
Maximum Co-located Community Search in Large Scale
Social Networks

Lu Chen†, Chengfei Liu†, Rui Zhou†, Jianxin Li¶, Xiaochun Yang§, Bin Wang§
†Swinburne University of Technology, ¶University of Western Australia, §Northeastern University

†{luchen, cliu, rzhou}@swin.edu.au ¶jianxin.li@uwa.edu.au
§{yangxc, binwang}@mail.neu.edu.cn

ABSTRACT
The problem of k-truss search has been well defined and
investigated to find the highly correlated user groups in so-
cial networks. But there is no previous study to consider
the constraint of users’ spatial information in k-truss search,
denoted as co-located community search in this paper. The
co-located community can serve many real applications. To
search the maximum co-located communities efficiently, we
first develop an efficient exact algorithm with several prun-
ing techniques. After that, we further develop an approxi-
mation algorithm with adjustable accuracy guarantees and
explore more effective pruning rules, which can reduce the
computational cost significantly. To accelerate the real-time
efficiency, we also devise a novel quadtree based index to
support the efficient retrieval of users in a region and op-
timise the search regions with regards to the given query
region. Finally, we verify the performance of our proposed
algorithms and index using five real datasets.

PVLDB Reference Format:
Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang,
and BinWang. Maximum Co-located Community Search in Large
Scale Social Networks. PVLDB, 11 (10): 1233-1246, 2018.
DOI: https://doi.org/10.14778/3231751.3231755

1. INTRODUCTION
With the increasing popularity of online social networks,

one of the most important tasks in social network data an-
alytics is to find communities of users with close structural
connections each other. The extensive studies on finding
communities can be categorized into global community de-
tection GCD (e.g., [19, 20, 21, 34, 16, 6]), local community
detection LCD (e.g., [14, 43]), global community search GCS
(e.g., [31, 30, 35]), and local community search LCS (e.g.,
[18, 39, 14, 13, 24, 17, 44, 23]). Community detection meth-
ods are often used to discover communities in social networks
based on the predefined implicit criteria, e.g., modularity
[19]. The main difference between GCD and LCD is that
each user is equivalently important to be measured in GCD,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 10
Copyright 2018 VLDB Endowment 2150-8097/18/06.
DOI: https://doi.org/10.14778/3231751.3231755

while the importance of a user depends on his relevance to
the given query vertex in LCD. Different from community
detection, the community search methods concentrate on
finding communities from social networks based on the users’
specified explicit criteria, e.g., parameter k in k-core based
model [38], k-truss based model [12], and k-edge-connected
component based model [4]. Similar to community detec-
tion methods, the major difference between GCS and LCS
is that LCS requires the communities to contain the given
query vertex, but GCS doesn’t have such additional require-
ment. However, most works above didn’t consider the effect
of users’ spatial information in their community detection
or search methods.

Searching communities with social and spatial cohesive-
ness is of great importance in many applications, e.g., event
scheduling, product recommendation, targeted advertisem-
ent, local activism and advocacy, as well as more effective
content spreading like shop promotions, local news, and job
openings. Although spatial feature is highly desirable in ap-
plications, in practice, the existing study on spatial social
community is still limited. In [17], Fang et al. require all
the vertices of a returned k-core community in a minimum
covering circle with the smallest radius and the resultant
community must contain the given query vertex. So it is a
type of LCS with the spatial constraint. In [16, 6], Expert
et al. and Chen et al. take into account spatial information
in the process of community detection by weighting the link
based on the spatial distance of two linked users. It is a
type of GCD with the spatial constraint. However, the two
types of work cannot guarantee the spatial closeness of the
community members, which will be further discussed in our
experiments. In [45], Zhang et al. require all the vertices of
a returned k-core based community meeting similarity con-
straints, where the similarity could be distance similarity.
However, finding exact result for this community model is
expensive in large scale social network since its NP-hardness.

Therefore, in this paper, we investigate the co-located com-
munity search problem that reveals the maximum commu-
nities with high social and spatial cohesiveness, denoted as
(k,d)-MCCs search. The social cohesiveness is defined using
the minimum truss value k [12] and the spatial cohesive-
ness is parameterised by a user-specified distance value d.
As such, our proposed (k,d)-MCCs search problem can allow
users to easily affirm the quality of the resultant communi-
ties, which also fills in the research gap on the type of GCS
with spatial constraint.

Given a social network G and two parameters k and d, a
straightforward approach is to enumerate all possible sub-

1233

graphs in G meeting minimum truss value k where the num-
ber of the subgraphs could be as large as O(2n). It then
filters the candidates having a node pair with their distance
above the spatial closeness threshold d. So the time com-
plexity of this approach is at least O(2n) where n is the
number of vertices in G. Obviously, it is infeasible to use
this approach to support online (k,d)-MCCs search, partic-
ularly for the large scale social networks. Thus, this paper
focuses on devising efficient algorithms to achieve real-time
response with theoretical guarantee.

To address the challenge of efficiency, we first develop
an exact (k,d)-MCCs search algorithm by proposing novel
pruning techniques. During the search, we explore tech-
niques to prune the search space significantly by consider-
ing upper bound based earlier termination, heuristic search
order, and conditions for reusing pruning computation. Be-
fore searching, we also propose pre-pruning techniques for
reducing magnitudes of input data. To design polynomial
algorithms, we develop a novel approximation schema with
spatial accuracy guarantees. Notice, our proposed approx-
imation scheme can provide adjustable spatial error ratios
based on user’s requirement on the spatial accuracy. To
further improve the performance of the approximation algo-
rithm, we propose more pruning techniques and also design
the novel index TQ-tree. The main contributions of our work
are summarised as follows.
• We propose a novel co-located community model and for-

mally define the (k,d)-MCCs search problem. (Section 2)
• We develop an efficient exact algorithm for finding (k,d)-

MCCs by proposing effective techniques for pruning before
and during the search. (Section 3)
• We also develop a spatial approximation algorithm that

offers a variable spatial error ratio ranging from 2
√

2 + ε
to
√

2+ ε′. The efficiency of the approximation algorithm
is further improved by proposing more effective pruning
techniques and a novel TQ-tree index. (Section 4)
• We conduct extensive experimental studies on five real

datasets to demonstrate the efficiency and effectiveness
of the proposed algorithms. (Section 5)

2. PROBLEM DEFINITION
We consider a social network graph G = (V,E), which

is an undirected graph with vertex set V (G) and edge set
E(G), where vertices represent social users and edges denote
their friendships. For each vertex v ∈ V (G), it has a spa-
tial attribute (v.x, v.y), where v.x and v.y denote its spatial
positions along x− and y−axis in a two-dimensional space.
Co-located community. A co-located community is a
subgraph J ⊆ G satisfying: (1) connectivity: J is connected,
(2) structural cohesiveness: all vertices in J are connected
intensively, and (3) spatial cohesiveness: all vertices in J are
spatially close with each other.
Structural cohesiveness. We consider truss as the met-
ric to measure the structural cohesiveness of a co-located
community. Truss measures the number of triangles that
each edge is involved in a graph. Given J , let us denote a
triangle involving vertices u, v, w ∈ V (J) as 4uvw. The sup-
port of an edge e(u, v) ∈ E(J), denoted by sup(e, J), is the
number of triangles containing e, i.e., sup(e, J) = |{4uvw :
w ∈ N(v, J)∩N(u, J)}|, where N(v, J) and N(u, J) are the
neighbours of v, u in J correspondingly. Next, we define the
truss of a co-located community J as follows:

Definition 1. Subgraph truss. The truss of J ⊆ G,
where |V (J)| ≥ 2, is the minimum support of an edge in J
plus 2, i.e., τ(J) = 2 + mine∈E(J){sup(e, J)}.

J is a connected k-truss if it is both connected and τ(J) ≥
k. Intuitively, a k-truss is subgraph in which each connection
(edge) (u, v) has at least k−2 common neighbours. A k-truss
with a large value k indicates strong internal connections
over members. In a k-truss, each node should have degree
at least k − 1, implying a k-truss must be a (k − 1)-core. A
connected k-truss is also (k − 1)-edge-connected.
Spatial cohesiveness. Let ed(u, v) denote the spatial dis-
tance between vertices u and v. We first introduce the con-
cept of spatial co-location to measure the spatial cohesive-
ness. Then we define the co-located community formally.

Definition 2. Spatial co-location. Given a distance
threshold d, a subgraph J ⊆ G is a spatial co-location graph
if for every pair u, v ∈ V (J), ed(u, v) ≤ d holds.

Definition 3. Co-located community. Given a graph
G, a positive integer k, and a spatial distance d, J is a co-
located community, if J satisfies the following constraints:
• Structural cohesiveness. J is connected, τ(J) ≥ k.
• Spatial cohesiveness. J is a spatial co-location graph

w.r.t. a spatial distance d.

In general, when searching a community, users may want
to maximise the members contained in the community once
they fix the spatial and social cohesiveness parameters. The-
refore, in this paper, given a graph G, we study finding the
maximum co-located communities, denoted as (k,d)-MCCs
where k stands for k-truss, d for spatial distance, M for max-
imum and CC for co-located community. Now we formally
define the problem of (k,d)-MCCs search.

Problem 1. (k,d)-MCCs search. Given a graph G, posi-
tive integer k and number d, return any of those maximum
co-located communities J ⊆ G, satisfying constraints:
• J is a co-located community.
• There is no another co-located community J ′ such that
|V (J ′)| > |V (J)|.

For example, in Figure 1(b), vertices in dark blue coloured
areas are co-located. Similarly, in Figure 1(a), three possible
co-located communities are in blue coloured areas with k =
4. The (4,d)-MCC here is the subgraph containing vertices
{d, e, f, g, h, i} with cardinality 6, as it is the maximum.

We may find (k,d)-MCCs from G by inspecting the whole
graph. However, to improve the search performance, we only
want to search the parts of G that may contain (k,d)-MCCs.
To achieve that, we introduce the theorem below:

Theorem 1. (k,d)-MCCs of a graph G can be found from
one of the maximal connected k-trusses of G if they exist.

The proof is trivial since vertices that are not part of a
maximal connected k-truss clearly cannot meet the struc-
tural cohesiveness requirement in Definition 3.

By Theorem 1, the intuitive steps to find (k,d)-MCCs in
G include: (1) compute maximal connected k-trusses (note:
these k-trusses are non-overlapped), (2) search the local
(k,d)-MCCs in each of these k-trusses, and (3) find the global
(k,d)-MCCs from the locals by comparing the cardinalities.

Analysis. A k-truss index can be built within O(|E(G)|
3
2)

for a graph G. The k-truss index for G is essentially a list of

1234

a

b

c

j

id

he

g

f

n k

l

t

u

o

s

p

r

q

m

1

(a) Graph data

t
u

s q
r

p

m
l

k
n

b a

c dj
ie h

f g

o

(b) Spatial DIST

a

b

c

d
e

f

gh

i

j

k

l

m
n o

p

q

r

s

t

u

(c) Spatial network

Figure 1: Spatial attributed graph

Table 1: Notations

Notation Definition
T initially a maximal connected k-truss graph
T ′ spatial neighbourhood network for T
T ′
0 a connected component of T ′, T ′

0 ⊆ T
′

u, v, w individual vertices
ed(u, v) spatial distance between u, v

gd(u, v, T) distance between u, v in T
deg(u,G) degree of u in G
N(u,G) neighbours of u in G

τ(G) the minimum truss of G
A,A a maximal clique, a set of maximal cliques

R,P,X vertices sets
T (R), T ′(R) subgraphs of T and T ′ induced by vertices in R

c a square spatial space cell with width w
m, M a landmark cell and a set of landmark cells

r a square spatial region consisting of cells
ζ an integer, denoting a number of cells
Vr a set of vertices located in a region r
p an error-bounded search bound region

K(r) the k-truss in a region r

edges associated with their edge trusses defined by τ(e,G) =
maxH⊆G∧e∈E(H) {τ(H)} [24]. With the k-truss index, given
a k, we can retrieve all maximal connected k-trusses in G
in polynomial time. However, it is still challenging to find
local (k,d)-MCCs within a maximal connected k-truss due
to: (1) the total number of spatial co-location subgraphs
in the k-truss could be exponential [22] and (2) there is no
guaranteed monotonic relationship between the size of a co-
location subgraph and the size of its co-located communities.

3. FINDING EXACT RESULTS
We first introduce a definition as follows:

Definition 4. Spatial neighbourhood network. Given
a T and a distance d, a spatial neighbourhood network for T
is a graph T ′, which is an undirected graph with V (T ′)=V (T)
and E(T ′)={(u, v)|ed(u, v) ≤ d ∧ u, v ∈ V (T)}.

Finding a (k,d)-MCC is equivalent to finding an unex-
tendable vertex set R such that the R-induced subgraph
T ′(R) of T ′ is a clique while the R-induced subgraph T (R)
of T contains a connected k-truss GR = (R,ER) where
ER ⊆ E(T (R)).

Next, we show the baseline algorithm to find (k,d)-MCCs.

3.1 Baseline Algorithm
Given T and T ′, the baseline algorithm is to find all the

maximal cliques contained by T ′, and check the sorted max-
imal cliques one by one. For each maximal clique A (the
set of vertices in a maximal clique), we need to compute

Algorithm 1: baseline(T ,T ′, b = 0)

1 R ←mccSearch(T, T ′, b);
2 Return R;

3 Procedure mccSearch(T, T ′, b)
4 A ← bkp(∅, V (T ′), ∅);
5 sort A in descending order by clique cardinality;
6 for each A ∈ A do
7 if |A| > b then
8 R′ ← maximum k-trusses in T (A) ;

9 b← kdmccCollect(R,R′, b);

10 Procedure kdmccCollect(R,R′, b)
11 if |V (R′[0])| == b then
12 collect R′ into R;

13 if |V (R′[0])| > b then
14 b← |V (R′[0])|;
15 replace R by R′;

local (k,d)-MCCs in T (A). After all maximal cliques have
been checked, we compare the cardinalities of the local (k,d)-
MCCs and get the global (k,d)-MCCs.
Baseline algorithm. The baseline algorithm is presented
in Algorithm 1. It ensures the correctness by giving every
maximal clique A ∈ A a chance. To improve the search ef-
ficiency, Algorithm 1 uses a heuristic rule and a bound to
prune small maximal spatial cliques. The heuristic rule as-
sumes the larger the size of a spatial clique is, the larger the
size of the contained (k,d)-MCCs may be. The heuristic rule
is implemented by sorting the generated maximal cliques
(line 5). The bound b is initialised as 0 and is continuously
updated as the maximum size of the (k,d)-MCCs found so
far. A maximal clique is pruned if its size is less than b.
Collect candidate results. In Algorithm 1, Procedure
kdmccCollect is used to collect candidate results. It checks
the maximality of the currently found (k,d)-MCCs in R′ and
determines if they should be added into previously found
results in R, or replace R, or be discarded (lines 12 to 16 in
Algorithm 1). During the process, the upper bound will be
updated if necessary.
Avoid duplication. Since (k,d)-MCCs are contained by
spatial-clique-induced subgraphs of T , it is possible that
multiple spatial cliques contain the same (k,d)-MCC. To avo-
id duplication, we assign a unique key to each (k,d)-MCC
based on the vertices it contains. Before a new (k,d)-MCC
is collected into the result R, duplication will be checked by
verifying if its key has already existed.
Example. We show an example using Algorithm 1 to find
(4,d)-MCCs. The input social graph is the 4-truss in Fig-
ure 1(a) and its spatial network is in Figure 1(c). Firstly,

1235

Table 2: Maximal cliques contained in Figure 1(c)

Cad. Cliques Cad. Cliques
8 {a, b, c, d, e, h, i, j} 6 {d, e, f, g, h, i}
4 {r, s, p, q}, {m,n, k, l} 2 {p, o}, {o, l},{t, u}

Table 3: Enumeration trace

Iter. clique bound R
0 NULL b = 0 ∅
1 {a, b, c, d, e, h, i, j} b = 4 {{a, c, b, j}} {{d, e, h, i}}
2 {d, e, f, g, h, i} b = 6 {{d, e, h, g, f, i}}
3 {r, s, p, q} b = 6 {{d, e, h, g, f, i}}

maximal cliques can be obtained and sorted by size (see
Table 2). The upper bound history and the correspond-
ing (k,d)-MCCs after each iteration are displayed in Table 3.
The iteration stops when the upper bound b = 6 is larger
than the sizes of the remaining cliques.
Time complexity. The dominating part of Algorithm 1

is to list all maximal cliques that would be O(3
|V (T)|

3), us-
ing algorithm bkp in [40]. Another part is to find k-trusses
with maximum cardinality in T (A) where A is the vertex set
contained by a maximal clique of T ′. To compute the maxi-
mum k-trusses in T (A), we use the method in [41] bounded

by O(|E(T)|
3
2). Therefore, the complexity of Algorithm 1

is O(3
|V (T)|

3 +
∑
A∈A |E(T (A))|

3
2), where A is the set of

maximal spatial cliques contained by T ′.

3.2 Efficient (k,d)-MCC Search
The baseline method finds (k,d)-MCCs in two steps. First-

ly, it generates all vertex sets meeting the requirement of
spatial cohesiveness, i.e. spatial cliques. Secondly, it veri-
fies social cohesiveness for each generated spatial clique and
finds (k,d)-MCCs from each clique and select the maximums.

However, a valid observation is that: if we check social
cohesiveness right after a clique is generated, i.e., find the
candidate (k,d)-MCC(s) from the found maximal clique be-
fore enumerating all the rest cliques, we can use the size of
the largest candidate (k,d)-MCCs as a bound to stop gen-
erating unpromising cliques, i.e., cliques which are not pos-
sible to contain larger (k,d)-MCCs. Moreover, as the size
of the candidate (k,d)-MCC(s) becomes larger, the pruning
also becomes more effective.

As a result, in this section, we develop an efficient (k,d)-
MCCs search algorithm. It is different from the baseline in
two folds. Firstly, after a spatial clique is generated, we
search for the (k,d)-MCCs in the clique-induced social graph
immediately, and the bound will be updated as the largest
size of (k,d)-MCCs found so far. Secondly, before gener-
ating a clique, we check whether the current clique search
branch is able to generate candidate (k,d)-MCCs with sizes
greater than the current bound, if not, we terminate the
clique search branch.

The (k,d)-MCC search algorithm is shown in Algorithm
2. It is based on the maximal clique enumeration algorithm
[40] which will be briefly reviewed in Section 3.2.1 with four
non-trivial modifications: (1) finding candidate maximum
(k,d)-MCCs immediately after generating a maximal clique
(line 7); (2) terminating a search branch if no larger (k,d)-
MCCs exist based on four pruning conditions (line 5), Sec-
tion 3.2.2; (3) a heuristic rule to find larger (k,d)-MCCs at
early stages by carefully selecting promising vertices to ex-
pand the candidates (line 10), Section 3.2.3; (4) reducing the

Algorithm 2: effiMCCSearch(T, T ′)

1 b← 0, R ← ∅;
2 mccbkp(∅, V (T ′), ∅);
3 return R;
4 Procedure mccbkp(R,P,X)
5 terminate this branch based on termination conditions;
6 if P ∪X == ∅ then
7 R′ ← find maximum connected k-truss in T (R);

8 b←kdmccCollect(R,R′, b);

9 u← select a pivot from P ;

10 for each v ∈ P \N(u, T ′) do
11 mccbkp(R ∪ {v}, P ∩N(v, T ′), X ∩N(v, T ′));
12 P ← P \ {v};
13 X ← X ∪ {v};

cost of computing pruning conditions by possibly reusing
previous results (related to line 5), Section 3.2.4.

3.2.1 Revisit of Maximal Clique Enumeration
Maximal clique enumeration. bkp [40] works on three
vertex sets R, P and X and finds all the maximal cliques
in T ′. In each recursion state, R records the clique found
so far, P contains the vertices to be added into R and X
contains the vertices that were previously added into R and
now have been explicitly excluded. P and X are disjoint
and they together contain all the vertices that are adjacent
to all the vertices in R. Initially, R andX are empty and P is
V (T ′). From P , bkp picks a v ∈ P , adds v to R and removes
v’s non-neighbours from P and X, i.e., P ← P ∩ N(v, T ′)
and X ← X ∩ N(v, T ′). Then bkp recursively calls itself
and performs the same operation on the newly generated R,
P and X until the set P becomes empty. It then reports
a maximal clique if the current X is empty. The reason is
that if X 6= ∅, it implicitly means R is not maximal because
vertices in X can be added into R to form a larger clique.
After finishing the recursive search branch of adding v into
R, bkp restores R, removes v from P , adds v into X, and
then expands R with the next vertex in P .
Pruning search branches with pivots. Given a search
state R, P and X, let u ∈ P 1, the intuition is that, cliques
generated by expanding R with a vertex in P ∩ N(u, T ′)
can always be further expanded by adding u subsequently.
Therefore, it is safe to expand R with P \N(u, T ′) only. To
pursue the maximum pruning power, a vertex u maximising
|P ∩N(u, T ′)| shall be chosen, called a pivot.

Clearly, once a maximal clique is generated, we can search
for (k,d)-MCCs immediately, line 7 Algorithm 2. The largest
size of the candidate (k,d)-MCCs found so far will be used as
a bound. In the following, we focus on how prunings, order
heuristics, computation reuse are implemented, respectively.

3.2.2 Terminating Unpromising Branches Earlier
The idea is that we estimate the upper bound of the (k,d)-

MCCs in the current search branch. If the upper bound is
smaller than the found bound b, we terminate the search
branch. There are four upper bounds. (1) If |R ∪ P | < b,
we can terminate the branch. This means, if the largest
possible clique is already smaller than b, the possible (k,d)-
MCCs contained are thus smaller than b. (2) Let K(R ∪ P)
be the maximum connected k-truss in the induced graph
T (R ∪ P), then |V (K(R ∪ P))| is the upper bound. This

1Note that u can be chosen from P ∪X

1236

is without considering spatial constraints in T ′. (3) The
largest possible truss number within the induced subgraph
T ′(R ∪ P) is the upper bound of the maximum clique in
T ′. This is without considering social constraints in T . (4)
Considering both (2) and (3), we can have a more tight
bound. defined based on (k, k′)-truss below:

Definition 5. (k, k′)-truss. Given T , T ′ and a vertex set
S such that S ⊆ V (T) ∧ S ⊆ V (T ′), if T (S) is a connected
k-truss in T and T ′(S) is a connected k′-truss in T ′, we say
(T (S), T ′(S)) is a (k, k′)-truss. For ease of discussion, we
also call S a (k, k′)-truss.

Let k′max be the largest possible truss number such that
a (k, k′max)-truss is contained in T (R ∪ P) and T ′(R ∪ P),
k′max is a tight upper bound of the size of (k,d)-MCCs in the
current recursion branch.

The above bounds are applied one after another follow-
ing the discussed order. This is because their computation
cost increases accordingly and we want to terminate an un-
promising branch as early as possible. If a pruning with a
loose bound is enough, we can avoid computing a tighter
bound expensively.

3.2.3 Search Order
Given that having a larger (k,d)-MCC size will help the

algorithm terminate earlier, we design a heuristic rule aim-
ing to obtain large (k,d)-MCCs first. The rule is as follows:
given a search state with R and P , when we need to se-
lect which vertex in P \ N(u, T ′) should be added into R
first (line 10, Algorithm 2), we choose from the vertices in
the (k, k′max)-truss contained in T (R∪P) and T ′(R∪P) in
prior because adding such vertices is likely to generate larger
(k,d)-MCCs. Among the vertices in the (k, k′max)-truss, we
consider adding the vertex v with the largest deg(v, T ′),
where ties are broken arbitrarily.

3.2.4 Computation Reuse for Pruning
Finding the upper bounds in cases (2)(3)(4) in Section

3.2.2 may not be cheap, even though truss decomposition is
in polynomial time [24]. However, a nice observation is that
a search state (R,P ,X) and its child state (Rc,Pc,Xc) are
likely to have similar truss results. Suppose Rc = R ∪ {v},
Pc = P ∩N(v, T ′), it is easy to see Rc ∪ Pc ⊆ R ∪ P . As a
result, the maximum k-trusses in T (Rc ∪ Pc) are subsets of
the maximum k-trusses in T (R∪P), hence the computation
can be done incrementally using truss maintenance tech-
niques [24] by passing the existing T (R ∪ P) and T ′(R ∪ P)
and truss indices to its child recursions. Similarly, (k, k′max)-
truss can be computed incrementally as well.

On the other hand, there are some special cases where we
can cheaply determine that the child state cannot be pruned:
(1) if |R∪P | = |Rc ∪Pc|, the child state’s upper bounds are
the same as the parent’s; (2) let K be the maximum k-truss
in T (R ∪ P), if V (K) ⊆ Rc ∪ Pc, the child state cannot be
pruned; (3) let S be the (k, k′max)-truss in T (R ∪ P) and
T ′(R∪P), if S ⊆ Rc ∪Pc, the child state cannot be pruned.
Proofs are omitted as correctnesses are obvious.

3.2.5 Example and Discussion
Example. We show an example using Algorithm 2 to search
for (k,d)-MCCs. Given the T and T ′ in Figures 1 (a) and
(c). Initially, R = ∅ and P = {1, a, . . . , u} Algorithm 2

tries to terminate the recursions by computing all four up-
per bound sizes, firstly producing a (4,6)-truss with ver-
tices {d, e, f, g, h, i}. Then pivot h is selected, making Al-
gorithm 2 only need to expand R from P \ N(h, T ′) =
{h, r, s, q, p, o,m, n, k, l, t, u} rather than P . Next, based
on the order heuristic rule, h is added into R, reducing P to
{a, b, c, d, e, f, g, i, j}. Such recursions continue until the first
(k,d)-MCC, {d, e, h, g, f, i} is discovered while bound compu-
tation can be reused from when d is added into R = {h}.
After the first result is produced, b is updated to 6. Using
this bound, when Algorithm 2 backtracks to the recursion
state, in which r is added into R with R = {r}, P = {s, p, q}
and X = ∅. The first upper bound pruning condition is ap-
plied to terminate this branch because |R ∪ P | < 6. Other
search branches that will find cliques in Table 2 will also be
pruned with the proposed termination conditions.
Discussion. In [45], Zhang et al. proposed (k, r)-core which
uses k-core instead of k-truss to represent social cohesive-
ness. For the purpose of comparison, we adapt the AdvMax
algorithm proposed in [45] for finding (k,d)-MCCs and de-
note it as KRM. KRM may have smaller search space, be-
cause social constraint on T is also checked during the clique
enumeration. However, after incorporating social constraint
check along the way, the powerful pivot-based pruning for
clique enumeration cannot be used because the classic pivot
pruning works only for the structure part (That might be
why the work [45] used binary search rather than bkp). On
the other hand, we have studied adapting the pivot idea
considering both structural and social constraints. Unfor-
tunately to determine such pivots is very complicated and
the pruning power of such pivots cannot be guaranteed. Ex-
perimental performance comparison between our algorithms
and KRM can be found in Section 5.

3.3 Prunings before (k,d)-MCCs Enumeration
In practice, a maximal connected k-truss T and its corre-

sponding spatial neighbourhood network T ′ can be pruned
before (k,d)-MCCs enumeration. The aim is to reduce the
size of the input as much as possible so that (k,d)-MCC enu-
meration can be more efficient.
Pruning vertices in T ′ (I). We introduce a k-truss prop-
erty first, followed by the explanation and the pruning rule.

Property 1. For every vertex v in a k-truss graph T , v has
deg(v, T) ≥ k − 1 [12].

Intuitively, if T (V (T ′)) contains a k-truss, then each v ∈
V (T ′) should have as least k − 1 neighbours in T . Accord-
ingly, v should also have at least k − 1 neighbours in T ′.

Pruning Rule 1. For each v ∈ V (T ′), if deg(v, T ′) < k−1,
v can be pruned from T ′.

Pruning edges in T ′ (II). Next, we show another k-truss
property which can be used to prune edges in spatial network
T ′. The idea is that, if two vertices are far from each other
in T making them not able to be in the same k-truss, even
though they are spatially close in T ′, their link in T ′ can be
discarded when enumerating (k,d)-MCCs.

Property 2. The structural diameter of a connected k-

truss T with |V (T)| vertices is no more than b 2|V (T)|−2
k

c[12].

Pruning Rule 2. Given T and T ′, let T ′0 be a connected
component of T ′. An edge e(u, v) ∈ E(T ′0) can be pruned if

1237

gd(u, v, T (V (T ′0))) > b 2|V (T ′
0)|−2

k
c, where gd(u, v, T (V (T ′0)))

denotes the distance between u and v in T (V (T ′0)).

Pruning Rule 2 is correct: suppose vertices u, v can co-
exist in a connected k-truss K ⊆ T (V (T ′0)), then we will have

gd(u, v, T (V (T ′0))) ≤ gd(u, v,K) ≤ b 2|K|−2
k
c ≤ b 2|V (T ′

0)|−2

k
c,

this contradicts with the pruning condition.
Pruning vertices in T (III). Let D be a set of vertices
pruned from T ′, obviously they should also be removed from
T . After removing D from T , another set of vertices D′ in
T may be further removed due to truss maintenance [24].
D′ will need to be pruned from T ′.
Cascading pruning effect. We summarise the cascading
pruning effect here: (1) Pruning I will cause Pruning II and
III, because after pruning vertices in T ′, gd(u, v, T (V (T ′0)))

becomes larger and b 2|V (T ′
0)|−2

k
c becomes smaller, so more

edges may be further pruned from T ′. Also, the pruned
vertices of T ′ should be removed from T ; (2) Pruning II will
cause Pruning I, because, after some edges are pruned, some
vertex degrees will decrease which may lead to new vertices
be pruned from T ′; (3) Pruning III will cause Pruning I,
which has been explained.

In the implementation, vertex pruning I, III are prioritised
as they are cheap. Pruning stops if no changes are caused.

4. FINDING SPATIAL APPROXIMATE RE-
SULT

Since all the proposed exact algorithms in Section 3 can
have exponential time in the worst case, we aim to design
a polynomial algorithm by relaxing spatial constraints. The
polynomial algorithm can approximately find co-located co-
mmunities (which are still k-trusses but have vertices within
longer distances). The spatial distances can be theoretically
bounded. We firstly discuss how (k,d)-MCCs should be ap-
proximated. Then we propose three types of search bound
regions: upper bound region, tight bound region and error-
bounded region. Using the bound regions, we design an
algorithm that can find approximate results meeting a user-
specified spatial error ratio requirement.

4.1 How to Approximate (k,d)-MCCs
It is desirable to have efficient algorithms to find approxi-

mate results. Accordingly, several questions are interesting:
How approximation should be defined? What are good ap-
proximation results? Can users specify their own approxi-
mation preference, i.e. to what extent the discovered results
are approximate? We will answer these questions.
Define approximation. Firstly, a (k,d)-MCC is considered
cohesive both structurally and spatially. In general, both
structural and spatial constraints can be relaxed, however,
since the exponential number of exact (k,d)-MCCs comes
from checking spatial constraints, we only study the approx-
imate results with spatial constraints relaxed. Let us define
an α-approximation of a (k,d)-MCC below:

Definition 6. Approximate (k,d)-MCC. Let J be a (k,d)-
MCC, J ′ be a (k,d’)-CC satisfying J ⊆ J ′ and d ≤ d′, we
consider J ′ as an α-approximation of J with spatial error

ratio α = d′

d
, where α ∈ [1,+∞).

Here, J ′ is a k-truss with the maximum distance between
vertices in V (J ′) no more than d′. Technically, α can be less
than 1, but this is not desired.

Reasonable approximation. From the definition, α-app-
roximation of a (k,d)-MCC is not unique: the maximal α-
approximation of a (k,d)-MCC is a (k,αd)-MCC, while the
minimal α-approximation of a (k,d)-MCC is the (k,d)-MCC
itself. Both the maximal and minimal α-approximations
lead to the exponential number of co-located communities.
As a result, a polynomial algorithm that can discover any
α-approximations should suffice. However, superiority does
exist among approximations, eg., let J ′1, J ′2 be two α-approx-
imations of a particular (k,d)-MCC, if J ′1 ⊆ J ′2, J ′1 is consid-
ered better than J ′2, because J ′1 is “cleaner”.
Specify error ratio. Ideally, users should be able to specify
their preferred spatial error ratios, because different users
may have different requirements. With a given spatial error
ratio α, the approximate algorithm finds α-approximation
results accordingly. In the next section, we introduce using
spatial index to guarantee error ratio.

4.2 Spatial Index and Search Bounds
The idea of searching in polynomial is to delegate a spatial

index to check spatial constraints. The outcome is, with the
index, we are able to cheaply locate a region or a (limited)
number of regions where we can focus on checking struc-
tural constraints only, because the user-specified spatial er-
ror ratio can be guaranteed on the k-truss results discovered
within the located regions. In the following, we will intro-
duce the spatial index first, and then elaborate on how two
typical bound regions are identified and how error-bounded
search regions can be identified.
Space division. We consider the space is divided into
equal-sized cells. Each cell is a w × w square. w is fixed
once the space is divided. Vertices are distributed into the
cells. If a cell is not empty, we call it a landmark cell. Rect-
angle region and square region are defined below, used later.

Definition 7. Rectangle region. A rectangle region is a
subspace of the entire space, with a rectangle shape contain-
ing only complete cells. Square region is defined similarly.

Now the problem is, for each landmark cell m, to identify
proper square bound regions from which k-trusses should
be discovered. Two types of bound regions are interesting:
(a) the upper bound region is a big bound region that can
cover all the exact (k,d)-MCCs; (b) the tight bound regions
are a set of regions, each of which covers some exact (k,d)-
MCCs and they together cover all the exact (k,d)-MCCs. The
tight bound regions can provide the best possible error ratio
among all the bound regions covering the exact (k,d)-MCCs.
In the following, we introduce them in detail.
Upper bound region. Given a landmark cell m and a
distance d, the upper bound region rm identified by m is an
area covering all possible vertices whose distances to every
vertex in m are no greater than d. Apparently, the theo-
retical upper bound region is irregular. However, for easy
computation, we define square upper bound region as the
minimal square region that covers the upper bound region,
formally as: let ζ be an integer such that (ζ−1)w < d ≤ ζw,
the square region centred at m with side size (2ζ+1)w
is the square upper bound region. In later discussions,
upper bound region is used short for square upper bound
region, denoted as rm.

In Figure 2 (a), we show two landmark cells m1 and m2

and their upper bound regions in red and blue. Next, we
show the spatial error ratio of the upper bound region.

1238

b
a

j d

h

g

f

i
e

c
m2

m1

(a) Upper bound

b
a

j d

h

g

f

i
e

c
m2

1
2

3

(b) Tight bound

b
a

j d

h

g

f

i
e

c

(c) Vertex residence

b
a

j d

h

g

f

i
e

c

x

m

0

1

m

0

2

(d) Truss residence

Figure 2: Rectangular regions

Lemma 1. The spatial error ratio of the upper bound region

is 2
√

2 + ε, where ε = 3
√
2·w
d

.

Proof sketch. The upper bound region rm is a square with
side size (2ζ + 1)w. The longest distance drm within rm is
bounded by the diagonal distance

√
2(2ζ + 1)w. Combining

drm ≤ 2
√

2(ζ + 1)w with (ζ − 1)w < d. We have
drm
d
≤

2
√

2 + ε, where ε = 3
√
2·w
d

.

The 2
√

2 + ε error ratio may be loose in most applica-
tions, because spatial closeness has been relaxed to nearly
3d (2

√
2+ε ≈ 3). In the following, we introduce tight bound

regions which can bound approximate results within
√

2+ ε′

error ratio.
Tight bound region. The upper bound region has side
size (2ζ + 1)w > 2d. On the other hand, we observed that
an exact (k,d)-MCC must be able to fit into a d-square (a
square with side size d). This motivates us to search for the
approximate results from square regions as small as possible
while still not losing any exact (k,d)-MCCs. To this end, we
define tight bound region formally as follows: let ζ be an
integer such that (ζ − 1)w < d ≤ ζw, the square region
containing m with side size (ζ + 1)w is a square tight
bound region. Again, we use tight bound region short for
square tight bound region. Note that, a landmark cell m can
identify ζ2 number of tight bound regions because there are
ζ2 (ζ + 1)w-sized squares within a (2ζ + 1)w-sized square.

Lemma 2. The spatial error ratio of a tight bound region

is
√

2 + ε′, where ε′ = 2
√
2w
d

.

The proof is similar to that of Lemma 1.
In Figure 2 (b), we show three possible tight bound regions

(dashed squares) given the landmark cell m2, supposing ζ
has been identified as 2. Next, we give the spatial error ratio
of a tight bound region below.

The previously discussed bound regions are typical cases
providing dedicated spatial error ratios. Next, we discuss
how to identify bound regions satisfying a user-specified er-
ror ratio.
Error-bounded region. Given a landmark cell m, a dis-
tance d, let α be a user-given error ratio, then αd is the
maximum spatial distance allowed. Let ζ′ be an integer, an
error-bounded region is a square region containing
the landmark cell m with side size (ζ′+1)w satisfying
argmaxζ′{

√
2(ζ′ + 1)w ≤ αd|ζ′ ∈ Z}. With w, d, α given, ζ′

can be determined as b αd√
2w
c − 1. After that, all the square

regions containing m with side size (ζ′+1)w, from the square
region centred at m with side size (2ζ′ + 1)w, are retrieved
as α-error-bounded regions.

4.3 Prunings
Inspecting error-bounded regions for all landmark cells is

costly. If we can somehow know that the k-trusses covered
by one error-bounded region r1 is a subset of those covered
by another error-bounded region r2, the error-bounded re-
gion r1 can be discarded. Next, we introduce how prunings
can be supported by checking containment between vertex
residence regions and truss residence regions.

Definition 8. Vertex residence region. Given a square
region r, the vertex residence region Rev(r) is the minimum
rectangle subspace of r containing all the vertices in r.

For example, in Figure 2 (c) shows the vertex residence
regions of the two upper bound regions from Figure 2 (a)
(assuming all the vertices are in the same k-truss).

Pruning Rule 3. Pruning vertex residence region.
Let r1, r2 be two bound regions, Rev(r1), Rev(r2) be two ver-
tex residence regions, r1 can be pruned if Rev(r1) ⊆ Rev(r2).

For example, in Figure 2 (d), since the vertex residence
region within the red rectangle contains the vertex resi-
dence region within the blue, the inner blue rectangle can
be pruned.

Defining vertex residence region as rectangle region is for
easy computation. An alternative way is to consider only
those non-empty cells as vertex residence region, however,
although this approach provides better pruning power, chec-
king containment over irregular regions is more expensive.

Similarly, a more powerful pruning condition is to consider
only those k-truss vertices.

Definition 9. Truss residence region. Given a region r,
let K(r)2 be the k-truss contained in r, the truss residence
region Ret(r) is the minimum rectangle subspace of r that
contains all the vertices V (K(r)).

Pruning Rule 4. Pruning truss residence region. Let
r1, r2 be two bound regions, Ret(r1), Ret(r2) be two truss
residence regions, if Ret(r1) ⊆ Ret(r2), r1 can be pruned.

4.4 Error-bounded Approximation Algorithm
In this section, we introduce the error-bounded approxi-

mation algorithm. We start with a maximal connected k-
truss T from the structural perspective. Recall that T does
not fully satisfy the spatial constraint, i.e. every two ver-
tices are within d. The key idea of the approximate (k,d)-
MCCs search is as follows: Firstly, retrieve the landmark

2K(r) may be a disconnected graph. It may have a set of
connected components, each of which is a connected k-truss.

1239

Algorithm 3: apxSearch(T,M,α)

1 b← 0, R ← ∅;
2 prune each landmark cell m ∈M by applying Pruning Rules 3

and 4 on the upper bound region rm of m ;
3 sort all m ∈M according to the size of K(rm) in descending

order;
4 for m ∈ M do
5 if |V (K(rm))| ≥ b then
6 P ← generate error-bounded regions with

ζ′ = b αd√
2w
c − 1;

7 pruning P based on Pruning Rule 3;
8 sort all p ∈ P according to |Vp| in descending order;
9 for p ∈ P do

10 if |Vp| ≥ b then
11 R′ ← maximum connected k-trusses in T (Vp);

12 b← kdmccCollect(R′,R, b);

13 return R;

cells (denoted as M) which together hold all the vertices of
T , V (T) ⊆ V (M). Secondly, for each landmark cell m ∈M ,
compute the α-error-bounded regions ofm. Thirdly, for each
α-error-bounded region, local maximum structural k-trusses
are identified. Last, the final maximums are selected among
the local maximums and will be returned as the approximate
(k,d)-MCCs with guaranteed spatial error ratio α.

Algorithm 3 shows how to search approximate (k,d)-MCCs
given a spatial error ratio α. It firstly prunes landmark cells
using Pruning Rules 3 and 4 . Then for each m, it gen-
erates error-bounded regions and prunes them according to
Pruning Rule 3 (lines 6 and 7). For each search region,
it then computes the local approximate results in T (Vp).
Rather than computing k-trusses from sketch, we compute
them incrementally using K(rm). In this way, duplicated
computation can be avoided. In order to terminate the al-
gorithm early, the size of the best approximate results found
so far is used as a bound (lines 5 and 10), and search bound
regions are sorted (lines 3 and 8).
Time complexity. The time complexity of Algorithm 3

is O(|V (T)| · (b αd√
2w
c − 1)2 · |E(T)|

3
2). That is because, the

running time of Algorithm 3 is dominated by the nested
loop. The outside loop is bounded by |V (T)| since there
are at most |V (T)| number of landmark cells. The bound of
inner loop is (b αd√

2w
c− 1)2, where (b αd√

2w
c− 1)2 corresponds

to the number of error-bounded regions. The computation
inside the nested loop is dominated by truss maintenance

bounded by |E(T)|
3
2 .

4.5 Truss Attributed Quadtree Index
In this section, we show how to index the divided cells

associated with useful truss pre-computations using the pro-
posed truss attributed quad tree, denoted by TQ-tree. It can
speedup the operation that retrieves vertices of a k-truss a
region contains. Besides, we can have multiple choices of
cell size helping locate the error-bounded regions efficiently.
TQ-tree components. Major components of the index
are as below. A truss list contains all connected trusses in a
graph G. For each truss t, an identifier is assigned, denoted
as t.id. Since a truss with a small k may contain trusses
with larger k’s, the id we assign to a truss is similar to
Dewey Decimal, which explicitly expresses the containment
relationships. Given a vertex v, vertex-to-truss description
returns all identifiers of the connected trusses containing v.

Using Hash table, given a vertex v and a k-truss t, we can
check whether t contains v in constant time. Given a truss
identifier tid, and a non-leaf quad q of TQ-tree, truss-to-quad
description for q returns direct children of q that contains
at least one vertex of tid identified truss. Given a truss
identifier tid, and a leaf quad ql of TQ-tree, truss-vertex-
to-leaf-quad description returns all vertices of tid identified
truss located in ql.
TQ-tree. A TQ-tree is a quad tree indexing all divided
cells, in which the divided cells are leaf quads of TQ-tree.
For each none-leaf quad in TQ-tree, it contains spatial qua-
ternary information and is attached a list of truss-to-quad
descriptions. Similarly, for each leaf quad, in addition to the
bounding quad information, it also contains a list of truss-
vertex-to-leaf-quad descriptions.
Retrieving vertices from a region. In this section, we
show that given a T and a query region, the running time
of getting vertices of T from a region r can be bounded
by O(|Vr|) by using TQ-tree, where |Vr| is the number of
vertices of T in r. The idea is that: we first use the bound-
aries provided by r, and the description files attached in
TQ-tree to explore limited branches of TQ-tree and then get
the content quads via depth-first traversing. More specifi-
cally, we start from the root of TQ-tree, and collect all quads
such that (1) they contain vertices in T , (2) they are in the r
covering spatial space. Given a quad q in TQ-tree, since the
operations that check whether a child of q is in the bound-
aries of r and whether the child contains T can be done in
constant time, getting a vertex of T in r only depends on
the height of the quad, which is determined once TQ-tree is
created. Therefore, it is clear that the running time of re-
trieving content quads is proportional to |Vr|.
Searching granularity. Intuitively, different layers of TQ-
tree divide the whole space into cells with different sizes.
When the height of TQ-tree increases, the space is divided
into cells with smaller sizes. Therefore, we may have differ-
ent the search granularity. The possible number of search
granularities is equal to h. The possible sizes of the search
granularity is {2x× q.w|0 ≤ x ≤ h}, where q.w is the size of
the leaf quads in TQ-tree.

Selecting the search granularity affects the search effi-
ciency and effectiveness. If we select search granularity as
small as a dozen meters while the query distance is over
thousand of meters, constructing an error-bounded region
with such small leaf quads would be low efficient. Instead,
selecting a search granularity much larger than the query
distance would be very fast to get the results but the error
ratio would be large. We will discuss the choices of search
granularity that can balance search efficiency and effective-
ness in experimental studies.

5. EXPERIMENTAL RESULTS
In this section, we test all algorithms in Table 4 on a Mac

with Intel i7-4870HQ (3.7GHz) and 32GB main memory.
Datasets. We conducted the experiments over five real so-
cial network datasets including Gowalla, Brightkite, Four-
square, Weibo and Twitter. Each social user contains some
check-in locations. Table 5 presents the statistics for all
datasets. Since we only need one check-in for each vertex,
we select the most frequent check-in as the spatial coordi-
nate for a vertex, if it has multiple check-ins.
Parameter settings. The experiments are evaluated using
different settings of query parameters: k (the minimum truss

1240

Table 4: Implemented algorithms

Name Algorithm
Exact Algorithm 1 + pre-pruning

EffiExact Algorithm 2 + pre-pruning
AdvMax Algorithm in [45] for searching a maximum (k,r)-core

AdvMaxAll Adapted AdvMax to find all maximum (k,r)-cores
KRM Adapted AdvMax to find all (k,d)-MCCs + pre-pruning

Apx1 Algorithm 3 with α = 2
√

2 + ε and index

Apx2 Algorithm 3 with
√

2 + ε′ and index
Apx1Ini Apx1 without index
Apx2Ini Apx2 without index

SAC Algorithm Exact+ in [17]
GeoModu Algorithm in [6]

Table 5: Statistic information in datasets

Dataset #vertices #edges #checkins kmax
Gowalla [10] 196,591 950,327 6,442,890 29

Brightkite [10] 58,228 214,078 4,491,143 43
Foursquare [37, 27] 4,899,219 28,484,755 1,021,970 16

Weibo [28] 1,019,055 32,981,833 32,981,833 11
Twitter [28] 554,372 2,402,720 554,372 16

number) and d (the distance threshold, in meters) as well
as different settings of dataset parameters: q.w (the search
granularity) and n (the percentage of vertices). The ranges
of parameters and their default values are shown in Table 6,
in which we select reasonable k based on datasets. Further-
more, when we vary the value of a parameter for evaluation,
all the other parameters are set as their default values.
Index construction. Space division: the width of mini-
mum cells in TQ-tree for the whole space is set to be 100 me-
ters. The index construction time and size for each dataset
are displayed in Table 7.

5.1 Efficiency Evaluation
Scalability. To verify the scalability of our algorithms, Ad-
vMaxAll (adapted AdvMax [45] for searching all maximum
(k′, r)-cores) and KRM (searching all (k,d)-MCCs), we choose
different sizes of sub-datasets by selecting different percent-
ages of vertices in each dataset. For AdvMaxAll, we set k′

as k-1, where k is the default value for the corresponding
dataset. We implemented KRM by adapting the problem
setting of AdvMax from k-core to k-truss. From the results
in Figures 3 (a) to (e), we can see that the exact algorithms
run much slower when the data size is equal to or larger
than 80%. However, for the approximate algorithms, their
time costs increase almost linearly as the data sizes increase
for all datasets. For all datasets, our EffiExact outperforms
KRM 30% and AdvMaxAll outperforms EffiExact 10% in aver-
age. Surprisingly AdvMaxAll does not outperform EffiExact
significantly. This is mainly because the size of candidate
vertices of searching (k,r)-cores is larger than that of search-
ing (k,d)-MCCs on all real datasets. In the following experi-
ments, we focus only on our algorithms(i.e., excluding KRM
and AdvMaxAll).
Effect of k. Figures 3 (f) to (j) evaluate the performance
of the algorithms when we vary the value of k. In general,
all algorithms take less time when k increases. This is be-
cause increasing k will result in the decrease of the sizes of
k-trusses. The EffiExact runs consistently faster than Ex-
act, especially when k is large. In addition, the study shows
that the approximate algorithms outperform the exact al-
gorithms greatly. The performance can be improved in two
orders of magnitude in average over all datasets. Compared

Table 6: Parameter settings

Parameter Range Default value

k
Gowalla, Brightkite: 5,7,9,11,13,15,17 11

Weibo: 5,6,7,8,9,10,11 9
Twitter Foursquare:3,5,7,9,11,13,15 11

d 500, 1000, 1500, 2000, 2500, 3000 2000
q.w 100, 200, 400, 800, 1600 400
n 20%, 40%, 60%, 80%, 100% 100%

Table 7: TQ-tree construction

Dataset Time (Sec) Space (MB)
Gowalla 101 31

Brightkite 75 17
Foursquare 5102 1680

Weibo 4812 1423
Twitter 473 152

with Apx2, Apx1 is much faster due to its low accuracy guar-
antee. Although Apx2 is slower, it can provide more effective
results, which will be discussed in Section 5.2.
Effect of d. Figures 3 (k) to (o) show the time cost when
we vary the distance value of d from 500 to 3000. With
the increase of d, the exact algorithms consume time expo-
nentially. This is because increasing d will require the al-
gorithms to explore larger spatial neighbourhood network.
The experimental results also confirm our theoretical anal-
ysis that the time complexities of exact algorithms are ex-
ponential to the size of spatial neighbourhood network. In
our experiment, EffiExact is faster than Exact by 3-5 times.
Different from exact algorithms, the time cost of approxi-
mate algorithms increases slowly for all datasets. In most
cases, the approximate algorithms can answer the (k,d)-
MCC search within 10 seconds, which is able to answer the
real time search. Only for Foursquare, it requires to con-
sume about 40 seconds for answering the (k,d)-MCC search.
Effect of granularity. Figures 3 (p) to (t) demonstrate
the time cost when we vary the search granularity. To show
the power of index, we also implemented algorithms Apx1
and Apx2 without the support of index, denoted as Apx1Ini
and Apx2Ini respectively. Overall speaking, the time cost
of both algorithms decreases as the search granularity in-
creases. This is because the space would be divided into
less number of cells for the larger search granularity, and
the time complexity is proportional to the number of cells.

5.2 Effectiveness Evaluation

5.2.1 Exact Algorithms
We present the trends of pre-pruning effectiveness in exact

algorithms when the parameters k and d vary. To show the
effectiveness, let’s introduce two metrics as below.
Metrics. Let T be the union of maximal connected k-
trusses in G. Let G′ be the graph after pruning. The vertex

pruning ratio is measured by |V (G′)|
|V (T)| . Let t1 and t2 be the

running time of a algorithm applying and without applying
pruning rules. The time saved ratio is defined as t2−t1

t2
.

Effect of k. Figure 4 (a) reports the vertex pruning ra-
tios as we change the k value. For datasets Gowalla and
Brightkite, their pruning effectiveness becomes higher as
k value increases. Interestingly, for the datasets Weibo,
Foursquare and Twitter, their pruning effectiveness becomes
higher at the beginning and then decreases when the value
of k increases further. The main reason is that, in the three
datasets, their vertices have good spatial and social dis-

1241

20% 40% 60% 80% 100%
Percentage

10− 1

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

KRM

AdvMaxAll

(a) Gowalla

20% 40% 60% 80% 100%
Percentage

10− 1

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

KRM

AdvMaxAll

(b) Brightkite

20% 40% 60% 80% 100%
Percentage

100

101

102

103

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

KRM

AdvMaxAll

(c) Foursquare

20% 40% 60% 80% 100%
Percentage

10− 1

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

KRM

AdvMaxAll

(d) Twitter

20% 40% 60% 80% 100%
Percentage

10− 1

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

KRM

AdvMaxAll

(e) Weibo

5 7 9 11 13 15 17
k

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(f) Gowalla

5 7 9 11 13 15 17
k

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(g) Brightkite

3 5 7 9 11 13 15
k

101

102

103

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(h) Foursquare

3 5 7 9 11 13 15
k

101

102

103

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(i) Twitter

5 6 7 8 9 10 11
k

10− 2

10− 1

100

101

102

103

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(j) Weibo

500 1000 1500 2000 2500 3000
d

100

101

102

103

T
im

e
(s
) Exact

EffiExact

Apx1

Apx2

(k) Gowalla

500 1000 1500 2000 2500 3000
d

100

101

102

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(l) Brightkite

500 1000 1500 2000 2500 3000
d

101

102

103

T
im

e
(s
)

Exact

EffiExact

Apx1

Apx2

(m) Foursquare

500 1000 1500 2000 2500 3000
d

101

102

103

T
im

e
(s
) Exact

EffiExact

Apx1

Apx2

(n) Twitter

500 1000 1500 2000 2500 3000
d

100

101

102

T
im

e
(s
) Exact

EffiExact

Apx1

Apx2

(o) Weibo

100 200 400 800 1600
Search granularity (m)

0

20

40

60

80

100

120

T
im

e
(s

)

Apx1

Apx2

Apx1Ini

Apx2Ini

(p) Gowalla

100 200 400 800 1600
Search granularity (m)

0

10

20

30

40

50

60

70

T
im

e
(s

)

Apx1

Apx2

Apx1Ini

Apx2Ini

(q) Brightkite

100 200 400 800 1600
Search granularity (m)

0

50

100

150

200

250

300

T
im

e
(s

)

Apx1

Apx2

Apx1Ini

Apx2Ini

(r) Foursquare

100 200 400 800 1600
Search granularity (m)

0

50

100

150

200

T
im

e
(s

)

Apx1

Apx2

Apx1Ini

Apx2Ini

(s) Twitter

100 200 400 800 1600
Search granularity (m)

0

25

50

75

100

125

150

175

T
im

e
(s

)

Apx1

Apx2

Apx1Ini

Apx2Ini

(t) Weibo

Figure 3: Efficiency evaluation

tributions, i.e., the vertices with higher social cohesiveness
also tend to have spatial closeness with each other. There-
fore, the pruning effectiveness becomes less significant when
k is high. Actually, similar trends occur in Gowalla and
Brightkite if we further increase the value of k.
Effect of d. Figure 4 (b) shows the vertex pruning effective-
ness ratio when we change the value of d. For all datasets,
the pruning effectiveness decreases with the increase of d
value. This is because as d increases, the spatial cohesiveness
constraint is relaxed so that the explored spatial network
becomes large, which makes less number of vertices to be
filtered. However, when d is at the interval of 1500 to 2000
meters, our pruning technique can prune more than 50%
vertices averagely, which makes EffiExact run much faster
than Exact in all configurations.
Effect of pruning rules. Figure 5 (a) reports the vertex
pruning ratios with the left scale and time saved ratios with
the right scale for pruning vertices (P1) and edges (P2) in
T ′, and pruning vertices in T (Truss) individually, or apply-
ing these rules interchangeably by cascading pruning (CAS).
The coloured bars correspond to pruning ratios while the
bars with hatches correspond to time saved ratios when ap-
plying pruning rules in EffiExact. For all datasets, it shows
that applying rules individually has limited pruning effec-
tiveness with less than 15% vertices pruned, and less than
12% of time saved by P1(P1TS) and P2(P2TS), though a
bit improved by Truss. However, applying these rules inter-
changeably can prune much more vertices and save much

more time. For Gowalla and Weibo, over 60% of vertices
can be filtered out and more than 50% of time can be saved
(shown by CAS(CASTS)).

5.2.2 Approximate Algorithms
Region pruning ratio. Region pruning ratio is defined as
the ratio of the number of regions to be evaluated overs the
number of regions actually evaluated.

Figure 5 (b) shows the region pruning ratios with left
scale (time saved ratio with right scale) when applying prun-
ing rules 3 and 4. The bars P31(P31TS) and P32(P32TS)
demonstrate the pruning ratios (time saved ratios) when
applying pruning rule 3 in Apx1 and Apx2. In all datasets,
pruning rule 3 is more effective when pruning tight bound
regions compared to applying it to prune upper bound re-
gions. However, the pruning ratio of pruning rule 4 (shown
by P4) outperforms rule 3 when pruning tight bound regions
for all datasets.

Figure 6 (a) shows the upper bound region pruning ratios
when vary the search granularity for algorithm Apx1. Over-
all speaking, the pruning ratio decreases as search granular-
ity increases for all datasets. This is because smaller search
granularity makes the region become more compact. The
pruning ratio for Foursquare is slightly worse than others
but the average pruning ratio is still over 0.5. Figure 6 (b),
shows the tight bound region pruning ratios when varying
the search granularity for algorithm Apx2. The pruning ef-
fect trend is similar to upper bound region pruning.

1242

3 6 9 12 15 18
k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
e
rt

ic
e
s
 f

il
te

ri
n
g
 r

a
ti

o

Gowalla

Brightkite

Weibo

Foursquare

Twitter

(a) Varying k

500 1000 1500 2000 2500 3000
d

0.1

0.2

0.3

0.4

0.5

0.6

V
e
rt

ic
e
s
 f

il
te

ri
n
g
 r

a
ti

o

Gowalla

Brightkite

Weibo

Foursquare

Twitter

(b) Varying d

Figure 4: Exact algorithm pruning effectiveness

Gowalla Brightkite Weibo Twitter Foursquare0

0.2

0.4

0.6

0.8

1

Ve
rti

ce
s f

ilt
er

in
g

ra
tio

0

0.2

0.4

0.6

0.8

Ti
m

e
sa

ve
d

ra
tio

P1
P2
Truss
CAS

P1TS
P2TS
TrussTS
CASTS

(a) Pruning rules 1 and 2

Gowalla Brightkite Weibo Twitter Foursquare0

0.2

0.4

0.6
Re

gi
on

 p
ru

ni
ng

 ra
tio

P31
P32

P4
P31TS

P32TS
P4TS

0

0.2

0.4

0.6

0.8

Ti
m

e
sa

ve
d

ra
tio

(b) Pruning rules 3 and 4

Figure 5: Effectiveness of pruning rules

Effect of granularity on α. We show the correlation be-
tween the theoretical and actual approximation ratios when
we run the algorithms Apx1 and Apx2 over all datasets, and
show the trend when the search granularity changes. They
are plotted in Figures 7 (a) and (b). The x-axis in the fig-
ures is the theoretical approximation ratios. For Apx1, the
theoretical approximation ratios are 2.9, 2.97, 3.11, 3.4, and
3.96. For the Apx2, the theoretical approximation ratios are
1.48, 1.56, 1.70, 1.98, and 2.55. From the experimental re-
sults, we can see that the real approximation ratios of Apx1
and Apx2 are much smaller than theoretical approximation
ratios. For both algorithms, real approximation ratios in-
crease as the search granularity increases. The approxima-
tion ratio of Apx1 increases almost linearly as the theoretical
approximation ratio increases. For Apx2, we can observe a
sudden increase for all datasets after the search granularity
goes beyond 400. Within 400, we can see that the actual
approximation ratios are all less than 1.4. Therefore, in real
applications we may need to tune the search granularity to
balance the search efficiency and effectiveness.

5.2.3 Spatial Density
We verify the spatial closeness of (k,d)-MCCs found by

our algorithms Exact, Apx1 and Apx2 by comparing with
that of the state-of-the-art spatial-aware community mod-
els: SAC [17], GeoModu [6] and AdvMax [45]. The spatial
closeness is evaluated by spatial density. Given a commu-
nity J with spatial diameter d, the spatial density of J is

defined as:
∑
u,v∈V (J) ed(u,v)

2|V (J)| .

SAC. It finds a k-core G′, containing a query vertex and
vertices are spatially contained in a minimum covering circle
with smallest radius. We randomly select 200 query vertices
and set up the structural cohesiveness as 12-core.
GeoModu. It refines the weight of each edge eu,v in graph
G as 1

d
η
u,v

where dηu,v is the normalised spatial distance from

u to v, where η is a decay factor and is set to 1. It then
detects the communities using modularity maximisation.
AdvMax. It finds the maximum (k, r)-core which is a k-
core containing pairwise vertices with spatial distance no
greater than d and maximising the cardinality.

100 200 400 800 1600
Search granularity(m)

0.2

0.3

0.4

0.5

0.6

R
e
g
io

n
 f

il
te

ri
n
g
 r

a
ti

o

Gowalla

Brightkite

Weibo

Foursquare

Twitter

(a) Apx1

100 200 400 800 1600
Search granularity(m)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
g
io

n
 f

il
te

ri
n
g
 r

a
ti

o

Gowalla

Brightkite

Weibo

Foursquare

Twitter

(b) Apx2

Figure 6: Region pruning ratio

2.75 3.00 3.25 3.50 3.75 4.00
Theoretical approx. ratio

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

A
c
tu

a
l
a
p
p
ro

x
.

ra
ti

o

Gowalla

Brightkite

Foursquare

Twitter

Weibo

(a) Apx1

1.50 1.75 2.00 2.25 2.50 2.75
Theoretical approx. ratio

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

A
c
tu

a
l
a
p
p
ro

x
.

ra
ti

o

Gowalla

Brightkite

Foursquare

Twitter

Weibo

(b) Apx2

Figure 7: Approximation ratio

Gowalla Brightkite Foursquare Weibo Twitter0

0.25

0.5

0.75

1

No
rm

ol
ize

d
sp

at
ia

l d
en

sit
y

Exact
Apx1

Apx2
AdvMax

SAC
GeoModu

Figure 8: Density study

(a) (4,1.5km)-MCC (b) (9,5km)-MCC

Figure 9: Case study

For Exact, Apx1, Apx2 and AdvMax, we setup k=11 (k=10
for AdvMax), randomly select 200 different query distances
between 500 to 2000 meters, generate results, and compute
average spatial density for each dataset. All results are nor-
malised by D−Dmin

Dmax−Dmin
, where D is an average spatial den-

sity, Dmax and Dmin are the extremes.
Figure 8 shows that Exact performs the best and out-

performs AdvMax due to its structural tightness. AdvMax
also performs reasonably well because both Exact and Adv-
Max tend to enlarge the cardinality as much as possible for
the given distance threshold. As expected, the approximate
algorithms Apx1, Apx2 perform worse than Exact but rea-
sonably acceptable. As shown in the figure, Apx2 performs
better than AdvMax in most datasets except for Weibo. Also
Apx2 performs better than Apx1 in all datasets due to lower
error ratio. Compared with the above algorithms, SAC and
GeoModu perform much worse mainly because they don’t
intend to include as many vertices as possible. GeoModu is
listed as 0 after normalisation.

1243

5.2.4 Case Study
We conducted two case studies on Gowalla to show the

effectiveness of (k,d)-MCCs. In contrast to connected k-
trusses, our models can ensure the spatial closeness over
community members.

Figure 9 (a) shows a community with k=4 and d=1.5km.
All the members are around Gothenburg University in Swe-
den. The community members are good candidates for meet-
up activities since they have strong social relationships, i.e.
each member has 3 friends in the community and members
who are not friends are connected by their mutual friends;
and the longest distance over them is bounded by 1.5km.

Figure 9 (b) shows a community with k=9 and d=5km.
We can see that there are some members around the down-
town in Austin that are very close with each other. And
there are some members in outskirt that are relatively dis-
tant to members in the downtown area. Removing any of
these relatively distant members makes the community col-
lapse from social cohesiveness perspective. Although the
query has d = 5km, the actual distance between most mem-
bers is less than 3.3km.

6. RELATED WORK
Global community search. In general global com-

munity search methods search top-k communities matching
the query parameter and having the global highest score for
some goodness metrics. Li et al. [31] consider k-clique as
structural cohesiveness metric and consider outer influence
score as a goodness metric. In [30], k-core is used to mea-
sure the social cohesiveness and internal influential score is
used to rank the communities. Qin et al. [35] find top-k
most densest subgraphs from a graph using proposed local
density score schema. In [45], they find (k, r)-core commu-
nity such that socially the vertices in (k, r)-core is a k-core
and from similarity perspective pairwise vertices similarity
is more than a threshold r. Our work is different from them
in twofold. From modelling perspective we use k-truss to
measure social cohesiveness. The k-truss is superior over
k-core since k-truss provides connectivity guarantee. From
technical perspective, we focus on finding both exact and
spatial approximate maximum communities.
Local community search. The goal of local community
search is to search communities containing a set of query
vertices. In [24, 2], maximal triangle-connected k-truss con-
taining a query vertex metric are considered as communi-
ties. Cui et al. [14], search local optimal community mod-
elled as connected subgraphs, containing the query vertices
and maximising the minimum degree of each vertex in the
subgraphs. In [18, 25, 29], they consider both the structure
and keyword cohesiveness when searching the community. A
k-clique based model is proposed in [44], in which a commu-
nity is defined as the maximal k-clique adjacent connected
subgraphs containing all query vertices, named as k-clique
percolation community. Hu et.al. [23] propose algorithms
searching a community that is a minimal connected Steiner
tree containing all query vertices while maximising the car-
dinality. These works do consider spatial factor when mod-
elling a community. Recently, Fang et al. [17] propose local
community search on spatial network. Our work is differ-
ent from them. We consider pairwise vertices distance as a
query parameter while they focus on minimising the spatial
pairwise vertices distance. They search the local optimal

Table 8: Community models comparison

GCD &
LCD

GCS LCS

Non spatial [19, 20, 21,
34, 36, 43]

[31, 30, 35,
45]

[18, 39, 14,
13, 24, 44,

23]
Spatial [16, 6] (k,d)-MCCs [17]

community containing a query vertex while we search the
communities that matches the query parameters and has
the maximum cardinality globally.
Community detection. Community detection methods
usually detect all communities in a graph [19, 20, 21, 34, 36].
These works employ link-based analysis to detect the com-
munities. Recently, works [16, 6] merge spatial constraints
into the link-based analysis. In [16], gravity model is used
when defining modularity function. In [6], a distance decay
function is used when defining modularity function. Our
work is very different from them. Firstly, these algorithms
detect all communities once parameter is given by exploring
the whole graph while our proposed methods explore data
associating with query parameters only. Secondly, we have
clear user specified query parameters.
Cohesive subgraph mining. Cohesive subgraph is an im-
portant concept in social network analysis. Many works are
based on these cohesive subgraphs such as maximal clique [8,
9], k-core [38, 7, 32, 26], k-truss [12, 41], k-compact tree [33],
DN -graph [42], and k-edge connected subgraph [46, 5, 3].
Distance bounded vertex set(s) searching. Aggar-
waal et.al. [1] and Clark et.al. [11] find that finding a max-
imum clique in a spatial neighbourhood network is polyno-
mial solvable. And accordingly, there is a polynomial al-
gorithm for the problem that finding k vertices with mini-
mum diameter [1] and the performance is further improved
by [15]. Gupta et al. [22] report the total number of maxi-
mal cliques could grow exponentially with the size of a spa-
tial network and propose algorithms that generate slightly
super-maximal cliques.

Table 8 categorises the related works in terms of the type
of method for finding communities with or without spa-
tial cohesiveness requirement, and positions our (k,d)-MCCs
work with the comparison to other works.

7. CONCLUSION
In this paper, we study the maximum co-located com-

munity search problem in large scale social networks. We
propose a novel community model, co-located community,
considering both social and spatial cohesiveness. We de-
velop efficient exact algorithms to find all maximum co-
located communities. We design approximation algorithm
with guaranteed spatial error ratios. We further improve
the performance using proposed TQ-tree index. We conduct
extensive experiments on large real-world networks, and the
results demonstrate the effectiveness and efficiency of the
proposed algorithms.

8. ACKNOWLEDGMENTS
This work is jointly supported by the ARC Discovery

Projects under Grant No. DP170104747, DP160102412,
DP160102114 and DP180100212, the NSF of China under
Grant No. U1736104 and 61532021. We would like to thank
anonymous reviewers for their helpful comments.

1244

9. REFERENCES
[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding

k points with minimum diameter and related
problems. Journal of Algorithms, 12(1):38 – 56, 1991.

[2] E. Akbas and P. Zhao. Truss-based community search:
a truss-equivalence based indexing approach. PVLDB,
10(11):1298–1309, 2017.

[3] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time
enumeration of maximal k-edge-connected subgraphs
in large networks by random contraction. In CIKM,
pages 909–918, 2013.

[4] G.-R. Cai and Y.-G. Sun. The minimum
augmentation of any graph to a k-edge-connected
graph. Networks, pages 151–172, 1989.

[5] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and
W. Liang. Efficiently computing k-edge connected
components via graph decomposition. In SIGMOD,
pages 205–216, 2013.

[6] Y. Chen, J. Xu, and M. Xu. Finding community
structure in spatially constrained complex networks.
International Journal of Geographical Information
Science, 29(6):889–911, 2015.

[7] J. Cheng, Y. Ke, S. Chu, and M. T. zsu. Efficient core
decomposition in massive networks. In ICDE, pages
51–62, April 2011.

[8] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu.
Finding maximal cliques in massive networks. ACM
Trans. Database Syst., 36(4):21:1–21:34, Dec. 2011.

[9] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms
for maximal clique enumeration with limited memory.
In SIGKDD, pages 1240–1248, 2012.

[10] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: User movement in location-based social
networks. In SIGKDD, pages 1082–1090, New York,
NY, USA, 2011. ACM.

[11] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit
disk graphs. Discrete Mathematics, 86(1):165 – 177,
1990.

[12] J. Cohen. Trusses: Cohesive subgraphs for social
network analysis. National Security Agency Technical
Report, 16, 2008.

[13] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang.
Online search of overlapping communities. In
SIGMOD, pages 277–288, 2013.

[14] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local
search of communities in large graphs. In SIGMOD,
pages 991–1002, 2014.

[15] D. Eppstein and J. Erickson. Iterated nearest
neighbors and finding minimal polytopes. Discrete &
Computational Geometry, 11(3):321–350, Mar 1994.

[16] P. Expert, T. S. Evans, V. D. Blondel, and
R. Lambiotte. Uncovering space-independent
communities in spatial networks. Proceedings of the
National Academy of Sciences, 108(19):7663–7668,
2011.

[17] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
community search over large spatial graphs. PVLDB,
10(6):709–720, 2017.

[18] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective
community search for large attributed graphs.
PVLDB, 9(12):1233–1244, 2016.

[19] S. Fortunato. Community detection in graphs. Physics
reports, 486(3):75–174, 2010.

[20] M. Girvan and M. E. Newman. Community structure
in social and biological networks. Proc. Natl. Acad.
Sci. USA, 99(cond-mat/0112110):8271–8276, 2001.

[21] D. Guo. Regionalization with dynamically constrained
agglomerative clustering and partitioning (redcap).
International Journal of Geographical Information
Science, 22(7):801–823, 2008.

[22] R. Gupta, J. Walrand, and O. Goldschmidt. Maximal
cliques in unit disk graphs: Polynomial
approximation. In INOC, 2005.

[23] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang.
Querying minimal steiner maximum-connected
subgraphs in large graphs. In CIKM, pages 1241–1250,
New York, NY, USA, 2016. ACM.

[24] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic
graphs. In SIGMOD, pages 1311–1322, 2014.

[25] X. Huang and L. V. S. Lakshmanan. Attribute-driven
community search. PVLDB, 10(9):949–960, 2017.

[26] W. Khaouid, M. Barsky, V. Srinivasan, and
A. Thomo. K-core decomposition of large networks on
a single pc. PVLDB, 9(1):13–23, 2015.

[27] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F.
Mokbel. Lars: A location-aware recommender system.
In ICDE, pages 450–461, April 2012.

[28] G. Li, S. Chen, J. Feng, K.-l. Tan, and W.-s. Li.
Efficient location-aware influence maximization. In
SIGMOD, pages 87–98, New York, NY, USA, 2014.
ACM.

[29] J. Li, C. Liu, and M. S. Islam. Keyword-based
correlated network computation over large social
media. In ICDE, pages 268–279. IEEE, 2014.

[30] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X.
Yu. Most influential community search over large
social networks. In ICDE, pages 871–882, April 2017.

[31] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential
community search in large networks. PVLDB,
8(5):509–520, 2015.

[32] R. H. Li, J. X. Yu, and R. Mao. Efficient core
maintenance in large dynamic graphs. TKDE,
26(10):2453–2465, Oct 2014.

[33] C. Liu, L. Yao, J. Li, R. Zhou, and Z. He. Finding
smallest k-compact tree set for keyword queries on
graphs using mapreduce. WWWJ, 19(3):499–518, May
2016.

[34] M. E. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
review E, 69(2):026113, 2004.

[35] L. Qin, R.-H. Li, L. Chang, and C. Zhang. Locally
densest subgraph discovery. In SIGKDD, pages
965–974, 2015.

[36] M. Rezvani, W. Liang, C. Liu, and J. X. Yu. Efficient
detection of overlapping communities using
asymmetric triangle cuts. TKDE, pages 1–1, 2018.

[37] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F.
Mokbel. An efficient and scalable location-aware
recommender system. TKDE, 26(6):1384–1399, June
2014.

[38] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269 – 287, 1983.

1245

[39] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In SIGKDD, pages 939–948, 2010.

[40] E. Tomita, A. Tanaka, and H. Takahashi. The
worst-case time complexity for generating all maximal
cliques and computational experiments. Theoretical
Computer Science, 363(1):28–42, 2006.

[41] J. Wang and J. Cheng. Truss decomposition in
massive networks. PVLDB, 5(9):812–823, 2012.

[42] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung.
On triangulation-based dense neighborhood graph
discovery. PVLDB, 4(2):58–68, 2010.

[43] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local

community detection: On free rider effect and its
elimination. PVLDB, 8(7):798–809, 2015.

[44] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang.
Index-based densest clique percolation community
search in networks. TKDE, pages 1–1, 2018.

[45] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin.
When engagement meets similarity: efficient (k,
r)-core computation on social networks. PVLDB,
10(10):998–1009, 2017.

[46] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and
J. Li. Finding maximal k-edge-connected subgraphs
from a large graph. In EDBT, pages 480–491, 2012.

1246

