pre-compute a special-purpose index and only work for
one built-in vertex weight vector. In this paper, we investigate on-
line search approaches and propose an instance-optimal algorithm
LocalSearch whose time complexity is linearly proportional to the
size of the smallest subgraph that a correct algorithm needs to ac-
cess without indexes. In addition, we also propose techniques to
make LocalSearch progressively compute and report the commu-
nities in decreasing influence value order such that k does not need
to be specified. Moreover, we extend our framework to the gen-
eral case of top-k influential community search regarding other co-
hesiveness measures. Extensive empirical studies on real graphs
demonstrate that our algorithms outperform the existing online search
algorithms by several orders of magnitude.

PVLDB Reference Format:
Fei Bi, Lijun Chang, Xuemin Lin, Wenjie Zhang. An Optimal and Pro-
gressive Approach to Online Search of Top-K Influential Communities.
PVLDB, 11 (9): 1056-1068, 2018.
DOI: https://doi.org/10.14778/3213880.3213881

1. INTRODUCTION
Community search is a fundamental problem in graph analysis,

and has been receiving increasing interest in recent years (see a
recent tutorial in [23] and references therein). Existing works on
community search mainly focus on the cohesiveness of structural
connections among members of a community while ignoring other
aspects of communities, e.g., influence. As a result, an enormous
number of overlapping communities may be reported, and also a
single community can be of a large size. However, in many applica-
tion domains, we are usually only interested in the most influential

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 9
Copyright 2018 VLDB Endowment 2150-8097/18/5.
DOI: https://doi.org/10.14778/3213880.3213881

communities [27]. Motivated by this, top-k influential community
search is recently proposed and studied in [10, 27, 28]. It has many
important applications such as extracting backbone structures (i.e.,
being both cohesive and influential) from biology networks [5], and
detecting cohesive communities consisting of influential people in
social networks [26]. Moreover, it can also be used to identify the
most influential community in a collaboration network of database
researchers for organizing a workshop [27], and to compute the
most influential community in a friendship network of hikers to
plan a hiking event [28]. Besides, computing influential communi-
ties also greatly refines communities to their core members [27].

Here, the graph G = (V, E) is associated with a vertex weight
vector ω(·) assigning an influence value to every vertex in V . Each
community of G, called influential γ-community, besides being a
cohesive subgraph (i.e., with minimum degree at least γ), has an in-
fluence value that equals the minimum vertex weight of the commu-
nity [27]. As a result, members in a high influential γ-community
are highly connected to each other, and moreover each member is
also an influential individual. Formally speaking, a connected sub-
graph g of G is an influential γ-community [27] if 1) its minimum
vertex degree is at least γ, and 2) it is the maximal one among
all such subgraphs of G with the same influence value as g. For
example, consider the graph in Figure 1 where vertex weights are
shown beside the vertices, and γ = 3. There are two influential γ-
communities: the subgraphs induced by vertices {v0, v1, v5, v6} and
vertices {v3, v4, v7, v8, v9} that, respectively, have influence values
10 and 13. The subgraph induced by vertices {v3, v4, v7, v8} also has
an influence value 13; however, it is not an influential γ-community
since it is not maximal. The problem of top-k influential community
search is to compute the k influential γ-communities of a graph with
the highest influence values, for a user-specified query consisting
of γ and k.

v
0

v
1

v
2

v
3

v
4

v
9

v
8

v
7

v
6

v
5

10 11 12 13 14

17 18 191615

Figure 1: An example graph
Existing Approaches and Their Deficiencies. The existing ap-
proaches to top-k influential community search can be categorized
as index-based algorithms and online search algorithms.
(1) Index-based Algorithms. Li et al. [27] proposed an index-based
algorithm IndexAll to efficiently retrieve the top-k influential γ-
communities from a pre-built special-purpose index that essentially
materializes all influential γ-communities of a graph in a compact
form for all possible γ values. However, the special-purpose index
adds a large burden to the graph processing system, as it is time-
consuming to update the index when the graph changes. Moreover,

1056

IndexAll cannot process queries that impose vertex weight vectors
different from the one used in the index.
(2) Online Search Algorithms. Online search algorithms without pre-
computing indexes are investigated in [10, 27]. Firstly, Li et al. [27]
proposed an OnlineAll algorithm, which online computes all influ-
ential γ-communities in a graph in increasing influence value or-
der. OnlineAll iteratively applies the following three subroutines:
1) reduce the current graph to its γ-core (i.e., maximal subgraph
with minimum degree at least γ); 2) identify the connected com-
ponent of the resulting graph containing the vertex with the mini-
mum weight, which is the next influential γ-community; and 3) re-
move the minimum-weight vertex from the graph. During this pro-
cess, the last k identified influential γ-communities are the results.
Among the above three subroutines of OnlineAll, the second one
is the most time-consuming due to the overlapping nature of the
influential γ-communities [10]. In view of this, Chen et al. [10]
proposed a Forward algorithm which conducts the second subrou-
tine of OnlineAll (i.e., connected component computation) only for
the last k iterations; as a result, Forward improves upon OnlineAll.
Nevertheless, both OnlineAll and Forward are global search algo-
rithms that need to traverse the entire graph for finding just the top-k
influential γ-communities.
Challenges and Our Online Local Search Approach. In this
paper, we aim to compute the top-k influential γ-communities by
conducting a local search on the graph G without pre-computing
indexes, to overcome the deficiencies of the existing algorithms.
The benefits of local search without indexes are two-fold.
• It does not incur any burden to the graph data management

system, regarding index construction and index maintenance.
• It can efficiently process a query by visiting only a small por-

tion of the graph G.
However, there are three challenges to tackle to achieve this.
• It is challenging to determine whether a given subgraph of G

is sufficient for processing a query.
• It is challenging to choose a proper subgraph to process.
• It is challenging to carry out the ideas efficiently for real-time

query processing over large graphs.
Note that, the Backward algorithm proposed in [10] tried to con-
duct a local search for computing top-k influential γ-communities,
but it fails by having a quadratic time complexity and is outper-
formed by Forward when γ is large [10].

We propose a local search framework to tackle the above chal-
lenges, based on the following ideas. Firstly, we prove that if the
subgraph G≥τ of G contains at least k influential γ-communities,
then the top-k influential γ-communities in G≥τ is the query result,
where G≥τ denotes the subgraph of G induced by all vertices with
weights at least τ. Thus, our goal is to find the smallest subgraph
G≥τ∗ of G containing at least k influential γ-communities. Sec-
ondly, we prove that the number of influential γ-communities in
a subgraph G≥τ of G is non-decreasing when τ decreases. Thus,
we can find the target subgraph G≥τ∗ by iteratively decreasing the
value of τ until reaching the target value. Thirdly, to efficiently im-
plement the above ideas, we propose to only process (i.e., count the
number of influential γ-communities for) the subgraphs G≥τ1 ,G≥τ2 ,
. . ., such that the size of G≥τi is around twice the size of G≥τi−1

for every i > 1. For example, to compute the top-2 influential γ-
communities in the graph in Figure 2(a) with γ = 3, we first count
the number of influential γ-communities in the subgraph G≥9 as
shown in Figure 2(b), which is 1. Thus, we need to find another
smaller τ such that the size of G≥τ is around twice the size of G≥9;
we obtain τ2 = 5 and G≥5 is shown in Figure 2(c). As there are
three influential γ-communities in G≥5 — the subgraphs induced

by vertices {v0, v1, v5, v6}, {v3, v4, v8, v9} and {v3, v4, v8, v9, v10}, re-
spectively — the top-2 are the result.

v
1

v
6

v
0

v
2

v
3

v
4

v
5

v
7

v
8

v
9

v
10

v
11

v
12

v
13

v
14

v
15

15

14

1312

10 9

8

7

4

3 2

1

011

6
5

(a) Graph G

v
3

v
4

v
8

v
9

v
13

v
14

v
0

12

14 11

15 13

10 9

(b) Subgraph G≥9

v
3

v
4

v
8

v
9

v
10

v
14

v
13

v
1

v
6

v
0

v
5

15

14

13

10 9

11

12 8

7
6 5

(c) Subgraph G≥5

Figure 2: An example of our local search framework
As a critical subroutine in our local search framework, we pro-

pose a linear-time algorithm to count the number of influential γ-
communities in an arbitrary given subgraph of the graph G. As a
result, we prove that the time complexity of our local search algo-
rithm LocalSearch is linear to the size of the largest subgraph that
it accesses. We also show that the subgraph that LocalSearch ac-
cesses is at most a constant (specifically, 3) times larger than the
smallest subgraph G≥τ∗ that an online search algorithm without in-
dexes needs to access for correctly computing the top-k influential
γ-communities. Thus, LocalSearch is instance-optimal among the
class of online search algorithms without indexes.

Moreover, we propose techniques to make LocalSearch progres-
sively compute and report the influential γ-communities in decreas-
ing influence value order such that k does not need to be specified
in the query. The user can terminate the algorithm at any time once
determining that enough influential γ-communities have been re-
ported. Our instance-optimality result of LocalSearch also carries
over to the progressive approach. It is worth noting that the exist-
ing global search algorithms OnlineAll and Forward are only able
to report the k communities at the end of the algorithm.

Finally, we also extend our local search framework to the case of
non-containment community search and to the case of top-k influ-
ential community search regarding other cohesiveness measures.
Contributions. Our main contributions are summarized as follows.
• We propose an instance-optimal algorithm LocalSearch, whose

time complexity is linearly proportional to the size of the
smallest subgraph that a correct algorithm without indexes
needs to access, for computing the top-k influential γ-communities
(Section 3).

• We propose techniques to make LocalSearch progressively
compute and report the influential γ-communities in decreas-
ing influence value order (Section 4).

• We extend our local search framework to the general case of
top-k influential community search regarding other cohesive-
ness measures (Section 5).

Extensive experimental results in Section 6 show that our local
search algorithms outperform the existing online search algorithms
by several orders of magnitude. Some of the proofs are omitted
from this paper due to limit of space, and can be found in the full
version [3].
Related Works. Besides top-k influential community search as
discussed above, other related works are categorized as follows.

1057

(1) Community Detection. Community detection is a long-studied
problem [6, 16], which aims to find all communities in a graph for
a given community definition. A community is a group of vertices
that are similar to each other and dissimilar to vertices outside the
community. The existing community definitions can be categorized
as, (1) graph partitioning that divides the vertices of a graph into k
groups of predefined size such that the number of inter-group edges
is minimized [2, 25, 38], (2) hierarchical clustering that reveals
the multi-level structure of the graph by computing the similarity
for each pair of vertices [19, 29], (3) partitional clustering that
divides vertices into k clusters such that the cost function defined
on distances/disimilarities between vertices is minimized [20, 31,
34], and (4) spectral clustering that partitions the graph by using
the eigenvectors of the matrix derived from the graph [15, 30, 36].
Due to inherent problem natures, these techniques cannot be used
to compute top-k influential communities studied in this paper.
(2) Cohesive Subgraph Computation. Computing cohesive subgraphs
in a graph has been extensively studied in [8, 9, 12, 18, 32, 33, 35,
40], where a cohesive subgraph can be regarded as a community.
The cohesiveness of a graph is measured by the minimum degree
(aka, k-core) [33, 35], the average degree (aka, edge density) [9,
18], the minimum number of triangles each edge participates in
(aka, k-truss) [12, 32], or the edge connectivity (aka, k-edge con-
nected components) [8, 40]. These works focus on computing all
maximal subgraphs whose cohesiveness is no smaller than a user-
given threshold. Due to different problem definitions, these tech-
niques cannot be applied to the problem studied in this paper.
(3) Community Search. Recently, cohesive community search is re-
ceiving increasing interests (see [23] and references therein). Given
one query vertex or a set of query vertices, cohesive community
search is to find a subgraph such that (1) it contains all query ver-
tices and (2) its cohesiveness is no smaller than the user given
threshold. For example, k-core-based community search is stud-
ied in [1, 17, 37], edge density-based community search is studied
in [39], k-truss-based community search is studied in [22, 24], and
edge connectivity-based community search is studied in [7, 21].
As influences of vertices are not considered in these works, these
techniques cannot be applied to the problem of top-k influential
community search.

2. PRELIMINARIES
In this paper, we focus on a vertex-weighted undirected graph

G = (V, E, ω), where V is the set of vertices, E ⊆ V × V is the set
of edges, and ω is a weight vector that assigns each vertex u ∈ V
a weight denoted by ω(u). Here, the weight ω(u) represents the
influence of vertex u, which can be its PageRank value, centrality
score, h-index, social status, and etc; the larger the value, the more
influential the vertex is. Following the existing works [10, 27], we
assume that the weights of vertices are pre-given1, and each vertex
has a distinct weight (i.e., ω(u) , ω(v),∀u , v). For a given value
τ, we use V≥τ to denote the subset of V consisting of all vertices
with weights no less than τ (i.e., V≥τ = {u ∈ V | ω(u) ≥ τ}). In
the following, for ease of presentation we simply refer to a vertex-
weighted undirected graph as a graph when the context is clear.

We denote the size of a graph G by size(G), which is the sum-
mation of the number of vertices and the number of edges in G; that

1Note that, the techniques proposed in this paper can be extended
to the case that the weights of vertices are computed online based
on a query, e.g., the weight of a vertex is the reciprocal of the
shortest distance to query vertices as studied in closest commu-
nity search [24]. We will analyze the time complexities of such
extensions in our future work.

is, size(G) = |V | + |E|. The set of neighbors of u ∈ V in G is de-
noted by N(u) = {v ∈ V | (u, v) ∈ E}, and the degree of u is denoted
by d(u), which is the number of neighbors of u (i.e., d(u) = |N(u)|).
Given a subset S ⊆ V of vertices, the subgraph of G induced by S
is denoted by G[S], which consists of all edges of G whose both
end-points are in S ; that is, G[S] = (S , {(u, v) ∈ E | u, v ∈ S }, ω).
For presentation simplicity, we use G≥τ to denote the subgraph of
G induced by vertices V≥τ (i.e., G≥τ = G[V≥τ]).
Influential Community. This paper aims to identify influential
communities from a given large graph G, where each community is
a cohesive subgraph of G and has an influence value. The influence
value of a subgraph is defined in below, which is shown to be robust
to outliers as discussed in [27].

Definition 2.1: [27] Given a subgraph g = (V(g), E(g), ω) of G,
the influence value of g, denoted by f (g), is defined as the mini-
mum weight of the vertices in g (i.e., f (g) = minu∈V(g) ω(u)).

For the cohesiveness measure, many definitions have been pro-
posed and studied in the literature, e.g., k-core [33, 35], edge den-
sity [9, 18], k-truss [12, 32], edge connectivity [8, 11, 40]. Among
them, the k-core-based cohesiveness measure has been widely adopted,
due to its simplicity and fast computability. Thus, we mainly focus
on k-core-based community search in the following, and will ex-
tend our techniques to other cohesiveness measures in Section 5.

Definition 2.2: [27] Given a graph G and an integer γ, an influ-
ential γ-community is a vertex-induced subgraph g of G such that
the following constraints are satisfied.
• Connected: g is a connected subgraph;
• Cohesive: each vertex u in g has a degree at least γ, i.e., the

minimum degree of g is at least γ;
• Maximal: there exists no other subgraph g′ of G such that

(1) g′ is a supergraph of g with f (g′) = f (g), and (2) g′ is
also connected and cohesive.

v
2

v
3

v
4

v
1

v
0

v
5

v
14

v
13

v
12

v
11

v
10

v
9

v
7

v
8

v
6

v
21

v
20

v
19

v
18

v
17

v
16

v
15

23

20

22

24 21

1918

17

16

14 13

12

11

10

98

76

54

3
15

Figure 3: A graph
Example 2.1: Consider the graph in Figure 3 and γ = 3. The

subgraph g1 induced by vertices {v3, v10, v11, v12, v20} is connected,
and has a minimum degree 3 and an influence value 9. However,
it is not an influential γ-community because it is not maximal; that
is, the subgraph g2 induced by vertices {v3, v9, v10, v11, v12, v13, v20}

is an influential γ-community with the same influence value as g1.
Note that, the subgraph induced by vertices {v3, v11, v12, v20} is also
an influential γ-community; this is because, although it is a sub-
graph of g2, it has a larger influence value (i.e., 18) than g2. �

In the following, for presentation simplicity, we simply refer to
an influential γ-community by the set of vertices from which the
influential γ-community is induced.
Problem Statement. Given a graph G = (V, E, ω), and two query
parameters γ and k, the problem of top-k influential community
search is to extract the k influential γ-communities with the highest
influence values from G.

For example, consider the graph in Figure 3 with γ = 3 and
k = 4. The top-4 influential γ-communities are {v3, v11, v12, v20},
{v1, v6, v7, v16}, {v3, v11, v12, v13, v20} and {v1, v5, v6, v7, v16} with
influence values 18, 14, 13 and 12, respectively.

1058

3. A LOCAL SEARCH APPROACH
In the following, we first develop a local search framework for

efficient top-k influential community search in Section 3.1, and then
present our approach in Section 3.2, while the instance-optimality
of our local search approach is illustrated in Section 3.3.

3.1 The Framework
Properties of Influential γ-community. Firstly, we prove some
important properties of influential γ-community in the following
lemmas and theorems.

Lemma 3.1: For any two values τ1 ≤ τ2, every influential γ-
community in G≥τ2 is also an influential γ-community in G≥τ1 . Note
that, G≥τ1 is a supergraph of G≥τ2 .

Lemma 3.2: For any two values τ1 ≤ τ2 and an influential γ-
community g in G≥τ1 , if the influence value of g is no smaller than
τ2, then g is also an influential γ-community in G≥τ2 .

Theorem 3.1: Let τ∗ be the largest value such that G≥τ∗ con-
tains at least k influential γ-communities. Then, the set of top-k
influential γ-communities in G≥τ∗ is the set of top-k influential γ-
communities in G.

Proof: First of all, we assume that G contains at least k influen-
tial γ-communities; otherwise, τ∗ in the statement of the theorem
is not properly defined. Let τmin be the minimum vertex weight in
G, then G≥τmin is the same as G and moreover τmin ≤ τ∗. From
Lemma 3.1, we know that each influential γ-community in G≥τ∗ is
also an influential γ-community in G. It is easy to see that all in-
fluential γ-communities in G≥τ∗ have influence values at least τ∗.
From Lemma 3.2, we also know that each influential γ-community
in G that is not contained in G≥τ∗ must have an influence value
smaller than τ∗. Thus, the theorem holds. �

The Framework. Following Theorem 3.1, to compute the top-
k influential γ-communities in G, we can first identify the largest
influence value τ∗ such that G≥τ∗ contains at least k influential γ-
communities, and then return the set of top-k influential γ-communities
in G≥τ∗ as the result. In this way, we only need to work on the
subgraph G≥τ∗ which can be much smaller than G. For example,
size(G≥τ∗)
size(G) is smaller than 0.073% across all the graphs tested in our

experiments for k = 10 and γ = 10. However, it is non-trivial to
obtain the appropriate influence value τ∗.

From Lemma 3.1, we know that the number of influential γ-
communities in the subgraph G≥τ increases along with the decreas-
ing of τ. Thus, one possible way to computing τ∗ is conducting a
binary search on the sequence of all possible vertex weights in G.
However, it is time consuming to count the number of influential
γ-communities in a graph, which takes linear time to the size of
the graph (see Section 3.2.1), and the size of the first subgraph of
G tested by the binary search may be as large as half of size(G).
Thus, binary search does not save the computational cost.

In this paper, we propose to use the exponential growth strategy
for computing the target τ value; that is, we iteratively increase the
size of the graph G≥τ, with a growing ratio of δ, for processing. The
proper setting of δwill be discussed in Section 3.3. The pseudocode
of our framework is shown in Algorithm 1. We first heuristically
compute the largest τ1 value such that G≥τ1 would contain at least
k influential γ-communities (Line 1). For example, τ1 could be set
as the (k + γ)-th largest vertex weight in G; that is, the k influential
γ-communities contain at least k + γ distinct vertices. Then, as
long as G≥τi contains less than k influential γ-communities (i.e.,
CountIC(G≥τi) < k) and G≥τi is not the same as G (Line 3), we find
the next largest τi+1 value such that the size of G≥τi+1 is at least δ

Algorithm 1: LocalSearch
Input: A graph G = (V, E, ω), and two integers k and γ
Output: Top-k influential γ-communities in G

1 τ1 ← the largest τ value such that G≥τ would contain at least k
influential γ-communities;

2 i← 1;
3 while CountIC(G≥τi , γ) < k and G≥τi , G do
4 τi+1 ← max

{
{τ | size(G≥τ) ≥ δ · size(G≥τi)} ∪ {τmin}

}
; /* τmin

is the smallest vertex weight in G */;
5 i← i + 1;

6 return top-k communities in EnumIC(G≥τi);

u v18 v17 v3 v20 v9 v12 v11 v16 v1 v6 v7
ω(·) 24 23 22 21 20 19 18 17 16 15 14

u v13 v5 v0 v15 v10 v8 v21 v19 v4 v2 v14
ω(·) 13 12 11 10 9 8 7 6 5 4 3

(a) Vertices in decreasing weight order

v
3

v
12

v
11

v
20

v
9

v
18

v
17

2423

22

21

20

18

19

(b) G≥τ1 (τ1 = 18)

v
3

v
13

v
12

v
11

v
20

v
9

v
18

v
17

v
1

v
5

v
7

v
16

v
6

22

21

1918 13

23 2417

16

14
15

12

20

(c) G≥τ2 (τ2 = 12)

Figure 4: Running example of our local search framework

times the size of G≥τi (Line 4), and increment i by 1 (Line 5); note
that, if size(G) is smaller than δ·size(G≥τi), then we set τi+1 as the
smallest vertex weight τmin in G. Finally, we compute and return
the top-k influential γ-communities in G≥τi , which is obtained by
invoking EnumIC(G≥τi), as the result (Line 6).
Graph Organization. As we will show in Section 3.2.1 that com-
puting the number of influential γ-communities in a graph g (i.e.,
CountIC(g)) can be conducted in linear time to the size of g, which
is measured by the number of vertices and the number of edges in
it. Consequently, we also need efficient techniques to retrieve the
induced subgraph G≥τ in linear time to its size. To do so,

?? we assume the vertices of G are pre-sorted in decreasing order
with respect to their weights.

Thus, regarding a τ, the subset V≥τ of vertices can be trivially re-
trieved in O(|V≥τ|) time. To also retrieve the induced edges in G≥τ
in linear time,

?? we pre-partition the adjacent neighbors NG(u) of each vertex
u into two disjoint sets: N≥G(u) contains all neighbors of u
whose weights are no smaller than ω(u), and N<

G(u) contains
the neighbors of u whose weights are smaller than ω(u).

These will support efficient online/ad-hoc queries across every k
and γ, while avoiding the maintenance of indexes [27]. Thus, to
construct G≥τ, we only need to retrieve the set N≥G(u) of neighbors
for each u ∈ V≥τ, which can be conducted in linear time.

Based on our graph organization, we can efficiently implement
Line 4 of Algorithm 1 (i.e., enlarging G≥τi to obtain G≥τi+1 whose
size is at least δ · size(G≥τi)) as follows. We first let G≥τi+1 be
the same as G≥τi , and then iteratively add into G≥τi+1 the highest-
weighted vertex u in G\G≥τi+1 and also an undirected edge between
u and each of its neighbors in N≥G(u), until the obtained subgraph
has a size at least δ · size(G≥τi). It is easy to see that G≥τi+1 is
obtained from G≥τi in time linear to size(G≥τi+1) − size(G≥τi).

Example 3.1: Consider the graph G in Figure 3, with γ = 3 and
k = 4. The vertices of G in decreasing weight order are shown in

1059

v
3

v
12

v
11

v
20

22

21

18 19

(a) Top-1

v
1

v
7

v
16

v
6

17

16

1415

(b) Top-2

v
3

v
13

v
12

v
11

v
20

22

21

18
13

19

(c) Top-3

v
1

v
5

v
7

v
6

v
16

17

16

15
12 14

(d) Top-4

Figure 5: Top-4 influential γ-communities

Figure 4(a). Initially, we set τ1 to be the weight of the 7-th vertex
(i.e., v11) since the top-4 influential γ-communities will contain at
least k + γ = 7 distinct vertices. Thus, τ1 = 18 and the subgraph
G≥τ1 is shown in Figure 4(b). By invoking CountIC on G≥τ1 , we
know that G≥τ1 contains only one influential γ-community.

Then, we need to find the largest τ2 value such that the size of
G≥τ2 is at least δ times the size of G≥τ1 ; assume δ = 2. As G≥τ1 has
7 vertices and 11 edges, the size of G≥τ1 is 18. We iteratively add
the next highest-weight vertex into the subgraph G≥τ1 . Firstly, we
add v16 which has no edges to the subgraph. Secondly, we add v1

with one edge to v16 to the subgraph. So on so forth. Until after
adding v5 to the subgraph, the size of the subgraph becomes 36.
Thus, τ2 = ω(v5) = 12 and G≥τ2 is shown in Figure 4(c).

By invoking CountIC on G≥τ2 , we know that G≥τ2 has four influ-
ential γ-communities. Thus, EnumIC computes the top-4 influen-
tial γ-communities in G≥τ2 as shown in Figure 5, which is outputted
as the result of the query. �

Remark. In our framework in Algorithm 1, the graph G can be ei-
ther main memory resident, or disk resident, or stored in a database.
The only requirement is that there is an interface to retrieve the ver-
tices (together with their neighbors N≥G(·)) in decreasing weight or-
der. For example, if G is stored on disk, then Algorithm 1 can work
in an I/O-efficient manner in a similar way to the semi-external
algorithm in [28], as follows. It assumes that the main memory
is large enough to store constant information regarding vertices as
well as a subset of all edges of G, and it sorts edges in decreas-
ing weight order in a preprocessing step, where the weight of an
edge equals the minimum weight of its two end-points [28]. Thus,
the neighbors in N≥G(v) of v are stored consecutively on disk, and
to construct G≥τi+1 from G≥τi , the edges of G≥τi+1 that are not in
G≥τi are loaded sequentially from disk to main memory; then, the
computations regarding G≥τi+1 are conducted in main memory.

In the following, we assume that G is stored in main memory
for presentation simplicity; nevertheless, we also evaluate our al-
gorithm for the scenario that G is stored on disk in Section 6.

3.2 Our Approach
In Algorithm 1, CountIC can be achieved by invoking EnumIC.

However, it is expected that counting the number of influential γ-
communities in a graph would be easier than enumerating them.
This is because that, the total size of influential γ-communities in
a graph can be much larger than the size of the graph, since they
may overlap with each other [10, 27]. Nevertheless, the existing
algorithms do not count the influential γ-communities in a graph
without enumerating them, and they take time at least linear to
the size of the top-k influential γ-communities. Thus, we propose
new algorithms for counting, as well as enumerating, influential
γ-communities in a graph in the following two subsections.

3.2.1 Influential γ-community Counting
We first define the notion of keynode regarding influential γ-

community in the following.

Definition 3.1: A vertex u in a graph G is a keynode regarding a
γ value if there exists a subgraph g of G such that g has an influence
value ω(u) and the minimum vertex degree of g is at least γ; note
that, this subgraph g must contain u according to the definition of
influence value.

For example, v7 in Figure 3 is a keynode regarding γ = 3, since
the subgraph induced by vertices {v1, v6, v7, v16} has an influence
value ω(v7) = 14 and a minimum degree at 3. It can also be verified
that v6 is not a keynode regarding γ = 3. In the following, for
presentation simplicity we simply call a vertex a keynode without
referring to the γ value which can be inferred from the context.

In order to efficiently count the number of influential γ-communities
in a graph, we prove the following lemmas regarding keynode.

Lemma 3.3: Given a graph G and a value τ, there is at most one
influential γ-community in G with influence value τ.

Lemma 3.4: There is a one-to-one correspondence between in-
fluential γ-communities in a graph G and keynodes in G. Thus,
the number of keynodes in G equals the number of influential γ-
communities in G.

In the following, given an influential γ-community g, we use
key(g) to denote the unique corresponding keynode in g, accord-
ing to Lemma 3.4; that is, the vertex in g with the minimum weight.
Note that, an influential γ-community may contain multiple keyn-
odes, but it is uniquely determined by the keynode with the smallest
weight (i.e., key(g)). For example, v11, v7, v13 and v5 are keynodes
for the graph in Figure 3 with γ = 3, and they correspond to the
four influential γ-communities shown in Figures 5(a), 5(b), 5(c),
and 5(d), respectively.

Algorithm 2: CountIC
Input: A graph g and an integer γ
Output: The number of influential γ-communities in g

1 g← compute the γ-core of g;
2 keys← ∅;
3 cvs← ∅;
4 while g , ∅ do
5 u← arg minv∈g ω(v);
6 Append u to the end of keys;
7 Remove(u, g, cvs); /* Compute the γ-core of g\u */;

8 return |keys|;

Procedure Remove(u, g, cvs)
9 Initialize a queue Q by u;

10 while Q , ∅ do
11 Pop a vertex v from Q;
12 for each neighbor v′ of v in g do
13 if the degree of v′ in g is γ then
14 Push v′ into Q;

15 Remove v from g and append v to the end of cvs;

The Algorithm CountIC. Following Lemma 3.4, we count the
number of influential γ-communities in a graph by computing the
set of keynodes in the graph. The pseudocode is shown in Algo-
rithm 2. Given a graph g, we first reduce g to its γ-core (Line 1),
which is the maximal subgraph with minimum degree at least γ [35],
and initialize a sequence keys of keynodes and a sequence cvs of
vertices to be empty (Lines 2–3). cvs will be used in influential
γ-community enumeration and will be discussed in Section 3.2.2;
we ignore cvs for the current being. Then, while the graph g is not
empty (Line 4), we get the vertex u with the minimum weight in g

1060

(Line 5), which is a keynode (Line 6), and then remove the keynode
u from g and reduce the resulting graph to its γ-core (Line 7).

The procedure Remove computes the γ-core of g\u (i.e., the
resulting graph by removing u from g). Note that, as input to
Remove, the graph g itself is a γ-core, but g\u may not be. Thus,
we only need to invoke Remove for u, which will then recursively
remove all vertices whose degrees become less than γ as a result of
removing vertices. This is achieved by the queue Q and checking
that the degree of vertex v′ before removing v is γ (Line 13); thus,
each vertex is pushed into the queue Q at most once.

In Algorithm 2, we omit the details of computing γ-core of g at
Line 1. This actually can be achieved by invoking the procedure
Remove for each vertex in g whose degree is smaller than γ.

v5

v13

v13

v7

v7 v11

v5

gp
3

gp
4

v1v6v16 v3v11 v12v20

gp
1

gp
2

keys

cvs

Figure 6: Running example of CountIC

Example 3.2: Consider running CountIC on the subgraph G≥τ2

shown in Figure 4(c) for γ = 3. Initially, we reduce the subgraph
to its γ-core, which removes vertices {v9, v17, v18}. Then, we itera-
tively pick the vertex u with the minimum weight from the remain-
ing graph, add u to keys, and remove u from the graph and also
maintain the γ-core. Firstly, we add v5 to keys, whose removal
does not make other vertices’ degrees to be smaller than γ; thus,
the procedure Remove merely removes v5 from the graph. Sec-
ondly, we similarly add v13 to keys and remove it from the graph.
Thirdly, we add v7 to keys and remove it from the graph. The re-
moval of v7 makes the degrees of v1, v6, v16 become smaller than
than γ; thus, they are all removed from the graph. Similarly, in the
fourth step, we add v11 to keys and remove all remaining vertices
from the graph; the algorithm terminates. The results of keys and
cvs are shown in Figure 6. As there are four vertices in keys, we
conclude that there are four influential γ-communities in G≥τ2 . �

Time Complexity and Correctness of CountIC. It is easy to see
that the time complexity of CountIC (i.e., Algorithm 2) is linear
to size of the input graph g (i.e., size(g)). Note that at Line 13,
rather than online counting the degree of a vertex, we maintain the
degrees of all vertices at the beginning of Algorithm 2 and also
when a vertex is removed from the graph at Line 15. We prove the
correctness of Algorithm 2 in the following lemma and theorem.

Lemma 3.5: After running Algorithm 2, keys is the set of keyn-
odes in g.

Theorem 3.2: Algorithm 2 correctly computes the number of in-
fluential γ-communities in a graph g.

Proof: This directly follows from Lemmas 3.4 and 3.5. �

3.2.2 Influential γ-community Enumeration
In this subsection, we show that the influential γ-communities

can be obtained from the two arrays, keys and cvs, that are com-
puted by CountIC.
From cvs to Communities. We call the vertex sequence in cvs as
community-aware vertex sequence, since the influential γ-communities
can be extracted from it. From Section 3.2.1, we know that each
keynode u corresponds to an influential γ-community with influ-
ence value ω(u), denoted by IC(u). It is easy to verify that IC(u)
for the k vertices in keys with the largest weights (i.e., the last k

vertices) are the top-k influential γ-communities; note that, vertices
in keys are in increasing weight order. In the following, we show
how to construct IC(u) efficiently from keys and cvs.

Firstly, given keys and cvs, we construct one group for each
keynode in keys. Denote the group of keynode u by gp(u), which
consists of u and all vertices after u and before the next keynode
in cvs; note that all keynodes of keys are in cvs. For example,
for the keys and cvs in Figure 6, gp(v5) = {v5}, gp(v13) = {v13},
gp(v7) = {v7, v16, v6, v1} and gp(v11) = {v11, v20, v3, v12}, where the
groups are also shown at the bottom of Figure 6.

Secondly, IC(u) can be obtained from gp(u) recursively by the
following lemma.

Lemma 3.6: IC(u) equals the union of gp(u) and IC(u′) for each
keynode u′ (in keys) such that ω(u′) > ω(u) and there is an edge
between a vertex of gp(u) and a vertex of IC(u′); that is,
IC(u) = gp(u) ∪

(⋃
u′∈keys,ω(u′)>ω(u),(gp(u)×IC(u′))∩E,∅ IC(u′)

)
.

Algorithm 3: EnumIC
Input: A graph g, a sequence keys of keynodes, a sequence cvs of

vertices, and an integer k
Output: Top-k influential γ-communities

1 keys← the last k keynodes in keys;
2 Initialize v2key(v)← null for each vertex v in g;
3 for each keynode u in keys in reverse order do
4 Initialize Ch(u)← ∅ and gp(u)← ∅;
5 for each vertex v in cvs starting from u do
6 if v is a keynode and v , u then break;
7 gp(u)← gp(u) ∪ {v};
8 v2key(v)← u;

9 for each vertex v in gp(u) do
10 for each neighbor w of v in g do
11 if v2key(w) , null and Find(w, v2key(·)) , u then
12 Ch(u)← Ch(u) ∪ {Find(w, v2key(·))};
13 Union(w, u);

14 IC(u)← gp(u) ∪
(⋃

v∈Ch(u) IC(v)
)
;

The Algorithm EnumIC. Based on the above discussions, the
pseudocode of influential γ-community enumeration algorithm is
shown in Algorithm 3. Firstly, we reduce keys to contain only
the last k vertices (Line 1), and initialize a disjoint-set data struc-
ture v2key (Line 2), which maintains for each vertex v the smallest
keynode whose corresponding influential γ-community contains v.
Then, we process keynodes in keys in decreasing weight order
(Lines 3–14). For each keynode u, we firstly obtain the group gp(u)
(Line 7) and initialize v2key(v) to be u for each v ∈ gp(u) (Line 8),
and then process the neighbors of vertices in gp(u) (Lines 9–13).
For each neighbor w, we add the current smallest keynode whose
corresponding influential γ-community contains w into Ch(u) (Line 12),
and then set v2key(·) to be u for all vertices in this influential γ-
community (Line 13). Then, we have IC(u) = gp(u)∪

(⋃
v∈Ch(u) IC(v)

)
.

Example 3.3: Consider the keys and cvs shown in Figure 6. The
4 keynodes in increasing weight order are v5, v13, v7, v11. Firstly,
we have gp(v11) = {v11, v20, v3, v12} and Ch(v11) = ∅, and gp(v7) =

{v7, v16, v6, v1} and Ch(v7) = ∅; thus, IC(v11) = gp(v11) and IC(v7) =

gp(v7). Secondly, we have gp(v13) = {v13} and Ch(v13) = {v11},
since v13 is connected to v3, v12, v20 that are contained in IC(v11);
that is, v2key(v3) = v2key(v12) = v2key(v20) = v11. Thus, IC(v13) =

gp(v13) ∪ IC(v11). Similarly, we have IC(v5) = gp(v5) ∪ IC(v7). �

Analysis. The correctness of Algorithm 3 follows from Lemma 3.6.
The time complexity of Algorithm 3 is O(size(g)) by using the

1061

technique in [7], where Find(·, ·) and Union(·, ·) are the two funda-
mental operations on disjoint-set data structure and can be imple-
mented to run in constant amortized time [13]. It is worth noting
that, at Line 14, we only link IC(v) to IC(u) without actually copy-
ing the content of IC(v) to IC(u); otherwise, the time complexity is
also linear to the output size which can be larger than size(g).

3.3 Analysis of LocalSearch
In the following, we analyze the time complexity of our local

search algorithm LocalSearch, discuss the setting of an appropriate
δ value, and prove the instance-optimality of LocalSearch.
Time Complexity. Let τ∗ be the target value as defined in The-
orem 3.1, and G≥τh be the subgraph that LocalSearch (i.e., Algo-
rithm 1) accesses before terminating. We prove the time complexity
of LocalSearch by the following lemmas and theorem. Recall that,
δ > 1 is a parameter used at Line 4 of Algorithm 1.

Lemma 3.7: The time complexity of LocalSearch is O
(
(1 + 1

δ−1) ·
size(G≥τh)

)
.

Proof: In Algorithm 1, a series of subgraphs (i.e., G≥τ1 , . . . ,G≥τh)
are constructed and used as input to CountIC for counting influen-
tial γ-communities, and the last subgraph G≥τh is utilized as input to
EnumIC for computing the top-k influential γ-communities. Note
that, each subgraph G≥τ can be extracted from G in O(size(G≥τ))
time. Thus, the time complexity of LocalSearch is

(∑h
i=1 T1(G≥τi)

)
+

T2(G≥τh), where T1(g) and T2(g) represent the time complexities of
CountIC and EnumIC, respectively. As T1(g) = T2(g) = O(size(g))
and size(G≥τi) ≤

1
δ
size(G≥τi+1) for i < h, the time complexity of

LocalSearch is O
(∑h

i=1 T1(G≥τi)+T2(G≥τh)
)

= O
(∑h

i=1 size(G≥τi)+
size(G≥τh)

)
= O

(∑h
i=1

1
δh−i size(G≥τh)

)
= O((1+ 1

δ−1)·size(G≥τh)).
�

Lemma 3.8: We have size(G≥τh) < 2δ · size(G≥τ∗).

Proof: It is easy to see that τh−1 > τ∗ ≥ τh and size(G≥τh−1)
< size(G≥τ∗). Let u be the vertex with the smallest weight in G≥τh

and let G≥τh\u be the resulting graph of removing u and all its ad-
jacent edges from G≥τh . Then, size(G≥τh\u) < δ · size(G≥τh−1).
Moreover, we have size(G≥τh) ≤ 2 · size(G≥τh\u) + 1. Thus,
size(G≥τh) < 2δ · size(G≥τ∗), and the lemma holds. �

Theorem 3.3: The time complexity of LocalSearch is O
(2δ2

δ−1 ·

size(G≥τ∗)
)
.

Proof: This directly follows from Lemmas 3.7 and 3.8. �

Setting δ. Following Theorem 3.3, the time complexity of LocalSearch
is O

(
size(G≥τ∗)

)
for any given constant δ > 1. However, the con-

stant factor in the time complexity will be different for different
values of δ. In this paper, we set δ as 2, since 2δ2

δ−1 achieves the
smallest value at δ = 2, among all δ values larger than 1; note that,
2δ2

δ−1 = 2(1 + δ + 1
δ−1).

Instance-optimality of LocalSearch. Let A be the class of algo-
rithms that correctly compute top-k influential communities with-
out indexes and knowing only the vertex weight vector of the graph
G, while all other information (such as degree/neighbors of a ver-
tex) are obtained through accessing edges of the graph; that is, ob-
taining the degree of any vertex in G≥τ takes linear time to its num-
ber of neighbors in G≥τ. Then, LocalSearch is a member ofA. We
prove that LocalSearch is instance-optimal [14] within the classA
of algorithms, by the following lemma and theorem.

Lemma 3.9: Given a graph G, any algorithm inA needs to access
a subgraph of G of size Ω

(
size(G≥τ∗)

)
.

Proof: Let n be the number of vertices of G≥τ∗ , we prove that

any algorithm of A needs to know the degrees (and thus all neigh-
bors) of at least n − γ vertices of G≥τ∗ . Let’s consider an arbitrary
algorithm A that computes the top-k influential communities by ac-
cessing the full lists of neighbors of only n−γ−1 vertices. Let S be
the set of γ+ 1 vertices whose lists of neighbors are not accessed in
full, and τS be the minimum vertex weight of S . Then, (1) we have
τS > τ∗ according to the definition of τ∗ in Theorem 3.1 and the
assumption that each vertex has a distinct weight (see Section 2),
and (2) the reported top-k influential communities cannot contain
any vertex of S since we need to report all the edges of each com-
munity. However, S itself may form a clique in G≥τ∗ such that there
is an influential γ-community containing S with influence value τS ,
which is larger than the influence value τ∗ of one of the k reported
influential γ-communities; we cannot exclude this possibility with-
out accessing S and without indexes. As a result, algorithm A is
incorrect and does not belong toA.

Consequently, for any algorithm B in A, the number of edges
of G≥τ∗ that are not accessed by B is at most k2, which is smaller
than 1

2size(G≥τ∗) since the number of edges in an influential γ-
community is at least k · (k +1). Thus, B needs to access a subgraph
of G of size Ω

(
size(G≥τ∗)

)
. �

Note that, Lemma 3.9 is for the case that each vertex has a dis-
tinct weight. This lemma also holds if the number of same-weight
vertices is bounded by a constant. This is because the proof of
Lemma 3.9 essentially implies the number of unvisited vertices in
G≥τ∗ with weight larger than τ∗ is bounded by γ + 1.

Theorem 3.4: LocalSearch is instance-optimal within the class
A of algorithms.

Proof: This follows from Theorem 3.3 and Lemma 3.9. �

Remarks. Note that, the time complexity and the instance-optimality
of LocalSearch in above are analyzed based on the assumption that
the set NG(u) of neighbors of each vertex is pre-partitioned into two
disjoint sets, N≥G(u) and N<

G(u) (see Section 3.1), such that any sub-
graph G≥τ can be extracted in O

(
size(G≥τ)

)
time. If this assump-

tion does not hold, then we need to revise the definition of G≥τ
to be consisting of all the adjacent edges in G for every vertex of
V≥τ. Nevertheless, the time complexity and instance-optimality of
LocalSearch still hold based on the revised definition of G≥τ, by
using the same arguments as above.

In Algorithm 1, we choose to grow the subgraph G≥τi exponen-
tially, based on which we prove the instance-optimality of LocalSearch
in above. Another natural choice of growing G≥τi is that size(G≥τi) =

i ·m for a constant m; that is, add an additional total m vertices and
edges to the subgraph each time. However, then the time complex-
ity would be

(∑h
i=1 T1(G≥τi)

)
+ T2(G≥τh) = h2 · m which is super-

linear (or even quadratic when h � m) to the size of the subgraph
G≥τh accessed by the algorithm, as size(G≥τh) = h · m. This vali-
dates our choice of exponentially growing G≥τi .

4. A PROGRESSIVE APPROACH
In Algorithm 1, as well as in existing global search algorithms

in [10, 27, 28], the influential γ-communities are only constructed
and reported at the end of an algorithm; that is, the results are only
available to the user when the algorithm terminates. Thus, there
is a long latency delay between issuing a query and seeing any re-
sult. In this section, we propose techniques to compute and report
the influential γ-communities progressively in decreasing influence
value order. As a by-product of our progressive approach, the user
no longer needs to specify k in the query, and can terminate the
algorithm once having seen enough results.

1062

A Progressive Framework. Recall that, Algorithm 1 firstly in-
vokes CountIC on a series of subgraphs (i.e., G≥τ1 , . . . ,G≥τh with
τ1 > · · · > τh) to determine the proper subgraph for processing, and
then invokes EnumIC on the last subgraph G≥τh to compute and
report the top-k influential γ-communities. From Lemma 3.1 we
know that, for any two values τ ≤ τ′, every influential γ-community
in G≥τ′ is also an influential γ-community in G≥τ. Thus, the influ-
ential γ-communities in G≥τh can actually be partitioned into in-
fluential γ-communities in G≥τ1 , and influential γ-communities in
G≥τi but not in G≥τi−1 for every 1 < i ≤ h. As a result, for each
G≥τi with 1 ≤ i ≤ h, we can compute and report a set of influential
γ-communities.

Algorithm 4: LocalSearch-P
Input: A graph G = (V, E, ω), and an integer γ
Output: Influential γ-communities in G in decreasing influence value

order

1 τ1 ← the largest τ value such that G≥τ would contain an influential
γ-community;

2 τ0 = τmax; /* τmax is the largest vertex weight in G */;
3 i← 1;
4 while true do
5 ConstructCVS(G≥τi , γ, τi−1);
6 Output influential γ-communities in EnumIC-P(G≥τi , keys, cvs);
7 if G≥τi = G then break;
8 τi+1 ← max

{
{τ | size(G≥τ) ≥ 2 · size(G≥τi)} ∪ {τmin}

}
; /* τmin

is the smallest vertex weight in G */;
9 i← i + 1;

Based on the above ideas, our progressive framework is shown
in Algorithm 4. We initialize τ1 be the largest τ value such that
G≥τ would contain an influential γ-community (Line 1), and τ0 be
the largest vertex weight in G (Line 2). Then, we iteratively con-
struct the keys and cvs for G≥τi (Line 5), compute and report the
influential γ-communities in G≥τi that are not contained in G≥τi−1

(Line 6), find the next largest τi+1 such that the size of G≥τi+1 is at
least twice the size of G≥τi (Line 8), and increment i by 1 (Line 9).
Note that, Algorithm 4 is terminated either when all influential γ-
communities in G have been computed (Line 7) or when a user
manually terminates it.

Algorithm 5: ConstructCVS
Input: A graph g, an integer γ, and a threshold τ
Output: keys and cvs

1 g← compute the γ-core of g;
2 keys← ∅;
3 cvs← ∅;
4 while g , ∅ do
5 u← arg minv∈g ω(v);
6 if ω(u) ≥ τ then break;
7 Append u to the end of keys;
8 Remove(u, g, cvs); /* Compute the γ-core of g\u */;

Incrementally Construct cvs. From Algorithm 2, it can be ver-
ified that the keys and cvs constructed for G≥τi is a suffix of that
constructed for G≥τi+1 . Moreover, given the influential γ-communities
in G≥τi and to compute the influential γ-communities that are in
G≥τi+1 but not in G≥τi , we only need the prefixes of keys and cvs
that does not contain any keynodes in G≥τi . Thus, we can incre-
mentally construct keys and cvs for G≥τi+1 by terminating the con-
struction once the next keynode belongs to G≥τi . The pseudocode
of incrementally constructing cvs is shown in Algorithm 5, which

is similar to Algorithm 2. But in Algorithm 5, rather than count-
ing the number of influential γ-communities in g, we construct the
parts of keys and cvs that correspond to keynodes with weights
smaller than a given threshold τ.
Incrementally Enumerate Influential γ-communities. The pseu-
docode of incrementally enumerating influential γ-communities,
denoted by EnumIC-P, is similar to Algorithm 3 with the following
differences. Firstly, we retain all keynodes in keys; that is, Line 1
of Algorithm 3 is removed. Secondly, the disjoint-set data structure
v2key is a global structure that is shared among different runs of
EnumIC-P; moreover, the v2key(v) of v is only lazily initialized
for vertices in cvs.

v3v11 v12v20

gp
1

v11keys

cvs

(a) cvs for G≥τ1

v5

v13

v13

v7

v7

v5

gp
3

gp
4

v1v6v16

gp
2

keys

cvs

(b) cvs for G≥τ2

Figure 7: Running example of LocalSearch-P

Running Example of LocalSearch-P. Consider the graph G in
Figure 3 with γ = 3, and assume the first graph G≥τ1 obtained
by LocalSearch-P is as shown in Figure 4(b). Firstly, Figure 7(a)
shows the keys and cvs computed by ConstructCVS for G≥τ1 ,
from which we can obtain the top-1 influential γ-community as
IC(v11) = {v11, v20, v3, v12}. Secondly, Figure 7(b) shows the keys
and cvs computed by ConstructCVS for G≥τ2 , where v11 is not in-
cluded in keys. From the newly constructed keys and cvs, we
can obtain the top-2, top-3, and top-4 influential γ-communities
as IC(v7), IC(v13) and IC(v5). Moreover, we can see that the con-
catenation of the two keys in Figure 7 is the same as the keys in
Figure 6; this also holds for cvs.
Time Complexity of LocalSearch-P. For an arbitrary k, let τ∗k be
the largest value such that G≥τ∗k contains k influential γ-communities.
Then, the time complexity of LocalSearch-P is O(size(G≥τ∗k)) when-
ever a user terminates the algorithm immediately after reporting k
influential γ-communities for an arbitrary k. The reasons are the
same as in Section 3.3. Thus, the instance-optimality of LocalSearch
carries over to LocalSearch-P.

5. EXTENSIONS
In this section, we extend our framework and techniques to non-

containment community search and to other cohesiveness measures.

5.1 Non-containment Community Search
According to the definition of influential γ-community, it is pos-

sible that one influential γ-community is a subgraph of another
influential γ-community. The problem of computing top-k non-
containment influential communities is also studied in the litera-
ture [10, 27], based on the definition below.

Definition 5.1: [27] Given a graph G and an integer γ, an influen-
tial γ-community g is a non-containment influential γ-community
if it satisfies the non-containment constraint that none of its sub-
graph is an influential γ-community.

It is easy to verify that the set of all non-containment influential
γ-communities is disjoint.
Computing Top-k Non-containment Influential γ-communities.
Our local search framework in Algorithm 1 can be used to compute
the k non-containment influential γ-communities with the highest

1063

influence values, by slightly modifying CountIC (i.e., Algorithm 2)
and EnumIC (i.e., Algorithm 3) as follows. Besides keynode, we
also define non-containment keynode such that there is a one-to-
one correspondence between non-containment keynodes and non-
containment influential γ-communities. A keynode u is a non-
containment keynode if every vertex that is removed during run-
ning the procedure Remove in Algorithm 2 by giving u as input is
not connected to any remaining vertex of g obtained after finish-
ing the procedure. Thus, we mark u as a non-containment keyn-
ode after Line 7 of Algorithm 2 if this condition holds. Then, the
non-containment influential γ-community corresponding to a non-
containment keynode u is exactly gp(u) (see Section 3.2.2 for the
definition of gp(·)).

Let τ∗ be the largest value such that G≥τ∗ contains at least k
non-containment influential γ-communities. It can be verified that
the time complexity of computing top-k non-containment influen-
tial γ-communities is also O

(
size(G≥τ∗)

)
. Nevertheless, this sub-

graph G≥τ∗ is no smaller than that for computing top-k influential γ-
communities, due to the fact that the set of all non-containment in-
fluential γ-communities is a subset of all influential γ-communities.
Thus, it is expected that computing top-k non-containment influen-
tial γ-communities takes longer time than computing top-k influen-
tial γ-communities.

5.2 Other Cohesiveness Measures
Our framework in Section 3.1 can also be extended to the general

case of top-k influential community search regarding other cohe-
siveness measures. We start with a general definition of influential
γ-cohesive community.

Definition 5.2: Given a vertex-weighted graph G = (V, E, ω) and
a parameter γ, an influential γ-cohesive community is a subgraph
g of G such that the following constraints are satisfied.
• Connected: g is a connected subgraph;
• Cohesive: the cohesiveness value of g is at least γ;
• Maximal: there exists no other subgraph g′ of G such that

(1) g′ is a supergraph of g with f (g′) = f (g), and (2) g′ is
also connected and cohesive.

Note that in the above definition, we do not specify the exact
measure of cohesiveness, and it can be any of minimum degree
(aka, k-core) [33, 35], average degree (aka, edge density) [9, 18],
minimum number of triangles each edge participates in (aka, k-
truss) [12, 32], edge connectivity (aka, k-edge connected compo-
nents) [8, 40], and etc. The influential γ-community defined in
Section 2 is influential γ-cohesive community where the cohesive-
ness of a graph is measured by the minimum degree.
A General Framework for Top-k Influential Community Search.
In order for our framework in Algorithm 1 to be applicable to gen-
eral top-k influential community search regarding other cohesive-
ness measures, the influential γ-cohesive community should satisfy
the following two properties.
Property-I: For any two values τ1 ≤ τ2, every influential γ-cohesive

community in G≥τ2 is also an influential γ-cohesive commu-
nity in G≥τ1 (similar to Lemma 3.1).

Property-II: For any two values τ1 ≤ τ2 and an influential γ-
cohesive community g in G≥τ1 , if the influence value of g
is no smaller than τ2, then g is also an influential γ-cohesive
community in G≥τ2 (similar to Lemma 3.2).

It can be verified that our definition of influential γ-cohesive
community with any of minimum degree, average degree, mini-
mum number of triangles each edge participates in, and edge con-
nectivity, satisfies the above two properties. Thus, we can prove a
similar theorem to Theorem 3.1, as follows.

Theorem 5.1: Let τ∗ be the largest value such that G≥τ∗ contains
at least k influential γ-cohesive communities. Then, the set of top-k
influential γ-cohesive communities in G≥τ∗ is the set of top-k influ-
ential γ-cohesive communities in G.

Proof: This can be proved in a similar way to Theorem 3.1. �

Algorithm 6: LocalSearch-General
Input: A graph G = (V, E, ω), and two integers k and γ
Output: Top-k influential γ-cohesive communities in G

1 τ1 ← the largest τ value such that G≥τ would contain at least k
influential γ-cohesive communities;

2 i← 1;
3 while CountICC(G≥τi , γ) < k and G≥τi , G do
4 τi+1 ← max

{
{τ | size(G≥τ) ≥ 2 · size(G≥τi)} ∪ {τmin}

}
; /* τmin

is the smallest vertex weight in G */;
5 i← i + 1;

6 return top-k influential γ-cohesive communities in EnumICC(G≥τi);

Based on Theorem 5.1, we can easily generalize our local search
framework in Algorithm 1 to general top-k influential community
search regarding other cohesiveness measures as mentioned above.
The pseudocode of our general local search framework is shown in
Algorithm 6. CountICC and EnumICC are procedures for counting
and enumerating the influential γ-cohesive communities in a graph,
respectively, and only these two procedures need to be specifically
designed for different cohesiveness measures.
Time Complexity. Let TCount(g) and TEnum(g) be the time complexi-
ties of CountICC and EnumICC, respectively, for an input graph g.
The time complexity of Algorithm 6 is as follows.

Theorem 5.2: If TCount is linear or super-linear, then the time
complexity of Algorithm 6 is O

(
TCount(G≥τ∗) + TEnum(G≥τ∗)

)
, where

τ∗ is as defined in Theorem 5.1.

Proof: This can be proved in a similar way to the proofs of Lem-
mas 3.7 and 3.8. �

Given a graph g, a naive approach to CountICC(g) for all these
cohesiveness measures is iteratively (1) computing the maximal γ-
cohesive subgraph of g and reassigning it as g, and (2) removing
the minimum-weight vertex from g and marking it as a keynode.
This can be optimized by sharing the computation among different
iterations (e.g., Algorithm 2); we illustrate the optimized version of
CountICC for influential γ-truss community in the full version [3].

6. EXPERIMENTS
We conduct extensive performance studies to evaluate the ef-

ficiency of our local search framework and algorithms. Firstly,
regarding main memory algorithms for influential γ-community
search, we evaluate the following algorithms.
• OnlineAll: the existing global search algorithm in [27].
• Forward: the state-of-the-art global search algorithm in [10].
• Backward: the existing local search algorithm in [10].
• LocalSearch: our optimal local search algorithm (Algorithm 1).
• LocalSearch-OA: our local search algorithm by replacing

CountIC with OnlineAll.
• LocalSearch-P: our optimal and progressive local search al-

gorithm (Algorithm 4).
Secondly, we evaluate the following I/O-efficient algorithms.
• OnlineAll-SE: the semi-external version of OnlineAll [28].
• LocalSearch-SE: our semi-external version of LocalSearch-P,

where edges are stored on disk (see Remark in Section 3.1).
Thirdly, regarding the extension of our framework to influential γ-
truss community search, we evaluate the following two algorithms.

1064

OnlineAll Forward LocalSearch-P

10-2
10-1
100
101
102

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(a) Email

10-2
10-1
100
101
102
103

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(b) Youtube

10-2
10-1
100
101
102
103
104

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(c) Wiki

10-1
100
101
102
103
104

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(d) LiveJ

10-210-1100101102103104105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(e) Orkut

10-210-1100101102103104105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(f) Arabic

10-310-210-1100101102103104105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(g) UK

10-210-1100101102103104105106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

(h) Twitter
Figure 8: Against existing global search algorithms (γ = 10, vary k)

OnlineAll Forward LocalSearch-P

10-2
10-1
100
101
102
103
104

5 10 20 50

To
ta

l T
im

e
(m

s)

γ =

(a) Wiki

10-2
10-1
100
101
102
103
104

5 10 20 50

To
ta

l T
im

e
(m

s)

γ =

(b) LiveJ

10-2
10-1
100
101
102
103
104

5 10 20 50

To
ta

l T
im

e
(m

s)

γ =

(c) Arabic

10-310-210-1100101102103104105

5 10 20 50

To
ta

l T
im

e
(m

s)

γ =

(d) UK
Figure 9: Against existing global search algorithms (k = 10, vary γ)

• LocalSearch-Truss: our local search algorithm for comput-
ing top-k influential γ-truss communities (Algorithm 6).

• GlobalSearch-Truss: a global search algorithm which first
invokes CountICC on the entire graph, and then runs EnumICC
for enumerating the top-k influential γ-truss communities.

All algorithms are implemented in C++ and compiled by GNU
GCC 4.8.2 with the -O3 flag; the source code of OnlineAll is ob-
tained from the authors of [27] while other algorithms are imple-
mented by us. All experiments are conducted on a machine with an
Intel i5 3.20GHz CPU and 16GB main memory.

Table 1: Statistics of real graphs
Graphs #vertices #edges dmax davg γmax
Email 36,692 183,831 1,383 10.02 43
Youtube 1,134,890 2,987,624 28,754 5.27 51
Wiki 1,791,489 25,446,040 238,342 28.41 99
LiveJ 3,997,962 34,681,189 14,815 17.35 360
Orkut 3,072,627 117,185,083 33,313 76.28 253
Arabic 22,744,080 553,903,073 575,628 48.71 3,247
UK 39,459,925 783,027,125 1,776,858 39.69 588
Twitter 41,652,230 1,468,365,182 2,997,487 70.51 2,488

Real Graphs. We evaluate the algorithms on eight real graphs:
Email, Youtube, Wiki, LiveJ, Orkut, Arabic, UK, and Twitter. The
first five graphs are downloaded from the Stanford Network Anal-
ysis Platform2, while the last three are downloaded from the Lab-
oratory of Web Algorithmics3. Statistics of the graphs are given
in Table 1, where γmax denotes the maximum value such that the
graph contains a non-empty γmax-core. The weights of vertices are
assigned as their PageRank values with the damping factor being
set as 0.85.4

Query Parameters. There are two query parameters, k and γ. We
choose k from {5, 10, 20, 50, 100} and γ from {5, 10, 20, 50}; k = 10
and γ = 10 by default. Note that, as γmax for Email is 43 as shown
in Table 1, the largest γ we tested for Email is 40.

In each testing, for a query with given k and γ, we run an algo-
rithm on a graph three times and report the average CPU time in
milliseconds. For main memory algorithms, the graph is assumed

2http://snap.stanford.edu/
3http://law.di.unimi.it/datasets.php
4https://en.wikipedia.org/wiki/PageRank

to be stored in main memory, while for I/O-efficient algorithms, the
reported time also includes the I/O time.

6.1 Experimental Results
Eval-I: Against Global Search Algorithms by Varying k and
γ. In this testing, we evaluate LocalSearch-P against the exist-
ing global search algorithms OnlineAll and Forward by varying k
and γ. The processing time of the algorithms by varying k is shown
in Figure 8, where γ = 10. We can see that the processing time
of OnlineAll and Forward remains almost the same for different k
values. This is because, these two algorithms need to process the
entire input graph regardless of the value of k. On the other hand,
LocalSearch-P runs slower for larger k, due to our local search
framework that needs to access a larger subgraph for computing
more influential γ-communities. Nevertheless, LocalSearch-P sig-
nificantly outperforms OnlineAll and Forward across all different k
values, and the improvement can be up-to 5 orders of magnitude
(e.g., on Orkut). Note that, we omit OnlineAll for Arabic, UK, and
Twitter, since it runs out-of-memory for processing these graphs.

The results by varying γ are shown in Figure 9, where k = 10.
Similar to the results in Figure 8, the processing time of OnlineAll
and Forward remains almost the same for different γ values. The
processing time of LocalSearch-P increases for larger γ value.
This is because, the larger the value of γ, the smaller the influence
values of the top-k influential γ-communities. Thus, LocalSearch-P
needs to access a larger subgraph for computing top-k influential
γ-communities of larger γ. Nevertheless, LocalSearch-P outper-
forms OnlineAll and Forward regarding all different values of γ.

We also evaluate the algorithms for large values of k and γ on
the two graphs Arabic and Twitter that have the largest γmax values
(see Table 1). The results are shown in Figure 10, and the trend is
similar to that of Figures 8 and 9. Although LocalSearch-P takes
more time when k or γ becomes larger, it still outperforms Forward.
Eval-II: Against Existing Local Search Algorithm Backward. In
this testing, we evaluate our local search algorithm LocalSearch-P
against the existing algorithm Backward. The results are shown in
Figure 11. The processing time of LocalSearch-P and Backward
increases for larger k, since both algorithms need to access and pro-
cess a larger subgraph for computing more communities. Never-
theless, LocalSearch-P consistently outperforms Backward. This
is because LocalSearch-P has a linear time complexity regarding

1065

102

103

250 500 1000 2000

To
ta

l T
im

e
(m

s)

k =

Forward
LocalSearch-P

(a) Arabic (γ = 1000, vary k)

101
102
103
104
105

250 500 1000 2000

To
ta

l T
im

e
(m

s)

k =

Forward
LocalSearch-P

(b) Twitter (γ = 1000, vary k)

102

103

250 500 1000 2000

To
ta

l T
im

e
(m

s)

γ =

Forward
LocalSearch-P

(c) Arabic (k = 1000, vary γ)

101
102
103
104
105

250 500 1000 2000

To
ta

l T
im

e
(m

s)

γ =

Forward
LocalSearch-P

(d) Twitter (k = 1000, vary γ)
Figure 10: Against Forward for large k and γ

10-1
100
101
102
103
104
105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

Backward
LocalSearch-P

(a) Arabic (γ = 10)

100101102103104105106107

5 10 20 50 100
To

ta
l T

im
e

(m
s)

k =

Backward
LocalSearch-P

(b) Arabic (γ = 50)

10-1
100
101
102
103
104
105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

Backward
LocalSearch-P

(c) UK (γ = 10)

100101102103104105106107

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

Backward
LocalSearch-P

(d) UK (γ = 50)
Figure 11: Against existing local search algorithm Backward (vary k)

10-210-1100101102103104105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

LocalSearch-OA
LocalSearch-P

(a) Wiki

10-1
100
101
102
103

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

LocalSearch-OA
LocalSearch-P

(b) LiveJ

10-210-1100101102103104105106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

LocalSearch-OA
LocalSearch-P

(c) Arabic

10-310-210-1100101102103104105

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

LocalSearch-OA
LocalSearch-P

(d) UK
Figure 12: Evaluate LocalSearch-P against LocalSearch-OA (γ = 10, vary k)

10-2

10-1

100

101

1.5 2 3 4 8 16 32 64 128

To
ta

l T
im

e
(m

s)

δ=

LocalSearch-P

(a) Wiki

10-1

100

101

1.5 2 3 4 8 16 32 64 128

To
ta

l T
im

e
(m

s)

δ=

LocalSearch-P

(b) LiveJ

10-1

100

101

102

1.5 2 3 4 8 16 32 64 128

To
ta

l T
im

e
(m

s)

δ=

LocalSearch-P

(c) Arabic

10-2

10-1

1.5 2 3 4 8 16 32 64 128

To
ta

l T
im

e
(m

s)

δ=

LocalSearch-P

(d) UK
Figure 13: Evaluate exponential growth ratio δ (k = 10, γ = 10)

the subgraph accessed, while Backward has a quadratic time com-
plexity regarding the subgraph accessed [10]. The improvement of
LocalSearch-P over Backward is more evident for larger γ.
Eval-III: Evaluate LocalSearch-P against LocalSearch-OA. Here,
we compare LocalSearch-P against its variant that invokes OnlineAll
for counting the number of influential γ-communities in a given
graph, denoted LocalSearch-OA. The results in Figure 12 show
that LocalSearch outperforms LocalSearch-OA. Thus, we pro-
pose a new algorithm CountIC for counting the number of influen-
tial γ-communities in a graph without enumerating them.
Eval-IV: Evaluate the exponential growth ratio δ. In this testing,
we evaluate the performance of LocalSearch-P for different values
of the growth ratio δ, chosen from {1.5, 2, 3, 4, 8, 16, 32, 64, 128}.
The results are shown in Figure 13. Recall from Section 3.3 that,
given any constant δ, our algorithm LocalSearch-P runs in linear
time to size(G≥τ∗), and different values of δ will result into differ-
ent constant in the time complexity. As a result, the running time
of LocalSearch-P for similar values of δ are similar. In general,
the processing time of LocalSearch-P increases for larger δ, and
LocalSearch-P performs the best for δ being around 2.
Eval-V: Evaluate Our Progressive Approach. In this testing, we
evaluate our progressive approach LocalSearch-P against our non-
progressive approach LocalSearch. The experimental results re-
garding enumeration time are shown in Figure 14. Here k = 128,
and the numeration time is the elapsed time from the start of the
algorithm until the top-i community is reported. As LocalSearch
reports the communities one-by-one only at the end of the algo-
rithm, the numeration time for different communities is almost the
same. In contrast, LocalSearch progressively computes and re-
ports the communities, and thus the enumeration time increases.
As a result, based on our progressive approach LocalSearch-P, the
communities are reported to a user progressively as early as pos-

sible, and the user can terminate the algorithm once having seen
enough communities without the need of specifying k in the query.

The results of evaluating the total processing time of LocalSearch
and LocalSearch-P by varying k are shown in the full version [3].
LocalSearch-P slightly improves upon LocalSearch, despite that
LocalSearch-P has the advantage of progressively reporting the
communities. This is because LocalSearch-P shares computations
among the processing of different subgraphs.
Eval-VI: Evaluate Our I/O-efficient Algorithm LocalSearch-SE.
We evaluate our I/O-efficient algorithm LocalSearch-SE against
the semi-external version of OnlineAll, OnlineAll-SE [28], on two
large graphs Arabic and Twitter. OnlineAll-SE iteratively (1) loads
as many edges as possible in decreasing weight order from disk to
main memory until the memory is full, (2) conducts computation
regarding the subgraph in main memory by invoking OnlineAll, and
(3) removes from main memory the edges that are already part of
communities and thus not needed for the following computations.
In this testing, we assume that the main memory can hold 1GB
of edges in addition to the information regarding vertices. The
results of the total processing time are shown in Figure 15. We
can clearly see that LocalSearch-SE outperforms OnlineAll-SE,
which is a result of our optimal local search framework. Moreover,
LocalSearch-SE consumes much smaller main memory compared
with OnlineAll-SE, as shown in the full version [3].
Eval-VII: Evaluate Non-containment Queries. Here, we evalu-
ate the efficiency of LocalSearch-P for processing non-containment
queries, as discussed in Section 5.1; that is, compute the top-k influ-
ential γ-communities such that none of its subgraph is an influential
γ-community [10, 27]. The results of comparing LocalSearch-P
with Forward for non-containment queries are shown in Figure 16;
note that, here Forward refers to its variant in [10] that computes
non-containment communities. We can see that LocalSearch-P
clearly outperforms Forward.

1066

10-1

100

101

102

1 2 4 8 16 32 64 128

E
nu

m
 T

im
e

(m
s)

Top-

LocalSearch
LocalSearch-P

(a) Arabic (γ = 10)

100

101

102

103

1 2 4 8 16 32 64 128

E
nu

m
 T

im
e

(m
s)

Top-

LocalSearch
LocalSearch-P

(b) Arabic (γ = 50)

10-2

10-1

100

101

1 2 4 8 16 32 64 128

E
nu

m
 T

im
e

(m
s)

Top-

LocalSearch
LocalSearch-P

(c) UK (γ = 10)

10-1

100

101

1 2 4 8 16 32 64 128

E
nu

m
 T

im
e

(m
s)

Top-

LocalSearch
LocalSearch-P

(d) UK (γ = 50)
Figure 14: Evaluate our progressive approach regarding enumeration time (k = 128)

102
103
104
105
106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

OnlineAll-SE
LocalSearch-SE

(a) Arabic (γ = 10)

103

104

105

5 10 20 50 100
To

ta
l T

im
e

(m
s)

k =

OnlineAll-SE
LocalSearch-SE

(b) Arabic (γ = 50)

103

104

105

106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

OnlineAll-SE
LocalSearch-SE

(c) Twitter (γ = 10)

103

104

105

106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

OnlineAll-SE
LocalSearch-SE

(d) Twitter (γ = 50)
Figure 15: Evaluate our I/O-efficient algorithm LocalSearch-SE regarding total processing time (vary k)

10-1
100
101
102
103
104

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

Forward
LocalSearch-P

(a) Arabic

10-1
100
101
102
103
104

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

Forward
LocalSearch-P

(b) UK
Figure 16: Evaluate non-containment queries (vary k)

103

104

105

106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

GlobalSearch-Truss
LocalSearch-Truss

(a) Wiki

102
103
104
105
106

5 10 20 50 100

To
ta

l T
im

e
(m

s)

k =

GlobalSearch-Truss
LocalSearch-Truss

(b) LiveJ
Figure 17: Evaluate γ-truss community search queries (vary k)

Eval-VIII: Evaluate Influential γ-truss Community Search. In
this testing, we evaluate the efficiency of our local search approach
LocalSearch-Truss for processing influential γ-truss community
search queries. To do so, we compare it with a global search ap-
proach GlobalSearch-Truss that traverses the entire graph. The
results are shown in Figure 17, where γ = 10. We can see that
LocalSearch-Truss significantly outperforms GlobalSearch-Truss.
This demonstrates the superiority of our local search framework for
general top-k influential community search regarding other cohe-
siveness measures. By comparing Figure 17 with Figure 8, we can
see that computing top-k influential γ-truss communities generally
takes more time than computing top-k influential γ-communities.
This is because computing γ-truss communities has a higher time
complexity and also processes a larger subgraph of G, than com-
puting γ-communities.

Xingfang Wang

Wee Siong Ng

Raphael Bonaque

Marina Drosou Farhan Tauheed

Chen Li

Wenfei Fan

Thomas Schwentick

Benjamin Arai

Robert Winkler

Miguel Rodríguez

Gao Cong
Matei Zaharia

Felix Schurmann

(a) Top-1 γ-community

AnHai Doan

Thomas Schwentick

Robert Winkler

Miguel Rodríguez

Benjamin Arai

Gao Cong

(b) Top-1 γ-truss community
Figure 18: Case study on DBLP

Eval-IX: Case Study on DBLP. Here, we conduct a case study
for the influential γ-community and γ-truss community on a co-
author network, DBLP. We extract a co-author graph from DBLP
(http://dblp.unitrier.de/xml/) by focusing on the research
areas of Artificial Intelligence, Computer Vision, Information Re-
trieval, Data Mining, Database, Machine Learning and Natural
Language. Each vertex corresponds to a researcher that has pub-
lished at least 10 papers in these research areas, and there is an edge
between two researchers if they have co-authored at least 3 papers.
Weights of vertices are computed as their PageRank values. The
top-1 influential 5-community and 6-truss community are shown in
Figures 18(a) and 18(b), respectively; note that, the 5-core com-
munity of the vertices in Figure 18(a) consists of 1, 148 vertices,

as shown in the full version [3]. Researchers in these influential
communities are good candidates to be invited to co-organize an
interdisciplinary workshop on these research areas.

The minimum weight vertex in Figure 18(a) is “Xingfang Wang”
which ranks 215 out of 1743 vertices, and the minimum weight ver-
tex in Figure 18(b) is “AnHai Doan” which ranks 339; note that, the
higher the weight of a vertex the smaller its rank. Thus, although
influential γ-truss community search can find smaller and denser
communities, γ-truss communities usually have smaller influence
values than γ-communities since the γ-truss constraint is harder to
be satisfied than the γ-core constraint. Note that, for any influential
γ-truss community g with influence value τ, there is a correspond-
ing (γ − 1)-community with influence value τ that contains g.

7. CONCLUSION
In this paper, we developed a local search framework for the

problem of top-k influential community search. We proved that our
LocalSearch algorithm for top-k influential γ-community search
is instance-optimal, in the sense that its time complexity is lin-
early proportional to the size of the smallest subgraph that a cor-
rect algorithm needs to access without indexes. We further pro-
posed techniques to make LocalSearch progressively compute and
report the influential γ-communities. We also extended our local
search framework to the general case of top-k influential commu-
nity search regarding other cohesiveness measures. Extensive em-
pirical studies on real graphs demonstrated the superiority of our
local search approach over the existing online search algorithms.
One direction of future work is to integrate our techniques to the
WebGraph framework [4] to process larger graphs in main mem-
ory. Another possible direction is extending our techniques to the
case that the vertex weight vector is computed online based on the
query; for example, the weight of a vertex is computed as the recip-
rocal of its shortest distance to the query vertices as studied in [24].
It will also be an interesting future work to extend our techniques
to other community definitions (e.g., that surveyed in [16]), besides
cohesive communities that we investigated in this paper.

Acknowledgements. Lijun Chang is supported by ARC DE150100563
and DP160101513. Xuemin Lin is supported by NSFC61672235,
DP170101628, DP180103096. Wenjie Zhang is supported by ARC
DP150103071 and DP150102728.

1067

8. REFERENCES
[1] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient

and effective community search. Data Min. Knowl. Discov.,
29(5):1406–1433, 2015.

[2] E. R. Barnes. An algorithm for partitioning the nodes of a
graph. SIAM Journal on Algebraic Discrete Methods,
3(4):541–550, 1982.

[3] F. Bi, L. Chang, X. Lin, and W. Zhang. An optimal and
progressive approach to online search of top-k influential
communities. CoRR’17, abs/1711.05857, 2017.

[4] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. of WWW’04, pages
595–601, 2004.

[5] S. Brohée and J. van Helden. Evaluation of clustering
algorithms for protein-protein interaction networks. BMC
Bioinformatics, 7:488, 2006.

[6] L. Chang, W. Li, L. Qin, W. Zhang, and S. Yang. pscan: Fast
and exact structural graph clustering. IEEE Trans. Knowl.
Data Eng., 29(2):387–401, 2017.

[7] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang.
Index-based optimal algorithms for computing steiner
components with maximum connectivity. In Proc. of
SIGMOD’15, pages 459–474, 2015.

[8] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang.
Efficiently computing k-edge connected components via
graph decomposition. In Proc. SIGMOD’13, pages 205–216,
2013.

[9] M. Charikar. Greedy approximation algorithms for finding
dense components in a graph. In Proc. of APPROX’00, pages
84–95, 2000.

[10] S. Chen, R. Wei, D. Popova, and A. Thomo. Efficient
computation of importance based communities in web-scale
networks using a single machine. In Proc. of CIKM’16,
pages 1553–1562, 2016.

[11] J. J. Cho, Y. Chen, and Y. Ding. On the (co)girth of a
connected matroid. Discrete Applied Mathematics,
155(18):2456–2470, 2007.

[12] J. Cohen. Trusses: Cohesive subgraphs for social network
analysis. National Security Agency Technical Report,
page 16, 2008.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[14] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[15] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23(2):298–305, 1973.

[16] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3):75 – 174, 2010.

[17] A. Gajewar and A. D. Sarma. Multi-skill collaborative teams
based on densest subgraphs. In Proc. of ICDM’12, pages
165–176, 2012.

[18] A. V. Goldberg. Finding a maximum density subgraph.
Technical report, Berkeley, CA, USA, 1984.

[19] T. Hastie, J. Friedman, and R. Tibshirani. Additive models,
trees, and related methods. In The Elements of Statistical
Learning, pages 257–298. Springer, 2001.

[20] A. Hlaoui and S. Wang. A direct approach to graph

clustering. Neural Networks and Computational Intelligence,
4(8):158–163, 2004.

[21] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang. On minimal
steiner maximum-connected subgraph queries. IEEE Trans.
Knowl. Data Eng., 29(11):2455–2469, 2017.

[22] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic graphs. In
Proc. of SIGMOD’14, pages 1311–1322, 2014.

[23] X. Huang, L. V. S. Lakshmanan, and J. Xu. Community
search over big graphs: Models, algorithms, and
opportunities. ICDE Tutorial, 2017.

[24] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng.
Approximate closest community search in networks.
PVLDB, 9(4):276–287, 2015.

[25] B. W. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. The Bell system technical journal,
49(2):291–307, 1970.

[26] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu.
Most influential community search over large social
networks. In Proc. of ICDE’17, pages 871–882, 2017.

[27] R. Li, L. Qin, J. X. Yu, and R. Mao. Influential community
search in large networks. PVLDB, 8(5):509–520, 2015.

[28] R. Li, L. Qin, J. X. Yu, and R. Mao. Finding influential
communities in massive networks. VLDB J., 26(6):751–776,
2017.

[29] M. E. Newman. Detecting community structure in networks.
The European Physical Journal B-Condensed Matter and
Complex Systems, 38(2):321–330, 2004.

[30] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In Proc. of NIPS’01, pages
849–856, 2001.

[31] M. J. Rattigan, M. E. Maier, and D. D. Jensen. Graph
clustering with network structure indices. In Proc. of
ICML’07, pages 783–790, 2007.

[32] K. Saito and T. Yamada. Extracting communities from
complex networks by the k-dense method. In Proc. of
ICDMw’06, pages 300–304, 2006.

[33] A. E. Sariyüce and A. Pinar. Fast hierarchy construction for
dense subgraphs. PVLDB, 10(3):97–108, 2016.

[34] A. Schenker, M. Last, H. Bunke, and A. Kandel. Graph
representations for web document clustering. In Proc. of
IbPRIA’03, pages 935–942, 2003.

[35] S. B. Seidman. Network structure and minimum degree.
Social Networks, 5(3):269 – 287, 1983.

[36] J. Shi and J. Malik. Normalized cuts and image
segmentation. In Proc. of CVPR’97, pages 731–737, 1997.

[37] M. Sozio and A. Gionis. The community-search problem and
how to plan a successful cocktail party. In Proc. of
SIGKDD’10, pages 939–948, 2010.

[38] P. R. Suaris and G. Kedem. An algorithm for quadrisection
and its application to standard cell placement. IEEE
Transactions on Circuits and Systems, 35(3):294–303, 1988.

[39] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community
detection: On free rider effect and its elimination. PVLDB,
8(7):798–809, 2015.

[40] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li.
Finding maximal k-edge-connected subgraphs from a large
graph. In Proc. of EDBT’12, pages 480–491, 2012.

1068

