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ABSTRACT
Today, business analysts and data scientists increasingly
need to clean, standardize and transform diverse data sets,
such as name, address, date time, and phone number, before
they can perform analysis. This process of data transforma-
tion is an important part of data preparation, and is known
to be difficult and time-consuming for end-users.

Traditionally, developers have dealt with these longstand-
ing transformation problems using custom code libraries.
They have built vast varieties of custom logic for name
parsing and address standardization, etc., and shared their
source code in places like GitHub. Data transformation
would be a lot easier for end-users if they can discover and
reuse such existing transformation logic.

We developed Transform-Data-by-Example (TDE), which
works like a search engine for data transformations. TDE
“indexes” vast varieties of transformation logic in source
code, DLLs, web services and mapping tables, so that users
only need to provide a few input/output examples to demon-
strate a desired transformation, and TDE can interactively
find relevant functions to synthesize new programs consis-
tent with all examples. Using an index of 50K functions
crawled from GitHub and Stackoverflow, TDE can already
handle many common transformations not currently sup-
ported by existing systems. On a benchmark with over
200 transformation tasks, TDE generates correct transfor-
mations for 72% tasks, which is considerably better than
other systems evaluated. A beta version of TDE for Mi-
crosoft Excel is available via Office store1. Part of the TDE
technology also ships in Microsoft Power BI.

∗Work done at Microsoft Research.
†Work done at Microsoft Research.
1
https://aka.ms/transform-data-by-example-download
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Figure 1: A sales dataset with heterogeneous values.
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1. INTRODUCTION
Today, end users such as business analysts and data sci-

entists increasingly need to perform analysis using diverse
data sets. However, raw data collected from different sources
often need to be prepared (e.g., cleaned, transformed, and
joined) before analysis can be performed. This is difficult
and time-consuming for end-users – studies suggest that an-
alysts spend up to 80% of time on data preparation [13].

In light of the difficulties, there is a recent trend in the in-
dustry called self-service data preparation [15]. Gartner es-
timates this market to be worth over $1 billion by 2019 [15].
In this work we consider self-service data transformation,
which is a major component of data preparation. Specifi-
cally, we focus on row-to-row transformations, where the in-
put is a row of string values and the output is also a string2.
We illustrate such transformations with an example.

Figure 1 gives an example data set with sales transactions
of customers from different sales channels, with transaction
dates, customer names, etc. Note that values from same
columns are highly heterogeneous, which often happen if
data come from different sources, or if they are manually

2Sorting a set of values, for instance, is not a row-to-row trans-
formation.
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Figure 2: TDE transformation for date-time. (Left): user provides two desired output examples in column-D,
for the input data in column-C. (Right): After clicking on the “Get Transformation” button, TDE synthesizes
programs consistent with the given examples, and return them as a ranked list within a few seconds. Hovering
over the first program (using System.DateTime.Parse) gives a preview of all results (shaded in green).

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output
examples. The desired first-names and last-names are marked in bold for ease of reading. A composed
program using library CSharpNameParser from GitHub is returned. (Right): transformations for addresses.
The first two values are provided as output examples to produce city, state, and zip-code. Note that some of
these info are missing from the input. A program invoking Bing Maps API is returned as the top result.

entered. For instance, in the first column dates are rep-
resented in many different formats. In the second column,
some customer names have first-name followed by last-name,
while others are last-name followed by comma, then first-
name, with various salutations (Mr., Dr., etc.) and suffixes
(II, Jr., etc.). Phone numbers are also inconsistent, with
various international calling codes (+1) and extensions (ext
2001), etc. Addresses in the last column are also not clean,
often with missing state and zip-code information.

This data in Figure 1 is clearly not ready for analysis
yet – an analyst wanting to figure out which day-of-the-
week has the most sales, for instance, cannot find it out
by executing a SQL query: the date column needs to be
transformed to day-of-the-week first, which however is non-
trivial even for programmers. Similarly the analyst may
want to analyze sales by area-code (which can be extracted
from phone-numbers), or by zip-code (from addresses), both
of which again require non-trivial data transformations.

In a separate scenario, suppose one would like identified
possible duplicate customer records in Figure 1, by first stan-
dardizing customer names into a format with only last and
first names (e.g., both the first two records will convert into
“Doe, John”). This again requires complex transformations.

Data transformation is clearly difficult. However, our ob-
servation is that these domain-specific transformation prob-
lems like name parsing and address standardization are re-
ally not new – for decades developers have built custom
code libraries to solve them in a variety of domains, and
shared their code in places like GitHub. In a recent crawl,
we obtained over 1.8M functions extracted from code li-
braries crawled from GitHub, and over 2M code snippets
from StackOverflow, some of which specifically written to
handle data transformations in a variety of domains.

Transform-Data-by-Example. The overarching goal of
the project is to build a search engine for end-users to eas-
ily reuse code for transformations from existing sources.
Specifically, we adopt the by-example paradigm and build a
production-quality system called Transform-Data-by-Example
(TDE). The front-end of TDE is an Excel add-in, currently
in beta and available from Office Store [7]. From the Excel
add-in, users can find transformations by providing a few in-
put/output examples. In Figure 2(left), a user provides two
output examples to specify the desired output. Once she
clicks on the “Get Suggestions” button, the front-end talks
to the TDE back-end service running on Microsoft Azure
cloud, which searches over thousands of indexed functions,
to on-the-fly synthesize new programs consistent with all
examples. In the right part of Figure 2, a ranked list of pro-
grams are returned based on program complexity. The top-
ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library to generate correct output
for all input. Figure 3 shows additional examples for trans-
forming names and addresses using the data in Figure 1.

TDE has a number of unique features, which we believe
are important first steps towards realizing self-service data
transformation.
• Search-by-Example. TDE works like a search engine, which
allows end-users to search transformations by just a few ex-
amples, a paradigm known as program-by-example (PBE) [23]
that was also used by FlashFill [16] for data transformation
with much success. Compared to existing PBE systems such
as FlashFill that compose a small number of string primi-
tives predefined in a Domain Specific Language (DSL), TDE
synthesizes programs from a much larger search space (tens
of thousands of functions). We develop novel algorithms to
make it possible at an interactive speed.
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Figure 4: Example menu-based transformation.
(Left): Paxata. (Right): OpenRefine.

• Program Synthesis on-the-fly. Since existing functions
in code libraries rarely produce the exact output required
by users, TDE automatically synthesize new programs, by
composing functions, web services, mapping-tables [28], and
syntactic string transformations from a DSL, all within a
few seconds. Expert-users have the option to inspect the
synthesized programs to ensure correctness.
• Head-domain Support. We build an instance of TDE that
indexes over 50K functions from GitHub and 16K map-
ping tables, which can already handle many head domains
(e.g., date-time, person-name, phone-number, us-address,
url, unit-conversion, etc.) that are not supported by any
existing system.
• Extensibility. Although TDE can already handle many im-
portant domains, there will be diverse application domains
where TDE will not support out of the box, as it would not
have encountered and crawled functions in those domains.
TDE is designed to be extensible – users can simply point
TDE to their domain-specific or enterprise-specific source
code, DLLs, web services, and mapping tables, the trans-
formation logic in these resources will be automatically ex-
tracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” new documents.

To sum up, we have built a self-service, by-example data
transformation engine TDE , leveraging unique technologies
such as function analysis and ranking. We will first give an
overview of existing approaches to data transformation.

2. REVIEW OF EXISTING SOLUTIONS
There have been significant activities in the industry in

the space of self-service data preparation in recent years. A
Gartner report [25] reviews 36 relevant systems from star-
tups (e.g., Paxata [4] and Trifacta [8]), as well as established
vendors (e.g., Informatica Rev [2]). We discuss a few repre-
sentative approaches here to set our discussion in context.

Menu-based transformation. Most existing data prepa-
ration systems have menus for commonly used transforma-
tions. Users are expected to find appropriate transforma-
tions from the menus. Figure 4 shows the menus of Pax-
ata [4] and OpenRefine [3] for instance. As can be seen, only
a limited number of simple transformations are supported.

Language-based transformation. Existing systems
also define their own “transformation languages” that users
can learn to write. For example, Trifacta [8] defines a lan-
guage called Trifacta Wrangle language, and OpenRefine [3]
has its own OpenRefine Expression Language. Like other
domain specific languages (DSL), these tend to have steep
learning curves and limited expressiveness [20, 23].

Transformation by input. Trifacta adopts an interest-
ing variant of PBE in which users can select portions of input
data, and the system will suggest possible transformations
(termed predictive interaction [18]). Similarly, Informatica
Rev [2] and Talend [6] can also suggest operations based on

selected input. However, input alone often cannot fully spec-
ify the desired transformation – for example, for a datetime
input, users’ intent can be anything from adding X number
of hours (for timezone conversion), to changing into one of
many possible formats. The input-only approaches have no
clue which output is intended and often produce long lists
of irrelevant suggestions.

Example-driven search using string primitives. Al-
though program-by-example (PBE) is a known paradigm
in the programming language literature for decades [23],
FlashFill [16] pioneered its use for tabular data transfor-
mation. In FlashFill-like systems [20, 22, 26], users provide
input/output examples, and the system uses simple string
primitives to find consistent programs. While the PBE
paradigm significantly improves ease-of-use (which TDE also
builds upon), the expressiveness of existing systems is lim-
ited with no support of complex transformations requiring
domain-specific knowledge (e.g., Figure 2 and Figure 3).

Example-driven search with search engines. DataX-
Former [9] uses search engines to find relevant web tables
and web forms, from which desired output values can be
extracted (note that unlike PBE that only use examples,
column headers are required here as input to build keyword
queries). While web forms/tables are important resources,
DataXFormer lacks ability to synthesize results to handle
complex transformations.

Type-based transformation. Systems such as Infor-
matica Rev [2] can suggest common type-specific transfor-
mations based on data types; so can research prototype
AutoType [30], which like TDE also leverages open-source
code. In comparison, TDE does not require a priori spec-
ifications of data types; instead it leverages unique fuzzy
function ranking to match relevant functions against tasks,
which makes it much more flexible and broadly applicable.

3. SYSTEM ARCHITECTURE
A high-level overview of TDE architecture is shown in

Figure 5. Like a typical search engine, there are two main
phases. First, in an offline phase, TDE collects, analyzes,
restructures and indexes useful resources from (1) code li-
braries, (2) web service APIs, and (3) mapping tables. Next,
in the online phase, when a user submits a transformation
task in Excel, TDE uses the index built offline to quickly
find relevant transformation logic, which are then used to
synthesize programs matching all input/output examples.

The offline phase. In this phase, we collect around
12K C# repositories from GitHub, and extract a total of
1.8M functions. We also index all functions in the .Net sys-
tem library, and 16K mapping relationships from a variant
of [28]. Note that although we currently focus on C# code,
the code-analysis techniques here can be easily applied to
other languages like Java and Python.

Given the large repository of code, a key technical chal-
lenge is to “understand” these functions, so that at run time
we can quickly find ones relevant to a new transformation
task. We perform extensive offline analysis of functions, us-
ing code-analysis as well as distribution-analysis from exe-
cutions, so that we can build input/output profiles for these
functions. Section 4 gives details of this step.

Mapping relationships (e.g., “Washington” to “WA”; or
“SFO” to “San Francisco International Airport”) work like
dictionary lookup and are important resources that can com-
plement code. We start with a large crawl of HTML tables
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Figure 5: Architecture of TDE back-end.

from Bing’s index [12], and derive mapping-relationships
from these tables [28]. These mappings are used holistically
with code to synthesize programs (Section 7).

For web services, we use service URLs identified from
Bing’s index, as well as ones manually curated (e.g., Bing
Maps API [1]). These services are necessary for a class of
complex transformations that require extensive external re-
sources for which standalone code libraries are often insuf-
ficient (e.g., produce missing zip-code for addresses in Fig-
ure 3). Web service APIs are handled by TDE just like
functions but are invoked slightly differently (Section 6).

The online phase. In this phase, given a user trans-
formation task, we need to (1) quickly identify functions,
web services and tables that may be relevant; and (2) syn-
thesize new programs that leverage a combination of these
resources. This process needs to be highly efficient to ensure
interactivity (i.e., in a few seconds). We design novel rank-
ing and synthesis algorithms that can efficiently compose
transformation logic into complex programs (Section 5).

We note that end-users may not be able to inspect pro-
grams for correctness, and instead often rely on inspecting a
small set of output for quality checks. Additional techniques
to profile output results, and alert users of potential errors
(e.g., [19]), are interesting directions of research for not only
TDE but also the PBE paradigm in general.

4. OFFLINE FUNCTION INDEXING
Given a large repository of code, a key technical chal-

lenge is to figure out what functions may be relevant for a
given transformation task, because blindly testing all func-
tions crawled will be impossibly slow. We perform extensive
analysis of black-box functions to profile and index “typical”
input parameters that each function can take. We will de-
scribe two main groups of techniques: (1) code-based anal-
ysis, and (2) entropy-based distribution analysis.

4.1 Code Analysis Techniques
For code analysis, we use the Roslyn compilation frame-

work [5] to compile source code and generate abstract syntax
tree (AST)3, which is an intermediate representation widely
used by the PL community. We use Roslyn to program-
matically compile all code projects from GitHub (using .sln
files); and StackOverflow snippets (we create a new project
for each code snippet, appropriately padded with common
dependencies.) in order to generate AST.

4.1.1 Static Analysis & Code Restructuring
To figure out what input values each function can typical

take as input (so that at runtime we can quickly find rele-
vant functions), one approach is to use static analysis tech-
niques such as constant-propagation. For example, given the
code snippet in Figure 6, it is not hard to figure out that
value “Tuesday, August 25, 2015” is a valid parameter for
System.DateTime.Parse(), since it propagates down and

3This is generally applicable to other programming languages.

Figure 6: An example function from StackOverflow.

Figure 7: A restructured function from Figure 6.

becomes a parameter of that function. We populate this
pair of function/parameter-value in a function-to-example
index, conceptually shown as a table in Figure 8. Note that
by using AST, names of functions are fully resolved. Also
only one input parameter is populated in the table since
this function is unary. Applying this technique to all code
projects crawled allows us to identify other parameter val-
ues used to invoke System.DateTime.Parse(), shown in the
second and third row of the table.

The approach of constant propagation is particularly ef-
fective for commonly used libraries (e.g., .Net standard func-
tions), as well as custom code with unit-tests. Unit tests are
a common engineering practice to ensure functions work as
expected, and their parameters are often hard-coded con-
stants, which this approach can leverage to collect input
parameter appropriate for each function.

Code restructuring. We observe that crawled code can
often be restructured to create a rich variety of new func-
tions useful for data transformations. Specifically, we lever-
age AST to perform two types of restructuring. The first is
known as constant lifting. For example, the function in Fig-
ure 6 is a parameter-less function. We can lift the constant
value to the top as a parameter and create a new function in
Figure 7 (using AST and Roselyn). This new function can
now be invoked and we know the string “Tuesday, August

25, 2015” is a good parameter, which we populate as a new
entry processDateTime 1() in Figure 8.

Observing that intermediate states of a complex func-
tion can often be useful, our second restructuring approach
is to decompose functions into smaller units using depen-
dency analysis. For the function in Figure 7, we can cre-
ate a new function processDateTime 2() that returns the
intermediate variable “int year1” by removing all trailing
statements, as well as statements before it that the return
statement does not depend on (which in this case is empty).
This newly created function can again be populated in Fig-
ure 8. This restructuring approach creates rich functions
from monolithic ones that can be useful for transformations.

4.1.2 Dynamic Execution-based Analysis
In addition to static analysis, there are many cases where

parameter values are only known during execution. Fig-
ure 9 shows a simple example, which is a unit test for func-
tion CSharpNameParser.Parse() on GitHub. Simple static
analysis techniques like constant propagation would not be
able to identify parameters for this function.
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Figure 8: An example function-to-example index.

Figure 9: An example function for dynamic analysis
from CSharpNameParser on GitHub.

We instead use dynamic execution to profile parameter
passed into each function during execution. Specifically, we
leverage the AST to modify each function f , by inserting
a “printf” statement right at the beginning of f so that
whenever f is invoked its parameters will be recorded.

We then compile the modified source code, and use a num-
ber of ways to find functions we can execute, in the hope
that they will in turn invoke other functions in the project
to cover a substantial part of the code, and thus producing
useful parameters for many functions. For instance, we pro-
grammatically execute all Main() functions; all static func-
tions with no parameters; parameter-less functions in a class
with constructors that we can invoke; as well as unit-test
functions in popular testing frameworks (XUnit, NUnit, VS
Unit Testing, etc.).

In Figure 9, by programmatically invoking all unit-tests,
we can obtain two additional parameters for the function
CSharpNameParser.NameParser.Parse(), shown in Figure 8.

Using both static and dynamic code analysis techniques
discussed above, we are able to extract parameter examples
for 214K functions out of 1.8M candidates (12%). After ad-
ditional validation (e.g., checking whether a function can be
compiled and programmatically invoked, whether a function
has too many parameters, etc.), we arrive at around 45K in-
vocable functions that are associated with parameters.

4.2 Entropy-based Distribution Analysis
The aforementioned techniques are in-vivo since they lever-

age existing data (both statically encoded and dynamically
generated) in code. While useful, their coverage can be lim-
ited by the way code is written. For example, if a large
code base comes with no unit tests or constants, then code-
analysis is unlikely to handle it well. We propose a novel

Figure 10: Example Wikipedia table columns.

in-vitro method that leverages information theory to under-
stand black-box functions, which to our knowledge is new
in the database and programming language literature.

The high level idea is that we first generate a rich set of
“representative” examples, denoted by E, that cover a wide
range of data types of interest (e.g., date-time, names, ip
addresses, phone, locations, urls, etc.). We then pass each
value in E as parameters to each function f , and by ob-
serving how f behaves in terms of its output distribution,
we can infer “good“ parameters suitable for f (for example,
if f returns null for all of E except a small subset repre-
senting phone-numbers, then we know these are likely good
parameters for f). We will describe these two steps in turn.

4.2.1 Generating representative examples
First, we would like to generate a large variety of pa-

rameter values E. For this we resort to over 11 million
relational table columns extracted from Wikipedia. With
simple pruning such as removing long text-columns, we ob-
tain structured values covering rich types of data. Figure 10
shows a few example table columns. A naive approach is to
use all these values as parameters to execute all candidate
functions, but the challenge is efficiency – the cross-product
of the two would translate to trillions of function executions,
which is prohibitively expensive.

Our observation here is that we only need to find “rep-
resentative” values to “cover” the space of data, without
needing to repeatedly test very similar values. For instance,
in Figure 10, values in same columns follow similar patterns,
and it is sufficient to pick one representative value from each
column. Furthermore, for columns with very similar pat-
terns like the first two columns in Figure 10, we can again
pick only one value to “represent” both. On the other hand,
for values of sufficiently different patterns, such as the first
and the third column, we need to make sure both types of
values are selected to cover different date formats.

This calls for a way to quantify “distance” between the
patterns of two strings, and intuitively we want low pattern-
distance (high similarity) between values like April 19, 1854

and September 22, 1908 despite a high edit-distance be-
tween them. We introduce a pattern-level distance mea-
sure inspired by sequence alignment [14]. Our first observa-
tion is that punctuation often serves as structural delimiters
for rich data types, so we generate punctuation-induced se-
quences by “segmenting” strings using punctuation.

Definition 1. Given a string v, define sv be its punctuation-
induced sequence, where each element is either a single punc-
tuation, or a maximal substring with no punctuation.

Example 1. The punctuation-induced sequence for April
19, 1854 is {“April”, “ ”, “19”, “,”, “ ”, “1854” }; while
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for string September 22, 1908, it is {“September”, “ ”,
“22”, “,”, “ ”, “1908” }.

Given two sequences su and sv, we define their pattern-
level distance inspired by sequence alignment. Recall that
in general sequence alignment [14], the distance between
two sequences su and sv is computed by padding both se-
quences with special gap-elements denoted as ‘-’, to produce
sequences su and sv with the same number of elements so
that they can be “aligned”, and the sum of their element-
wise distance

∑
i∈[|su|] d (su[i], sv[i]) is minimized over all

such su and sv (where s[i] denotes the i-th element of se-
quence s).

This alignment-based distance framework is general and
has been applied to different scenarios, such as for gene se-
quences where element-wise distance are defined between
pairs of symobols in {A, T, C, G, -}; as well as for the
edit-distance between strings where a unit cost is used be-
tween different characters. We adopt this sequence-alignment
framework to define our pattern-distance, but define differ-
ent element-wise distances based on character classes. Specif-
ically, we consider three classes of characters in the English
alphabet: the letters, the digits, and the punctuation P
(which is defined to include everything else). We define dis-
tance between a pair of elements as follows.

Definition 2. The distance d(e, e′) between two elements
e, e′ is defined as:

d
(
e, e′

)
=



1, if e = ‘-’ or e′ = ‘-’

0, if e, e′ ∈ P, e = e′

1, if e, e′ ∈ P, e 6= e′

1, if e ∈ P, e′ /∈ P
1− min(nl(e),nl(e

′))+min(nd(e),nd(e
′))

max(n(e),n(e′)) , if e, e′ /∈ P
(1)

Where ‘-’ denotes the special gap character inserted; n(e),
nl(e), and nd(e) denote the total number of characters, let-
ters and digits in e, respectively, for which n(e) = nl(e) +
nd(e) always holds when e /∈ P.

These five cases in the definition can be explained as fol-
lows: (1) if e or e′ is the special gap element ‘-’ then their
distance is 1 (similar to other sequence-alignment distances);
(2) if e and e’ are the same punctuation then their distance
is clearly 0; (3) if e and e′ are different punctuation their
distance is 1 (because different punctuation are often very
different structural delimiters); (4) if e is punctuation and e′

is not their distance is 1 (one is data content and the other
is a delimiter); (5) if neither e nor e′ is punctuation, then
intuitively their “pattern similarity” can be defined as the
number of shared characters in the same class (letters and
digits), divided by the max length of the two strings, which
is in the range of [0, 1]. We define their distance simply as
1 minus this similarity score.

The definition above ensures element-wise distance d (e, e′) ∈
[0, 1]. We can then define pattern distance of two sequences
as their average element-wise distances, similar to other se-
quence alignment distances.

Definition 3. The pattern distance d(su, sv) between se-
quence su and sv, is defined as

d(su, sv) = min
su,sv

avgi∈[|su|]d (su[i], sv[i]) (2)

where su and sv are sequences padded from su and sv, with
the same number of elements.

This pattern-distance can be computed similar to sequence
alignment using dynamic programming [14].

Example 2. The pattern-distance between April 19, 1854

and September 22, 1908, can be computed from the best
alignment between sequences {“April”, “ ”, “19”, “,”, “ ”,
“1854” }, and {“September”, “ ”, “22”, “,”, “ ”, “1908”
}. The trivial alignment without inserting ‘-‘ produces the
lowest distance with the following 6 element-wise distances:

1−min(5,9)+min(0,0)
max(5,9)

= 0.44 (between “April” and “September”),

0, 0, 0, 0, 0. The overall sequence distance is thus 0.44
6

=
0.075, which is small, indicating that these two strings are
similar patterns.

Similarly, it can be verified that for value April 19, 1854

(sequence {“April”, “ ”, “19”, “,”, “ ”, “1854” }) and
1998/01/06 (sequence {“1998”, “/”, “01”, “/”, “06” }),
the best alignment has these element-wise distances: 1 −
min(4,0)+min(0,5)

max(4,5)
= 1 (between “1998” and “April”); 1 (be-

tween “ ” and “/”); 0 (between “19” and “01”); 1 (between
“,” and “/”); 1 (between “ ” and “-”, where “-” is a special

gap inserted), and finally 1− min(2,4)+min(0,0)
max(2,4)

= 0.5 (between

“1854” and “16”). The overall distance is 4.5
6

= 0.75, indi-
cating that the two strings have very different patterns.

Using this pattern-level distance, we can compute that
strings within the same columns in Figure 10 all have low
distances and are thus “similar”, so we can pick one string
to represent each column. The same is true for strings be-
tween the first two columns, but not for strings between
other columns.

With this distance, we use a bottom-up clustering to “de-
dup” at the pattern-level across 11 millions input Wikipedia
table columns, to produce a total of 3.5K clusters (a three
orders of magnitude reduction). From each cluster we take
20 random examples to generate around 50K values (certain
clusters have less than 20 values). This reduction makes
it possible to use broad-based distribution-analysis, which
requires executing all values against all functions. Figure 11
shows a small set of values retained in the process, which
are manually determined to be related to date-time. Note
that our pattern-distance allows rich variations of date-time
formats to be preserved. We defer more details of this step
to a long version of the paper in the interest of space.

Note that ideally we would like to use semantic labels of
columns for de-duplication. Since such semantics are hard to
obtain for all columns, we use syntactic pattern as a proxy.
This approach is nevertheless effective for semantic values
that often have distinctive characteristic (e.g., address lines).

4.2.2 Entropy-based distribution analysis
After obtaining representative examples denoted by E,

we use E as parameters to execute all candidate functions
F. The idea is that by observing the distribution of the
outcome after executing E on f ∈ F, we can infer Ef ⊂ E
that are suitable input for f . Specifically, there are two
general scenarios.

S1: Function f strictly checks the validity of input pa-
rameters, such that if the input values are not of expected
formats then f errors out (i.e., throws an exception, returns
a null object, etc.). For instance, the DateTime.Parse()

function will throw a format-error exception if the input is
not an expected date-time string that it can handle. For
such functions, since only a small fraction of suitable values
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Figure 11: Representative values after clustering
that are related to date-time, and the number of
similar values in each cluster.

in E will execute, observing the outcome across all E makes
Ef straightforward.

S2: Not all functions strictly check input for errors – many
functions may not error out on inappropriate input and still
return some results. However, an distribution-based analysis
would still reveal Ef ⊂ E that are suitable for f . Specifi-
cally, f typically performs some type of transformation for
a specific kind of input data, and then populate the return
object with appropriate results. For example, a GitHub
function that parses date values returns a date object with
attributes such as int year, int month, int day, string

day-of-the-week, etc. When valid date strings (e.g., ones
in Figure 11) are passed as parameters, these attribute val-
ues in return objects are properly populated as shown in
Figure 12, with year=1998, month=3, etc. However, if input
values are not date-time but are other strings, the function
will likely terminate differently, and attribute values in the
return object will have default initial values, in this case 0 for
year, month, day, and empty string for day-of-the-week.

Intuitively after executing E on f we may see a large clus-
ter of (likely “default”) values returned, and then a small
group of diverse values (likely meaningful output for f).
Note that this divide between a big group of identical re-
sults (likely meaningless) and a small group of diverse results
(likely meaningful) actually applies consistently to both S1
and S2 – in S1 we can just view exceptions also as output.

Since these desired distributions correspond to low-entropy
distributions in information theory, we use entropy to iden-
tify such functions f and their corresponding Ef . Recall
that entropy of a distribution X is defined as

H(X) = −
n∑
i

P (xi) logP (xi) (3)

where P (xi) is the probability of the i-th outcome xi in
X. Since entropy will naturally grow larger for variables

Figure 12: Example distribution analysis to infer
examples Ef suitable for function f .

with larger domains (e.g., string vs. bool), we apply nor-
malization to make it domain-insensitive, using normalized
entropy [21] defined as

N(X) = −
∑n

i P (xi) logP (xi)

logn

A small N(X) suggests a highly skewed distribution, from
which Ef can be identified accordingly.

Example 3. In the example discussed in Figure 12, recall
that we have roughly 50K representative examples selected
from the previous step as E. Around 30 of these values
are date-time strings (in Figure 11), which are effectively
Ef for this function f , whose output will be populated with
diverse attribute values as illustrated in the top rows of Fig-
ure 12. The remaining output will be default initial values,
shown at bottom. Suppose we take the attribute year for
analysis, then the normalized entropy can be computed as:
(− 50K−30

50K
log 50K−30

50K
−30× 1

50K
log 1

50K
)/(log 31) ≈ 0.0002.

From this we conclude that the distribution is highly skewed,
and we can identify the small number of Ef accordingly.

This entropy-based approach is applicable to a wide vari-
ety of functions, such as domain-specific functions that pro-
cess specific data types (ip-addresses, phone-numbers, etc.),
as well as general numeric functions such as a factorial func-
tion (which only accepts non-negative integers). However,
this approach is not effective for functions that perform syn-
tactic transformations that can accept virtually any input
(e.g. an upper-case function), because the key underlying
assumption that Ef is a small subset of E no longer holds.

Once we infer Ef for a given function f , these Ef can be
used to populate the index table in Figure 8, which will in
turn be used for function ranking, to be discussed next.

From the 1.8M input functions, we identify 62K ones that
can be invoked with one parameter, with which we perform
the entropy-analysis above. Around 5K (8.1%) functions can
accept a small fraction (≤ 5%) of the input examples, which
are roughly functions that perform strict data checking.4 On
the other hand, around 40K functions can accept almost all
input (> 95%), from which we identify 5K functions with
low normalized-entropy. In total we collect parameter ex-
amples for around 10K functions using this method.

Combining these with the functions from code analysis
(Section 4.1), we are able to index around 50K functions.

5. ONLINE PROGRAM SYNTHESIS
Using techniques in Section 4, offline we can associate

each function f with example parameters Ef suitable for
f . In this section, we discuss the following key steps in
the online phase: (1) given a user task T with input/output
examples, rank all candidate functions F to find relevant one

4There are 15K (24.2%) functions that cannot accept any input.
Further testing using additional examples may help.
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to execute; (2) based on the execution result synthesize new
programs to produce the target output; (3) re-rank among
all synthesized programs that are consistent with T .

5.1 Function Ranking (L1)
Given a task T , naively we can execute all functions in F

to test if they can be used to produce the desired output in
T . However executing all of F is clearly too expensive and
too slow for TDE . Specifically, the latency of executing one
function can range from a few milliseconds to hundreds of
milliseconds, so that even with parallelization a reasonable
server can only execute up to a few hundred candidate func-
tions within a few seconds. As such, we leverage the f ↔ Ef

index (Figure 8) to quickly find a small set of promising
functions for execution.

We would like to note that ranking discussed in this sec-
tion is used internally by TDE only for selecting promising
functions, which is different from the final ranking of syn-
thesized programs that users see from UI (Figure 2). To
differentiate rankers used in these two different stages, we
use terminology similar to multistage ranking in search en-
gines [31], and refer to this first-level rankers discussed here
as L1-ranking, and refer to the final ranking of synthesized
programs as L2-ranking (to be discussed in Section 5.3).

In TDE we currently employ two types of L1 function
ranking, based on input patterns, and input-output rela-
tionships, respectively, which we will describe below. Note
that like search engines, the ranking component is extensible
by design to plug in other types of rankers.

5.1.1 L1 Ranking by input-patterns
Our first approach of L1 function ranking is based on com-

paring patterns of input parameters Ef accepted by function
f , and that of input values of task T .

As an example, given the task Tdate of standardizing date-
time shown in Figure 2, intuitively we can see that the pat-
tern of input values like Wed, 12 Jan 2011 in Tdate, matches
pretty well with the one of the known parameter Mon, 26

October, 1998 for function System.DateTime.Parse() in
the index table in Figure 8, indicating that this function
may be a good match for Tdate.

We use the same pattern-distance in Definition 3 to mea-
sure how well input values in a task matches parameters of
a function, and in this case can compute the distance of this
value pair to be 1.57

9
= 0.17, which is small, suggesting that

System.DateTime.Parse() may be a good match for Tdate.
It can be verified that this distance is considerably lower
compared to distances with other functions in Figure 8.

Let T.I be the input examples of a task T , the input-only
ranking of a function f is R(f, T ) = minv∈Ef ,u∈T.I d(v, u).
Since we use distance, a lower score indicates a better match.

We find this ranking approach works well for large va-
rieties of semantic data values, such as ip-address, phone-
number, email, date-time, postal-address, etc., most of which
have structured patterns with fixed sequences of punctua-
tion that the pattern-based ranking can recognize well.

5.1.2 L1 Ranking by input-output relationship
The first L1 ranker works well for functions whose input

are semantic data values with distinctive patterns. However
there is a class of functions that perform what we call syntac-
tic transformations, such as functions for camel-casing/title-
casing, or ones that trim white spaces or remove consecutive

white spaces. For such functions, the input can be any string
with no distinctive patterns.

For this reason, we also develop an L1 ranker exploiting
the relationship between input and output. Specifically, us-
ing a standard grouping of characters in the English alpha-
bet (e.g., lower/upper-case letters, letters, digits, alphanu-
meric, etc.), we “describe” the syntactic difference between
input/output of a function f . As an example, for a function
that trims white spaces, a succinct way to describe its in-
put/output difference (observed from repeated executions of
f with different parameters) is that white spaces are deleted
from the input, while other classes of characters are unaf-
fected (described as {delete: {“ ”}, insert: ∅, update: ∅}).

Then given a user task T , say title-casing, we can similarly
describe its input/output difference succinctly as {delete: ∅,
insert: ∅, update: {lower→upper}}. We can compare the
description of T with that of each f , by computing an aver-
age similarity score across delete/insert/update categories,
and rank functions f accordingly. For this T functions
like upper-casing, camel-casing will rank high, while space-
trimming functions will rank low.

The two L1 ranking methods are rather complementary
(one focusing on functions processing semantic data while
the other more suitable for syntactic functions), TDE takes
the union of top-K functions from both rankers.

5.2 Synthesize Programs using Functions
Let RK be the top-K functions returned by the L1 rankers,

and T the transformation task. Recall that in TDE , a total
of m (usually 3) input/output examples are provided in T .
Let T.I[i] be the i-th input row and T.O[i] be the i-th output
cell. The goal is to execute functions in RK using T.I[i] as
input, to generate the target output T.O[i] for all 0 ≤ i ≤ m.

We first discuss program synthesis with single functions,
and then parameterized multi-function synthesis.

5.2.1 Program synthesis with single functions
We first consider executing f ∈ RK using T.I[i] as input,

to produce target T.O[i], ∀i ∈ [m]. Note that the target
T.O[i] are strings, and while the output of function f can
be strings, in general functions return objects for object-
oriented languages such as C# code indexed by TDE. As a
result, even if we have right functions f for T , it is unlikely
that the output of f can exactly match target output. The
challenge herein is to automatically synthesize programs to
convert result objects into target output strings.

Consider the task Tdate in Figure 2 again. Since the
function System.DateTime.Parse() is ranked high for Tdate,
we will execute it using input in Tdate.I[i] as parameters,
which would result in DateTime objects. We use a program-
ming language mechanism called reflection [27] (available
in many programming languages), which allows us to pro-
grammatically “open” each live object and iterate through
its member properties and methods at run time. Specifi-
cally, as Figure 13 shows, we are able to use this reflection
to “dump out” values of all member properties of each re-
turned DateTime object, which includes a few dozen prop-
erties5 such as Year, Month, etc. Furthermore, we can use
reflection to enumerate member methods in the DateTime

objects, such as ToLongDateString() and ToUTC(). Since
these are parameter-less methods, we can again invoke from
each returned DateTime object to produce even more rich
intermediate results as shown in the figure.

5
https://msdn.microsoft.com/en-us/library/system.datetime.aspx
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Figure 13: Produce desired output from input in TDE : a function invocation followed by program synthesis.

Given the intermediate tables with rich semantic informa-
tion derived from the input values, the task now is to “as-
sembly” bits and pieces in them to produce target T.O[i].
We illustrate it with an example below.

Example 4. In Figure 13, given that the target output
is 2011-01-12 (Wed) and 2011-09-15 (Thu), it can be seen
that they can be produced by concatenating relevant fields
from the intermediate tables. Specifically, if we concatenate
the Year field with a “-”, then append with the Month field
followed by a “-”, then with the Day field followed by a “ (”,
then with the first three characters of the Day-of-week field,
and finally append with a closing parenthesis “)”. It can
be verified that this synthesized program produce the desired
target output for both input strings.

Suppose the desired output is instead 2011-Jan-12 (Wed)

and 2011-Sep-15 (Thu). Note that the required months are
now Jan and Sep, which cannot be produced from the Month

column. For this we take the column corresponding to the
output of method ToLongDateString(), and perform the fol-
lowing operations: We split each value using “,”, and take
the second component from the split (the substring after the
first comma), from which we take a substring of length 3
starting at the second character. This would produce the de-
sired Jan and Sep; all other operations in this synthesized
program will remain the same as the previous example.

This example shows the power of synthesis using inter-
mediate results from member properties and methods – by
being able to synthesize multi-step sequences, we produce
powerful and expressive programs to match user output.

We note that similar techniques for generating string trans-
formation programs in this step have been the focus of FlashFill-
like PBE systems [16, 20, 26]. However, the requirement of
TDE is unique, because the intermediate tables shown in
Figure 13 (from which results are synthesized) can often be
very “wide” with hundreds of columns for complex objects.
Furthermore, the synthesis algorithm needs to be invoked
for hundreds of times for each function returned by the L1
ranker. Given that TDE needs to be interactive, the syn-
thesis algorithm is required to be highly efficient. In par-
ticular, we find existing approaches such as [16] insufficient
for TDE. We develop new algorithms based on a recursive
greedy search. A basic version of this synthesis algorithm
was described in [32] (used for a different purpose, which
is to auto-join tables). Compared to prior work, our syn-
thesis is (1) substantially more efficient; and (2) provides
probabilistic guarantees of success under certain assump-
tions ([32]). We defer details to a full version of the paper.

5.2.2 Parameter learning in multi-function synthesis
In the previous example, when executing a top-ranked

function f ∈ RK , we use reflection to not only consider
all member properties, but also member methods that are
parameter-less, since it is straightforward to execute them.
However, there are also many parameterized member meth-
ods that are useful for transformations. For instance, con-
sider the Ttime shown in Figure 14, where the task is to

Figure 14: TDE transformation between timezones.

convert input time in US western timezone, to US eastern
time. Note that this ”+3 hours” operation can lead to a
change in the day, month, and year, as shown in the figure.

This transformation would require not only using relevant
methods but also appropriate parameters (”+3 hours”). TDE
performs this transformation by synthesizing the following
program: it first invokes System.DateTime.Parse() to con-
vert each input string into a DateTime object, whose member
method DateTime.Add(Timespan) is then invoked using a
parameter of type Timespan corresponding to 3 hours. This
leads to a new DateTime object, from which we can synthe-
size the target output as described in Section 5.2.1. The key
challenge here is parameterization, or finding an appropri-
ate Timespan object as parameter – exhaustive enumeration
would not work as the parameter space is infinite.

For parameterization, in TDE we perform offline learn-
ing for relationships between functions in same classes, to
discover concepts such as inverse relationships. Specifically,
we first identify functions f1 and f2 as a candidate pair, if
the result of f1 is of the same type as the parameter of f2.
In the example above, in the class DateTime we have the
function TimeSpan DateTime.Subtract(DateTime) that re-
turns an object of type TimeSpan, and we also have function
DateTime DateTime.Add(Timespan) taking a parameter of
type TimeSpan. We thus treat the two as a candidate pair.
We then instantiate pairs of DateTime objects o1, o2 (with
suitable parameters obtained from indexes in Figure 8), and
invoke o1.Subtract(o2) to produce a TimeSpan object t12.
To test if the inverse relationship holds, we then invoke
o1.Add(t12) to produce o′2, and see if o′2 is identical to o2.
Since this holds true for all pairs of o1, o2 tested, we can
infer that the two are inverse functions.

With the inverse relationship, given Ttime at run time, we
can use Ttime.I[i] as o1 and Ttime.O[i] as o2, and compute
t12 = o2.Subtract(o1), which turns out to be 3 hours con-
sistently for all i ∈ {1, 2, 3}. We can thus produce a correct
program with right parameters as described above.

Another type of parameterized functions we can invoke is
the ones that have parameters with limited cardinality. For
example, the function DateTime.ToString(string format)

accepts a parameter with a limited number of formats (e.g.,
“MM/dd/yyyy”, etc.). Using the index in Figure 8, if we de-
termine a parameter of f to be of small cardinality, we treat
it as an “enum” type and “memorize” all its possible values,
which we then use to exhaustively invoke f . This allows us
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to invoke functions like DateTime.ToString("MM/dd/yyyy")
to create more rich intermediate data from which TDE can
use to synthesize target output.

5.3 Re-rank synthesized programs (L2)
Given a task T , since the program synthesis process lever-

ages many functions in RK , it may produce more than one
program consistent with all given examples. In TDE we
show all such programs to users in a ranked list (Figure 2).

In order to appropriately order synthesized programs for
user inspection, we introduce another level of ranking, re-
ferred to as L2 ranking. Note that L2 ranking happens at
a later stage and is different from L1 ranking (Section 5.1).
In L2 ranking, we use execution information not available
in L1 ranking to re-rank synthesized programs.

Our observation is that the complexity of a synthesized
program is often a good indicator of how well it can gener-
alize beyond the few examples in T (typically only 3). For in-
stance, suppose the target output is day-of-the-week such as
Wed, Thu, etc., for the input in Figure 13. A correctly synthe-
sized program that leverages the function DateTime.Parse()

can produce this target output by simply taking the first
three characters of the day-of-the-week column in Fig-
ure 13. This program would overall (1) invoke an external
function, and (2) synthesize a substring operation from the
result, for a total complexity of 2.

In comparison, suppose there is a hypothetical function
g that generates long random strings. TDE may also syn-
thesize a program to produce Wed and Thu, by taking, say,
the 25-th character of gs output (which happen to be W and
T), appended with the 34-th character of g’s output (say, e
and h), and finally the 10-th character from g (d and u).
This program is clearly a poor “fit” and cannot generalize
well. We can infer this by observing its higher complexity
(5), allowing TDE to rank this program lower.

Note that this re-ranking is consistent with general princi-
ples such as minimum description length or Occam’s Razor.

6. INDEXING WEB SERVICES
So far we focus on leveraging program functions for data

transformations. We will briefly describe two additional re-
sources TDE utilizes: web services and mapping tables.

Web services provide rich functionalities that can be (1)
lookup in deep-web databases; and (2) functional transfor-
mations. Existing work discover deep-web databases via
deep-web crawling [17, 24], and discover transformation ser-
vices via WSDL/SOAP [10], or search engines [9].

Since web services are conceptually the same as program
functions (but execute remotely), they can also be used by
TDE . Given that REST APIs on the Web are increasingly
popular over WSDL, we focus on REST APIs. We classify a
URL in Bing’s large URL repository as a service URL, if it
is parameterized, and the corresponding content is in XML
or JSON (which unlike HTML are intended to be machine-
readable). Table 1 shows a list of such services.

By comparing similar URLs (but with different parame-
ters) from the same host, we can recognize the embedded pa-
rameters in URLs, and thus index them similar to functions
in Table 8. The services are then treated by TDE just like
functions for ranking. For program synthesis, we parse re-
turned XML/JSON documents and dump value fields, which
can then be used to synthesize target output just like pro-
gram objects returned by functions.

We note that web services are critical for certain complex
transformations. For instance, the task in Figure 3 (right)
requires generating state and zip-code information that may
be missing from the input. We find standalone functions
to be insufficient, and only web services (in this case Bing
Maps [1]) have sophisticated domain-specific logic/data to
perform such transformations.

7. INDEXING MAPPING RELATIONSHIPS
Mapping tables like ones shown in Table 2 is another im-

portant resource for transformations, and is consistent with
the PBE paradigm. We use a variant of [28] to synthesize
mappings from tables and index around 16K in TDE .

One key distinction of TDE compared to systems such
as InfoGather [29] and DataXFormer [9], is that TDE pro-
duces holistic programs that tightly integrate the logic of
program-code and mappings. For instance, in the example
of Figure 3 (right), the address-parsing service invoked only
returns state abbreviations (“WA”, “TX”) but not state full
names. Suppose a user enters state full names (“Washington”,
“Texas”, etc.) as the desired output. TDE is able to pro-
duce a synthesized program that first invokes the web ser-
vice to retrieve a JSON document, which is then parsed
to extract state abbreviation of each input, from which the
(state-abbreviation→state) mapping (in Table 2) is used
to retrieve the desired (“Washington”, “Texas”) as output.

The way TDE synthesizes relevant mappings into pro-
grams can be summarized as follows. In each recursive
step of synthesis (Section 5.2.1, with more details in Algo-
rithm 2 of [32]), TDE is given input/output example pairs
(I,O) with a changing O as partial progresses are made
towards the target. In each step, TDE checks if the right-
hand-side of any M contains O as a subset. Since this is
a set-containment check, offline we use Bloom-filters [11]
to index the right-hand-side of each mapping M . At run
time, if TDE finds a hit M in any step, it update the task
as (I,M−1(O)) (note that M−1 may be multi-valued func-
tions), and see if it can generate programs for any of the
new tasks. In the example above, since the output exam-
ples are state full names, and TDE happens to have the
state-abbreviation→state mapping that passes contain-
ment check, we can update the task’s output as left-hand-
side of the mapping (state-abbreviations). This new task
can now be solved with program invoking a web service fol-
lowed by a mapping relationship.

8. PRACTICAL CONSIDERATIONS
The public release of TDE as an Excel add-in requires

addressing many practical issues not typically considered in
research prototypes. We briefly discuss a few of them below.

Open-source software licensing. Open-source code
are used freely in our research prototype to test the poten-
tial of TDE. For the public version of TDE released in Office
Store, however, we had to exclude open-source code with re-
strictive licensing terms. We use logs collected in an internal
release to identify code projects that are known to be useful
for at least one real task. For each such project, we manually
verify its license (often in License.txt or Readme.markdown
for GitHub projects), and only include the ones with per-
missive licenses (e.g., Apache, and BSD). This leads to a
substantial loss of coverage but is nevertheless necessary.

Extensibility. Although TDE can support transforma-
tions in important domains, there are also many tail domains
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Table 1: Example REST API for transformations (retrieved in July 2016).
Sample url Parameters API description

https://www.google.com/finance/info?q=NASDAQ:MSFT MSFT quote and other financial info of a stock
http://openapi.ro/api/geoip/location/103.2.2.3.json 103.2.2.3 reverse ip lookup to find geo info of an ip

http://actorws.epa.gov/actorws/dsstox/v02/smiles.json?casrn=80-05-7 80-05-7 find chemical compound by cas
http://openapi.ro/api/exchange/usd.json?date=2011-02-05 2011-02-05 exchange rate by date

Table 2: Example mapping relationships.
Mapping Example instances

(state-abbreviation, state) (WA, Washington), (TX, Texas)
(country, country-code) (Canada, CAN), (Japan, JPN)
(stock-ticker, company) (MSFT, Microsoft), (ORCL, Oracle)

(model, make) (Accord, Honda), (Mustang, Ford)

where TDE has no support out of the box due to the num-
ber of functions it currently indexes. TDE is thus designed
to be extensible – users can point TDE to domain-specific
code or web services, the transformation logic therein will
be made immediately search-able.

Security and Privacy. To safeguard user data, we use
.Net application-domain6 (similar to a light-weight process)
to isolate function execution. We clamp down application-
domains by not allowing them to perform any file writes,
or send messages over the internet (except for trusted web
services). Additional security checks (both automatic and
manual) were performed before the product release.

Poorly-behaving functions. Certain functions may be-
have badly on unexpected input, for example causing stack-
overflow exceptions that can bring down worker processes.
We prune out such functions based on execution statistics.

9. EXPERIMENTS
9.1 Experimental setup

Benchmark data sets. We compile a total of 239 data
transformation tasks, which we release for future research7.
These tasks are collected from the following sources.
(1) We identify popular queries of the pattern “convert A to
B” in Bing’s query logs (by frequency). We discard queries
not related to data transformation (e.g., “convert jpg to
png”), and manually build input/output examples for each
remaining query. Noticing that a large fraction of the queries
are for unit conversion (e.g., “convert farenheits to celsius”),
we pick 50 most-frequent queries for unit conversion, and
also 50 most-frequent queries that are not unit conversion
(e.g., “convert EST to PST”), for a total of 100 tasks.
(2) We sample 49 popular questions from StackOverflow.com
that are determined to be relevant to data transformations
(e.g., “how to get domain name from URL”).
(3) We select 46 transformation tasks used as demos in re-
lated systems (FlashFill, GoogleRefine, and Trifacta).
(4) We identify 44 common transformations tasks from a list
of head domains (e.g., ip, address, phone, etc.), which we
determine to be important that TDE has to perform well.

We note that the benchmark so generated covers diverse
types of transformation tasks. A manually analysis classifies
around 10 tasks as date-time-related, which is the single
largest group by topic (4% of all cases). This is followed by
person-names (7 tasks), and then addresses (6 tasks).

Most tasks have either 5 or 6 pairs of input/output ex-
amples. For all systems tested, we use 3 input/output pairs
as “training” examples, and hold out the remaining ones for
“testing”, to validate if a synthesized program is correct. A
program is predicted correct only if all its output match the

6
https://en.wikipedia.org/wiki/Application_domain

7
https://github.com/Yeye-He/Transform-Data-by-Example

ground truth (no partial score). We report average preci-
sion of each system, defined as the number of tasks solved
divided by the total number of tasks.

Methods compared. We test with following systems.
FlashFill [16]. FlashFill is a pioneering PBE system for

data transformation. We run FlashFill in Excel 2016.
Foofah [20]. Foofah is a recent PBE system that handles

more general data transformation including table formatting
not considered by TDE . We obtain their source code on
GitHub and set timeout to 60 seconds as suggested in [20].

TDE. This is the research version of TDE that indexes
around 50K functions from GitHub and StackOverflow. Note
that the public version of TDE in Office Store indexes sub-
stantially less number of functions due to license issues.

TDE-NF. This is TDE with no functions and thus can-
not handle complex semantic transformations. Nevertheless
TDE -NF resembles PBE systems like FlashFill and solves
transformations with string primitives predefined in DSL.

DataXFormer-UB [9]. Authors of [9] kindly responded,
informing us that the system is no longer available for com-
parisons.9 We therefore manually simulate how DataX-
Former works for each test case. (1) For web services, we
manually query Google with up to three keyword queries,
e.g., “convert Fahrenheit to Celsius” (note that PBE sys-
tems like TDE use only examples with no such keyword
information). We then click through top-40 results to iden-
tify web forms, where we manually fill in input/output ex-
amples and inspect results (in practice not all such forms
can be automatically handled, and DataXFormer reports to
successfully parse 12 out of 17 web forms tested (71%)).
(2) For web tables, we simply test input/output examples
against all (over 100M) web tables extracted from Bing’s
index and look for table-based matches. All of these fa-
vor DataXFormer and likely over-estimate its true coverage.
We hence term this as DataXFormer-UB to represent the
upper-bound of the search-engine based approach.

System-A. There are a number of commercial systems that
can suggest transformations based only on input (see re-
lated work in Section 2). However, their EULA prohibits
the publication of any benchmark comparisons. Following
the tradition of benchmarking commercial database systems
without revealing vendor names, we report anonymized re-
sults obtained from an unnamed product henceforth referred
to as System-A, which is competitive in this group of prod-
ucts. We manually go through all suggestions produced by
System-A and mark it as correct as long as one of its sug-
gestion is correct irrespective of ranking.

OpenRefine-Menu [3]. We also compare with a version
of OpenRefine (downloaded in March 2018) using its menu-
based transformations.

9.2 Benchmark Evaluation
Quality. Table 3 shows precision results of all methods

compared, broken down by categories. Overall, TDE pro-
duces desired programs for 72% of the cases, substantially
better than other systems. This is not surprising, since
TDE leverages the power of large varieties of domain-specific
functions that are absent in other systems. TDE performs

9DataXFormer was available at http://dataxformer.org [9].
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Table 3: Precision of benchmark cases, reported as precentage of cases solved (number of cases in parenthesis).
System Total cases (239) FF-GR-Trifacta (46) Head cases (44) StackOverflow (49) BingQL-Unit (50) BingQL-Other (50)

TDE 72% (173) 91% (42) 82% (36) 63% (31) 96% (48) 32% (16)
TDE -NF 53% (128) 87% (40) 41% (18) 35% (17) 96% (48) 10% (5)
FlashFill 23% (56) 57% (26) 34% (15) 31% (15) 0% (0) 0% (0)
Foofah 3% (7) 9% (4) 2% (1) 4% (2) 0% (0) 0% (0)

DataXFormer-UB 38% (90) 7% (3) 36% (16) 35% (17) 62% (31) 46% (23)
System-A 13% (30) 52% (24) 2% (1) 10% (5) 0% (0) 0% (0)

OpenRefine-Menu8 4% (9) 13% (6) 2% (1) 4% (2) 0% (0) 0% (0)

reasonably well in all sub-categories except BingQL-Other,
where the coverage is 36%. This category contains diverse
transformations (e.g., conversion of color encoding, geo co-
ordinates, etc.) that are difficult. We find the C# code
crawled from GitHub lack many such functionalities, which
however are often available in other languages (e.g., Python).
Extending TDE with other languages would clearly help.

TDE -NF uses no external functions and can be considered
as a traditional PBE system. Its overall result is reasonable,
but it clearly falls short on cases requiring more complex
transformations that are difficult to synthesize from scratch.

Both FlashFill and Foofah lag behind TDE/TDE -NF. We
would like to note that while both FlashFill and TDE work
in the same space of row-to-row transformation, which is
exactly what our benchmark is designed to evaluate, the
benchmark is unfavorable to Foofah, as it is more focused
on orthogonal tasks such as table reformatting (e.g., pivot
and un-pivot)10. Unifying Foofah-like capabilities with row-
to-row transformation is interesting future work.

DataXFormer-UB solves 90 out of the 239 test cases (38%),
showing the power of search engines and web services, which
however is limited by the lack of program-synthesis. When
nontrivial synthesis is required (e.g., output date-time in a
specific format, or rounding numbers to a specific precision),
vanilla web services can often fall short. In addition, We find
that certain classes of transformations, such as names and
date-time, are not typically handled by online web services.

System-A can handle 30 (13%) cases. We find System-
A’s approach the most effective when a test case requires
extracting common sub-components from input. Such op-
erations can be more easily predicted and are often solved
correctly. However, there are many cases where selection
alone is insufficient to fully specify the desired transforma-
tion (e.g., add 3 hours for time-zone conversion, switch the
order of last/first name, etc.), which is an inherent short-
coming of predicting transformations using input only.

OpenRefine solves only 9 test cases (e.g., upper-casing) us-
ing built-in transformations from its menus. This is not en-
tirely surprising, as the types of transformations supported
by menu options are typically limited.

L1-Function-ranking. Recall that TDE uses L1-rankers
(Section 5.1) to select a small set of promising functions from
all functions its indexes, so that it can execute and synthe-
size them at an interactive speed. L1-ranking is a critical
component for performance(the better we rank, the faster
TDE can synthesize relevant programs).

Figure 15 evaluates the effectiveness of our two L1-rankers,
where y-axis shows the percentage of cases that can be
solved using only top-K functions from L1-rankers, and x-
axis shows the number K, which affects response time. As
we can see, the two L1-rankers are complementary, and their
union is substantially better. Overall around 70% cases can
be solved with top-200 functions, and that number goes up

10Despite the difference we evaluate Foofah as requested.

Figure 15: Effectiveness of ranking.

to 90% for top-1000 functions (which corresponds to a re-
sponse time of around 5 seconds on our machine).

Efficiency. The average end-to-end latency to produce
the first correct program (including function ranking, ex-
ecution and synthesis) is 3.4 seconds, which is reasonably
interactive. We note that TDE streams back results as they
are found – once a worker finds a program it will show up
on the right-pane for users to inspect.

9.3 Analysis of real usage logs
Since TDE is used by real Excel users, it provides an op-

portunity to understand how TDE performs on real tasks
by analyzing user query logs. We use logs collected over sev-
eral days to obtain 1244 unique transformation tasks (users
have to “opt in” for TDE to log their queries – the default
is opt-out). We manually inspect each query.

For 910 out of the 1244 tasks, TDE returns at least one
synthesized program consistent with all input/output. We
manually inspect users’ input/output examples to under-
stand the intent, and then verify the correctness of the re-
sult. Out of these, 496 tasks (39.8%) are verified to be cor-
rect for the rank-1 program produced (of which 153 invoke at
least one function, and 343 use pure string transformations).
Verifying lower-ranked programs (e.g. top-10) is more labor-
intensive but should lead to a higher success rate.

For the tasks that TDE fails (defined as either having
no programs produced, or the rank-1 program is judged to
be incorrect), we analyze the underlying cause. For 206
tasks (16.5%), users provide only 1 or 2 output examples to
demonstrate the task (we recommend 3), which makes the
tasks difficult and even ambiguous. For 170 tasks (13.6%),
we find the task itself to be ill-formed, due to bad input
(e.g., users not understanding this feature and provide only
one column of data), input/output in languages other than
English (currently not supported), and tasks with unclear
intent. For about 40 tasks (3%), a mapping relationship is
needed not indexed. The remaining tasks (around 27%) fail
mostly due to missing functionalities in TDE index.

While our initial experience with TDE reveals a number
of areas for improvement, it also shows the promise of TDE
in solving complex transformations using existing domain-
specific logic. Just like Google and Bing were not perfect
in finding relevant documents in their early days, we hope
TDE will continue to improve as a “search engine” for data
transformation, by growing its index and improving its al-
gorithms using logged user interactions.
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