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ABSTRACT
Distributed transactions suffer from poor performance due to two
major limiting factors. First, distributed transactions suffer from
high latency because each of their accesses to remote data incurs a
long network delay. Second, this high latency increases the likeli-
hood of contention among distributed transactions, leading to high
abort rates and low performance.

We present Sundial, an in-memory distributed optimistic concur-
rency control protocol that addresses these two limitations. First, to
reduce the transaction abort rate, Sundial dynamically determines
the logical order among transactions at runtime, based on their data
access patterns. Sundial achieves this by applying logical leases to
each data element, which allows the database to dynamically calcu-
late a transaction’s logical commit timestamp. Second, to reduce
the overhead of remote data accesses, Sundial allows the database
to cache remote data in a server’s local main memory and maintains
cache coherence. With logical leases, Sundial integrates concur-
rency control and cache coherence into a simple unified protocol.
We evaluate Sundial against state-of-the-art distributed concurrency
control protocols. Sundial outperforms the next-best protocol by up
to 57% under high contention. Sundial’s caching scheme improves
performance by up to 4.6× in workloads with high access skew.
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1. INTRODUCTION
When the computational and storage demands of an on-line trans-

actional processing (OLTP) application exceed the resources of
a single server, organizations often turn to a distributed database
management system (DBMS). Such systems split the database into
disjoint subsets, called partitions, that are stored across multiple
shared-nothing servers. If transactions only access data at a single
server, then these systems achieve great performance [2, 3]. Perfor-
mance degrades, however, when transactions access data distributed
across multiple servers [38]. This happens for two reasons. First
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and foremost, long network delays lead to long execution time of
distributed transactions, making them slower than single-partition
transactions. Second, long execution time increases the likelihood
of contention among transactions, leading to more aborts and per-
formance degradation.

Recent work on improving distributed concurrency control has
focused on protocol-level and hardware-level improvements. Im-
proved protocols can reduce synchronization overhead among trans-
actions [22, 35, 36, 46], but can still limit performance due to high
coordination overhead (e.g., lock blocking). Hardware-level im-
provements include using special hardware like optimized networks
that enable low-latency remote memory accesses [20, 48, 55], which
can increase the overall cost of the system. Ideally, concurrency
control protocols should achieve good performance on low-cost
commodity hardware.

To avoid the long network latency, prior work has proposed to
replicate frequently-accessed shared data across multiple database
servers [16], so that some distributed transactions become local.
Such replication requires profiling the database workload or man-
ually identifying hot data, which adds complexity for users. It is
desirable for the database to automatically replicate data through a
caching mechanism without user intervention.

To address these issues, we introduce Sundial, an in-memory
distributed concurrency control protocol that outperforms existing
approaches. To address the long network latency problem, Sundial
natively supports data caching in a server’s local main memory
without requiring an additional protocol or sacrificing serializability,
and uses cached data only when beneficial. To address the high
overhead of coordinating distributed transactions, Sundial employs
a hybrid pessimistic/optimistic concurrency control protocol that re-
duces aborts by dynamically reordering transactions that experience
read-write conflicts.

The enabling technique behind Sundial is a concept called logi-
cal leases, which allows the DBMS to dynamically determine the
logical order among transactions while enforcing serializability. A
logical lease comprises two logical timestamps indicating the range
of logical time wherein the tuple is valid. The DBMS dynamically
computes a transaction’s commit timestamp, which must overlap
with the leases of all tuples accessed by the transaction. Prior work
has shown that logical leases are effective in improving perfor-
mance and concurrency for both hardware cache coherence [52]
and multicore concurrency control protocols [53]. To the best of
our knowledge, this paper is the first to apply logical leases to a
distributed system, and the first to seamlessly combine concurrency
control and caching in a shared-nothing database.

To evaluate Sundial, we implemented it in a distributed DBMS
testbed and compared it to three state-of-the-art protocols: MaaT [35],
Google F1 [41], and two-phase locking with Wait-Die [9, 25]. We
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used two OLTP workloads with different contention settings and
cluster configurations. Sundial achieves up to 57% higher through-
put and 41% lower latency than the best of the other protocols. We
also show that Sundial’s caching mechanism improves throughput
by up to 4.6× for skewed read-intensive workloads.

2. BACKGROUND AND RELATED WORK
Concurrency control provides two critical properties for database

transactions: atomicity and isolation. Atomicity guarantees that ei-
ther all or none of a transaction’s changes are applied to the database.
Isolation specifies when a transaction can see other transactions’
writes. We consider serializability in this paper: concurrent transac-
tions produce the same results as if they are sequentially executed.

While serializability is a robust and easy-to-understand isolation
level, concurrency control protocols that provide serializability incur
large synchronization overhead in a DBMS. This has been shown
in scalability studies of concurrency control in both multicore [51]
and distributed [25] settings. The problem is worse in a distributed
DBMS due to high network latencies between database servers.

Two classes of concurrency control protocols [9] are commonly
used: two-phase locking (2PL) and timestamp ordering (T/O).
2PL [11, 21] protocols are pessimistic: a transaction accesses a
tuple only after the transaction acquires a lock with the proper per-
mission (e.g., read or write). In contrast, T/O protocols use logical
timestamps to determine the logical commit order of transactions.
Variants of T/O protocols include multi-version concurrency control
(MVCC), which maintains multiple versions of each tuple to reduce
conflicts, and optimistic concurrency control (OCC), where con-
flicts are checked only after transaction execution. OCC may incur
more aborts than 2PL [51], but has the advantage of non-blocking
execution. Sundial combines the benefits of 2PL and OCC by using
them for write-write and read-write conflicts, respectively. Sundial
further reduces aborts due to read-write conflicts through logical
leases (cf. Section 3).

2.1 Distributed Concurrency Control
Recent research has proposed many distributed concurrency con-

trol protocols [15, 20, 35, 41, 48], which are all based on variants of
2PL (e.g., Spanner [15] and F1 [41]) or T/O (e.g., MaaT [35] and
Lomet et al. [34]). Among these protocols, MaaT [35] is the closest
to Sundial, as both use logical timestamps to dynamically adjust
the commit order among transactions but using different techniques.
MaaT requires all conflicting transactions to explicitly coordinate
with each other to adjust their timestamp intervals, which hurts
performance and incurs more aborts. By contrast, conflicting trans-
actions do not coordinate in Sundial. Furthermore, Sundial uses
caching to reduce network latency, whereas MaaT does not support
caching.

Lomet et al. [34] proposed a multi-version concurrency control
protocol that lazily determines a transaction’s commit timestamp
using timestamp ranges. The protocol works in both multicore and
distributed settings. Upon a conflict, the protocol requires all in-
volved transactions to shrink their timestamp ranges—an expensive
operation that Sundial avoids through logical leases. Furthermore,
their protocol requires a multi-version database while Sundial works
in a single-version database. Section 6.8 compares the performance
of Lomet et al.’s protocol and Sundial.

2.2 Multicore Concurrency Control
Fast transaction processing on single-server multicore systems

has been intensively studied [28, 32, 37, 47, 49, 50, 53, 54]. Some of
these techniques can be applied to a distributed setting as well; we
incorporate some of them into our distributed concurrency control

protocols. Other techniques developed for multicore processors can
not be readily used in a distributed setting due to different system
properties, such as high network latency.

In this paper, we focus on the performance of distributed concur-
rency control protocols and therefore do not compare to protocols
that are designed for single-server multicore systems.

2.3 Data Replication and Cache Coherence
Data replication [16, 38] has been previously proposed to reduce

the overhead of distributed transactions. Replication is particularly
effective for hot (i.e., frequently accessed) read-only data. When
replicated across servers, hot data can serve read requests locally,
significantly reducing the number of remote requests.

Data replication has several drawbacks. First, the user of the
database needs to either profile the workloads or manually spec-
ify what data to replicate—a daunting task in a rapidly evolving
database. Second, when the DBMS updates data that is replicated,
all servers holding replicas are notified to maintain consistency,
which is complex and adds performance overhead. Third, full-table
replication increases memory footprint, which is problematic if the
replicated table is large.

Caching is a more flexible solution to leverage hot data. Specif-
ically, the DBMS decides to cache remote data in a server’s local
memory without user intervention. A query that reads data from
its local cache does not contact the remote server, thus reducing
both network latency and traffic. The key challenge in a caching
protocol is to maintain cache coherence (i.e., to avoid a machine
reading stale cached data). Cache coherence is a classic problem in
parallel computing and much prior work exists in different research
fields including multicore and multi-socket processors [6, 42, 56],
distributed shared memory systems [27, 31], distributed file sys-
tems [24], and databases [5, 23, 39]. In traditional DBMSs, caching
and concurrency control are two separate layers; and both of them
are notoriously hard to design and to verify [43]. In Section 4, we
demonstrate how Sundial merges concurrency control and cache
coherence into a single lightweight protocol with the help of logical
leases.

2.4 Integrating Concurrency Control and
Cache Coherence

The integration of concurrency control and cache coherence have
also been studied in the context of data sharing systems [40]. Ex-
amples include IBM DB2 [26], Oracle RAC [13], Oracle Rdb [33],
and the more recent Microsoft Hyder [10]. In these systems, servers
in the cluster share the storage (i.e., shared disk architecture). Each
server can access all the data in the database, and cache recently
accessed data in a local buffer. A cache coherence protocol ensures
the freshness of data in caches.

Sundial is different from data sharing systems in two aspects.
First, Sundial is built on top of a shared-nothing architecture, and
thus scales better than a data sharing system, which uses a shared
disk. Second, existing data sharing systems typically use 2PL for
concurrency control; the coherence protocol is also based on lock-
ing. By contrast, Sundial uses logical leases for both concurrency
control and cache coherence, which reduces protocol complexity
and increases concurrency (Section 4).

Another related system is G-Store [17], which supports transac-
tional multi-key access over a key-value store. Before a transaction
starts, the server initiates a grouping protocol to collect the exclusive
ownership of keys that the transaction will access; after the trans-
action completes, the ownership is returned back. The grouping
protocol has two downsides: (1) it requires the DBMS to know what
keys a transaction will access before executing the transaction, and
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Figure 1: Logical Lease Example – Schedule of two transactions, T1 and
T2, accessing tuples A, B, C, and D. T1’s and T2’s operations are shadowed in
light yellow and dark green, respectively. Since the logical timestamps are
discrete, we represent each timestamp as an interval in the figure.

(2) it does not allow multiple transactions to read the same key con-
currently. These problems do not exist in Sundial, which supports
dynamic working sets and concurrent reads.

3. SUNDIAL CONCURRENCY CONTROL
This section presents the Sundial distributed concurrency control

protocol in detail. Our discussion assumes a homogeneous cluster
of servers connected through a local area network (LAN). Data is
partitioned across servers. Each tuple is mapped to a home server
that can initiate a transaction on behalf of an external user, as well
as process remote queries on behalf of peer servers. The server
initiating the transaction is called the coordinator of the transaction;
other servers involved in a transaction are called participants.

3.1 Logical Leases
Logical leases are based on logical time, and specifies a par-

tial logical order among concurrent operations. A logical lease is
attached to each data element, represented using two 64-bit times-
tamps, wts and rts. wts is the logical time when the tuple was last
written; rts is the end of the lease, meaning that the tuple can be read
at logical time ts such that wts ≤ ts ≤ rts. A transaction writes to
a tuple only after the current lease expires, namely, at a timestamp
no less than rts + 1. Since leases are logical in Sundial, the writing
transaction does not ‘wait’ in physical time for a lease to expire—it
simply jumps ahead in logical time.

To achieve serializability, the DBMS computes a single commit
timestamp for a transaction T , which is a logical time that falls
within the leases of all tuples the transaction accesses. Namely,
for all tuples accessed by T , tuple.wts ≤ T .commit_ts ≤ tuple.rts.
From the perspective of logical time, T ’s operations are atomically
performed at the commit timestamp. The DBMS calculates this
commit timestamp using only the leases of tuples accessed by the
transaction and thus no inter-transaction coordination is required.

Figure 1 shows an example illustrating the high-level idea of
Sundial concurrency control. The DBMS executes two transactions,
T1 and T2. T1 reads tuples A and B with logical leases [0, 1] and [1,
2], respectively; T1 also writes to D and creates a new lease of [1, 1]
for the new data. T1 commits at timestamp 1 as it overlaps with all
the leases that T1 accesses.

T2 writes to A, and creates a new lease of [2, 2]. It also reads C at
[3, 3]. These two leases, however, do not overlap. In this case, the
DBMS extends the end of the lease on A from 2 to 3 such that both
operations performed by T2 are valid at timestamp 3. If the lease
extension succeeds, namely, no other transaction in the system has
written to A at timestamp 3, the DBMS commits T2 at timestamp 3.
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Figure 2: Read-Write Conflict Example – Example schedule of two trans-
actions with a read-write conflict in 2PL, OCC, and Sundial.

Note that in this example, when T1 commits, T2 has already
modified A, which was read by T1. However, this does not cause T1
to abort as in traditional OCC protocols, because Sundial serializes
transactions in logical rather than physical time order. The physical
and logical commit orders can differ, as shown in the example—
although T1 commits after T2 in physical time order, T1 commits
with a smaller logical timestamp. This time traveling feature of
Sundial allows the DBMS to dynamically determine a transaction’s
commit timestamp, which avoids some unnecessary aborts due to
read-write conflicts and results in lower abort rate.

3.2 Conflict Handling
Sundial uses different methods to resolve different types of con-

flicts between transactions. Such hybrid schemes have also been
proposed before in both databases [18, 44] and software transac-
tional memory [19].

Sundial handles write-write conflicts using pessimistic 2PL. We
made this choice because many writes are read-modify-writes, and
two such updates to the same tuple always conflict (unless the
DBMS exploits semantic information like commutativity); handling
such conflicts using OCC causes all but one of the conflicting trans-
actions to abort. In contrast, Sundial handles read-write conflicts
using OCC instead of 2PL to achieve higher concurrency. This
prevents transactions from waiting for locks during execution. More
importantly, this allows the DBMS to dynamically adjust the com-
mit order of transactions to reduce aborts, using the technique of
logical leases discussed in Section 3.1.

Figure 2 shows an example to illustrate the difference between
2PL, traditional OCC, and Sundial in handling read-write conflicts.
In 2PL, the DBMS locks a tuple before transaction T1 reads it. This
lock blocks transaction T2 from writing to the same tuple, which
increases the execution time of T2. In a traditional OCC protocol, a
transaction does not hold locks during its normal execution. There-
fore, T2 commits before T1 and updates tuple A in the database.
When T1 tries to commit, A has been changed since the last time T1
reads it. The DBMS then aborts T1 due to this data conflict.

In this example, aborting T1 is unnecessary because there exists a
logical commit order (i.e., T1 commits before T2) between the two
transactions that maintains serializability. Sundial is able to identify
this order using logical leases. Specifically, T1 reads a version of A
with a lease [0, 10], and commits at a timestamp within that lease
(e.g. timestamp 0). T2 writes to A with a new lease of [11, 11], and
therefore commits at timestamp 11. Although T1 made the commit
decision after T2 in physical time order, both transactions are able
to commit and T1 commits before T2 in logical time order.

3.3 Protocol Phases
The lifecycle of a distributed transaction in Sundial is shown in

Figure 3, which consists of three phases: (1) execution, (2) prepare,
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Figure 3: The lifecycle for a Distributed Transaction – A distributed
transaction goes through the execution phase and two-phase commit (2PC)
which contains the prepare and commit phases.

and (3) commit. The coordinator initiates a new transaction after
receiving a request from a user application. In the first phase (exe-
cution), the coordinator executes the transaction’s logic and sends
requests to participants of the transaction. When the transaction
completes the execution phase, the coordinator begins two-phase
commit (2PC). In the prepare phase, the first phase in 2PC, the coor-
dinator sends a prepare request to each participant involved in the
transaction (i.e., the servers that were accessed during the execution
phase). Each participant responds with either OK or ABORT. If all par-
ticipants (including the coordinator) agree that the transaction can
commit, then the transaction enters the final (commit) phase, where
the coordinator sends a message to each participant to complete the
transaction. Otherwise, the DBMS aborts the transaction and rolls
back its modifications. To ensure that a transaction’s modifications
persist after a server/network failure, the DBMS performs logging
at each server at different points during the 2PC protocol (shown as
* in Figure 3).

In Sundial, the wts of a lease changes only when the tuple is
updated during the commit phase of a transaction; the rts of a lease
changes only in the prepare or commit phases. Both the wts and rts
of a tuple can only increase but never decrease. During the three
phases, the DBMS may coordinate the participants to calculate a
transaction’s commit timestamp or to extend logical leases. The
DBMS piggybacks timestamp-related information in its normal
runtime messages. We now describe the logic of each phase in more
detail.

3.3.1 Execution Phase
During the execution phase, a transaction reads and writes tuples

in the database and performs computation. Each tuple contains a
logical lease (i.e., wts and rts). Sundial handles write-write conflicts
using the 2PL Wait-Die algorithm [9]. Therefore, the DBMS also
maintains the current lock owner and a waiting list of transactions
waiting for the lock. Each tuple has the following format, where DB
is the database and DB[key] represents the tuple that has key as its
primary key:

DB[key] = {wts, rts, owner, waitlist, data}

Sundial handles read-write conflicts using OCC, and thereby the
DBMS maintains the read set (RS) and the write set (WS) of each
transaction. The data structure of the two sets are shown below.
The data field contains a local copy of the database tuple that the
transaction reads (in RS) or writes (in WS).

RS[key] = {wts, rts, data}, WS[key] = {data}

Algorithm 1: Execution Phase of Transaction T –
T.commit_ts is initialized to 0 when T begins. Caching re-
lated code is highlighted in gray (cf. Section 4).

1 Function read(T, key)
2 if key ∈ T.WS:
3 return WS[key].data
4 elif key ∈ T.RS:
5 return RS[key].data
6 else:
7 if key ∈ Cache and Cache.decide_read():
8 T.RS[key].{wts, rts, data} = Cache[key].{wts, rts, data}
9 else:

10 n = get_home_node(key)
11 # read_data() atomically reads wts, rts, and data and

return them back
12 T.RS[key].{wts, rts, data} = RPCn::read_data(key)
13 Cache[key].{wts, rts, data} = T.RS[key].{wts, rts, data}
14 T.commit_ts = Max(T.commit_ts, T.RS[key].wts)
15 return RS[key].data

16 Function write(T, key, data)
17 if key 6∈ T.WS:
18 n = get_home_node(key)
19 # lock() tries to lock the tuple DB[key]; if locking is successful,

it returns wts and rts of the locked tuple
20 {success, wts, rts} = RPCn::lock(key)
21 if not success or (key ∈ T.RS and wts 6= T.RS[key].wts):
22 Abort(T)
23 else:
24 T.commit_ts = Max(T.commit_ts, rts + 1)
25 T.WS[key].data = data

Algorithm 1 shows the logic for read and write requests. The
code shadowed in gray is related to caching and will be explained
in Section 4.

For a read request, if the requested tuple is already in transaction
T’s read or write set, the DBMS simply returns the data (lines 2–5).
Otherwise, the DBMS sends a remote procedure call (RPCn) to
the home server n of the tuple, which atomically reads the wts, rts,
and data of the tuple and returns them to the coordinator’s read set
(lines 10–12). The coordinator then updates T.commit_ts to be at
least the wts of the tuple (line 14), reflecting that T’s logical commit
time must be no earlier than the logical time when the tuple was last
written. Finally, the data is returned (line 15).

For a write operation, if the tuple is already in T’s write set,
the DBMS simply updates the local data in the write set (line 17,
25). Otherwise, the DBMS locks the tuple by issuing an RPC
to its home server (lines 18–20). The RPC returns whether the
lock acquisition succeeds, and if so, the wts and rts of the locked
tuple. If locking fails, or if the locked key exists in the read set but
the returned wts does not match the wts in the read set, then the
transaction aborts (line 22). Otherwise, the DBMS advances the
transaction’s commit_ts to rts + 1 (line 24), and updates the data in
the write set (line 25). Note that during the execution phase of T ,
other transactions cannot read tuples in T’s write set—they become
visible only after T commits (Section 3.3.3).

An important feature of Sundial is that a transaction reading a
tuple does not block another transaction writing the same tuple (and
vice versa). If a tuple is locked, a reading transaction still reads
the data of the tuple, with its associated logical lease. The commit
timestamp of the reading transaction will be smaller than the commit
timestamp of the transaction holding the lock. But both transactions
are able to commit as long as they both find commit timestamps
satisfying their leases.
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Algorithm 2: Prepare Phase of Transaction T – vali-
date_read_set() is executed at the coordinator; renew_lease()
is executed at the participants.

1 Function validate_read_set(T)
2 for key ∈ T.RS.keys() \ T.WS.keys():
3 if commit_ts > T.RS[key].rts:
4 n = get_home_node(key)
5 # Extend rts at the home server
6 resp = RPCn::renew_lease(key, wts, commit_ts)
7 if resp == ABORT:
8 Cache.remove(key)
9 return ABORT

10 return COMMIT

11 # renew_lease() must be executed atomically
12 Function renew_lease(key, wts, commit_ts)
13 if wts 6= DB[key].wts or (commit_ts > DB[key].rts and

DB[key].is_locked()):
14 return ABORT
15 else:
16 DB[key].rts = Max(DB[key].rts, commit_ts)
17 return OK

3.3.2 Prepare Phase
The goal of the prepare phase is for the DBMS to determine

whether all the reads and writes of a transaction are valid at the
calculated commit_ts. Algorithm 2 shows the logic that the DBMS
performs during the prepare phase; validate_read_set() is executed
at the coordinator, which calls renew_lease() at the participants.

Since all tuples in the write set are already locked, the DBMS
only validates tuples that are read but not written. For each key in
transaction T’s read set but not the write set (line 2), if T.commit_ts
is within the lease of the tuple (i.e., tuple.wts ≤ T.commit_ts ≤
tuple.rts1), then the read is already valid and nothing needs to be
done (line 3). Otherwise, an RPC is sent to the tuple’s home server
to renew its lease (lines 4–6). The transaction aborts if the lease
renewal fails (line 9).

A participant executes renew_lease() to perform lease renewal.
If the current wts of the tuple is different from the wts observed
by the transaction during the execution phase, or if the extension
is required but the tuple is locked by a different transaction, then
the DBMS cannot extend the lease and ABORT is returned to the
coordinator (lines 13–14). Otherwise, the DBMS extends the lease
by updating the tuple’s rts to at least commit_ts (line 16). In Sundial,
lease extension is the only way to change a tuple’s rts. Both wts and
rts of each tuple can only increase but never decrease.

3.3.3 Commit Phase
During the commit phase, the DBMS either commits the trans-

action by copying all the writes from the write set to the database
and releasing the locks, or aborts the transaction by simply releasing
the locks. Algorithm 3 shows the functions that the coordinator
executes. If a lock acquisition fails in the execution phase, or if the
validate_read_set() returns ABORT, abort() is executed, otherwise,
commit() is executed.

The DBMS does not perform any additional operations on a
transaction’s read set during the commit phase. Therefore, if a
transaction does not write to any tuple at a participant, the DBMS
skips the commit phase at that participant. Sundial applies this small
optimization to reduce network traffic.

1Note that tuple.wts ≤ T.commit_ts must be true due to the way T.commit_ts was
updated during the execution phase (see Algorithm 1, lines 14 and 24).

Algorithm 3: Commit Phase of transaction T – The
DBMS either commits or aborts the transaction.

1 Function commit(T)
2 for key ∈ T.WS.keys():
3 n = get_home_node(key)
4 RPCn::update_and_unlock(key, T.WS[key].data, T.commit_ts)
5 Cache[key].wts = Cache[key].rts = T.commit_ts
6 Cache[key].data = T.WS[key].data

7 Function abort(T)
8 for key ∈ T.WS.keys():
9 n = get_home_node(key)

10 # unlock() releases the lock on DB[key]
11 RPCn::unlock(key)

12 Function update_and_unlock(key, data, commit_ts)
13 DB[key].data = data
14 DB[key].wts = DB[key].rts = commit_ts
15 unlock(DB[key])

[11,11][0,10]

Step1: T1 reads @TS=0
Step2: T2 inserts  @TS=11

……

(a) Hash Index

Step1: T1 scans    @TS=0
Step2: T2 inserts @ TS=11

[11,11][0,10]
LN1 LN2

[0,5]

…

(b) B+tree Index

Figure 4: Concurrent Index Read/Scan and Insertion in Sundial – Log-
ical leases are embedded into the leaf nodes of a B+tree index to enable high
concurrency in index accesses.

3.4 Indexes and Phantom Reads
Beyond regular reads and writes, indexes must support inserts

and deletes. As a result, an index requires extra concurrency control
mechanisms for correctness. Specifically, a phantom read occurs
if a transaction reads a set of tuples twice using an index but gets
different sets of results due to another transaction’s inserts or deletes
to the set. Serializability does not permit phantom reads. This
section discusses how Sundial avoids phantom reads.

By treating inserts and deletes as writes to index nodes, and
lookups or scans as reads to index nodes, the basic Sundial protocol
can be extended to handle index accesses. This way, each index
node (e.g., a leaf node in a B+tree index or a bucket in a hash
index) can be treated as a regular tuple and the protocol discussed in
Section 3.3 can be applied to indexes. The logical leases can also be
maintained at a finer granularity (e.g., each pointer in the leaf node
or each block in a bucket) to avoid unnecessary aborts due to false
sharing; in Sundial, we attach a logical lease to each index node. In
order to ensure that multiple index lookups/scans to the same index
node return consistent results, later accesses must verify that the
index node’s version has not changed.

Figure 4 shows two examples of transactions concurrently access-
ing a hash index (Figure 4a) and a B+tree index (Figure 4b). In the
hash index example, T1 reads all the tuples mapped to a given bucket
with a lease of [0, 10]. T2 then inserts a tuple into the same bucket,
and updates the lease on the bucket to [11, 11]. T1 and T2 have a
read-write conflict but do not block each other; both transactions can
commit if each finds a commit timestamp satisfying all the accessed
leases.

In the B+tree index example, T1 performs a scan that touches
two leaf nodes, LN1 and LN2, and records their logical leases ([0,
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10] and [0, 5]). After the scan completes, T2 inserts a new key into
LN1. When T2 commits, it updates the contents of LN1, as well as
its logical lease to [11, 11]. Similar to the hash index example, both
T1 and T2 may commit and T1 commits before T2 in logical time
order. Thus, concurrent scans and inserts need not cause aborts.

3.5 Fault Tolerance
Sundial tolerates single- and multi-server failures through the

two-phase commit (2PC) protocol, where the coordinator and partic-
ipants log to persistent storage before sending out certain messages
(Figure 3). The logical leases in Sundial require special treatment
during 2PC: failing to properly log logical leases can lead to non-
serializable schedules, as shown by the example in Listing 1.

The example contains two transactions (T1 and T2) accessing two
tuples, A and B, that are stored in servers 1 and 2, respectively. When
server 2 recovers after crashing, the logical leases of tuples mapped
to server 2 (i.e., tuple B) are reset to [0, 0]. As a result, the DBMS
commits T1 at timestamp 0, since the leases of tuples accessed by
T1 (i.e., A of [0, 9] and B of [0, 0]) overlap at 0. This execution,
however, violates serializability since T1 observes T2’s write to B
but not its write to A. This violation occurs because the logical lease
on B is lost and reset to [0, 0] after server 2 recovers from crash. If
server 2 had not crashed, T1’s read of B would return a lease starting
at timestamp 10, causing T1 to abort due to non-overlapping leases
and a failed lease extension.

Listing 1: Serializability violation when logical leases are not logged –
Tuples A and B are stored in servers 1 and 2, respectively

T1 R(A) lease [0, 9]
T2 W(A), W(B), commit @ TS=10
Server 2 crashes
Server 2 recovers
T1 R(B) lease [0, 0]

One simple solution to solve the problem above is to log logical
leases whenever they change, and restore them after recovery. This,
however, incurs too much writing to persistent storage since even a
read operation may extend a lease, causing a write to the log.

We observe that instead of logging every lease change, the DBMS
can log only an upper-bound timestamp (UT) that is greater than the
end time of all the leases on the server. After recovery, all the leases
on the server are set to [UT, UT]. This guarantees that a future read
to a recovered tuple occurs at a timestamp after the wts of the tuple,
which is no greater than UT. In the example shown in Listing 1,
T1’s read of B returns a lease of [UT, UT] where UT is greater than or
equal to 10. This causes T1 to abort due to non-overlapping leases.
Note that UT can be a loose upper bound of leases. This reduces the
storage and logging overhead of UT since it is logged only when the
maximum lease exceeds the last logged UT.

4. SUNDIAL DATA CACHING
Caching a remote partition’s data in a server’s local main memory

can reduce the latency and network traffic of distributed transactions,
because reads that hit the local cache do not contact the remote
server. Caching, however, causes data replication across servers; it
is a challenging task to keep all the replicas up to date when some
data is updated, a problem known as cache coherence [7]. Due
to the complexity of maintaining coherence, existing distributed
DBMSs rarely allow data to be cached across multiple servers. As
we now present, Sundial’s logical leases enable such data caching by
integrating concurrency control and caching into a single protocol.

Figure 5 shows an overview of Sundial’s caching architecture in a
DBMS. The system only caches tuples for reads and a write request
updates both the tuple at the home server and the locally cached
copy. For a read query, the DBMS always checks the coordinator’s

cache
miss

DBMS Cache
read
request

request to 
remote server

…

Banks

metadata 
(LRU, index, etc) tuples

response
from cache

response from 
remote server 

cache
hit

Figure 5: Caching Architecture – The cache is at the network side, con-
taining multiple banks with LRU replacement.

local cache. For a hit, the DBMS decides to either read the cached
tuple or ignore it and send a query to the tuple’s home server. Later
in Section 4.2, we will show that this decision depends on the
workloads.

To avoid centralized bottlenecks, Sundial organizes the cache into
multiple banks. A tuple’s bank is determined by hashing its primary
key. Each bank maintains the metadata for the tuples it contains
using a small index. When the bank is full, tuples are replaced
following a least-recently-used (LRU) policy.

4.1 Cache Coherence with Logical Leases
In a system where data can be cached at multiple locations, a

cache coherence protocol enforces that the value at each location is
always up-to-date; namely, when one copy is updated, the change
must propagate to all the copies. Existing coherence protocols either
(1) require an invalidation mechanism to update or delete all the
shared copies, or (2) check the data freshness by contacting the
home server for each read request.

The downside of the invalidation-based approach is the complex-
ity and the performance overhead of broadcasting each tuple update.
The downside of the checking approach is that each read request
incurs the round-trip latency (although data is not transferred if the
cached copy is up-to-date), reducing some of the benefits of caching.

The caching mechanism in Sundial is a variant of the checking
approach mentioned above. However, instead of checking freshness
for each read request, the use of logical leases reduces the number
of checks. Specifically, a transaction can read a cached tuple as long
as its commit_ts falls within the lease of the tuple, even if the tuple
has been changed at the home server—the transaction reading the
“stale” cached copy can still be serializable with respect to other
transactions in logical time order. In this sense, Sundial relaxes the
requirement of cache coherence: there is no need to enforce that all
cached copies are up-to-date, only that serializability is enforced.
Logical leases provide a simple way to check serializability given
the read and write sets of a transaction, regardless of whether the
reads come from the cache or not.

Supporting caching requires a few changes to the protocol pre-
sented so far (Section 3.3); they are shadowed in gray in Algorithms
1−3. During the execution phase, a remote read request checks the
cache (Algorithm 1, lines 7–8) and either reads from the cache (Sec-
tion 4.2) or requests the home server home server (line 13). In the
validation phase, if a lease extension fails, the tuple is removed from
the cache to prevent repeated failures in the future (Algorithm 2,
line 8). Finally, if a transaction commits, it updates the data copies
in both the home server and the local cache (Algorithm 3, lines 5–6).
These are relatively small protocol changes.

The caching mechanism discussed so far works for primary key
lookups using an equality predicate. But the same technique can
also be applied to range scans or secondary index lookups. Since
the index nodes also contain leases, the DBMS caches the index
nodes in the same way it caches tuples.
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4.2 Caching Policies
We now discuss different ways to manage the cache at each server

and their corresponding tradeoffs.
Always Reuse: This is the simplest approach, where the DBMS

always returns the cached tuple to the transaction for each cache hit.
This works well for read-intensive tuples, but can hurt performance
for tuples that are frequently modified. If a cached tuple has an
old lease, it is possible that the tuple has already been modified by
another transaction at the home server. In this case, a transaction
reading the scale cached tuple may fail to extend the lease of that
tuple, which causes the transaction to abort. These kinds of aborts
can be avoided if the locally cached stale data is not used in the first
place.

Always Request: An alternative policy is where the DBMS al-
ways sends a request to the remote server to retrieve the tuple, even
for a cache hit. In this case, caching does not reduce latency but
may reduce network traffic. For a cache hit, the DBMS sends a
request to a remote server. The request contains the key and the
wts of the tuple that is being requested. At the home server, if the
tuple’s wts equals the wts in the request, the tuple cached in the
requesting server is the latest version. In this case, the DBMS does
not return the data in the response, but just an acknowledgment that
the cached version is up-to-date. Since data comprises the main part
of a message, this reduces the total amount of network traffic.

Hybrid: Always Reuse works best for read-intensive workloads,
while Always Request works best for write-intensive workloads.
Sundial uses a hybrid caching policy that achieves the best of both.
At each server, the DBMS maintains two counters to decide when
it is beneficial to read from the cache. The counter vote_cache is
incremented when a tuple appears up-to-date after a remote check, or
when a cached tuple experiences a successful lease extension. The
counter vote_remote is incremented when a remote check returns
a different version or when a cached tuple fails a lease extension.
The DBMS uses Always Reuse when the ratio between vote_cache
and vote_remote is high (we found 0.8 to be a good threshold), and
Always Request otherwise.

4.3 Read-Only Table Optimizations
Care is required when the logical lease of a cached tuple is smaller

than a transaction’s commit_ts. In this case, the DBMS has to extend
the tuple’s lease at its home server. Frequent lease extensions may
be unnecessary, but hurt performance. The problem is particularly
prominent for read-only tables, which in theory do not require lease
extension. We now describe two techniques to reduce the number
of lease extensions for read-only tables. The DBMS can enable
both optimizations at the same time. We evaluate their efficacy in
Section 6.4.1.

The first optimization tracks and extends leases at table granularity
to amortize the cost of lease extensions. The DBMS can tell that
a table is read-only or read-intensive because it has a large ratio
between reads and writes. For each table, the DBMS maintains a
tab_wts that represents the largest wts of all its tuples. The DBMS
updates a table’s tab_wts when a tuple has greater wts. A read-only
table also maintains tab_rts, which means all tuples in the table
are extended to tab_rts automatically. If any tuple is modified, its
new wts becomes Max(rts +1, tab_rts +1, wts). When the DBMS
requests a lease extension for a tuple in a read-only table, the DBMS
extends all the leases in the table by advancing tab_rts. The tab_rts
is returned to the requesting server’s cache. A cache hit of a tuple in
that table considers the lease to be [wts, Max(tab_rts, rts)].

Another technique to amortize lease extension costs is to specula-
tively extend the lease to a larger timestamp than what a transaction

Logical Time

T.RS[key] DB[key]
wts rts wts rts

commit_ts

Case (a): T.RS[key].rts < T.commit_ts
DB[key].wts > T.commit_ts

Case (b): DB[key].wts ≤ commit_ts T.RS[key] DB[key]
wts rts wts rts

Case (c): Locked by another transaction T.RS[key]
wts rts

Figure 6: Transaction Aborts due to Read-Write Conflicts – Three cases
where the DBMS aborts a transaction in Sundial due to read-write conflicts.

requires. Instead of extending the rts (or tab_rts) to the commit_ts
of the requesting transaction, Sundial extends rts to commit_ts +
δ for presumed read-only tables. Initially being 0, δ is incremen-
tally increased over time as the DBMS gains more information that
the table is indeed read-only. This reduces the frequency of lease
extensions since it takes longer time for an extended lease to expire.

5. DISCUSSION
We now discuss the types of transaction aborts in Sundial (Sec-

tion 5.1), quantitatively compare Sundial with MaaT (Section 5.2),
and describe some limitations of Sundial (Section 5.3).

5.1 Transaction Aborts
As described in Section 3.2, it is difficult for a DBMS to avoid

transaction aborts due to write-write conflicts. Therefore, we focus
our discussion on aborts caused by read-write conflicts.

In Sundial, a transaction T must satisfy the following two condi-
tions in order to commit:

T.commit_ts ≥ tuple.wts, ∀tuple ∈ T.RS ∪ T.WS (1)
T.commit_ts ≤ tuple.rts, ∀tuple ∈ T.RS (2)

Condition (1) is always satisfied since commit_ts is no less than
the wts of a tuple when it is read by a transaction (Algorithm 1)
and that each write locks the tuple to prevent it from being changed
by another transaction. Therefore, during the prepare phase, the
DBMS can abort a transaction only if it fails Condition (2), i.e.,
the transaction fails to extend a lease since the tuple was locked
or modified by another transaction (Algorithm 2). There are three
scenarios where a transaction T fails Condition (2), which Figure 6
illustrates:

Case (a): The tuple’s wts in the database is greater than or
equal to T’s commit_ts. The DBMS must abort T because it is
unknown whether or not the version read by T is still valid at T’s
commit_ts. It is possible that another transaction modified the tuple
after T.RS[key].rts but before commit_ts, in which case the DBMS
has to abort T . But it is also possible that no such transaction ex-
ists such that the version in T’s read set is still valid at commit_ts
and thus T can commit. This uncertainty could be resolved by
maintaining a history of recent wts’s in each tuple [53].

Case (b): Another transaction already wrote the latest version
of the tuple to the database before T’s commit_ts. The DBMS is
therefore unable to extend the lease of the transaction’s local version
to commit_ts. As such, the DBMS has to abort T .

Case (c): Lastly, the DBMS is unable to extend the tuple’s rts
because another transaction holds the lock for it. Again, this will
cause the DBMS to abort T .

For the second and third conditions, Sundial can potentially avoid
the aborts if the DBMS extends the tuple’s lease during the execu-
tion phase. This reduces the number of renewals during the prepare
phase, thereby leading to fewer aborts. But speculatively extend-
ing the leases also causes the transactions that update the tuple to
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jump further ahead in logical time, leading to more extensions and
potential aborts. We defer the exploration of these optimizations in
Sundial to future work.

5.2 Sundial vs. MaaT
Similar to Sundial, previous concurrency control protocols have

also used timestamp ranges to dynamically determine the transac-
tions’ logical commit timestamps. The technique, first proposed
as dynamic timestamp allocation (DTA), was applied to both 2PL
protocols for deadlock detection [8] and OCC protocols [12, 29,
30]. More recently, similar techniques have been applied to multi-
version concurrency control protocols [34], as well as to MaaT, a
single-version distributed concurrency control protocol [35].

In all these protocols, the DBMS assigns each transaction a times-
tamp range (e.g., 0 to∞) when the transaction starts. After detecting
a conflict, the DBMS shrinks the timestamp ranges of transactions
in conflict such that their ranges do not overlap. If a transaction’s
timestamp range is not empty when it commits, the DBMS can pick
any timestamp (in practice, the smallest timestamp) within its range
as the commit timestamp; otherwise the transaction aborts.

Timestamp-range-based protocols have one fundamental draw-
back: they require the DBMS to explicitly coordinate transactions to
shrink their timestamp ranges when a conflict occurs. In a distributed
setting, they incur higher overhead than Sundial.

We use MaaT [35], a distributed DTA-based concurrency control
protocol, as an example to illustrate the problem. In MaaT, the
DBMS assigns a transaction with the initial timestamp range of [0,
+∞]. The DBMS maintains the range at each server accessed by
the transaction. When a transaction begins the validation phase,
the DBMS determines whether the intersection of a transaction’s
timestamp ranges across servers is empty or not. To prevent other
transactions from changing the validating transaction’s timestamp
range, the DBMS freezes the timestamp range at each participating
server. Many transactions, however, have ranges with an upper
bound of +∞. Therefore, after the DBMS freezes these ranges
in the prepare phase, it must abort any transaction that tries to
change the frozen timestamp ranges, namely, transactions that con-
flict with the validating transaction. This problem also exists in
other timestamp-range-based protocols. Section 6 shows that these
aborts degrade the performance of MaaT.

5.3 Limitations of Sundial
As discussed above, the two advantages of Sundial are (1) im-

proving concurrency in distributed transaction processing, and (2)
lightweight caching to reduce the overhead of remote reads. Sun-
dial also has some limitations, which we now discuss, along with
potential solutions to mitigate them.

First, Sundial requires extra storage to maintain the logical leases
for each tuple. Although this storage overhead is negligible for large
tuples, which is the case for workloads evaluated in this paper, it
can be significant for small tuples. One way to reduce this overhead
is for the DBMS to maintain the tuples’ logical leases in a separate
lease table. The DBMS maintains leases in this table only for
tuples that are actively accessed. The leases of all ‘cold’ tuples are
represented using a single (cold_wts, cold_rts). When a transaction
accesses a cold tuple, the DBMS inserts an entry for it to the lease
table with its lease assigned as (cold_wts, cold_rts). When a tuple
with (wts, rts) is deleted from the lease table (e.g., due to insufficient
space), the DBMS updates cold_wts and cold_rts to Max(cold_wts,
wts) and Max(cold_rts, rts), respectively.

The second issue is that Sundial may not deliver the best perfor-
mance for partitionable workloads. Sundial does not assume that the
workload can be partitioned and thus does not have special optimiza-

tions for partitioning. Systems like H-Store [2] perform better in this
setting. Our experiments show that if each transaction only accesses
its local partition, Sundial performs 3.8× worse than a protocol
optimized for partitioning. But our protocol handles distributed (i.e.,
multi-partition) transactions better than the H-Store approaches.

Finally, the caching mechanism in Sundial is not as effective if the
remote data read by transactions is frequently updated. This means
the cached data is often stale and transactions that read cached data
may incur extra aborts. A more detailed discussion can be found in
Section 6.4.

6. EXPERIMENTAL EVALUATION
We now evaluate the performance of Sundial. We implemented

Sundial in a distributed DBMS testbed based on the DBx1000 in-
memory DBMS [51]. We have open-sourced Sundial and made it
available at https://github.com/yxymit/Sundial.git.

Each server in the system has one input and one output thread for
inter-server communication. The DBMS designates all other threads
as workers that communicate with the input/output threads through
asynchronous buffers. Workload drivers submit transaction requests
in a blocking manner, with one open transaction per worker thread.

At runtime, the DBMS puts transactions that abort due to con-
tention (e.g., lock acquisition failure, validation failure) into an abort
buffer. It then restarts these transactions after a small back-off time
randomly selected between 0–1 ms. The DBMS does not restart
transactions caused by user-initiated aborts.

Most of the experiments are performed on a cluster of four servers
running Ubuntu 14.04. Each server contains two Intel Xeon E5-
2670 CPUs (8 cores × 2 HT) and 64 GB DRAM. The servers are
connected together with a 10 Gigabit Ethernet. For the datacenter
experiments in Section 6.7, we use the Amazon EC2 platform. For
each experiment, the DBMS runs for a warm-up period of 30s, and
then results are collected for the next 30s of the run. We also ran
the experiments for longer time but the performance numbers are
not different from the 1 minute runs. We assume the DBMS logs to
battery-backed DRAM.

6.1 Workloads
We use two different OLTP workloads to evaluate the perfor-

mance of concurrency control protocols. All transactions are exe-
cuted as stored procedures that contain program logic intermixed
with queries. We implement hash indexes since our workloads do
not require table scans.

YCSB: The Yahoo! Cloud Serving Benchmark [14] is a synthetic
benchmark modeled after cloud services. It contains a single table
that is partitioned across servers in a round-robin fashion. Each
partition contains 10 GB data with 1 KB tuples. Each transaction
accesses 16 tuples as a mixture of reads (90%) and writes (10%)
with on average 10% of the accesses being remote (selected uni-
formly at random). The queries access tuples following a power law
distribution controlled by a parameter (θ). By default, we use θ=0.9,
which means that 75% of all accesses go to 10% of hot data.

TPC-C: This is the standard benchmark for evaluating the per-
formance of OLTP DBMSs [45]. It models a warehouse-centric
order processing application that contains five transaction types. All
the tables except ITEM are partitioned based on the warehouse ID.
By default, the ITEM table is replicated at each server. We use a
single warehouse per server to model high contention. Each ware-
house contains 100 MB of data. For all the five transactions, 10%
of NEW-ORDER and 15% of PAYMENT transactions access data across
multiple servers; other transactions access data on a single server.
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Figure 7: Performance Comparison (YCSB) – Runtime measurements when running the concurrency control algorithms for the YCSB workload. The
latency and traffic breakdown are measured on a single server in the cluster with 16 threads.
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Figure 8: Performance Comparison (TPC-C) – Runtime measurements when running the concurrency control algorithms for the TPC-C workload. The
latency and traffic breakdown are measured on a single server in the cluster with 16 threads.

6.2 Concurrency Control Algorithms
We implemented the following concurrency control algorithms in

our testbed. All the codes are available online.

2PL: We used a deadlock prevention variant of 2PL called Wait-
Die [9]. A transaction waits for a lock only if its priority is higher
than the current lock owner; otherwise the DBMS will abort it. We
used the current wall clock time attached with the thread id as the
metric of priority. This algorithm is similar to the approach that
Google Spanner [15] used for read-write transactions.

Google F1: This is an OCC-based algorithm used in Google’s
F1 DBMS [41]. During the read-only execution phase, the DBMS
tracks a transaction’s read and write set. When the transaction begins
the commit process, the DBMS locks all of the tuples accessed by
the transaction. The DBMS aborts the transaction if it fails to acquire
any of these locks or if the latest version of any tuple is different
from the version that the transaction saw during its execution.

MaaT: This is a state-of-the-art distributed concurrency control
protocol discussed in Section 5.2 [35]. We integrated the original
MaaT source code into our testbed. We also improved the MaaT
implementation by (1) reducing unnecessary network messages, (2)
adding multi-threading support to the original single-thread-per-
partition design of MaaT, and (3) improving its garbage collection.

Sundial: This is our proposed protocol as described in Sections 3
and 4. We enabled all of Sundial’s caching optimizations from
Section 4 unless otherwise stated. Each server maintains a local
cache of 1 GB. Sundial by default uses the hybrid caching policy.

6.3 Performance Comparison
We perform our experiments using four servers. For each work-

load, we report throughput as we sweep the number of worker
threads from 1 to 28. After 28 threads, the DBMS’s performance
drops due to increased context switching. To measure the benefit of
Sundial’s caching scheme, We run Sundial with and without caching
enabled. In addition to throughput measurements, we also provide
a breakdown of transactions’ latency measurements and network
traffic. These metrics are divided into Sundial’s three phases (i.e.,
execution, prepare, and commit), and when the DBMS aborts a
transaction.

The results in Figures 7a and 8a show that Sundial outperforms
the best evaluated baseline algorithm (i.e., 2PL) by 57% in YCSB
and 34% in TPC-C. Caching does not improve performance in these
workloads in the current configuration. For YCSB, this is because
the fraction of write queries per transaction is high, which means
that the DBMS always sends a remote query message to the remote
server even for a cache hit. As such, a transaction has the same
latency regardless of whether caching is enabled. In TPC-C, all
remote requests are updates instead of reads, therefore Sundial’s
caching does not help.

Figures 7b and 7c show the latency and network traffic breakdown
of different concurrency control protocols on YCSB at 16 threads.
The Abort portions represent the latency and network traffic for
transaction executions that later abort; this metric measures the
overhead of aborts. It is clear from these results that Sundial per-
forms the best because of fewer aborts due to its dynamic timestamp
assignment for read-write conflicts. Enabling Sundial’s caching
scheme further reduces traffic in the execution phase because the
DBMS does not need to send back data for a cache hit. Section 6.4
provides a more detailed analysis of Sundial’s caching mechanism.

Another interesting observation in Figure 7b is that F1 and MaaT
both incur higher latency in the commit phase than 2PL and Sundial.
This is because in both 2PL and Sundial, the DBMS skips the
commit phase if a transaction did not modify any data on a remote
server. In F1 and MaaT, however, the DBMS cannot apply this
optimization because they have to either release locks (F1) or clear
timestamp ranges (MaaT) in the commit phase, which requires a
network round trip.

The latency and traffic breakdown of TPC-C (Figures 8b and 8c)
show trends similar to YCSB in that Sundial achieves significant
gains from reducing the cost of aborts. Since only one warehouse is
modeled per server in this experiment, there is high contention on the
single row in the WAREHOUSE table. As a result, all algorithms waste
significant time on execution that eventually aborted. Both 2PL and
Sundial incur little network traffic for aborted transactions because
contention on the WAREHOUSE table happens at the beginning of each
transaction. In 2PL, the DBMS resolves conflicts immediately (by
letting transactions wait or abort) before sending out any remote
queries. Sundial also resolves write-write conflicts early; for read-
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write conflicts, Sundial’s logical leases allow it resolve most conflicts
without having to abort transactions.

Although not shown due to limited space, we also evaluated these
protocols with YCSB at low contention (90% read, all accesses are
uniformly random), and found that Sundial and 2PL have the same
performance, which is 30% better than that of F1 and MaaT. The
performance gain comes from the optimized commit protocol as
discussed above.

6.4 Caching Performance
We describe the experimental results of different aspects of Sun-

dial’s caching in this subsection.

6.4.1 Caching with Read-Only Tables
We first measure the effectiveness of Sundial’s caching scheme

on databases with read-only tables. For this experiment, we use
the TPC-C benchmark which contains a read-only table (i.e., ITEM)
shared by all the database partitions. To avoid remote queries on
ITEM, the DBMS replicates the table across all of the partitions. Ta-
ble replication is a workload-specific optimization that requires extra
effort from the users [38, 16]. In contrast, caching is more general
and transparent, thereby easier to use. We use two configurations
for the ITEM table:
• Replication (Rep): The DBMS replicates the table across all

the partitions, thereby all accesses to the table are local.
• No Replication (NoRep): The DBMS hash partitions ITEM on

its primary key. A significant portion of queries on this table
have to access a remote server.

For the configuration without table replication, we test two differ-
ent caching configurations:
• Default Caching (Cache): The caching scheme described in

Section 4.1.
• Caching with Optimizations (OptCache): Sundial’s caching

scheme with the read-only optimizations from Section 4.3.
According to Figure 9, the DBMS incurs a performance penalty

when it does not replicate the ITEM table. This is because the table
is accessed by a large fraction of transactions (i.e., all NewOrder
transactions which comprise 45% of the workload) that become
distributed if ITEM is not replicated. The performance gap can be
closed with caching, which achieves the same performance benefit
as manual table replication but hides the complexity from the users.

From Figure 9, we observe that the read-only table optimizations
from Section 4.3 are important for performance. Without them, a
cached tuple in the ITEM table may require extra lease extensions
during the prepare phase. This is because contentious tuples have
rapidly increasing wts; transactions accessing these tuples have large
commit_ts, leading to lease extensions on tuples in ITEM. These
lease extensions increase both network delays and network traffic,
which hurt performance. With the read-only table optimizations, the
DBMS extends all leases in the ITEM table together which amortizes
the extension cost.

6.4.2 Caching with Read-Write Tables
In this section, we measure the effectiveness of caching for read-

write tables. We use a variant of the YCSB workload to model a
social network application scenario. A transaction writes tuples
following a uniformly random distribution and reads tuples follow-
ing a power law distribution. This is similar to the social network
application where the data of popular users are read much more
often than data of less popular users. We sweep the skew factor (i.e.,
θ) for the read distribution from 0.6 to 1.7. The percentage of read
queries per transaction is 90% for all trials.
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Figure 9: Caching with Read-Only Tables – Performance of different
TPC-C configurations in Sundial with caching support.

Figure 10 shows the performance of Sundial with and without
caching, in terms of throughput, network traffic, and latency break-
down. When the read distribution is less skewed (θ=0.6), caching
does not provide much improvement because hot tuples are not
read intensive enough. As the reads become more skewed, perfor-
mance of Sundial with caching improves significantly because the
hot tuples are read intensive and can be locally cached. With a high
skew factor (θ=1.7), the performance improvement derived from
caching is 4.6×; caching also reduces the amount of network traffic
by 5.24× and transaction latency by 3.8×.

6.4.3 Cache Size

Table 1: Throughput (in Kilo Txns/s) with Different Cache Sizes in
Sundial.

Cache Size 0 MB 16 MB 64 MB 256 MB 1 GB 4 GB
Throughput 129 429 455 467 462 462

We now evaluate how sensitive the performance is to different
cache sizes. Table 2 shows the throughput of Sundial on the same
social-network-like workload as used in Section 6.4.2 with a skew
factor θ = 1.3.

At this level of skew, performance is significantly improved even
with a small cache size of 16 MB. Performance further increases as
the cache gets bigger, until it plateaus with 256 MB caches.

6.4.4 Caching Policies
This section studies different caching policies in Sundial (see

Section 4.2). We control the percentage of write queries in transac-
tions. This changes whether or not the DBMS designates reading
from cache as beneficial or not. For these experiments, both reads
and writes follow a power law distribution with θ=0.9. We use the
following caching configurations:
• No Cache: The Sundial’s caching scheme is disabled.
• Always Reuse: The DBMS always reuses a cached tuple if it

exists in its local cache.
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Figure 10: Caching with Read-Write Tables – Performance of Sundial with and without caching on YCSB as the skew factor of read distribution changes.

0 0.1% 1% 10% 100%
Fraction of Write Queries

0
50

100
150
200
250

Th
ro

ug
hp

ut
 (K

ilo
 T

xn
s/

s)

No Cache
Always Reuse

Always Request
Hybrid

(a) Throughput

0 0.1% 1% 10% 100%
Fraction of Write Queries

0.0
0.2
0.4
0.6
0.8
1.0

Ab
or

t R
at

e

No Cache
Always Reuse

Always Request
Hybrid

(b) Abort Rate

0 0.1% 1% 10% 100%
Fraction of Write Queries

0
500

1000
1500
2000
2500
3000

Tr
af

fic
 p

er
 T

xn
 (B

yt
es

)

No Cache
Always Reuse

Always Request
Hybrid

(c) Network Traffic

Figure 11: Caching Policies – Performance measurements for Sundial with the caching policies from Section 4.2 when varying the percentage of write queries
per transaction in the YCSB workload.

• Always Request: The DBMS always sends a request to re-
trieve the tuple even if it exists in local cache.
• Hybrid: The DBMS reuses cached tuples for read-intensive

tables only when caching is beneficial (cf. Section 4.2).
The results in Figure 11 show that Always Reuse improves the

DBMS’s performance when the data is read-intensive. In this work-
load, the cached tuples are unlikely to be stale, thus there will be
fewer unnecessary aborts. As the number of writes increases, how-
ever, many transactions abort due to reading stale cached tuples. The
performance of Always Reuse is even worse than No Cache when
more than 1% of queries are writes.

In contrast, Always Request never performs worse than No Cache.
It has the same abort rate as no caching since a transaction always
reads the latest tuples. The DBMS incurs lower network traffic than
No Cache since cache hits on up-to-date tuples do not incur data
transfer. For a read intensive table, Always Request performs better
than No Cache but worse than Always Reuse.

Lastly, the Hybrid policy combines the best of both worlds by
adaptively choosing between Always Reuse and Always Request.
This allows the DBMS to achieve the best throughput with any ratio
between reads and writes.

6.5 Measuring Aborts
We designed this next experiment to better understand how trans-

action aborts occur in the Sundial and MaaT protocols. For this, we
executed YCSB with the default configuration. We instrumented
the database to record the reason why the DBMS decides to abort
a transaction, i.e., due to what type of conflict. A transaction is
counted multiple times in our measurements if it is aborted and
restarted multiple times. To ensure that each protocol has the same
amount of contention in the system, we keep the number of active
transactions running during the experiment constant.

The tables in Figure 12 show the percentage of transactions that
the DBMS aborts out of all of the transactions executed. We see
that the transaction abort rate under Sundial is 3.3× lower than that
of MaaT. The main cause of aborts in MaaT is due to conflicts with
the frozen range of [x,∞) where x is some constant. As discussed
in Section 5.2, this happens when a transaction reads a tuple and

Abort Cases Abort Rate
Case (a): commit_ts < DB[key].wts 1.79%
Case (b): commit_ts ≥ DB[key].wts 1.56%
Case (c): tuple locked 6.60%
Aborts by W/W Conflicts 4.05%
Total 14.00%

(a) Sundial

Abort Cases Abort Rate
Conflict with [x,∞) 42.21%
Empty range due to other conflicts 4.45%
Total 46.66%

(b) MaaT

Figure 12: Measuring Aborts – Different types of aborts that occur in
Sundial and MaaT for the YCSB workload. For Sundial, we classify the
aborts due to read-write conflicts into the three categories from Section 5.1.

enters the prepare phase with a timestamp range of [x,∞). While
the transaction is in this prepare phase, the DBMS has to abort any
transaction that writes to the same tuple as it cannot change a frozen
timestamp range. In Sundial, most of the aborts are caused by Case
(c) in read-write conflicts, where a transaction tries to extend a lease
that is locked by another writing transaction. There are also many
aborts due to write-write conflicts. The number of aborts due to
Cases (a) and (b) are about the same and lower than the other two
cases.

6.6 Dynamic vs. Static Timestamps
One salient feature of Sundial is its ability to dynamically de-

termine the commit timestamp of a transaction to minimize aborts.
Some concurrency control protocols, in contrast, assign a static
timestamp to each transaction when it starts and use multi-versioning
to avoid aborting read queries that arrive later [1, 18, 32]. The in-
ability to flexibly adjust transactions’ commit order, however, leads
to unnecessary aborts due to write conflicts from these late arriving
transactions (i.e., writes arriving after a read has happened with a
larger timestamp).

In this experiment, we compare Sundial without caching against
a multi-version concurrency control (MVCC) protocol with varying
amounts of clock skew between servers. Our MVCC implementa-

1299



0 5 10 15 20 25 30
# of Threads per Server

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (K

ilo
 T

xn
s/

s)

Sundial (No Cache)
MVCC (No Skew)

MVCC (Skew=1ms)
MVCC (Skew=10ms)

Figure 13: Dynamic vs. Static Timestamp Assignment – Performance
comparison between Sundial and a baseline MVCC protocol that statically
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Figure 14: Scalability – Throughput of concurrency control algorithms for
the YCSB workload on Amazon EC2.

tion is idealized as it does not store or maintain the data versions,
and therefore does not have associated memory and computation
overhead (e.g., garbage collection) [49]. This allows us to compare
the amount of concurrency enabled by Sundial and MVCC. We use
ptp [4] to synchronize the servers’ clocks and then adjust the drift
from 1 to 10 ms.

In Figure 13, we observe even with no clock skew (less than
10 µs) that the DBMS performs worse with MVCC than with Sun-
dial. This degradation is mostly caused by the extra aborts due to
writes that arrive late. Sundial’s dynamic timestamp assignment
allows the DBMS to move these writes to a later timestamp and
thus reduce these aborts. Increasing the clock skew further degrades
the throughput of the MVCC protocol. This is because writes from
servers that fall behind in time will always fail due to reads to the
same tuples from other servers. The DBMS’s performance with
Sundial does not suffer with higher amounts of clock skew since its
timestamps are logical.

6.7 Scalability
For this experiment, we deployed DBx1000 on Amazon EC2 to

study its scalability as we increase the number of servers in the
cluster. Each server has an instance type of m4.2xlarge with eight
virtual threads and 32 GB main memory. We assign two threads to
handle the input and output communications, and the remaining six
threads as worker threads. We run the YCSB workload using the
workload mixture described in Section 6.1.

The first notable result in Figure 14 is that the performance of all
the protocols drop to the same level when the server count increases
from one to two. This is due to the overhead of the DBMS having to
coordinate transactions over the network [25]. Beyond two servers,
however, the performance of all of the algorithms increases as the
number of servers increases. We see that the performance advantage
of Sundial over the other protocols remains as the server count
increases.

6.8 Comparison to Dynamic Timestamp Range
In Section 2, we qualitatively discussed the difference between

Sundial and Lomet et al [34]. We now quantitatively compare their

performance and discuss why Sundial performs better. Our imple-
mentation of [34] strictly follows procedures 1 to 3 in Appendix A
in the paper. To simplify our implementation, we made two changes
of their protocol.

First, instead of implementing it in a multiversion database, we
only maintained a single latest version for each tuple. For the YCSB
workload that we used for the evaluation, this offers a performance
upper bound of the protocol; this is similar to what we did for the
idealized MVCC in Section 6.6.

Second, the original protocol in [34] requires a centralized clock
which all threads have access to. There are two ways to adapt this
design to a distributed environment: (1) a centralized clock server
which all transactions get the timestamp from, or (2) synchronized
distributed clocks. We picked the second design and used ptp [4]
for clock synchronization.

We run both protocols with the YCSB benchmark where each
transaction accesses 16 tuples and each access has 90% probability
to be a read and 10% probability to be a write. Two different
contention levels are tested: with low contention tuples are accessed
with uniformly random distribution; with high contention tuples are
accessed following a power law distribution with a skew factor of
θ = 0.9, meaning that 75% of accesses go to 10% of hot data.

Table 2: Performance comparison between Sundial and Lomet et al [34]

Low Contention High Contention
Sundial 130.3 99.6

Lomet et al. [34] 110.9 58.5

Table 2 shows the performance of the two protocols. At low
contention, their performance is similar, with Sundial outperforming
by 17.5%. In this setting, both protocols incur very few aborts.
The performance improvement is mainly due to the lower cost of
managing the metadata in Sundial, because there is no need to
adjust the timestamp ranges for other transactions when conflicts
occur. Compared to per-transaction timestamp ranges, the per-tuple
logical lease is a more lightweight solution to dynamically determine
transactions’ commit timestamps.

At high contention, the performance difference between Sundial
and [34] becomes a more significant 70%. In this setting, Sundial
has lower abort rate and thus performs better. One reason of this
is that [34] has to decide how to shrink the timestamp ranges of
conflicting transactions at the moment the conflict occurs. Failing
to choose the best way of shrinking can hurt performance. Sundial,
in contrast, delay the decision to the end of the transaction in an
optimistic way, thereby avoiding some unnecessary aborts.

7. CONCLUSION
We presented Sundial, a distributed concurrency control protocol

that outperforms all other ones that we evaluated. Using logical
leases, Sundial reduces the number of aborts due to read-write con-
flicts, and reduces the cost of distributed transactions by dynamically
caching data from a remote server. The two techniques are seam-
lessly integrated into a single protocol as both are based on logical
leases. Our evaluation shows that both optimizations significantly
improve the performance of distributed transactions under various
workload conditions.
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