
Question Answering Over Knowledge Graphs: Question
Understanding Via Template Decomposition

Weiguo Zheng1, Jeffrey Xu Yu1, Lei Zou2, Hong Cheng1

1The Chinese University of Hong Kong, China;
2Peking University, China.

{wgzheng,yu,hcheng}@se.cuhk.edu.hk, zoulei@pku.edu.cn

ABSTRACT
The gap between unstructured natural language and struc-
tured data makes it challenging to build a system that sup-
ports using natural language to query large knowledge graphs.
Many existing methods construct a structured query for the
input question based on a syntactic parser. Once the in-
put question is parsed incorrectly, a false structured query
will be generated, which may result in false or incomplete
answers. The problem gets worse especially for complex que-
stions. In this paper, we propose a novel systematic method
to understand natural language questions by using a large
number of binary templates rather than semantic parsers.
As sufficient templates are critical in the procedure, we pre-
sent a low-cost approach that can build a huge number of
templates automatically. To reduce the search space, we
carefully devise an index to facilitate the online template
decomposition. Moreover, we design effective strategies to
perform the two-level disambiguations (i.e., entity-level am-
biguity and structure-level ambiguity) by considering the
query semantics. Extensive experiments over several bench-
marks demonstrate that our proposed approach is effective
as it significantly outperforms state-of-the-art methods in
terms of both precision and recall.

PVLDB Reference Format:
Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, and Hong Cheng. Que-
stion Answering Over Knowledge Graphs: Question Understan-
ding Via Template Decomposition. PVLDB, 11 (11): 1373-1386,
2018.
DOI: https://doi.org/10.14778/3236187.3236192.

1. INTRODUCTION
Using natural language to query knowledge bases has be-

come a research hotspot of database (DB) and natural lan-
guage processing (NLP) communities [25, 54, 53, 44], since
it provides an intuitive and expressive way to explore know-
ledge bases. As there is a gap between the structured know-
ledge base and the plain natural language question, most of
the existing methods follow the framework that generating a
structured query for the input question and then performing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236192.

nsubj
nmod:by

Which

det

film

directed

nsubj

Steven Spielberg

won

dep

Oscar Award

films, directed by, Steven Spielberg;
Oscar Award, won, directed.

Figure 1: The dependency tree and triples.

the subgraph match over the knowledge graph. If the gene-
rated structured query is incorrect, the methods are very
likely to find false or incomplete answers. Hence, generating
a structured query for the input question is a crucial step.
To generate a structured query, a widely used approach

is parsing the input question into the syntactic dependency
representation by employing some NLP tools, e.g., Stanford
Parser [15]. Based on the parsing result, a query skeleton is
constructed [54, 28, 53]. Once the question is parsed incor-
rectly, it will be difficult to produce the correct structured
query. Instead of adopting the existing parsers, the literatu-
res in NLP community mainly focus on learning a grammar
that can parse natural language into a sophisticated mea-
ning representation language [5, 44]. However, they suffer
from mismatches between grammar of predicted structures
and the structure of knowledge bases [27, 6]. Although these
methods can deal with most simple questions (the question
that only contains one relation) [13], the effect over complex
questions (the question that contains multiple relations) is
not satisfactory [44]. The main reason is that relations and
the corresponding arguments may not be identified correctly.

1.1 Motivating Example
Given the question “Which films directed by Steven Spiel-

berg won the Oscar Award”, we obtain the syntactic de-
pendency representation as shown in Figure 1 by using the
state-of-the-art Stanford Parser [9]. Obviously, the parsing
results are not correct as “won” is assigned two incorrect
arguments “Oscar Award” (nsubj) and “directed” (dep),
which will lead to incorrect triples as presented in the right
part of Figure 1. Hence, the input question cannot be ans-
wered by employing the existing Stanford Parser.
Recently, two template-based approaches [1, 12] have been

proposed to deal with complex questions. The underlying in-
tuition is that a complex question consists of multiple simple
subquestions, where each simple subquestion involves only
one relation that is mapped to a predicate in the knowledge
graph. Abujabal et al. obtain the dependency representa-
tion by using the existing syntactic parser first and then
perform simple automated rewriting to get two separate in-
terrogative propositions following some predefined rules [1].

1373

which actor starred in the movie that

is directed by her brother

Natural language pattern
Which movie is directed by <Person>? ?movie, directedBy, <Person>

Which actor starred in <Moive>? ?actor, starring, <Movie>

Who is <Person>'s brother? <Person>, brother, ?person
Where was <Person> born? <Person>, birthPlace, ?place

SPARQL pattern
TemplatesInput question

t1: Which actor starred in <Moive>?

t2 :Which movie is directed by <Person>?

t3 :Who is <Person>'s brother?

?Actor starring ?Moive .
?Moive directedBy ?Person .
?Actor brother ?Person .

SELECT ?Actor WHERE{

}

SPARQL query

Free text
corpus

Knowledge Graph

her

her brother

yy

Anne SpielbergAnswer:

dd

Semantic dependency graph

the movie

Figure 2: A running example.

Finally, each subquestion is answered independently and the
non-empty intersection of the answer sets is returned as fi-
nal answers. Clearly, the method has a limited ability to
handle complex questions since it highly depends on the syn-
tactic parser and manually defined rewriting rules. Instead
of leveraging the dependency representation resulting from
syntactic parsers, KBQA decomposes the question q into
a sequence of binary factoid question (BFQ) {q̆1, . . . , q̆k}
and then answers each BFQ sequentially [12]. It demands
that the answer to q̆i−1 is the value of the variable in q̆i
and q̆0 contains an entity that is equal to the entity of q.
The definition is too rigorous to capture more general cases.
For instance, the question “who acted in Mission Impossible
and Vanilla Sky?” can be decomposed into two subquesti-
ons: “who acted in Mission Impossible” and “who acted
in Vanilla Sky”, neither of which does not contain variables.
Beyond that, the question “which actor starred in the movie
that was directed by her brother?” has no specific entity.
Furthermore, these subquestions form a dependency graph
(the bottom left in Figure 2) rather than just a sequence.
Moreover, KBQA learns question answering through a QA
corpus that consists of question-answer pairs. However, it is
difficult to acquire sufficient high-quality QA pairs.

Motivated by the shortcomings above, we propose a no-
vel approach to answering complex questions, that is, using
templates to understand the input questions. Specifically,
we decompose the input question into a set of subquestions
via templates, where these subquestions form a dependency
graph. The template used in this paper consists of two parts:
the question pattern and the SPARQL query pattern (as
shown in the upper middle of Figure 2). We model the task
of answering complex questions as a template selection and
assembly problem: Given an input question and a set T of
simple templates, we choose several templates from T to co-
ver the input question and assemble them into a semantic
dependency graph (formally defined in Definition 4).

1.2 Challenges and Contributions
Challenge 1 : Generating sufficient simple templates is the
premise for the task of understanding question through tem-
plates. Templates have been confirmed to be effective in ans-
wering natural language questions [1, 53] since they bridge
the gap between questions and knowledge graphs. However,
obtaining sufficient templates, especially complex templa-
tes (the templates contain multiple relations) is non-trivial.
In general, none of the template-based methods can ans-
wer the question if the required templates are missing. In
this paper, we adopt simple templates (also called binary
templates) and propose a novel approach to build templa-

tes by exploiting the knowledge graph and a large-scale text
corpus. Since it does not require laborious labelling, the
proposed approach is low-cost and feasible compared with
the existing question-answer pair based methods, e.g., [12].
Challenge 2 : How to select target templates from millions
of templates and reduce the time cost. Since we use templa-
tes to understand the input question q, a critical step is to
select a set of templates from the pre-generated templates
to match q. Note that these selected templates should form
a semantic structure which can describe the question. By
integrating the two procedures, we define a notion semantic
dependency graph that is an intermediate representation be-
tween the input question and structured query, and design
an effective strategy to decompose q in an iterative manner.
Since the number of templates may be too large, to enhance
the online user experience, we carefully devise an index, ba-
sed on which the search space can be reduced significantly.
Challenge 3 : How to deal with the ambiguities during the
decomposition of the input question. To understand an input
question, a huge challenge is to deal with the ambiguities ge-
nerated during the question decomposition and the semantic
dependency graph construction. Besides the widely known
entity-level ambiguity (that is a mention in the question may
be linked to multiple entities in the knowledge graph), we
identify the structure-level ambiguity that has received rela-
tively little attention. We devise a systematic method that
screens the decompositions by considering query semantics.
Contributions. We make the following contributions.

• We present a systematic framework to understand na-
tural language questions by using templates.

• We propose a novel approach to automatically gene-
rate a larger number of templates rather than relying
on enormous high-quality labeled data (e.g., pairs of
questions and answers) that is expensive to obtain.

• We define an intermediate representation for the natu-
ral language question and structured query, and design
an efficient method to decompose input questions ba-
sed on a carefully devised index.

• We propose effective strategies to perform both the
entity-level and structure-level disambiguations.

• We evaluate the proposed methods by conducting ex-
tensively experimental evaluations on real datasets.

2. PRELIMINARY AND OVERVIEW
In this section, we first formalize the problems studied in

this paper. Then we present the overview of our approach.

1374

2.1 Problem Definition
Definition 1. (Knowledge Graph). A knowledge graph is

a directed graph G = {V,E, L} consisting of a set of vertices
V (including entities/types/literals) and a set of edges E
that are functionally labeled (predicates/properties) by L.

Each edge in E is called a triple 〈v1, r, v2〉, where v1, v2 ∈
V , and r is a predicate/property. If the type of an entity is
unknown, we can employ the existing type detection techni-
ques, e.g., [32], to discover it. If an entity has multiple
types, we use the one with the largest depth (i.e., the shor-
test path distance from the root type) in the type ontology
graph, where the ontology graph describes the subTypeOf
relation among types. The questions are divided into two
categories, i.e., “simple” and “complex” as follows.

Definition 2. (Simple and Complex Questions). A simple
question is a question that just contains one fact. A complex
question contains more than one fact, where the fact is a
triple that is not equipped with the predicate “type”.

For instance, the question “who is the alumni of Prince-
ton University and Harvard University?” is a complex que-
stion since it contains two facts, i.e., 〈?p, alumni, Princeton
University〉, and 〈?p, alumni, Harvard University〉.

Definition 3. (Binary template). A template t contains
two parts of patterns: the natural language question pat-
tern t.n and the SPARQL query pattern t.s, where the cor-
responding entities in t.n and t.s are replaced by their types
(denoted by slots), and there are correspondences between
the slots in t.n and t.s. A binary template refers to the
template that contains just one fact.

Some examples of templates are presented in Figure 2,
where only the basic graph patterns are retained for ease of
presentation. If the slots are replaced with specific entities,
we can obtain the instantiated template (i.e., a subquestion).
We say a system “understands” the question q in the view of
G, where “understand” means generating a SPARQL query
for q following the terms (including entities, predicates, and
literals) used in G. To that end, we propose to construct a
semantic dependency graph for q.

Definition 4. (Semantic Dependency Graph). Given an
input question q, its semantic dependency graph is a directed
graph, denoted as SDG(q) = {Vq, Eq}, where each vertex
v ∈ Vq represents an instantiated template, and there is an
edge from v1 to v2 if the answer to v2 is v1’s value (for filling
the slot in v1) or v1 and v2 share the common answer.

To build a system that understands the natural language
question, we need to solve two tasks.

Problem Statement 1. Given a knowledge graph G and
a text corpus D, we need to generate binary templates for G.

The text corpus D is a set of documents that relate to
the knowledge graph. Generally, D is easy to obtain. For
example, Wikipediais the resource for DBpedia [29].

Problem Statement 2. Given a knowledge graph G, a
set of templates T , and an input question q, the goal is to
construct a semantic dependency graph for q.

After building SDG(q), it is straightforward to generate
the SPARQL query for q since each question pattern cor-
responds to a SPARQL pattern. At last, conducting the
SPARQL query over G will return answers to q.

Natural Language Pattern
Generation

Free Text Corpus

Relation Determination

Template Formulation Question Decomposition

Offline--Template Generation

Structured Query
Formulation

Online--Question Understanding

Query Processing Answers

Question

Knowledge graph

Figure 3: Block diagram of the proposed system.

2.2 Overview of Our Approach
Figure 3 provides an overview of the proposed approach.

2.2.1 Template Generation
Due to the flexibility of natural language, a predicate in

the knowledge graph can be described using different ex-
pressions, which highly affects the question understanding
ability. To tackle the problem, we propose a low-cost appro-
ach to build templates, which just exploits the knowledge
graph G and a large-scale text corpus D. The main idea
is to find natural language patterns from D for each triple
e ∈ G. There are three steps to generate templates.
Natural language pattern generation. First, we need to
find the mentions for each triple e=〈v1, r, v2〉 from the text
corpus D. If a sentence s ∈ D contains both v1 and v2, s is
a candidate mention for e. Then we replace v1 and v2 in s
with their types to obtain a natural language pattern.

Example 1. For instance, given the triple 〈Mac OS X,
PrecededBy, Mac OS〉, we can find two sentences containing
the two entities: “The original Mac OS was replaced with a
completely new Mac OS X.” and “Mac OS X succeeded clas-
sic Mac OS.”. After the entity substitution, we acquire two
natural language patterns as follows: The original 〈OS1〉 was

replaced with a completely new 〈OS2〉 and 〈OS2〉 succeeded

classic 〈OS1〉. Note that OS1 and OS2 are both the type OS,
where the subscripts are used to distinguish the two entities.

We also replace entities in the triple e with their types.
For example, the triple pattern for the triple in Example 1
is 〈OS1, PrecededBy, OS2〉.
Relation determination. The found natural language pat-
tern p may not correspond to the predicate in triple e. Mo-
reover, the pattern p may be identified through different
triple patterns. Therefore, we should map the natural lan-
guage patterns to the triple patterns. In general, a triple
pattern can correspond to multiple natural language pat-
terns, but a natural language pattern only corresponds to
a single triple pattern. In order to compute the mapping,
we construct a tripartite graph consisting of the supporting
instances I, natural language patterns S, and predicates R.
Then we can compute the mapping between S and R based
on the tripartite graph.
Template formulation . The natural language question
patterns generated from the free text corpus may be declara-
tive statements. Thus we need to transform the declarative
natural language patterns into that of question form. Then
we parameterize the question patterns and triple patterns
to get templates of interest.

1375

2.2.2 Question Decomposition
Since the templates T bridge the gap between q and G, we

propose to construct a semantic dependency graph for q by
using these templates. To that end, we employ the templates
to decompose q. A straightforward method is to exhaust
each subsentence q′ of q and compute the similarity between
q′ and the question pattern of each template. However, it is
very time-consuming since the number of templates can be
very large. Hence, we propose type-based and order-based
techniques that can greatly reduce the search space.

During the process, another challenge is to deal with am-
biguities. The ambiguities lie in two aspects, i.e., the entity-
level ambiguity and the structure-level ambiguity. Similar
to the existing discussion [54, 53], the entity-level ambiguity
refers to the case that a phrase may have multiple candidate
mappings in the underlying knowledge graph. Using tem-
plates can solve the problem easily because slots in templa-
tes are constrained with specific types. The structure-level
ambiguity refers to that a sentence may be interpreted into
more than one structural expression, which is less studied
previously. To perform the structure-level disambiguation,
we design effective techniques that detect false decomposi-
tions by considering query semantics.

2.2.3 Structured Query Formulation
After obtaining the set S of decomposing templates, we

need to organize them into a semantic dependency graph,
which can be easily converted to the final structured query.
To build the semantic dependency graph for q, the key task
is to link the templates in S to each other if required. A
template t1 can be linked to another template t2 if the ans-
wer to t1 is the instance of one slot in t2 and vice versa. For
example, for the question “which actor starred in the movie
that is directed by her brother”, we get three templates as
shown in Figure 2. There is an edge between t1 and t3 since
the answer to t1 is the value of the slot in t3. To find such
connections, the coreference resolution may be invoked.

3. AUTOMATIC TEMPLATE GENERATION
We propose a novel approach to build templates automati-

cally that directly uses the knowledge graph and text corpus.
It comprises three steps to complete template generation.

3.1 Natural Language Pattern Generation
Given the knowledge graph G and a text corpus D, the

goal is to generate templates that can capture the mapping
relations between the structuredG and unstructured natural
language questions. Thus the basic idea of our method is
to find the mentions for each triple e=〈v1, r, v2〉, based on
which templates are generated.

The text corpus D is better to come from the same source
as G. Otherwise, the generated templates may be bad since
the entities in G may not be found in D, which will lead to a
very limited number of templates. Thus, it may degrade the
ability of answering questions. Generally, we can find such a
corpus for G since many knowledge graphs are constructed
from unstructured data or semi-structured data. Handling
the case that there is no such an appropriate corpus for G
is beyond the scope of the paper.

For each triple e=〈v1, r, v2〉 ∈ G, we find all sentences
from D that are related to e. A sentence s is said to be
related to e if s contains the two incident entities v1 and v2.
Note that the text corpus could be very large. Hence, it

Algorithm 1 NLPattGeneration(G,D)

Input: The knowledge graph G and the text corpus D;
Output: Natural language patterns NLPatt.
1: for each sentence s ∈ D do
2: if |s| ≤ maxLen then
3: X ← entities in s that are contained in G
4: find the type c from G for each entity v ∈ X
5: for each two entities v1 and v2 in X do
6: s′ ← replace v1 in s with c1
7: s′ ← replace v2 in s′ with c2
8: add s′ together with (v1, v2) into NLPatt
9: return NLPatt

is very costly to explore the whole corpus D exhaustedly if
each time a triple is checked. Thus we propose an efficient
way of constructing natural language patterns as depicted
in Algorithm 1. For each sentence s in the corpus D, we
first identify the set of entities, denoted by X, which can
be completed via the existing tools, such as DBpedia Spot-
light [14]. Then each two entities v1 and v2 are replaced
with their types c1 and c2, respectively. Finally, we add the
sentence pattern s′ together with the pair of entities (v1, v2)
into NLPatt. Materializing the entity pair (v1, v2) is used to
generate candidate relations for the sentence pattern. The
materialized entity pair (v1, v2) is called a supporting in-
stance for the sentence pattern s′, denoted by supp(s′).
The generated natural language patterns above may not

be simple (i.e., they may contain multiple relations), which
indicates that they may not be employed to decompose the
input question. Thus we need to discard some natural lan-
guage patterns of length larger than a threshold maxLen.
To determine maxLen, we can analyze the simple question
patterns that are identified by the existing work, e.g., [1,
12]. We replace entities in each triple with their types to
obtain the entity pattern. For instance, the entity pattern
for (v1, v2) is (c1, c2). Then we group the sentence patterns
together that share the common entity pattern.

3.2 Relation Determination
After obtaining the natural language patterns, we should

map them to the specific predicates (i.e., relations). In ge-
neral, two entities may have multiple relations in the un-
derlying knowledge graph. For example, Charlie Chaplin is
the director, writer, and starring of the movie City Lights.
Thus we have the triples as follows: 〈City Lights, director,
Charlie Chaplin〉, 〈City Lights, writer, Charlie Chaplin〉, and
〈City Lights, starring, Charlie Chaplin〉. Actually, a ques-
tion pattern corresponds to only one relation at most. In
contrast, one relation may have multiple mappings of na-
tural language question patterns due to the variability of
natural language. To determine the relation for a natural
language pattern, we construct a pattern tripartite graph.

Definition 5. (Pattern Tripartite Graph). A pattern tri-
partite graph, denoted PTG, consists of three sets of vertices
I, S and R, where I represents the set of supporting instan-
ces, S represents the set of natural language patterns, and
R represents the set of predicates. There is an edge between
(v1, v2) and s ∈ S if (v1, v2) is a supporting instance for s,
and there is an edge between s ∈ S and r ∈ R if r is a
relation of two entities in a supporting instance supp(s) for
the natural language pattern s.

1376

Woody Allen (Person)

Braveheart (Movie)

sentence patterns

(v1,v2)
predicates

s1
s2

s3

r1

r2

sentence patterns

(v3,v4)
predicates

s1
s2

s4

r2

r3

PTG1 for (v1,v2) PTG2 for (v3,v4)

Mel Gibson (Person)

Alice (Movie)

s1: <Person> creates the film <Moive>

starring

director

director

writer

s2: <Person> is the director of <Moive>

s3: <Person> stars in the famous movie <Moive>

s4: <Moive> is a film written by <Person>

Figure 4: Pattern tripartite graphs.

We can build a PTG for each supporting instance as pre-
sented in Figure 4. It is straightforward to filter out some
edges between the sentence patterns and predicates based on
their semantic similarity, which is defined in Equation (1),

sim(s, r) = max
ph∈s

sim(ph, r) (1)

where ph is a phrase in s and sim(ph, r) is the similarity
between a phrase ph and a predicate r. We adopt the widely
used semantic similarity measure word2vec [30] in the paper.

Based on the similarity we can refine the tripartite graph.
Specifically, if the similarity sim(s, r) is larger than a thres-
hold θu, it is convinced that s matches the predicate r. In
contrast, if the similarity sim(s, r) is smaller than a thres-
hold θl, we can remove the candidate mapping between s
and r. Then the remaining mappings with similarity score
between θl and θu should be determined further.
We propose to consider the candidate mappings across

different pattern tripartite graphs. Let us recall the pattern
tripartite graphs in Figure 4. The two different suppor-
ting instances (v1, v2) and (v3, v4) share two sentence pat-
terns s1 and s2. At the same time, they share the predicate
r2. Hence, we can conclude that it is very likely that the
patterns s1 and s2 match the predicate r2. To justify the
conclusion, we compute the precision of cases linking the
shared predicate to the shared sentence patterns for two dif-
ferent supporting instances. Note that we only consider the
case that there is just one common predicate between two
supporting instances. The precision is 0.87 in the experi-
ment. Based on the basic idea, we can verify the candidate
mappings. First, we maintain a counter for each natural
language pattern s, denoted as μ(s, r), which is set to be
0 initially. Since templates contain natural language ques-
tion patterns in which specific entities are replaced with ty-
pes, we can group entity pairs according to their types. Let
EP (c1, c2) denote the set of entity pairs sharing the same
types c1 and c2. For any two entity pairs in EP (c1, c2),
we compute the common sentence patterns CP (c1, c2) and
common relations CR(c1, c2). Then we increase μ(s, r) by 1
if s ∈ CP (c1, c2) and r ∈ CR(c1, c2). Finally, the relation ri
with largest μ(s, ri) is selected as the matching relation for
the sentence pattern s, i.e., f(s) = argmax μ(s, ri), where
f(s) represents the matching function for s.

3.3 Template Formulation
We need to transform the declarative statements into que-

stion form since the sentence patterns acquired from open-
domain text corpus are likely to be declarative.
First, we determine the wh-word according to the entity

type. If the target type is a descendent of “Person” in the
ontology, “who” or “whose” is selected. If the target type
is a descendent of “Location” in the ontology, “where” is
chosen. If the target type is a time, “when” is used. In the

Algorithm 2 AnswerSimpleQuestions(q,G, T)

Input: Input question q, knowledge graph G, templates T ;
Output: Answers to q.
1: identify entities in q
2: q′ ← replace entities in q with their types
3: for each template t ∈ T do
4: if there is bijection between q′.C and t.n.C then
5: compute the similarity between q′ and t.n
6: ti ← the template with largest similarity score
7: λ(q) ← instantiate ti.s
8: A ← execute the SPARQL query λ(q)
9: return A

remaining cases, “what” is used. In general, “which” can
match any type. For the wh-word ‘who”, “whose”, “where”,
or “what”, we remove the corresponding type. For the wh-
word “which”, we move the type behind “which”. Finally,
the auxiliary verb “do”, “does”, or “can” is inserted into the
sentence according to the subject of the sentence.

Example 2. Let us consider the pattern “The $v1〈River〉 star-
ts from the $v2〈Country〉”. Assume that the target entity is
“Country”, where $v1 has two parameters to be instantiated ba-
sed on the input question. We can generate two question patterns
as follows: “which 〈Country〉 does the $v1〈River〉 start from?”
and “where does the $v1〈River〉 start from?”.

It is straightforward to generate general questions as no
wh-word is required to be introduced. Notice that the ques-
tion templates are not necessary to follow the syntax strictly
since we will consider the similarity between the question
pattern of a template and the input question q. Moreo-
ver, we need to generate SPARQL patterns based on the
corresponding triple patterns. Each triple pattern 〈c1, r, c2〉
actually corresponds to three triples, two of which are the
type constraints, i.e., 〈$v1, type, c1〉 and 〈$v2, type, c2〉. In
the last triple, we set a variable that corresponds to the
target entity in the question pattern.

Example 3. Following Example 2 above, since the target en-
tity is v2 the corresponding SPARQL query pattern is:
SELECT ?v2 WHERE
{$v1, type,River. ?v2, type, Country. $v1, sourceCountry, ?v2.}

4. ONLINE QUESTION DECOMPOSITION
In the online phase, we need to build a structured query,

i.e., SPARQL query, for the input question q. Moreover, the
SPARQL query should comply with the schema and vocabu-
lary that are used in G. In real scenario, q may be a simple
question or a complex question, which will be described in
Subsections 4.1 and 4.2, respectively.

4.1 Answering Simple Questions
If q is a simple question that only contains one relation,

it is easy to deal with. We can select a template from T to
match q. Algorithm 2 outlines the process.
We first identify the entities in q and replace the entities

with their types to obtain q′ (lines 1-2 in Algorithm 2). A
template t ∈ T is a candidate for q only if there is a bijection
between q′.C and t.n.C, where q′.C is the set of entity ty-
pes in q′ and t.n.C is the set of entity types in the natural
language pattern t.n. If there is no such a bijection, the
SPARQL pattern t.s cannot be instantiated properly. For

1377

Algorithm 3 Base-QD(q, T, τ)

Input: The input question q = {w1, · · · , w|q|}, templates
T , and the similarity threshold τ ;

Output: The decomposed subquestions D(q) and the set
of templates T (q) matching q.

1: q0 ← replace entities in q with the corresponding types
2: for i from 1 to |q| do
3: for j from i to |q| do
4: q′ ← the substring {wi, · · · , wj} of q0
5: for each template t ∈ T do
6: if a bijection between q′.C and t.n.C exists then
7: ρ(q′, t.n) ← the similarity between q′ and t.n
8: t′ ← the template with the largest ρ(q′, t.n)
9: if ρ(q′, t′.n) ≥ τ then
10: q′0 ← replace q′ in q0 with the answer type of t′

11: if |q′0| = 1 or Base-QD(q′0, T, τ) �= NULL then
12: D(q) ← D(q) ∪ q′, T (q) ← T (q) ∪ t′

13: return D(q) and T (q)
14: return NULL

each candidate template t we compute the similarity bet-
ween q′ and t.n. In this paper, we shall exploit the widely
used Jaccard similarity coefficient since it is highly related
to several other similarity measures, e.g., string edit dis-
tance [50], Dice similarity [18], and Overlap similarity [41],
as discussed in the work [41].

The template with the largest similarity score is selected,
denoted by ti (lines 3-6). Then we instantiate the SPARQL
query pattern t.s to obtain the SPARQL query λ(q) by using
the entities found through q. Finally, executing λ(q) over G
can lead to the answers to q (lines 7-9).

4.2 Answering Complex Questions
As shown in Definition 2, a complex question contains

more than one fact, which can be classified into two cate-
gories: plain complex questions and “And-questions”. The
“And-question” is a complex question that contains a con-
junction, such as “and”, “or”, and “but”. The rest complex
questions are called plain complex questions. For example,
the question “Who is married to an actor and starred in
Philadelphia ?” is an “And-question”.

Unlike answering simple questions, it is unfeasible to select
just one single template to match the input question q since
there are multiple relations in q. The underlying principle
is that a complex question can be decomposed into multiple
simple questions. Hence, we need to retrieve a set S of
templates from T to cover the semantics of q such that the
templates in S form a semantic dependency graph. We first
discuss how to deal with plain complex questions in this
section, and then handle the And-questions in Section 5.2.

4.2.1 Question Decomposition
Our task is to break the complex question q into consti-

tuent parts based on the pre-generated templates T . Al-
gorithm 3 gives a straightforward solution. The basic idea
is to try each subsentence of q and compute its similarity
between the question pattern of each template.

We replace the entity in q with the corresponding type if
any in line 1. If q does not contain any entity, we just iden-
tify the type involved in q. Similar to that in Section 4.1, a
template t can match q′ only if there is a bijection between

Algorithm 4 TypeQD-SubquestionGen(i, j, q, G)

Input: The starting position i, ending position j, input
question q = {w1, · · · , w|q|} and knowledge graph G;

Output: The candidate subquestion q0.
1: q0 ← wi, · · · , wj

2: if q0 contains pronouns then
3: q0 ← perform coreference resolution
4: if i �= 1 then
5: q0 ← introduce wh-words
6: return q0

q′.C and t.n.C (lines 6-7). Then the template t′ with the lar-
gest similarity score to q′ is selected (line 8). If it holds that
(1) ρ(q′, t′.n) ≥ τ , and (2) q′0 is decomposed correctly or q′0
contains just an answer type, i.e., |q′0| = 1, the decomposed
subquestions and templates can be returned (lines 9-13).

Example 4. Let us consider the question “where was the
wife of the US president born?”. Although the substring
“where was the wife” may match a template, there will be
no templates that can match the remaining substring. When
the substring “the US president” is taken as q′, it matches
the template “Who is the $〈Country〉 president?”. Then q′0 is
“where was the wife of 〈Person〉 born”. Recursively, we can
obtain the decomposed subquestions as shown in Figure 6.

Time complexity. Because Algorithm 3 iteratively exhausts
all possible subsentences of q and considers the whole set
of templates sequentially, the time complexity is O(|q|2 ·
2|q| · |T | · γ) in the worst case, where γ is the time cost
of computing the similarity between q′0 and t.n. Since |q| is
very small and |T | may be very large, |T | dominates the time
complexity and Algorithm 3 is not efficient. To improve the
online performance, we propose an efficient method next.

4.2.2 Type-based Question Decomposition
The algorithm above considers all subsequences and tem-

plates, where the search space can be reduced greatly by
employing the entity types.
Subquestion generation. Since there must be a bijection be-
tween the types of a subquestion and a template, we can
identify the entities in q first and find their corresponding
types, which can help determine the subquestions and com-
pute the candidate templates. Specifically, each subques-
tion should contain one type at least. Instead of sequenti-
ally enumerating all possible subsequences, we can obtain
a more promising subquestion q0 = wi, · · · , cj immediately
by splitting the input question q at the type cj (cj is the
nearest type to wi and the position of cj is larger than that
of wi) as shown in Algorithm 4 and lines 1-4 of Algorithm 5,
where pos(x, w) represents the position of word w in the re-
cord x. It is common that a complex question may contain
pronouns, such as “it”, “they”, “he”, “she”, “that”, “who”,
and “which”. In this case, we should determine which en-
tity the pronoun refers to, which is a well-known problem
coreference resolution in NLP community. There have been
lots of efforts devoted to the problem [34, 22, 10].
Candidate template computation. As the types in a tem-
plate should match those in the subquestion, we build an
inverted index I(ci) for these templates. I(ci) is a data
structure that maps a type ci to a list of templates such
that the corresponding question pattern contains ci. Accor-
dingly, I(ci)[j] indicates the j-th entry in the inverted index

1378

Algorithm 5 TypeQD(q,G, τ)

Input: The input question q = {w1, · · · , w|q|}, templates
T , knowledge graph G, and the similarity threshold τ ;

Output: The decomposed subquestions D(q) and the set
of templates T (q) matching q.

1: δ(q) ← entity types in q
2: for i from 1 to pos(q, c|δ(q)|) do
3: cj ← the first type following wi

4: q0 ←TypeQD-SubquestionGen(i, pos(q, cj), q, G)
5: for k from pos(q, cj) to |q| do
6: if k �= pos(q, cj) then
7: q0 ← q0 + wk

8: cand(q0) ← ⋂
ci∈q0

I(ci)
9: MaxJ ← τ , t0 ← null
10: for each t ∈ cand(q0) do
11: J(q0, t.n) ← the similarity between q0 and t.n
12: if J(q0, t.n) ≥ MaxJ then
13: MaxJ ← J(q0, t.n), t0 ← t
14: if t0 �= null then
15: q′ ← replace q0 in q with the answer type of t0
16: if |q′| = 1 or Type-QD(q′, G, τ) �= NULL then
17: D(q) ← D(q) ∪ q0, T (q) ← T (q) ∪ t0
18: return D(q) and T (q)
19: return NULL

of type ti. Given the subquestion q0 that has been conceptu-
alized (i.e., entities are replaced with types), we can retrieve
the candidates by the types in q0. Specifically, the inter-
section of I(ci) for all types in q0 form the candidate tem-
plates cand(q0) of q0 as presented in line 8 of Algorithm 5.
Template refinement . Each candidate template t in cand(q0)
should be verified by computing the similarity between q0
and t.n. Then the template t0 with largest similarity is se-
lected. If the corresponding similarity score is larger than
the threshold and the newly generated subquestion q′ is va-
lid, t0 is the returned as the matching template for q0 (li-
nes 9-18). Otherwise, we need to extend q0 by including
more words as depicted in line 7 of Algorithm 5, where “+”
means extending q0 by concatenating the word wk.
Time complexity . As shown in Algorithm 5, it may exhaust
the input question and compute the similarity for each can-
didate templates, the time complexity isO(|q|2·2|q|·|I(c)max|·
γ), where |I(c)max| denotes the largest index size for each
type c. Note that |I(c)max| is smaller than |T | greatly.
4.2.3 Order-based Optimization
Clearly, the subquestion generation and candidate tem-

plate computation are highly inter-related to each other,
and both of them can be improved by considering the other
procedure. As the Jaccard similarity is not sensitive to the
order of words in each record. We can reorder the words in
each natural language question pattern t.n according to a
global ordering O. Let w1[i] and w2[i] denote the first pair
of different characters of two words w1 and w2. If w1[i] is
smaller than w2[i] (i ≤ min{|w1|, |w2|}) in the alphabetical
order or w1 is a substring of w2 such that w1[j] = w2[j]
for all j (j ≤ min{|w1|, |w2|}) , w1 is smaller than w2. Let
O(w) denote the global order of word w.
Thus we design another index that considers the word or-

der, denoted by IO, which consists of two layers. The first
layer IO(c, ∗) maps a type c to a set of candidate templates.
The other layer IO(c, w) maps a word w to a group of lists

{Lk1 ,Lk2 , · · · ,Lkm} such that 1) The natural question pat-
tern of each template in Lki contains the word w; 2) The
natural question patterns in Lki share the same number of
words, i.e., ki; 3) The templates in Lki are sorted by the
increasing order of the position of w in t.n.
We also reorder the words in subquestion q0. Figure 5(b)

presents the second layer of the index structure IO for the
input records in Figure 5(a), where the first number in each
cell is ki. By applying the index, we can reduce the search
space. Let us consider the following example first.

Example 5. Let us consider the query q0 = [F,H, J,M],
and the similarity threshold τ = 0.85. By using the first word
F , we can locate the group of lists IO(F). Assume that we
consider the list of candidates of size 5, i.e., {t4, t5, t2, t1}.
Currently, we can only see the first word F in q0 = [F, ?, ?, ?].
In the template t4 = [?, F, ?, ?, ?], there is no common words
before F , which indicates that the maximum number com-
mon words between q0 and t4 is 4. Then the maximum pos-

sible similarity of the pair 〈q0, t4〉 is at most
4

4 + 5− 4
= 0.8.

Therefore, this pair cannot meet the similarity threshold.
More importantly, we do not need to consider all the remai-
ning candidates in the list since their common words between
q0 will not be more than 4.

The example above indicates that we may not need to
exhaust the candidates sequentially. We formally state the
pruning principle in the following theorem.

Lemma 1. Given a query q0 and the list Lki of candidate
templates of size ki located by the word w in q0. If the upper
bound Ju(q0, t0) (as computed in Equation 2) of J(q0, t0) is
less than the threshold τ , where t0 ∈ Lki , the remaining
candidates after t0 in the list Lki can be filtered out safely.

Ju(q0, t0) =
σ0 + 1

|q0|+ |t0| − σ0 − 1
(2)

where σ0 = min{|q0|−pos(q0, w), |t0|−pos(t0, w)} and pos(x,
w) represents the position of word w in the record x.

Proof. Let t1 be a candidate that is after t0 in the list
Lki . 1) Assume that |q0| − pos(q0, w) ≥ |t0| − pos(t0, w).
Thus σ0 = |t0| − pos(t0, w). Since pos(t0, w) ≤ pos(t1, w)
and |t0| = |t1|, σ1 = |t1| − pos(t1, w) ≤ σ0. Therefore,

we have Ju(q0, t1) =
σ1 + 1

|q0|+ |t1| − σ1 − 1
≤ Ju(q0, t0). 2)

Assume that |q0| − pos(q0, w) ≤ |t1| − pos(t1, w). Then
σ0 = σ1. So it holds that Ju(q0, t0) = Ju(q0, t1). 3) Provided
that |t1| − pos(t1, w) < |q0| − pos(q0, w) < |t0| − pos(t0, w).

t1 = A, B, D, E, F

Global order: A, B, C, D, E, F, G, H, I, J, K, L, M

t2 = B, D, E, F, G

t5 = D, E, F, H, M

t4 = C, F, H, I, J

t6 = D, G, H, M

t3 = A, B, G, M

t7 = A, C, F

(a) Templates containing type c

5: {t5, t2, t1}

4:{t6, t3}

5: {t5, t2, t1}

IO(c,A) = 3:{t7} 4:{t3} 5:{t1}

IO(c,B) = 5: {t2, t1}4:{t3}

IO(c,C) = 5: {t4}3:{t7}

IO(c,D) = 4:{t6}

IO(c,E) =

IO(c,F) = 5: {t4, t5, t2, t1}3:{t7}

IO(c,G) = 5: {t2}

(b) IO(c, ∗)

Figure 5: Example of index structure

1379

Then we have σ0 > σ1. Ju(q0, t0) =
σ0 + 1

|q0|+ |t0| − σ0 − 1
.

Ju(q0, t1) =
σ1 + 1

|q0|+ |t1| − σ1 − 1
. Ju(q0, t0) − Ju(q0, t1) =

(|q0|+ |t0|) · (σ0 − σ1)

(|q0|+ |t0| − σ0 − 1) · (|q0|+ |t1| − σ1 − 1)
> 0. In summary,

the lemma holds.

Note that the threshold τ is updated when there is a new
candidate template, whose similarity is larger than τ , is
found. The candidate template computation can facilitate
the subquestion generation. Note that we need to extend
the subquestion q0 if no templates can match it as shown
in Algorithm 5. Based on the upper bound above, we can
determine whether the newly extended subquestion is valid
instead of performing the candidate template computation
and template refinement.

Let Ju(q0, t∗) denote the maximum upper bound derived
by each word in q0. If Ju(q0, t∗) < τ , we have the following
lemma to reduce the search space.

Lemma 2. If Ju(q0, t∗) < τ and O(w′) > O(w|q0|), the
newly generated subquestion q′0 = q0 + w′ will not be valid,
where w′ is the next word to add into q0 and w|q0| is the last
word in q0.

Proof. SinceO(w′) > O(w|q0|), we have σ∗ ≥ σ′ = min{|q0|+
1− pos(q0, w′), |t∗| − pos(t∗, w′)}. Ju(q0, t∗)− Ju(q′, t∗)

=
σ∗ + 1

|q0|+ |t∗| − σ∗ − 1
− σ′ + 1

|q0|+ 1 + |t∗| − σ′ − 1

=
(|q0|+ t∗) · (σ∗ − σ′) + σ∗ + 1

(|q0|+ 1 + |t∗| − σ′ − 1) · (|q0|+ |t∗| − σ′)
> 0. Hence, the

newly generated subquestion q′ is not valid.

By integrating the two pruning techniques into Algorithm 5,
the search space will be reduced greatly. Specifically, (1)
instead of exploring each candidate template as shown in li-
nes 10-11, we locate the candidate templates by each word in
q0, and compute Ju(q0, t0) based on Equation 2. If Ju(q0, t0)
< τ , the remaining templates in Lki will be pruned. (2)
Before extending the subquestion q0 as shown in line 7,
Ju(q0, t∗) is computed. If Ju(q0, t∗) < τ and O(wk) >
O(w|q0|), we can skip the subquestion q′0 = q0 + wk.

5. STRUCTURED QUERY FORMULATION
To answer the questions, we need to build a semantic de-

pendency graph SDG(q) for the input question q (Section 5.1),
based on which a structured query is easy to be genera-
ted. Then we deal with the ambiguities involved in the con-
struction of SDG(q) in Section 5.2.

5.1 Semantic Dependency Graph Construction
After acquiring decomposed subquestions and the corre-

sponding templates, we can build the SDG(q) for q, which
contains two steps, making connections (i.e., adding edges)
between two templates and filling the slots in templates.

Based on Definition 4, there is a type constraint between
two joint nodes. Specifically, the answer type of v2 should
be identical to the type of the slot in v1, or v1 share the
answer as v2. Note that this constraint has been guaranteed
by the decomposition algorithm as it adds the answer type
into the similarity computation when a template is identi-
fied. That is, we can obtain the templates as well as the
dependency relations among the templates. Figure 6 gives

Where was the wife of the US president born?

Where was <Peerson> born?Where was <Person> born? Who iiss the wifeff of the US president?Who is the wife of the US president?

Who is the wifeff of <Peerson>?Who is the wife of <Person>? Who is the US president?Who is the US president?

WWWhhhhoo is the $<Countryrr > president?Who is the $<Country> president?

Figure 6: Decomposed subquestions and templates.

the decomposed results for the input question “where was
the wife of the US president born”.
Then we need to instantiate the templates with entities

in the corresponding decomposed subquestions. Notice that
the input question is not necessary to contain an entity.
Then a semantic dependency graph is constructed. For ex-
ample, the structure enclosed by the dashed line in Figure 6
forms a semantic dependency graph.
SPARQL query construction. With SDG(q), it is easy to

create the structured query. Specifically, we can generate a
triple for each instantiated template based on the correspon-
dences between each natural language question pattern and
its corresponding SPARQL query pattern. The dependency
relation in a semantic dependency graph means that the two
incident templates share the same variable or entity. As the
subquestions and templates are computed in the bottom up
manner, the variable of the last template is taken as the
variable of the whole SPARQL query.

Example 6. The generated SPARQL query for the se-
mantic dependency graph in Figure 6 is as follows.
SELECT ?place WHERE
{?person1, birthP lace, ?place.
?person1, spouse, ?person2.
United States, president, ?person2.}
Finally, conducting the generated SPARQL query over the

knolwedge graph can lead to answers to the input question.

5.2 Two-level Ambiguities
During the construction of semantic dependency graphs,

a big challenge is to solve the ambiguities in the question de-
composition. Generally, there are two kinds of ambiguities,
i.e., entity-level ambiguity and structure-level ambiguity.
Rule-based Disambiguation . Entity-level ambiguity is a
well-known problem, that is, a mention in the question may
correspond to multiple distinct entities in the underlying
knowledge graph. For example, in the question “who wrote
the House of Flying Daggers” the entity “House of Flying
Daggers” may map to a movie or music. Beyond that, the
ambiguity may arise in the process of coreference resolution.
There have been lots of efforts devoted to solve the entity-
level ambiguity these years [24, 11, 45, 33].
Besides entity-level ambiguities, we identify structure-level

ambiguities, which refers to the case that a question may be
decomposed into different sets of subquestions. Let us con-
sider the example next.

Example 7. For the input question “which actor starred
in the movie that wins Oscar Award?”, we can obtain two
sets of decomposed subquestions: D1 ={which actor starred
in 〈Movie〉?, which 〈Movie〉 wins 〈Award〉?}. D2 ={which
actor starred in 〈Movie〉? which actor wins 〈Award〉? }.

1380

Did <Peerrsson1> gradudd ate frff om the < Uniivversity>Did <Person1> graduate from the < University>

?Person1 graduateFrom ?University

WWhho is the son of <Personn22>Who is the son of <Person2>

Which <Universiity> did <Person1> gradud ate frff omWhich <University> did <Person1> graduate from

?James son ?Person1
yy?Person1 graduateFrom ?University

?Persrr on1 grgg adudd ateFee rFF om ?UnUU iversrr ity???P??PPePPeereerrsrrssrrrrrrrr ooonnn111 gggrggrrgggggg arraadaaddudduudddddd auuaataattetteeFeeFFeeeeee rFFrrFFFFFF orroommm ???UUUUUnUUnnUUUUUUUUU iiiviivvevveereerrsrrssrrrrrrrr iiitiittyttyytttttttttt
?JaJJ mes son ?Persrr on1???J??JJJJaJaaJJJJJJJJJ maammeeeseess sssooonnn ???P??PPePPeereerrsrrssrrrrrrrr ooonnn111
?Persrr on1 grgg adudd ateFee rFF om ?UnUU iversrr ity???P??PPePPeereerrsrrssrrrrrrrr ooonnn111 gggrggrrgggggg arraadaaddudduudddddd auuaataattetteeFeeFFeeeeee rFFrrFFFFFF orroommm ???UUUUUnUUnnUUUUUUUUU iiiviivvevveereerrsrrssrrrrrrrr iiitiittyttyyttttttttt

Figure 7: Illustration of logic-based disambiguation.

Both the two sets of decompositions in Example 7 sa-
tisfy the type constraint, which indicates that there are two
possible semantic dependency graphs. In the first decompo-
sition D1, the word “that” refers to “movie”. Meanwhile,
in the second decomposition D2, the word “that” refers to
the whole subquestion “which actor starred in 〈Movie〉?”.
Since the question is a “that clause”, “that” should refers to
an entity or a type but not a subquestion. The similar rule
is also applicable to the “who clause” and “which clause”.
Logic-based Disambiguation . In some cases, the pro-
nouns (e.g., “that, which, who”, and “he”) may correspond
to multiple entities or types. Thus the rule above does not
work. So we propose the logic-based disambiguation. The
main principle is to find some logical problems in SDG(q).

Example 8. Let us consider the question “Did the son of
James go to the university that he graduated from?”, where
“he” may refer to “son of James” or “James”. The set
of decomposed templates is {Did 〈Person〉 graduate from
the 〈University〉? Who is the son of 〈Person〉?, Which
〈University〉 did 〈Person〉 graduate from?}. Figure 7 pre-
sents the semantic dependency graph for case that “he” re-
fers to “son of James”, based on which the generated SPARQL
triples are listed in the bottom of the figure.

We identify two logic problems, i.e., the duplicate state-
ment and weak semantic relevance, as defined next.

Definition 6. (Duplicate Statement). If two triples are
identical to each other in the generated SPARQL query, they
are called duplicate statements.

Definition 7. (Weak Semantic Relevance). Weak seman-
tic relevance means that the triples are not correlated, i.e.,
the generated SPARQL query is not a connected graph.

The two problems above betray logic and common sense.
If one of them occurs in a SPARQL query, the corresponding
set of decomposed templates will be incorrect. As shown in
Example 8, the first triple is identical to the third one, i.e.,
the duplicate statements. Hence, “he” refers to “James”.
Answering And-Questions. To answer And-questions, a
key task is to perform completion, that is, to add the omit-
ted components explicitly. Generally, the conjunction (e.g.,
“and” and “or”) connects two or more components with si-
milar semantic roles. Based on the nature of conjunction,
there are two cases of completions, adding entities (i.e., sub-
jects or objects) and adding relations (i.e., predicates).

Example 9. Given the question “who is married to an
actor and starred in Philadelphia”, we find that the subque-
stion “starred in Philadelphia” lacks a subject. However,
there are two possible subjects, “who” and “actor”, in the

question. By considering the conjunction nature, “starred
in” has the similar semantic role to “is married to”. Thus
the omitted subject should be “who”.

As shown in the example above, to distinguish the ambi-
guous completions for a target component s1, we first dis-
cover the component s2 that shares the same semantic role
to target component. Then we add the entities or relations
(that are omitted in s1) in s2 to s1. Finally, a SPARQL
query can be constructed.
Note that in some cases, the input question is ambigu-

ous inherently such that persons may have different under-
standings. For instance, in the question “who is married
to an actor that starred in Movie1 and directed Movie2”,
it is hard to determine the subject for the subquestion “di-
rected Movie2”, i.e., the subject may be “who” or “actor”.
If the ambiguous decompositions pass all the disambigua-
tion techniques above, the final barrier is to perform the
data-driven disambiguation. Specifically, we conduct each
SPARQL query over the knowledge graph, if some answers
are returned, the corresponding SPARQL query is correct.
That is, we distinguish the queries according to the under-
lying knowledge graph, which is similar to the technique
used in the work [54].
Remark. Several NLP tasks, such as entity linking, phrase
similarity, and coreference resolution, are invoked in the pro-
cess of template generation and question answering. Each
of the tasks may affect the ability of answering questions. It
is better to use the solutions that convey semantics and can
be incorporated into techniques proposed in this paper. For
instance, as a template contains type constraints on entities,
if an entity linking solution can be integrated into the tem-
plate decomposition so that they can reinforce each other,
the overall performance may be improved.

6. EXPERIMENTAL STUDY
We evaluate the proposed method via empirical study in

this section. Section 6.1 describes the experimental setup,
followed by evaluation of template construction in Section 6.2.
Section 6.3 and Section 6.4 report the effectiveness and effi-
ciency results, respectively.

6.1 Experimental Setup

6.1.1 Datasets
Knowledge Graphs. We use two well-known public kno-
wledge graphs DBpedia [29] and Freebase [7] in the experi-
ments. DBpedia is an open-domain knowledge base, which
contains about 21 million vertices (including 6.6 million enti-
ties, 0.38 million concepts, and 14.2 million literals) and 155
million edges (i.e., triples). Freebase contains 116 million
entities and 2.9 billion triples.
Free text corpus. We use the free online encyclopedia
Wikipedia as the text corpus, based on which we can build
templates automatically.
QA datasets. We use the datasets QALD-5 [39], WebQue-
stions [5], and ComplexQuestions [1] in the experiments.

• QALD. QALD is a benchmark delivered for the eva-
luation campaign answering over knowledge bases. It
provides a set of a natural language questions, the cor-
responding SPARQL queries and answers. QALD-5
contains 468 questions including 418 training questi-
ons and 50 test questions.

1381

Table 1: Effect of similarity threshold θu
DBpedia Freebase

θu FR precision |T | (M) FR precision |T | (M)
0.6 0.53 53.23% 4.9 0.42 37.28% 7.6
0.7 0.47 64.37% 4.5 0.37 53.54% 7.3
0.8 0.35 79.53% 4.1 0.29 72.36% 6.8
0.9 0.21 93.78% 3.8 0.17 91.65% 6.5
1.0 0.08 91.36% 3.8 0.06 88.81% 6.3

• WebQuestions. It is an open dataset created by Be-
rant et al. There are 5,810 natural language questions.

• ComplexQuestions. It is constructed by Abujabal
et al. to evaluate the answering ability on complex que-
stions [1]. It consists 150 compositional questions, e.g.,
“who was married to billy thornton and jonny miller?”.

6.1.2 Metrics and Competitors
Let #QC denote the number of questions that are cor-

rectly answered. Let #QA denote the total of number input
questions. Let #QF denote the number of questions that
are fed to a system. Actually, a system may only return a
partially correct answers to a given question. In this case, we
say the question is partially correctly answered, the number
of which is denoted by #QP . Then we define the precision
P , partial precision P ∗, recall R, partial recall R∗, and F1
measure as follows.

P =
#QC

#QF
; P ∗ =

#QC +#QP

#QF
; R =

#QC

#QA
;

R∗ =
#QC +#QP

#QA
; F1 =

2

1/P + 1/R
.

Beyond that, since QALD-5 provides SPARQL queries for
the questions, we are interested in another metric, the ratio
of correct SPARQL query patterns (i.e., ignoring the specific
entities) that are generated by the method, denoted by P �.

To confirm the effectiveness, we compare our method, de-
noted by TemplateQA, with the existing methods Xser [43],
KBQA [12], QUINT [1], UncertainTQA [53], QAnswer [36],
DEANNA [45], APEQ, SemGraphQA [4], and YodaQA.

The experiments are conducted on an Intel(R) Xeon(R)
CPU E5504 @ 2.00GHz and 64G RAM, on Windows Server
2008. The programs for building templates were implemen-
ted in Python. Other programs were implemented in C++.

6.2 Template Evaluation
By using the Wikipedia documents and two knowledge

graphs, we construct 3.8 million and 6.5 million templa-
tes under the default settings for DBpedia and Freebase,
respectively. Figure 8 presents a small partial set of the
templates that are generated for DBpedia.

To evaluate the quality of these templates quantitatively,
we recruit five students to rate the templates. If the natu-
ral language question pattern describes the corresponding
relation (i.e., predicate) in the SPARQL query pattern, the
template is regarded as “true”. Otherwise, the template is
“false”. Each time we randomly sample 200 templates for
each student. Tables 1 and 2 give the results by varying
the similarity thresholds θu and θl, respectively. The de-
fault settings for θu and θl are 0.9 and 0.4. FR is ratio
of the pairs of question patterns and relations that can be
determined as “match” (for θu) or “unmatched” (for θl).

Table 2: Effect of similarity threshold θl
DBpedia Freebase

θl FR precision |T | (M) FR precision |T | (M)
0.1 0.19 78.92% 4.3 0.21 75.29% 7.8
0.2 0.23 81.67% 4.1 0.24 79.56% 7.4
0.3 0.29 84.67% 3.9 0.31 82.19% 7.1
0.4 0.35 93.78% 3.8 0.37 91.65% 6.5
0.5 0.41 94.24% 2.9 0.48 92.33% 5.4

First, we fix θl and vary θu from 0.6 to 1.0. As shown
in Table 1, the ratio FR decreases as we increase θu, which
indicates that only a small fraction of the candidates have
high similarity scores. Interestingly, we find that it achieves
the best performance when θu is around 0.9. If θu is too
large, it will impose heavy burdens on the module that de-
als with middle-grade candidates (i.e., the candidates whose
similarity score lies between θl and θu). At the same time,
the number of returned templates |T | decreases accordingly.
Then we fix θu and vary θl from 0.1 to 0.5. The preci-

sion grows with the increasing of θl. That is because more
low-quality candidates are screened out by a larger θl. Me-
anwhile, some promising candidates are discarded as well,
which leads to the decreasing of the returned templates.
Actually, in order to evaluate the templates, another straig-

htforward way is to answer natural language questions by
using these templates. The details are reported in Section 6.3.

6.3 Effectiveness Evaluation
Results on QALD-5. To evaluate the effectiveness, we

compare TempalteQA with the existing methods. Table 3
gives the results on QALD-5. For the competitors, we di-
rectly report their results in their papers. The recently pro-
posed method can only answer a few answers as it focuses
on the binary factoid questions (i.e., the simple questions).
However, most questions in reality are complex questions.
It is clear our method TempalteQA beats all the compe-
titors in terms of both precision and recall, which indica-
tes that our method is effective and the generated templa-
tes have high quality. Note that #QF equals #QA, i.e.,
#QF = #QA = 50, in the experiments. Hence, precision
is equivalent to recall. Moreover, we find the precision of
generated SPARQL query patterns P � is pretty high, which
shows that TempalteQA is effective and promising.
Results on WebQuestions. We use the evaluation metric
that is adopted in the official evaluation. Different from the
metric used in QALD-5, the precision, recall, and F1 are
the average precision, recall, and F1 across all test questi-
ons. Besides KBQA and UncertainTQA, we also compare

SELECT ?uri WHERE

{ <Country> type Country.

?uri presidentOf <Country>. }

SELECT ?place WHERE

{ <Company> type Company.

<Company> foundationPlace

?place. }

Who is the president of

<Country>?

Where was <Company> founded?

SELECT ?movie WHERE

{ ?movie type Movie.

?movie director <Person>.}

Which movie is directed by

<Person>?

Figure 8: Case study over DBpedia.

1382

Table 3: Results on QALD-5
Methods QC QP P P∗ R R∗ P �

Xser 26 7 0.52 0.66 0.52 0.66 –
APEQ 8 5 0.16 0.26 0.16 0.26 –
QAnswer 9 4 0.18 0.26 0.18 0.26 –
SemGraphQA 7 3 0.14 0.20 0.14 0.20 –
YodaQA 8 2 0.16 0.20 0.16 0.20 –
DEANNA 9 3 0.18 0.24 0.18 0.24 –
UncertainTQA 24 6 0.48 0.60 0.48 0.60 –
KBQA 8 0 0.16 0.16 0.16 0.16 –
TempalteQA 34 4 0.68 0.76 0.68 0.76 0.86

Table 4: Results on WebQuestions
Methods F1 Methods F1

Bast and Haussmann [3] (2015) 0.49 QUINT 0.51
Yih et al. [48] (2015) 0.53 UncertainTQA 0.41
Reddy et al. [35] (2016) 0.50 KBQA 0.34
PARA4QA [20] (2017) 0.51 TempalteQA 0.62

TempalteQA with QUINT [1], Yao [46] (2015), Bast and
Haussmann [3] (2015), Yih et al. [48] (2015), and Reddy et
al. [35] (2016). Table 4 presents the results on WebQuesti-
ons. QUINT highly depends on the dependency trees and
POS tag annotations. Once the output is incorrect, false
answers will be generated. Different from that, our propo-
sed TempalteQA understands input questions by template
decomposition. It is clear that TempalteQA outperforms
the other state-of-the-art algorithms significantly.
Results on ComplexQuestions. More interestingly, we
test our method over the dataset ComplexQuestions and
compare it with QUINT [1] and Bast and Haussmann++
[3] (2015), where the question is manually decomposed into
subquestions and each subquestion is answered by Bast and
Haussmann [3] (2015). Answering complex questions can
reveal the ability of question understanding for a system.
As reported in Table 5, TempalteQA achieves the best per-
formance (with F1 of 0.71) among these methods, which
confirms the potential and effectiveness of TempalteQA.

To evaluate the effectiveness of our proposed disambigua-
tion techniques, we turn off the techniques one by one. Let
R, L, and A denote the rule-based, logic-based, and and-
question techniques, respectively. For example, Tempalte-
QA/RLA represents turning off all the three techniques. As
shown in Table 5, the performance degrades significantly
if none of the proposed disambiguation techniques is used
(i.e., the F1 of TemplateQA/RLA is 0.52). Moreover, the
rule-based technique has the most effect on the quality of
answers (i.e., the F1 of TemplateQA/R is 0.62).
Effect of τ . We also study the effect of the threshold τ
used in the decomposition procedure. As depicted in Fi-
gure 9(a), the F1 score increases first and then decreases
slightly with the growth of τ . That is because when τ is
small the recall may increase but the precision decrease cor-
respondingly. But if τ gets too larger, some subquestions
may not be matched by any templates. Hence, we set τ to
be 0.8 in the experiments.
Effect of θl and θu. Table 6 reports the effect of thres-
holds θl and θu on precision over QALD-5 (note that preci-
sion equals recall). With non-default threshold values (e.g.,
θl = 0.5 and θu = 0.9), the number of generated templa-
tes may decrease greatly, which will degrade the precision.
Although the templates increase with some thresholds (e.g.,
θl = 0.1 and θu = 0.9), the quality of templates may degrade

Table 5: Results on ComplexQuestions
Methods F1 Methods F1

Bast and Haussmann++ [3] 0.47 TemplateQA/LA 0.61
QUINT 0.49 TemplateQA/R 0.62
TemplateQA/RLA 0.52 TemplateQA/L 0.67
TemplateQA/RL 0.59 TemplateQA/A 0.64
TemplateQA/RA 0.55 TemplateQA 0.71

Table 6: Effect of θl and θu
θu = 0.9 θl = 0.4

θl P IT (s) OT (s) θu P IT (s) OT (s)
0.1 0.62 504.81 0.049 0.6 0.60 582.52 0.082
0.2 0.66 472.56 0.037 0.7 0.64 518.34 0.063
0.3 0.66 441.33 0.024 0.8 0.68 474.15 0.038
0.4 0.68 428.72 0.016 0.9 0.68 428.72 0.016
0.5 0.58 336.18 0.011 1.0 0.66 426.81 0.014

significantly. It achieves the best performance when θl = 0.4
and θu = 0.9 by taking the indexing time (shorted as IT)
and online running time (shorted as OT) into consideration.
Failure analysis. The failures can be classified into three
main categories, i.e., entity linking, similarity compuation,
and lack of templates. The average ratios over the data-
sets are listed in Table 7. It is obvious that the errors
resulted from entity liking dominate all the failure cases.
For instance, in the question “Give me all cosmonauts”
(from QALD-5), we do not identify the nationality con-
straint “Russia” or “Sovie Union”. The second reason is the
similarity computation problem. It fails to find the question
pattern “what is the date of 〈Holiday〉” for “Halloween”
in the question “Show me everyone who was born on Hal-
loween.” since there is only a word. The third reason is
that some templates may not be contained in the current
version. For example, the question “What is the height dif-
ference between Mount Everest and K2?” demands the sub-
traction operation of two elevations, which is not included
in the templates. Note that only a partial set of answers for
some questions can be found since some patterns are missing
in the construction of SDG(q). For instance, the triple pat-
tern 〈res:Perl dbo:influenced ?uri〉 is missing for the question
“Which programming languages were influenced by Perl?”.

6.4 Efficiency Evaluation
Offline Performance. For ease of presentation, let Templa-
teQA-basic, TemplateQA-type, TemplateQA-order denote
the basic decomposition method, the type-based decompo-
sition, and order-based optimization, respectively. Table 8
reports the time cost on building index (denoted by IT)
and the memory consumption (denoted by IS). Note that
TemplateQA-basic does not construct index. TemplateQA-
type only needs to index types, but TemplateQA-order con-
structs a two-layer index involving all words in the natu-

Table 7: Failure analysis
Reason Ratio Example

entity
linking

41%
Give me all cosmonauts.
Which animals are critically endangered?

similarity 33%

Show me everyone who was born on
Halloween.
Is Lake Baikal bigger than the Great Bear
Lake?

lack of
templates

18%
What is the height difference
between Mount Everest and K2?

1383

Table 8: Efficiency performance over DBpedia
Methods IT (s) IS (MB) OT-D (ms) OT-S (ms)

TemplateQA-basic – – 3356 5
TemplateQA-type 14.85 73.6 213 6
TemplateQA-order 428.72 506 14 5

ral language question patterns. Hence, the index size of
TemplateQA-type is much smaller than that of TemplateQA-
order. TemplateQA-type takes less time to build the index.
The results on Freebase are similar to that on DBpedia.
Online Performance. The average online running time is
presented in Table 8, where OT-D denotes the time on que-
stion decomposition, and OT-S denotes the time on SDG
and SPARQL query construction. It is clear that OT-D do-
minates OT-S, which indicates that improving the time cost
on the question is very critical. TemplateQA-basic is the
most inefficient as it does not employ any index to facilitate
the question decomposition. In contrast, TemplateQA-order
substantially outperforms the other two methods, which con-
firms the effectiveness of the pruning techniques in accele-
rating the decomposition processing.
Effect of τ . We also study the effect of the similarity thres-
hold τ (in question decomposition) on the running time. As
depicted in Figure 9(b), it has slight effect on TemplateQA-
basic. That is because it exhausts all possible candidates
and then selects the candidate with the largest similarity
score to perform threshold check. In contrast, smaller τ will
lead to larger search space for the other two methods.

7. RELATED WORK
Natural language question answering. There has

been a stream of research on answering natural language
questions. They can be divided into the three categories.
Retrieval based methods. The methods integrate the techni-
ques used in information extraction to answer natural lan-
guage questions as it can provide the syntactic framework
for pattern identification [31]. The answer extraction mo-
dule identifies all the matches for this pattern, based on
which the final answers are extracted. Delmonte proposes
a hybrid system, a combination of statistical and symbolic
processing with reference to a specific problem [16]. Yao and
Durme identify the subgraph, called topic graph, that con-
sists of the entities contained in a question[47]. The answer
extraction process is maximally automated by combining
discriminative features for both the question and the topic
graph. Xu et al. present a neural network based relation
extractor to retrieve the candidate answers [44].
Semantic parsing and paraphrase based methods. They of-
ten adopt a domain independent meaning representation
derived from the combinatory categorial grammar (CCG)
parses [5, 23, 48]. Berant and Liang generate canonical text
descriptions for candidate logical forms and then rank the
logical forms by computing paraphrase scores [6]. Xu et al.
propose an efficient pipeline framework to model a user’s
query intention as a phrase level dependency DAG which is
then instantiated regarding a specific KB to construct the
final structured query [42]. Borders et al. and Dong et al.
use question paraphrases in a multi-task learning framework
to train the neural networks to output similar vector repre-
sentations for the paraphrases [8, 21]. Yin et al. propose
to use tree-structured neural networks constructed based on
the constituency tree to model natural language queries [49].

0.4
0.5
0.6
0.7
0.8

0.5 0.6 0.7 0.8 0.9

F1

QALD-5
WebQuestions
ComplexQuestions

(a) Effect on F1

100

101

102

103

104

0.5 0.6 0.7 0.8 0.9

Ru
nn

in
g

tim
e

(m
s)

TemplateQA-basic
TemplateQA-type
TemplateQA-order

(b)Running time (QALD-5)

Figure 9: Effect of the threshold τ

Recently, a general framework for learning paraphrases for
question answering, called PARA4QA, is proposed, where
paraphrase scoring and QA models are trained end-to-end
on question-answer pairs [20]. Usually, these methods de-
mand question-answer pairs as the training dataset, which
is critical and expensive in reality.
Template based methods. They transform the input ques-
tion into a structured query by employing templates. Con-
ducting the structured query leads to final answers. Unger
et al. propose to rely on a parse of the question to produce a
SPARQL template that directly mirrors the internal struc-
ture of the question [38]. UncertainTQA [53] builds the
templates automatically through the workloads of natural
language questions and SPARQL queries. Both KBQA [12]
and QUINT [1] take the pairs of questions and answers as
the input, based on which the templates are generated. To
handle the complex questions QUINT exploits the manually
defined rules to rewrite the dependency parsing results, and
then performs subquestion answering and answer stitching.
String similarity computation. String similarity search
has been well studied there years [2, 40, 52, 37]. Xiao et al.
study the top-k set similarity join, that is, it returns the top-
k pairs of records ranked by their similarities [41]. Kim and
Lee propose a partitioning technique that considers multiple
token orderings based on token co-occurrence statistics [26].
Deng et al. also partitions a string into a set of segments
and creates inverted indices for the segments [17]. However,
these methods cannot be used directly in our problem as we
need to guarantee the bijection between types.
For more discussions on question answering and string

similarity search, please refer to two surveys [19] and [51].

8. CONCLUSIONS
Using natural language questions to query knowledge graphs

provides an easy and natural way for common users to acquire
useful knowledge. However, it is challenge to understand the
input question especially complex questions in the view of
the specified knowledge graph. In this paper, we propose
a novel approach that understands natural language ques-
tions via binary templates. In order to generate adequate
templates automatically, we present a low-cost method that
does not demand expensive question-answer pairs as trai-
ning data. We also design a systematic technique to acce-
lerate the question decomposition and handle the two-level
ambiguities effectively. Extensive empirical evaluations over
several benchmarks demonstrate that our proposed method
is very effective and promising.
Acknowledgements. This work was supported by grants
from the Research Grant Council of the Hong Kong Special
Administrative Region, China [Project No.: CUHK 14205617]
and [Project No.: CUHK 14221716]. Lei Zou was supported
by NSFC under grant 61622201 and 61532010.

1384

9. REFERENCES
[1] A. Abujabal, M. Yahya, M. Riedewald, and

G. Weikum. Automated template generation for
question answering over knowledge graphs. In
Proceedings of the 26th International Conference on
World Wide Web, pages 1191–1200, 2017.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
pages 918–929, 2006.

[3] H. Bast and E. Haussmann. More accurate question
answering on freebase. In Proceedings of the 24th
ACM International Conference on Information and
Knowledge Management, pages 1431–1440, 2015.

[4] R. Beaumont, B. Grau, and A. Ligozat.
Semgraphqa@qald5: LIMSI participation at
qald5@clef. In Working Notes of CLEF 2015 -
Conference and Labs of the Evaluation forum, pages
1–10, 2015.

[5] J. Berant, A. Chou, R. Frostig, and P. Liang.
Semantic parsing on freebase from question-answer
pairs. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1533–1544, 2013.

[6] J. Berant and P. Liang. Semantic parsing via
paraphrasing. In Proceedings of the 52nd Annual
Meeting of the Association for Computational
Linguistics, pages 1415–1425, 2014.

[7] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
Proceedings of the ACM International Conference on
Management of Data, pages 1247–1250, 2008.

[8] A. Bordes, S. Chopra, and J. Weston. Question
answering with subgraph embeddings. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing, pages 615–620, 2014.

[9] D. Chen and C. D. Manning. A fast and accurate
dependency parser using neural networks. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 740–750, 2014.

[10] K. Clark and C. D. Manning. Improving coreference
resolution by learning entity-level distributed
representations. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics, pages 643–653, 2016.

[11] S. Cucerzan. Large-scale named entity disambiguation
based on wikipedia data. In Proceedings of the Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 708–716, 2007.

[12] W. Cui, Y. Xiao, H. Wang, Y. Song, S. Hwang, and
W. Wang. KBQA: learning question answering over
QA corpora and knowledge bases. International
Conference on Very Large Data Bases, 10(5):565–576,
2017.

[13] W. Cui, Y. Xiao, and W. Wang. KBQA: an online
template based question answering system over
freebase. In IJCAI, pages 4240–4241, 2016.

[14] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes.
Improving efficiency and accuracy in multilingual
entity extraction. In Proceedings of the 9th

International Conference on Semantic Systems
(I-Semantics), 2013.

[15] M.-C. de Marneffe, B. MacCartney, and C. D.
Manning. Generating typed dependency parses from
phrase structure parses. In LREC, pages 449–454,
2006.

[16] R. Delmonte. Hybrid systems for information
extraction and question answering. In Proceedings of
the Workshop on How Can Computational Linguistics
Improve Information Retrieval, pages 9–16, 2006.

[17] D. Deng, G. Li, H. Wen, and J. Feng. An efficient
partition based method for exact set similarity joins.
PVLDB, 9(4):360–371, 2015.

[18] L. R. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302,
1945.

[19] D. Diefenbach, V. Lopez, K. Singh, and P. Maret.
Core techniques of question answering systems over
knowledge bases: a survey. Knowledge Information
Systems, (2):1–41, 2017.

[20] L. Dong, J. Mallinson, S. Reddy, and M. Lapata.
Learning to paraphrase for question answering. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 886–897, 2017.

[21] L. Dong, F. Wei, M. Zhou, and K. Xu. Question
answering over freebase with multi-column
convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing,
pages 260–269, 2015.

[22] G. Durrett, D. L. W. Hall, and D. Klein.
Decentralized entity-level modeling for coreference
resolution. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics,
pages 114–124, 2013.

[23] A. Fader, L. Zettlemoyer, and O. Etzioni. Open
question answering over curated and extracted
knowledge bases. In SIGKDD, pages 1156–1165, 2014.

[24] J. R. Finkel, T. Grenager, and C. D. Manning.
Incorporating non-local information into information
extraction systems by gibbs sampling. In ACL, pages
363–370, 2005.

[25] E. Kaufmann and A. Bernstein. Evaluating the
usability of natural language query languages and
interfaces to semantic web knowledge bases. J. Web
Sem., 8(4):377–393, 2010.

[26] J. Kim and H. Lee. Efficient exact similarity searches
using multiple token orderings. In IEEE 28th
International Conference on Data Engineering, pages
822–833, 2012.

[27] T. Kwiatkowski, E. Choi, Y. Artzi, and L. S.
Zettlemoyer. Scaling semantic parsers with on-the-fly
ontology matching. In EMNLP, pages 1545–1556,
2013.

[28] F. Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases.
PVLDB, 8(1):73–84, 2014.

[29] P. N. Mendes, M. Jakob, and C. Bizer. Dbpedia: A
multilingual cross-domain knowledge base. In
Proceedings of the Eighth International Conference on

1385

Language Resources and Evaluation, pages 1813–1817,
2012.

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781:1–12, 2013.

[31] D. I. Moldovan and M. Surdeanu. On the role of
information retrieval and information extraction in
question answering systems. In Information Extraction
in the Web Era: Natural Language Communication for
Knowledge Acquisition and Intelligent Information
Agents, pages 129–147, 2002.

[32] N. Nakashole, T. Tylenda, and G. Weikum.
Fine-grained semantic typing of emerging entities. In
ACL, pages 1488–1497, 2013.

[33] L. Niu, J. Wu, and Y. Shi. Entity disambiguation with
textual and connection information. In Proceedings of
the International Conference on Computational
Science, pages 1249–1255, 2012.

[34] M. Recasens, M. Can, and D. Jurafsky. Same referent,
different words: Unsupervised mining of opaque
coreferent mentions. In Human Language
Technologies: Conference of the North American
Chapter of the Association of Computational
Linguistics, pages 897–906, 2013.

[35] S. Reddy, O. Täckström, M. Collins, T. Kwiatkowski,
D. Das, M. Steedman, and M. Lapata. Transforming
dependency structures to logical forms for semantic
parsing. TACL, 4:127–140, 2016.

[36] S. Ruseti, A. Mirea, T. Rebedea, and
S. Trausan-Matu. Qanswer - enhanced entity
matching for question answering over linked data. In
Working Notes of CLEF 2015 - Conference and Labs
of the Evaluation forum, pages 1–12, 2015.

[37] W. Tao, D. Deng, and M. Stonebraker. Approximate
string joins with abbreviations. PVLDB, 11(1):53–65,
2017.

[38] C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo,
D. Gerber, and P. Cimiano. Template-based question
answering over rdf data. In WWW, pages 639–648,
2012.

[39] C. Unger, C. Forascu, V. López, A. N. Ngomo,
E. Cabrio, P. Cimiano, and S. Walter. Question
answering over linked data (QALD-5). In Working
Notes of CLEF 2015 - Conference and Labs of the
Evaluation forum, pages 1–12, 2015.

[40] J. Wang, G. Li, and J. Feng. Can we beat the prefix
filtering?: an adaptive framework for similarity join
and search. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD, pages
85–96, 2012.

[41] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set
similarity joins. In Proceedings of the 25th
International Conference on Data Engineering, pages
916–927.

[42] K. Xu, Y. Feng, S. Huang, and D. Zhao. Question
answering via phrasal semantic parsing. In

Experimental IR Meets Multilinguality, Multimodality,
and Interaction - 6th International Conference of the
CLEF Association, pages 414–426, 2015.

[43] K. Xu, Y. Feng, and D. Zhao. Answering natural
language questions via phrasal semantic parsing. In
Working Notes for CLEF, pages 1260–1274, 2014.

[44] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao.
Question answering on freebase via relation extraction
and textual evidence. In ACL, pages 2326–2336, 2016.

[45] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, and G. Weikum. Natural language questions
for the web of data. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, EMNLP-CoNLL, pages 379–390, 2012.

[46] X. Yao. Lean question answering over freebase from
scratch. In NAACL HLT 2015, The 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 66–70, 2015.

[47] X. Yao and B. V. Durme. Information extraction over
structured data: Question answering with freebase. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, pages
956–966, 2014.

[48] W. Yih, M. Chang, X. He, and J. Gao. Semantic
parsing via staged query graph generation: Question
answering with knowledge base. In Proceedings of the
53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing,
pages 1321–1331, 2015.

[49] J. Yin, W. X. Zhao, and X. Li. Type-aware question
answering over knowledge base with attention-based
tree-structured neural networks. J. Comput. Sci.
Technol., 32(4):805–813, 2017.

[50] M. Yu, G. Li, D. Deng, and J. Feng. String similarity
search and join: a survey. Frontiers of Computer
Science, pages 1–19, 2015.

[51] M. Yu, G. Li, D. Deng, and J. Feng. String similarity
search and join: a survey. Frontiers of Computer
Science, 10(3):399–417, 2016.

[52] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and
X. Yuan. An efficient framework for exact set
similarity search using tree structure indexes. In 33rd
IEEE International Conference on Data Engineering,
pages 759–770, 2017.

[53] W. Zheng, L. Zou, X. Lian, J. X. Yu, S. Song, and
D. Zhao. How to build templates for RDF
question/answering: An uncertain graph similarity
join approach. In SIGMOD, pages 1809–1824, 2015.

[54] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and
D. Zhao. Natural language question answering over rdf
– a graph data driven approach. In SIGMOD
Conference, pages 47–57, 2014.

1386

