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ABSTRACT
Machine learning has become an essential toolkit for com-
plex analytic processing. Data is typically stored in large
data warehouses with multiple dimension hierarchies. Of-
ten, data used for building an ML model are aligned on
OLAP hierarchies such as location or time. In this paper,
we investigate the feasibility of efficiently constructing ap-
proximate ML models for new queries from previously con-
structed ML models by leveraging the concepts of model
materialization and reuse. For example, is it possible to
construct an approximate ML model for data from the year
2017 if one already has ML models for each of its quarters?
We propose algorithms that can support a wide variety of
ML models such as generalized linear models for classifica-
tion along with K-Means and Gaussian Mixture models for
clustering. We propose a cost based optimization framework
that identifies appropriate ML models to combine at query
time and conduct extensive experiments on real-world and
synthetic datasets. Our results indicate that our framework
can support analytic queries on ML models, with superior
performance, achieving dramatic speedups of several orders
in magnitude on very large datasets.
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1. INTRODUCTION
Machine Learning (ML) has become an invaluable tool

that is used by organizations to glean insight from their
data. Almost all the major database vendors have added an-
alytical capabilities on top of their database engines. Even
though there has been extensive work from the ML commu-
nity on developing faster algorithms, building a ML model
is often a major bottleneck and consumes a lot of time due
to the sheer size of the datasets involved. In this paper, we
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investigate the feasibility of building faster ML models for
a popular class of analytic queries by leveraging two funda-
mental concepts from database optimization - materializa-
tion and reuse.

1.1 Analytic Queries on ML Models
Recently, there has been extensive interest in the database

community for enabling interactive ad-hoc analytics on ML
models. Consider a typical workflow of a data scientist. She
issues a query (SQL or otherwise) to retrieve relevant data
that is stored in a data warehouse. This data is used to build
an ML model for classification, clustering, etc. The model is
then used for performing complex analytic processing such
as predicting customer churn in a geographic region. This
process of retrieving data, building a ML model and using
the model for analytic processing subsumes a large class of
analytic workflows. We argue that these ad-hoc analytic
queries on ML models often exhibit a number of appealing
properties that enables a better and faster approach than
building models from scratch every time. Some of these
properties include:

• Meaningful SQL Predicates. The queries that are used
to retrieve relevant data are not chosen at random
and often have a specific business interpretation. Data
warehouses often impose OLAP hierarchies and most
of the analytic queries are aligned along the hierar-
chy. The data chosen for analysis often belongs to
explicit domain hierarchies over country, year, depart-
ment, vendor, product category, etc. For example,
the domain scientist might want to retrieve data for
years 2018/2017 or for continents Asia/Europe/North
America, etc. Building models on an arbitrary subset
of the data is typically rare.

• Tolerance for Approximate ML Models. Building a ML
model takes a lot of time for large datasets which is
inconvenient when it is primarily used for exploratory
analysis. Data scientists are often willing to sacrifice
some accuracy of exploratory analysis if they can ob-
tain “close enough” estimates from approximate ML
models quickly.

• Opportunities for ML Model Reuse. In a typical enter-
prise, data scientists and engineers often create hun-
dreds to thousands of ML models for exploratory pur-
poses that are then discarded after one-time use. If
a data scientist needs to build an ML model for all
the data from year 2017, it is likely that some other
data scientist(s) has created ML models for the various

1468



quarters of 2017. If these models have been material-
ized (instead of being discarded), then one can build an
approximate ML model for 2017 by reusing the models
for the various quarters of 2017.

1.2 Technical Challenges
There are a number of technical challenges that one must

overcome before ML models are reused for building approx-
imate ML models for exploratory purposes. While there
has been extensive work on building a ML model efficiently,
there is a relative paucity of work in combining multiple
pre-built ML models. Consider a straightforward scenario
whereby the data is already partitioned and both supervised
(e.g., SVMs) and unsupervised (e.g., K-Means) models have
been built for each partition. Given a set of partitions and
their corresponding SVMs, how can one construct a single
SVM that performs comparably to one that is built from
scratch on the combined data from the partitions? Similarly,
given a set of K-Means centroids for each of the partitions,
is it possible to approximately compute K-Means centroids
for the union of the partitions? Further, is it possible to give
any theoretical guarantees for the approximate ML model?
How can we trade-off time and space to get an ML model
with a better approximation? Is there a cost model that en-
ables to decide when building an ML model from scratch is
preferable to combining pre-existing ML models? Is it possi-
ble to come up with an optimization framework that decides
which models to reuse, how to combine those models with
minimum cost? Given an analytic workload and a space
budget, is it possible to identify ML models to materialize
to achieve significant speedup to later queries?

1.3 Outline of Technical Results
In this paper, we advocate treating ML models as first

class citizens and investigate opportunities for model mate-
rialization and reuse to speed up analytic queries. We pro-
pose a two-phase approach. We store ML models along with
small amount of additional meta-data and statistics during
a “pre-processing phase”; During the “runtime phase”, we
identify the relevant ML models to reuse and quickly con-
struct an approximate ML model from them.

In this paper, we investigate reuse of popular supervised
and unsupervised ML models. In supervised learning, we
consider Generalized Linear Models (GLMs) that subsumes
many popular classifiers such as logistic regression and lin-
ear SVMs. Note that our approach extends to any ML al-
gorithm that uses Stochastic Gradient Descent (SGD) for
training. In unsupervised learning, we consider two canon-
ical clustering approaches: K-Means and Gaussian Mixture
Models (GMMs). For each of them, we propose two orthog-
onal approaches for generating approximate ML models.

• Model Merging. In this approach, we store some
additional metadata during the pre-processing phase
such that during the run-time phase, one can combine
the ML models in a principled manner without going
back to data.

• Coresets. Coresets are a small weighted set of tu-
ples such that ML models built from the coresets are
provably closer to ML models built on the entire data.
During the pre-processing phase, one can construct
coresets for each pre-built model. During the run-time
phase, we build the ML model from the union of core-
sets in a fraction of time.

Analytic  
ML Query

Approximate  
Model for  

 Analytic ML  
Query

Repository of  Pre-
Materialized ML Models

Cost-based 
Optimizer

Execute Best  
Reuse Strategy

Figure 1: Overview of Our Approach

These two approaches enable a data analyst to trade-
off performance and model approximation. The merging
based approach is often extremely fast but does not provide
tunable approximation of the objective function. On the
other hand, the coreset based approach might take more
time (though much less than re-training from scratch) but
is more flexible and allows one to approximate the objective
function within a factor of ε.

There has been increasing interest from the database com-
munity on building systems for ML model management (see
Section 8 for further details). Our approaches can easily be
retrofitted over these systems to facilitate rapid construction
of approximate ML models. We further discuss our potential
limitations in Section 7.

2. BACKGROUND
Dataset. Let D denote a relation with n tuples and d at-
tributes A = {A1, . . . , Ad}. We partition the schema A into
X,Y where X is the set of predictor/independent attributes
and Y the predicted/dependent attribute(s). The schema
also has a set of dimension attributes Z = {Z1, . . . , Zl}
that are associated with pre-defined dimensional hierarchies.
Each tuple ti is also associated with a unique identifier tid
that imposes a total ordering in D. As an example, tid
could be an automatically incrementing sequence or time-
stamp indicating when the tuple was created. For example,
an ML model for credit card approval might have X = {Age,
Gender, Salary,Education, City} with Y={Approval}. The
dimensional attribute Z = {City} is associated with the hi-
erarchy City ⇒ State⇒ Country ⇒ Continent⇒ All.

Query Model. Let q be the analytic query specified on
D that returns a result set Dq over which the ML model
is built. We consider the following types of queries that
subsumes most queries used for model building.

• Range based Predicate: These queries are specified by
an attribute Xi and range [a, b] such that they filter
all tuples with value of Xi falling between a and b.

• Dimension based Predicate: These queries filter tu-
ples that have specific values for one or more dimen-
sional attributes. Using the example above, the pred-
icate State = ‘Texas’ filters all credit card applica-
tions from Texas.

• Arbitrary Predicates: These queries use complex query
predicates (including a combination of range and di-
mension based) to select relevant data.

Pre-Materialized Models. We denote the exact model
built on Dq as M(Dq) while its approximation as M̃(Dq).
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We assume the availability of pre-materialized exact mod-
els {M1,M2, . . . ,MR} built from previous analytic queries.
Each of these models is annotated with relevant information
(such as State = ‘Texas’). Given an arbitrary query q, let
Mq ⊆MD be the set of pre-built models that could be used
to answer it approximately where |Mq| = r.

Example. Consider a database D = {1, . . . , 1000} where
we have a set of built ML models {M1, . . . ,M10} over ranges
{P1 = [1, 100], P2 = [101, 200], . . . , P10 = [901, 1000]}. Given
a query q1 = [101, 500], then Mq1 = {M2,M3,M4,M5}.
If necessary, one can build appropriate models for tuples
from Dq for which no pre-built models exist. Given a query
q2 = [51, 550], the set of models to answer them will be
Mq2 = {M([51, 100] ∪ [501, 550]),M2,M3,M4,M5}

2.1 ML Primer
K-Means. K-Means is a widely used clustering algorithm
that partitions data into K clusters. Formally, given a set
of points X ∈ Rd, the K-Means clustering seeks to find K
cluster centers in Rd (also called as centroids) such that the
sum of squared errors (SSE) is minimized [11]. Given a set
of data points X and centroids C, the SSE is defined as

SSE(X , C) =
∑
x∈X

d(x,C)2 =
∑
x∈X

minc∈C ||x− c||22 (1)

Even though clustering with K-Means objective is known to
be a NP-Complete problem, there are a number of efficient
heuristics and approximation algorithms. The most pop-
ular heuristic algorithm is Lloyd’s algorithm. It works by
randomly choosing K initial centroids from X . Each point
x ∈ X is assigned to the nearest cluster centroid. Then,
the cluster centroid is updated as the mean of the points
assigned to the cluster. This process of cluster assignment
and centroid update is repeated till the change in cluster
centroids between iterations is below some threshold.

Gaussian Mixture Models (GMM). GMM is one of the
most popular mixture models used for unsupervised cluster-
ing. GMM models the data in terms of mixtures of mul-
tiple components where each component is a multi-variate
Gaussian distribution. A multi-variate Gaussian distribu-
tion generalizes the one-dimensional Gaussian distribution
(specified by a mean and variance) to higher dimensions
and is specified by a mean vector µ of dimension d and a
covariance matrix Σ of dimension d × d. GMM is a proba-
bilistic/soft version of K-Means where each data point could
be assigned to multiple clusters with different probabilities.

Suppose we are given a set of d-dimensional data points
X = {x1, x2, . . . , xn} ⊆ Rd. We fit X as Gaussian mix-
ture model parameterized by θ = [(w1, µ1,Σ1), (w2, µ2,Σ2),
. . . , (wk, µK ,ΣK)] where the i-th mixture component is a
d-dimensional multi-variate Gaussian N (µi,Σi) with wi be-
ing its prior probability. Note that the prior probabilities of
the components sum up to 1 - i.e.

∑K
i=1 wi = 1. Given the

data X , GMM estimates the parameters θ that maximizes
the likelihood through the Expectation-Maximization (EM)
algorithm.

Generalized Linear Models (GLM). GLM covers a large
class of popular ML models including logistic regression (LR),
support vector machines (SVM). Due to their widespread
applicability and popularity, GLMs have been extensively
studied and shown to have a number of appealing theoretical

properties. They have natural convex optimization formu-
lations wherein every local minima is also a global minima.
While we restrict our attention to popular supervised ML
models, we would like to note that our methods described
in this section can be easily adapted for other GLMs such
as linear regression and other log-linear models.

Coresets. A coreset is a weighted subset of the data such
that an ML model built on the coreset very closely ap-
proximates one built on the entire data [2]. Specifically,
a weighted set C is said to be a ε-coreset for dataset D
if (1 − ε)φD(·) ≤ φC(·) ≤ (1 + ε)φD(·) where φ(·) corre-
sponds to the objective function of a model - such as Sum of
Squared Errors (SSE) for K-Means. The SSE for the clus-
ter centroids obtained by running K-Means algorithm on
the coreset is within a factor of (1 + ε) of SSE obtained by
running K-Means on the entire data.

3. APPROXIMATION BY MODEL MERG-
ING

In this section, we investigate how to construct approxi-
mate ML models for a query q by merging pre-built (exact)
ML models. Specifically, we focus on scenarios where we can
construct the approximate model purely from the pre-built
models without retrieving data Dq. Our proposed approach
has a number of appealing properties such as: (a) orders of
magnitude faster than building the model from scratch; (b)
provable guarantees on approximation; (c) minimal sacrifice
of model accuracy.

Pre-built ML Models. Let Mq = {M1,M2, . . . ,Mr} be
the set of pre-built ML models that must be merged to ob-

tain the approximate ML model M̃(Dq). Let θ(Mi) be the
relevant parameters of model Mi that must be materialized.
This information is dependent on the ML algorithm. For
K-Means, θ(Mi) is the set of K centroids and the number
of data points assigned to each of the clusters. For GMM,
θ(Mi) = [(w1, µ1,Σ1), (w2, µ2,Σ2), . . . , (wK , µK ,ΣK)] where
the i-th mixture component is a d-dimensional multi-variate
Gaussian N (µi,Σi) with wi being its prior probability. For
GLM such as Logistic Regression, θ(Mi) corresponds to the
regression coefficients while for SVM, it corresponds to the
coefficients of the separating hyperplane.

3.1 Model Merging for K-Means
Given an arbitrary query q, our objective is to efficiently

output K centroids C̃q such that SSE for C̃q is close to SSE
of Cq where Cq is the set of centroids obtained by running
K-Means algorithm from scratch on the entire Dq. We seek
to do this by only using the information θ(Mi) - the cluster
centroids and the number of data points assigned to it.

K-Means++ [6] is one of the most popular algorithms
for solving K-Means clustering. It augments the classical
Lloyd’s algorithm with a careful randomized seeding pro-
cedure and results in a O(logK) approximation guaran-
tee. Due to its simplicity and speed, K-Means++ has be-
come the default algorithm of choice for K-Means cluster-
ing. Hence, we assume that all the cluster centroids were
obtained through the K-Means++ algorithm.

Let Cw represent the union of all cluster centroids from
all the models Mi ∈ Mq. As before, if there were some
tuples in Dq that were not covered by models Mq, one can
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readily run K-Means on those tuples and add those clus-
ter centroids to Cw. For each centroid cj ∈ Cw, we assign
the number of data points associated with it in the original
partition as its weight w(j). We then run the weighted vari-
ant of K-Means++ algorithm on Cw and return the K clus-
ter centroids as the output. If the centroids were obtained
using some other algorithm, our algorithm proposed below
still works as an effective heuristic but does not provide any
provable approximation guarantees. Algorithm 1 provides
the pseudocode of the approach while Figure 2 provides an
illustration.

Algorithm 1 Merging K-Means Centroids

1: Input: Set of ML models Mq, K
2: Cw = ∪ri=1 K-Means centroids for Mi

3: ∀ clusters cj ∈ Cw, w(cj) = number of data points as-
signed to cj

4: Run weighted K-Means++ on Cw
5: return the cluster centroids C̃q

k Centroids 

Partition 1
K-Means++ K Centroids  

+ K weights

Weighted  
K-Means ++Partition 2

Partition r

K-Means++ K Centroids  
+ K weights

K-Means++ K Centroids  
+ K weights

Figure 2: Illustration of Two Level K-Means Merg-
ing Approach

Complexity Analysis. The time complexity is O(n′ ×
K × d× L) where n′ is the number of cluster centroids and
L is the number of iterations required K-Means++ before
convergence. Since the number of clusters are much smaller
than the number of data points, the clustering results can
be obtained extremely fast. In order to run Algorithm 1,
we only need to store the cluster centroids for each of the
partitions that requires O(K × d) space.

Theorem 1. The SSE of cluster centroids produced by
Algorithm 1 has an approximation ratio of O(logK) to the
SSE of cluster centroids Cq obtained by running K-Means++
on Dq. Furthermore, they also have an approximation ratio
of O(log2K) to the SSE of the optimal cluster centroids C∗q .

Our theorem can be proved by directly adapting the proofs
from [21, 4]. Please refer to the appendix of [3] for the
proof. The only difference is that we use K-Means++ for
both the stages. Since K-Means++ provides an bi-criteria
approximation of (O(logK), O(1)), the proof directly follows
from [3].

3.2 Model Merging for GMM
We next investigate the problem of reusing pre-built Gaus-

sian mixture models to efficiently answer other GMM based
ML queries. Given a query q, we assume the availability of
pre-built ML modelsMq = M1, . . . ,Mr that are parameter-
ized by θ(Mj) = [(wj1 , µj1 ,Σj1), . . . , (wjK , µjK ,ΣjK )]. We
seek to post-processes the Gaussian mixtures obtained from

Table 1: Summary of Notations
Symbol Description
Dq Data selected by query q
M(Dq) Model trained on entire data from scratch

M̃(Dq) Approximate model by merging

M1, . . . ,Mr Pre-built models for constructing M̃(Dq)
D1, . . . , Dr Data used to train model Mi

Cq Clusters centers through K-Means++ on
Dq

C̃q Cluster centers through merging
C∗q Optimal cluster centers for data Dq
Ci Cluster centers through K-Means++ for

Di. i.e. Ci = {ci1, . . . , ciK}
Cw Union of cluster centers Ci with number of

tuples in cluster cij as its weight w(cij)
NC(Ci, x) Nearest cluster center in Ci to x
d(x, y) Euclidean distance between x and y
wi, µi,Σi Prior probability, mean vector and covari-

ance matrix of a GMM component

each partition to approximate the GMM on Dq. There are
totally K× r Gaussian components that we must process to
just K components.

Ineffective Approaches. The approach that we used for
merging K-Means models does not work here. The output
of the K-Means algorithm can be parameterized by the cen-
troids that are simply vectors and can be re-clustered. In
contrast, the output of GMM is a Gaussian mixture where
each Gaussian distribution in it is parameterized by mean
vector, covariance matrix and a prior probability. Given a
set of data points, GMM works by estimating the parameters
of a Gaussian mixture that maximizes the likelihood. While
the likelihood that a point is generated by a Gaussian dis-
tribution is straightforward to compute, the likelihood that
a Gaussian distribution generated another is not.

Another approach is to try some clustering algorithm other
than GMM such as K-Means. We begin by randomly choos-
ing K distributions as initial centroids. Using the Bhat-
tacharya distance, we can easily identify the closest centroid
for each Gaussian distribution. We could also re-compute
the centroids by averaging the Gaussian distributions. How-
ever there are two issues with this approach: (a) the process
of merging multiple Gaussian distributions to one is very ex-
pensive and (b) the resulting Gaussian distributions could
be arbitrarily far away from the ones that we could have
obtained by running GMM from scratch.

Iterative Merging of GMM Components. The key
idea is to use another popular clustering algorithm - hierar-
chical clustering. We begin by normalizing the prior prob-
abilities of all the Gaussian mixtures by wji =

wji
Z

where

Z =
∑r
j=1

∑K
i=1 wji . One can also use a sophisticated nor-

malization technique such as those described in [49]. We can
consider the problem of obtaining GMM for Dq as analogous
to constructing a mixture of Gaussian mixture models. This
can be achieved by iteratively merging two Gaussian com-
ponents till only K of them are left. Algorithm 2 provides
the pseudocode and Figure 3 an illustration.

Selecting Components to Merge. One of the key steps
in Algorithm 2 is the selection of two Gaussian components
to merge. There has been extensive work in statistical com-
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Algorithm 2 Iterative Merging of Gaussian Components

1: Input: Set of ML models Mq, K
2: T = ∪ri=1 Gaussian mixture components of Mi

3: Normalize the weights of all GMM in T
4: while number of components > K do
5: Merge the two most similar Gaussian components
6: Recompute the parameters of the merged components
7: return the parameters of the Gaussian mixture

Figure 3: Merging for GMM

munity about appropriate measures to select components for
merging [27, 47, 14]. Intuitively, one seeks to select two dis-
tributions that are very similar to each other. In our work,
we use the Bhattacharyya dissimilarity measure for this pur-
pose and choose the pair of components with least distance
between them. Given two multi-variate Gaussian distribu-
tions N1(µ1,Σ1) and N2(µ2,Σ2), their Bhattacharyya dis-
tance is computed as:

DB(N1,N2) =
1

8
(µ1 − µ2)TΣ−1(µ1 − µ2)

+
1

2
ln

(
|Σ|√
|Σ1||Σ2|

)

Σ =
Σ1 + Σ2

2

(2)

Merging Gaussian Components. Once the two compo-
nents with the least Bhattacharyya distance has been identi-
fied, we merge them into a single Gaussian component while
taking into account their respective mixing weights, mean
vectors and covariance matrices. Given two multi-variate
Gaussian distributions N1(µ1,Σ1) and N2(µ2,Σ2) with mix-
ing weights w1 and w2, the merged component [27, 47, 14]
is described by N (µ,Σ) with mixing weights w where,

w = w1 + w2

µ =
1

w
[w1µ1 + w2µ2]

Σ =
w1

w

[
Σ1 + (µ1 − µ)T (µ1 − µ)

]
+
w2

w

[
Σ2 + (µ2 − µ)T (µ2 − µ)

]
=
w1

w
Σ1 +

w2

w
Σ2 +

w1w2

w2

(
(µ1 − µ2)(µ1 − µ2)T

)
(3)

3.3 Classifier Combination by Parameter Mix-
tures

In this subsection, we describe an effective approach for
merging supervised ML models. As before we are given
a query q representing the subset Dq and the correspond-
ing pre-built ML models Mq. Our objective is to post-
process the ML models Mi ∈ Mq to produce an approxi-

mate model M̃(Dq) such that it approximates the classifier
M(Dq) trained on Dq.

Algorithm 3 shows the pseudocode for the approach. Given
a set of pre-built ML models, we average their corresponding

model parameters and return that as the model M̃q. As we
shall show in Section 6, this surprisingly simple algorithm
works extremely well for most ML models and especially
so for GLMs. This approach can be considered as analo-
gous to distributed statistical inference where we partition
the data into a number of chunks, build optimal models for
each individually and then in a single round of communica-
tion average the parameters.

Algorithm 3 AVGM: Average Mixture Algorithm

1: Input: ML Models Mq for partitions covering Dq
2: Collect model parameters θ(Mi) ∀Mi ∈Mq

3: return θ(M̃q) = 1
r

∑r
i=1 θ(Mi)

Complexity Analysis and Approximation Guaran-
tees. Algorithm 3 is a linear time algorithm whose complex-
ity is proportional to the number of models being merged.
The parameter averaging method, dubbed Average Mix-
ture (AVGM), has been previously described for a num-
ber of ML models such as MaxEnt models including Con-
ditional Random Fields (CRFs) [38], Perceptron-type algo-
rithms [37] and for a larger class of stochastic approxima-
tion models in [58]. This algorithm was formally analyzed
in [58] and [57]. [58] showed that one of the key advantages
of AVGM is that averaging r parameter vectors reduces the

variance by O(r−
1
2 ). A sharper analysis was provided by [57]

that showed the surprising result that this simple approach
matches the error rate of the traditional (centralized) ap-
proach that builds the model from scratch over Dq. This
is achieved under mild conditions such as the number of
partitions is less than the data points in each partition -
specifically |Pq| <

√
|Dq| which holds almost all the time.

4. APPROXIMATION BY CORESETS
The model merging approach proposed in Section 3 is

very efficient with the approximate ML suffering from min-
imal loss in accuracy compared to the ML model built from
scratch. However, in many cases, one might desire for tun-
able guarantees on the degree of approximation of the ML
model. An alternate approach to speedup model building is
to train the model on a smaller number of data points. How-
ever, these data points must be carefully chosen so that they
provide a close approximation of the objective function of
the ML model trained from scratch. The natural approach
of uniform sampling often does not work well in practice or
requires very large sample size for sufficient approximation.
In this section, we describe how one can leverage the concept
of Coresets [2] from computational geometry for arbitrarily
approximating the objective function with a smaller number
of data points.

Coresets. Coresets provide a systematic approach for sam-
pling tuples proportional to their contribution to the objec-
tive function. Recall from Section 2 that a weighted set C is
said to be a ε-coreset for dataset D if (1−ε)φD(·) ≤ φC(·) ≤
(1 + ε)φD(·). Coresets are a natural solution to the problem
of obtaining ML models with tunable approximation - by
varying the value of ε, we can achieve coresets with higher
or lower approximation. Naturally, lower ε requires a larger
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Figure 4: Two Phase Approach

sized coreset. Coresets can be stored as a pair (wi, ti) where
wi is the weight of tuple ti ∈ C.

Two Phase Approach. Our proposed approach consists
of two phases. In the pre-processing phase, we compute an
ε-coreset Ci for the selected by each of the pre-built models.
In the runtime phase, we identify the set of partitions Pq
that could be used to answer q. We construct a coreset for all
the tuples that were not covered by pre-existing partitions.
Finally, we do a union of all the relevant coresets and run
an appropriate ML model on it and provide the resulting
model as an approximation.

4.1 Coreset Construction
We now provide a brief description of how to construct

coresets for each partition for various ML models. Note that
the definition of coreset is intrinsically tied to the objective
function of the ML model. For example, coresets are defined
based on SSE for K-Means, log likelihood for GMM and so
on. Hence, one cannot reuse the coreset constructed for one
ML model (such as K-Means) for the other (such as GMM).

A common strategy for computing coreset is to sample the
data points proportional to their contribution for φ. Con-
sider the K-Means clustering problem that seeks to minimize
the SSE. Suppose we are given a set of optimal cluster cen-
troids and an arbitrary data point x. If x is close to its
nearest cluster centroid, then one need not include x in the
coreset with high probability. Instead, one can “approxi-
mate” x’s contribution to SSE through its cluster centroid
(by increasing its weight by 1). If a point is distant from its
nearest centroid, then it has a large contribution to SSE and
hence must be included in the coreset with high probability.
Intuitively, coreset construction can be considered as an im-
portance sampling problem where data points are sampled
based on their contribution to φ (such as SSE for K-Means).
In practice, one does not have the optimal cluster centroids.
The key research problem in coreset construction is to ap-
proximate the importance of a data point to SSE (φ in gen-
eral), without knowing the optimal cluster centroids. This
is often achieved by choosing a careful surrogate function
φ′ that is a good approximation of φ and can be computed
efficiently.

Surrogate Functions for Coresets. A surrogate func-
tion for a coreset must satisfy two desirable properties: (a) it
must provide an ε-coreset with small number of data points
and (b) it must be lightweight so as to compute the impor-

tance of a data point in one or two passes over the entire
data. Consider the surrogate function for K-Means defined
in [8].

p(x) =
1

2

1

|Di|
+

1

2

d(x, µ(Di))
2∑

x′∈Di d(x′, µ(Di))2
(4)

Given a set of points Di and x ∈ Di, it computes the
importance of x by measuring the distance of x to the mean
vector µ(Di). Data points that are far away from the mean
vector are provided with higher importance. The first term
of the equation ensures that every data point has a non-
zero probability of being picked. Note that this function
is lightweight, efficient, computable in just two passes over
the data and embarrassingly parallel to implement. It also
provides an ε-coreset as proved in [8]. Coreset algorithms
exist for ML models such as GMM [17], SVM [10], Logistic
Regression [28], etc. Each of these algorithms vary in how
the importance of the data point is computed.

Algorithm 4 provides the pseudocode for coreset construc-
tion.

Algorithm 4 Coreset Construction

1: Input: Set of data points Dq, Coreset size m
2: for each x ∈ Dq do
3: Compute contribution of x based on a surrogate of φ
4: ∀x ∈ Dq, Compute sampling probability p(x)
5: Ci = m points from Dq chosen through importance sam-

pling
6: ∀x ∈ Ci, compute the weight w(x)
7: return coreset Ci

Complexity Analysis. For most of the popular ML mod-
els, there exist efficient coreset construction algorithms that
run in time linear on the size of the dataset. For example,
the algorithm proposed in [8] requires two passes - one to
compute the mean of all data points and one to perform
importance sampling.

4.2 Coreset Compression
The size of the coreset depends on the value of ε which

is often end-user defined. A smaller value of ε requires bet-
ter approximation and thereby larger coresets. Most of the
state-of-the-art coreset algorithms often have the intriguing
property that the coreset size depends primarily on ε and
is independent of the size of the dataset. For example, one

needs a K-Means coreset of size Ω(
dk+log 1

δ
ε2

) [8] to ensure
that with probability of at least 1 − δ, coreset Ci is an ε-
lightweight coreset. Given K = 10 and d = 5, one can
obtain an ε = 0.1-coreset with probability 0.95 by getting
a sample of at least 5000 regardless of the size of dataset.
ε = 0.2-coreset requires approximately 1250 samples.

Consider a scenario where one needs to build a ML model
for the entire USA where pre-built coresets exist for each
state. Based on the observation above, we store approxi-
mately 5000 tuples as coreset for each state. When we pool
them together, there are 250K tuples for the entire USA.
Since coresets have the compositional property where if C1

is an ε-coreset for D1 and C2 is an ε-coreset for D2, then
C1 ∪C2 is an ε-coreset for D1 ∪D2. Hence, the set of 250K
tuples is an 0.1-coreset for entire USA. However, if we had
constructed coreset directly over the entire data from USA,
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we would have only gotten 5000 tuples. We solve this conun-
drum by coreset compression. Simply put, we invoke a core-
set construction algorithm with the same ε on the pooled
set of tuples and choose a smaller number of tuples with
highest importance - say of size 10,000 instead of 250,000.
As we shall show in experiments, this approach works well
in practice with minimal loss of accuracy.

5. OPTIMIZATION CONSIDERATIONS

5.1 Choosing ML Models to Reuse
The first major problem is to identify an optimal exe-

cution strategy - given a set of materialized models and an
analytic query, how can one build an approximate ML model
efficiently? For ease of exposition, we describe our approach
for analytic queries specified as ranges such as building an
ML model for tuples [lb, ub]. This approach can easily be
adapted for OLAP queries over a single dimension.

Example. Consider a dataset with 1 million tuples with
4 materialized models for tuples M1 = [1, 500K], M2 =
[500K, 1M ], M3 = [300K, 900K], M4 = [900K, 1M ]. Given
a new query q = [250K, 1M ], there are many ways to answer
it. The traditional strategy S1 builds an ML model from
scratch for all of q. Or one could build an ML model from
scratch for [250K, 300K] and then merge it with M3 and M4

(Strategy S2). Alternatively, one could build an ML model
for [250K, 500K] and then merge it with M2 (Strategy S3).
Furthermore, each of these options can be either done using
coresets or by model merging.

Cost Model. In order to perform cost based optimization,
we need an objective cost model that quantifies various exe-
cution strategies. Broadly speaking, the cost involves three
components: (a) cost of building a model CBuild from a set
of (possibly weighted) tuples (b) cost of merging a model
Cmerge and (c) cost of building a coreset Ccoreset. For ex-
ample, the cost of strategy S1 is CBuild([250K, 1M ]) and
S2 is CBuild([250K, 300K]) + CMerge(M2) + CMerge(M3).
Optionally, one could also use a cost component for penal-
izing the loss of accuracy. In practice, efficiently estimating
the accuracy of a model before building it is a non-trivial
task. All the algorithms described in the paper provide rig-
orous worst case guarantees about the approximate model
that we use as a proxy for their eventual performance. As
an example, if the models have a coreset with ε = 0.1, it
provides an approximation of 10%. Henceforth, we focus on
the scenario where the models obtained by either merging or
through coresets already exceed the quality requirements of
the analyst. If this is not acceptable, the analyst can build
the model from scratch.

In our paper, we treat the cost model as an orthogonal
issue that is often domain specific. The only constraint that
must be satisfied by the cost model is that it is monotonic.
In other words, all things being equal, building a model
with Ni tuples should cost more than one with Nj tuples
if Ni > Nj . Our algorithm produces an optimal execution
strategy as long as the cost function is monotonic.

Finding the Optimal Execution Strategy. We formu-
late the problem of finding the optimal execution strategy as
finding the shortest path in a graph with minimum weight.
Our approach involves three steps. First, we retrieve a set of
materialized models that can be used to answer q. A model
built on [lb′, ub′] is considered relevant if it is a subset of

q = [lb, ub]. For example, for q = [250K, 1M ], the model M1

is not relevant. Second, we collect the set of distinct lb, ub
values from the relevant models including q. In the running
example, it will be V = {250K, 300K, 500K, 900K, 1M}.
Third, we construct an execution strategy graph - a weighted,
directed and complete graph - that succinctly encodes all
possible execution strategies to solve q. We build two graphs
- one to identify the best execution strategy using the coreset
approach and another for the merging approach. Informally,
each of the distinct lb, ub values collected in Step 2 form
the nodes. A directed edge eij exists between nodes vi and
vj if vi < vj . If there exists a model with lb and ub cor-
responding to vi and vj , then weight(eij) = CMerge(vi, vj).
This corresponds to the cost of directly using this model.
If not, weight(eij) = CBuild([250K, 300K]) for the merg-
ing approach and weight(eij) = Ccoreset([250K, 300K]) +
CBuild(C([250K, 300K)) for coreset based approach. This
corresponds to the cost of directly building an ML model for
this range or building a coreset for this range and building an
ML model over the coreset. Once the graph is constructed,
the minimum cost execution strategy can be obtained by
identifying the shortest path between the nodes correspond-
ing to lb and ub - say by using Dijkstra’s algorithm. Each
edge eij = (vi, vj) in the shortest path either corresponds to
a pre-existing ML model built on (vi, vj) or requires one to
build one between (vi, vj). Algorithm 5 provides the pseu-
docode for this approach.

Algorithm 5 Optimal Execution Strategy

1: Input: q = [lb, ub], all materialized models MD

2: Mq = Filter the relevant models from MD

3: V = Distinct end points for {q ∪Mq}
4: for each pair (vi, vj) ∈ V with vi < vj do
5: Add edge with appropriate weight (Cbuild(vi, vj) or

Cmerge(vi, vj))
6: Sopt = Shortest path between vlb and vub
7: Execute strategy Sopt to build an approximate ML

model for q

Choosing ML Models to Reuse for Arbitrary Queries
When the queries are range predicates on individual at-
tributes, Algorithm 5 provides the optimal strategy. How-
ever, when the queries has predicates over multiple attributes
or over OLAP hierarchies, then optimally choosing the mod-
els for reuse becomes an instantiation of exact set cover - a
known NP-complete problem. To see why, each pre-built
model can be considered as a set of tuples from which they
were built. The query q can be considered as the set of tu-
ples retrieved by it - i.e. Dq. Our objective is to select a
small number of sets such that each tuple in Dq is covered
by exactly one set.

We propose a natural greedy approach that works well in
practice even when the number of queries is large. Of course,
when the problem instances are small, one can essentially
use a brute force approach to identify the optimal solution.
We begin by pruning all pre-built models that are not proper
subsets of Dq. This eliminates all models that contain tuples
that are not retrieved by Dq. Using the cost model, we
choose the model from the set of candidates that provide
the most benefit (e.g., it covers most tuples with least cost).
Once the model Mi is chosen, we do two types of pruning.
First, we remove all the tuples covered by Mi from Dq so
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that in the next rounds, the cost model gives higher weight
to tuples that are not yet covered. Second, we remove all
pre-built models that are not proper subsets of Dq \ Mi.
This ensures that the same tuple is not covered by multiple
chosen models and thereby having higher impact.

5.2 Selecting Models for Prebuilding
Suppose we are given set of queries Q that is representa-

tive of the ad-hoc analytic queries that could be issued in
the future. These could be obtained from a workload or an-
alytic query logs from the past. In this subsection, we first
consider the problem of selecting L models to materialize so
as to maximize the number of queries in Q that can be sped
up through model reuse. We then briefly discuss the case
where workload Q is not available. We address this problem
in two stages. In the candidate generation step, we enumer-
ate the list of possible ML models to build. In the candidate
selection step, we propose a metric to evaluate the utility of
selecting a model and use it to pick the best L models.

Candidate Generation. Given a workload Q = {q1 =
[lb1, ub1], q2 = [lb2, ub2], . . . , qM = [lbM , ubM ]}, our objec-
tive is to come up with L ranges such that they could be
used to answer Q. Note that we are not limited to select-
ing ranges from Q. As an example, one could identify a
sub-range that is contained in multiple queries to materi-
alize. We generate the set of candidate models as follows.
First, we select the list of all distinct lb, ub values. We then
consider all possible ranges (l, u) such that l < u and there
exists at least one query in Q that contains the range (l, u).
This ensures that we consider all possible ranges that could
be reused to answer at least one query in Q.

Candidate Selection. In this step, we design a simple
cost metric to compare two sets of candidate models. We
can see that the cost of not materializing any model is equiv-
alent to the traditional approach of building everything from
scratch. So we have Cost({}) =

∑M
i=1 Cbuild(qi). This gives

us a natural method to evaluate a candidate set. We assume
the availability of the corresponding models and compute
the cost of answering Q. We use Algorithm 5 to estimate
the optimal cost of building a given query. The difference
between Cost({}) and Cost({ri1 , ri2 , . . .}) provides the util-
ity of choosing models ri1 , ri2 , . . . to materialize. Given this
setup, one can use a greedy strategy to select the L models
with highest utility. At each iteration, we pick a range ri
such that it provides the largest reduction in cost of answer-
ing all queries in Q.

If the workload information is not available, one could
use some simple strategies to choose which models to ma-
terialize. The equi-width strategy creates L partitions by
splitting the range [1, n] into L equal sized parts {[1, b n

L
c],

[d n
L
e, b 2n

L
c] . . .}. Alternatively, one could also choose the L

largest values of a given OLAP dimension. For example, if
one of the dimensions is Country, then one could choose to
pre-build models for the L largest countries.

Selecting Models for Arbitrary Queries. The above
proposed approach can be naturally adapted for arbitrary
queries. Given a set of workload Q, we generate the set of
candidates as follows. Let M = {} be the set of candidate
models to pre-build. For each pair of queries (qi, qj) ∈ Q,
we add {qi, qj , qi ∪ qj , qi ∩ qj} to the set of candidate models
M . Once the set of candidate models are constructed, we
compute its weight based on how much it can contribute

for speeding up queries in Q. We greedily choose the model
from M with most benefit and re-compute the benefits of re-
maining candidate models. We repeat this iterative process
till L models are chosen.

6. EXPERIMENTS

6.1 Experimental Setup
Hardware and Platform. All our experiments were per-
formed on a quad-core 2.2 GHz machine with 16 GB of
RAM. The algorithms were implemented in Python. Scikit-
Learn (version 0.19.1) was used to train the ML models [45].
Vowpal wabbit [34] (version 8.5.0) was used for online learn-
ing.

Datasets and Algorithms. For evaluating our classifica-
tion algorithms (SVM and LR), we used 7 diverse datasets
for binary classification. For datasets with OLAP style hi-
erarchies, we selected 5 datasets from the Hamlet reposi-
tory [33] - Movies, Yelp, Walmart, Books and Flights. We
also selected two large datasets - SUSY and HIGGS from
LibSVM repository [12, 15]. The size of the datasets vary
from 200K tuples all the way to 11M tuples. For evaluat-
ing clustering, we generated a synthetic dataset with 5M
data points, 20 features and 10 clusters using publicly avail-
able generator [45]. Each of the experiments was run with
5 different random seeds and the results are averaged. We
evaluated a total of 8 algorithms - coreset and merging based
algorithms for K-Means, GMM, SVM and Logistic Regres-
sion respectively. We compared each of these algorithms
against two baseline algorithms where the analytic query is
answered by running the ML model from scratch and by an
incremental algorithm.

Performance Measures. We evaluate the efficacy of our
algorithms against the baseline approach along two dimen-
sions: time and ML model accuracy. Speedup Ratio (SR)
is defined as the ratio of time taken for building an ML
model over the data to the time taken to build a model by
reusing existing ML models. It measures the time savings
that one can obtain by building an approximate ML model
from other ML models as against building it from scratch.
We also evaluate the difference in model performance in or-
der to ensure that the benefit in time does not come at the
cost of model accuracy. For classification, we measure the
difference in accuracy (DA) between the exact and approx-
imate models. For example, a difference of 0.1 is obtained
when the exact and approximate models have an accuracy of
99.9 and 100.0 respectively. For K-Means, we measure the
clustering similarity through Adjusted Rand Index (ARI).
ARI can be informally described as the ratio of agreements
between two clusterings with respect to all possible pairs of
data points. Specifically, if nss and ndd are the number of
pair of tuples that were assigned to same cluster and dif-
ferent clusters respectively, then RI = nss+ndd

(|Dq|2 )
. Adjusted

Rand Index performs chance normalization on Rand Index
such that it has an expected value of 0 for independent clus-
terings and 1 for identical clusterings. For GMM, we use rel-
ative error between the likelihood for the entire produced by
the two models. If the value is closer to 1, then we obtained
a model that is very close to the exact one. Note that both
these methods are in the same range of [0, 1] with a value
closer to 1 being preferred. In the charts, we use the generic
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Figure 5: Evaluating approaches for building an approximate ML model for a workload of OLAP queries on
the Hamlet datasets.
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Figure 6: Evaluating approaches for building an approximate ML model for a workload of random queries
on the Hamlet datasets.
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Figure 7: Evaluating approaches for building an approximate ML model for queries over the entire dataset.
Abbreviations: Same as Figure 8. Legend for Figures 7a, 7b and 8a same as that of 8b.
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Figure 8: Evaluating impact of Coverage Ratio on building an approximate ML model. Abbreviations:
MG/CR - Merging/Coresets; HG/SS - HIGGS/SUSY, KM - KMeans

term “clustering dissimilarity” to denote the corresponding
distance measure (i.e. 1 - ARI or 1 - relative error).

Evaluation Methodology. We consider four ML models:
Logistic Regression (LR), Support Vector Machines (SVM),
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Figure 9: Evaluating the impact of Approximation Ratio for Coresets.
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Figure 10: Evaluating the impact of Coreset com-
pression.

K-Means and Gaussian Mixture Models (GMM). We used
the implementations provided from scikit-learn. In our ex-
periments, we did not use any hyper parameter tuning and
set those to the default values of scikit-learn. Our exper-
iments showed that the impact of hyper parameters (such
as learning rate or regularizer) was minimal when each of
the merged model used the same or similar value. For K-
Means and GMM, the number of clusters was set to 10.
We used the classical non-nested 5-fold cross validation and
report the average of accuracy over the testing data for 5
runs. Each of the chosen coreset algorithms ([8, 17, 10, 28]
also provide a closed form solution to compute the size of
the coreset to achieve ε-approximation. Conservatively, we
multiply the estimate by 4.

Query Workload. We consider two types of query work-
loads. Random workload involves queries where the query
predicate is chosen at random (such as build a model for
tuples with id in the range [1M, 2M]). We shuffled the data
using 5 different random seeds to ensure that the results are
not due to chance. OLAP workload involves queries that
have predicate over the attributes that have OLAP hierar-
chies imposed on them. Specifically, we considered all OLAP
cuboids that contained at least 1% of the tuples. Then, we
generated queries by considering all possible subsets of the
cuboids of the same predicate. As an example, in the movies
dataset, the ratings vary between 1-5. We considered all 26
possible combinations of the ratings of size at least 2 (i.e.∑5
j=2

(
5
j

)
= 26). This process was repeated for each at-

tribute and each dataset.
In our final set of experiments, we study the impact of

various parameters on our algorithm. These experiments

are performed on the synthetic dataset for a specific query:
build an ML model over the entire data. The data has been
randomly partitioned into 2, 5, and 10 partitions. As an
example, the data is partitioned into 10 equal sized parti-
tions and an ML model has been pre-materialized for each
partition. For each query in the workload, we assume that
there is always a set of pre-built models that can be used to
approximate the query. We also investigate the impact of
queries that are not fully covered by pre-built models.

6.2 Experimental Results
Evaluating the Model Merging based Approach. In
our first set of experiments, we evaluate the performance
of the model merging based approach for both classification
and clustering based ML models. Figures 5(a)-7(a) show the
results for all three types of query workloads. For each type
of queries, our approach achieves substantial speedup over
both baseline approaches with significant speedup whenever
the analytic query has high selectivity. For example, our
approach achieves a significant speedup as much as 107 for
HIGGS. In concrete numbers, training a Linear SVM on
the entire HIGGS dataset with 11M tuples takes around
1.5 hours while simply merging the models takes just mil-
liseconds. Another key thing to notice is that the benefit
improves dramatically with larger datasets such as HIGGS
and SUSY getting orders of magnitude speedup over the
smaller datasets. The benefit is especially significant for
compute intensive training algorithms such as SVM. Fur-
thermore, the number of models to be merged that corre-
spond to the number of partitions has at most negligible
impact. These observations support our original hypothe-
sis that one can significantly speed up analytic queries by
reusing ML models. Our approach has the potential to make
ML more interactive and near real-time. These benefits ex-
tend for clustering also. We achieve a speedup of at least
104 for both K-Means and GMM based clustering over large
datasets.

Figures 5(b)-7(b) show that this substantial speedup does
not have any major impact on the model accuracy. The
performance of the exact and approximate ML models are
almost identical with their accuracy values varying only in
the third or fourth decimal places. Even for a large dataset
such as HIGGS that had a testing set with 500K tuples, this
only corresponds to a handful of mis-classifications. For a
number of exploratory analytic ML tasks this is an accept-
able trade-off when one can get results in many orders of
magnitude faster. Since our experiments were conducted on
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multiple datasets in the Hamlet repository, we also provide
the error bars for Figures 5 and 6. Note that while the error
bars seem quite large, the actual differences were very small
(e.g., in the order of 0.1 for Figure 5(b). The differences for
results on speedup ratio is also miniscule. Another inter-
esting observation is that the difference in model accuracy
actually decreases for larger datasets. This is consistent with
the theoretical results from [57].

Evaluating Coreset based Approach. In the next set
of experiments, we evaluate the performance of the coreset
based approach for both classification and clustering based
ML models for various query workloads. We assume the
availability of coresets for each partition that are then pooled
together and a weighted variant of the ML model algorithm
was invoked on it. By default, we set the coreset approx-
imation ratio as ε = 0.1. Figures 5(c) and 6(c) show the
performance of the coreset based approach for OLAP and
random query workloads. Figure 7(a) and (c) show the same
for queries over the entire dataset.

Our approach typically provides a speedup between 5-15
with larger speedups for bigger datasets and expensive al-
gorithms such as SVM. This is due to the fact that most
coreset algorithms can approximate a dataset with at most
logarithmic number of points thereby providing substantial
speedups over the traditional approach that runs on the en-
tire dataset. While the coreset based approach provides an
order of magnitude speedup over the current approach, it
pales in comparison against the speedups provided by model
merging based approaches. This is due to the fact that one
has to run the expensive model training algorithm (for e.g.,
O(n3) for SVM) on the coreset. Figures 5(d), 6(d), 7(b) and
(d) show the impact on accuracy is minimal. Even though
ε = 0.1, the difference in accuracy was much lower around
1-2% for GLM and almost negligible for clustering. Further-
more, as the number of partitions increases, the difference
in model accuracy decreases. This is due to the fact that the
union of coresets often have slightly more redundant infor-
mation that helps in improving the performance. Overall,
this set of experiments show that coresets can provide ap-
proximate models that are as accurate as the exact ones and
often sufficient enough for exploratory ML purposes.

Impact of Coverage Ratio. In our next set of experi-
ments, we studied the impact of coverage ratio on the perfor-
mance of our algorithms. Informally, the coverage ratio cor-
responds to the ratio of the query for which we could reuse
pre-built ML models. So a coverage ratio of 100% means
that we can completely answer an analytic query using pre-
built models while a coverage ratio of 0% means that we
have to build the model from scratch. In our experiments,
we focused on a scenario where the data is partitioned in 10
partitions. So for a coverage ratio of 20%, we assumed that
pre-built models exist for two randomly chosen partitions.
We then build a single exact model for the remaining 8 par-
titions and then combine it with the 2 models. For coresets,
this corresponds to running a coreset algorithm on the 80%
of the data, combining it with pre-computed coresets for the
other two partitions and running the ML model.

Figures 8(a) and 8(c) show the time taken in seconds for
model building. As expected, the running time of our ap-
proach depends significantly on the availability of pre-built
models. For example, if pre-built models are completely
available, our model merging approach just requires a few

milliseconds. However, if pre-built models only exist for 80%
of the data, it provides a speedup of 5x as one needs to train
the model only for 20% of the data. As shown previously,
the impact on accuracy of the model - for both classifica-
tion and clustering - is minimal to non-existent. A similar
behavior can be observed for coresets. As the coverage ra-
tio increases, the speedup ratio provided by the coreset also
increases with minimal impact on model accuracy.

Impact of Coreset Approximation Ratio. In our final
set of experiments, we vary the approximation ratio of the
coreset from ε = [0.05, 0.1, 0.2]. A smaller value of ε pro-
vides a tighter approximation at the cost of a larger coreset.
Figures 9(a) and 9(b) show that as value of ε increases, the
speedup ratio also improves. This is due to the fact that a
smaller coreset suffices to guarantee a larger approximation
of ε. Figures 9(c) and 9(d) show an interesting result wherein
increasing the value of ε - say by doubling it - does not re-
sult in a significant reduction in model accuracy. Instead,
the impact is quite minimal! This seems to confirm the cen-
tral observation in coreset theory that real-world data often
have substantial redundant information that can be effec-
tively approximated by coresets.

Impact of Coreset Compression. In the final set of
experiments, we study the efficacy of coreset compression.
Figure 10 shows the results. As expected, coreset compres-
sion has minimal impact on accuracy yet has a significant
improvement in reducing the time take for model building.
This behavior is pronounced when there are multiple models
to be merged which is precisely the scenario where coreset
compression has the most impact.

7. DISCUSSION
As shown by the experimental results, our proposed ap-

proaches can be used for efficiently generating approximate
ML models. In this section, we briefly discuss the scenarios
in which our approach is relevant and when it might not be.

In general, our approach is often geared to be used in ex-
ploratory ML analysis. In this stage of the analysis pipeline,
the data scientist is often exploring various hypotheses and
is often willing to trade accuracy for real-time response. In
the production environment where the data scientist would
want to maximize accuracy, our approach might not be ap-
plicable.

We would like to note that the suitability of queries for
building ML models is an orthogonal issue that is deter-
mined by the domain expert. For example, it is possible
that building a model over the union of data from 2017 and
2018 is inadvisable due to issues such as staleness or concept
drift. In such a case, building of an exact ML model (via
traditional methods) or an approximate ML model (via our
approach) are both inappropriate. Our focus is on building
an approximate ML model efficiently when the data scientist
deems such a model to be relevant.

Thoroughly understanding the limitations of our approach
is a key focus of our future work. A non exhaustive list
of scenarios where our approach might provide less robust
results include:

• Concept Drift is said to occur when the statistical
properties of the target variable changes over time. As
an example, the data for 2017 and 2018 might be so
different that building a model over the union of the
data is not meaningful.
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• Skewness of Model Data Sizes. If the constituent mod-
els have very skewed distribution of selectivity, model
merging does not provide robust results. As an ex-
ample, consider individual models that are built for
ratings=1 to ratings=5. Often, the ratings express
a U-shaped distribution where there are more tuples
with ratings 1 or 5 with substantially less tuples for
ratings 2, 3, and 4. If the ratings 1 and 5 account for
90% of the tuples, the results could also be skewed.

• Skewness of Labels. If in a binary classification prob-
lem, 90% of the tuples belong to one class, naive merg-
ing could result in a biased classifier.

8. RELATED WORK
Data Management Challenges in Machine Learn-
ing. Recently there has been extensive interest in inte-
grating ML capabilities into databases from both industry
and academia. Most major commercial database products
such as IBM System ML, Oracle ORE, SAP HANA already
support analytic queries over database engines. Academic
product such as MLLib [39] and MADLib [26] also sup-
port similar integrations. There has been work on inte-
grating ML primitives into database engines such as [32],
using SQL style declarative languages for ML model train-
ing [35, 29]. Recent work also tried to use key concepts from
data management for speeding up ML analytic tasks. These
include materialization for feature selection [33, 56], using
database style cost optimizer for predicting performance of
ML tasks [44, 55, 29]. Incremental processing of ML based
analytic queries was considered in [22]. Please refer to [30]
for additional details about various data management re-
lated issues in ML.

Management of ML Models. Recently, there is increas-
ing interest in managing key artifacts of ML process such as
ML models [31, 41] and datasets [23]. [41, 40] focus on a uni-
fied data, model and lifecycle management for deep learning
while [53, 54] seek to manage models for other applications
such as model diagnosis, visualization and provenance. As
ML model management systems become mainstream, they
could be used to identify relevant models for a new ML
model query. Our approaches can be easily retrofitted on
top of these systems.

Speeding Up Analytic Queries. There has been exten-
sive work on speeding up analytic queries in databases. Two
techniques are especially relevant: approximate query pro-
cessing (AQP) and cube materialization. AQP [19] relies
on the fact that exact answers are not always required and
provides approximate answers - often for aggregate queries -
at interactive speeds. The common techniques include sam-
pling and construction of synopses [1, 7]. Our coreset based
approach can be considered analogous to synopses for AQP.
There also has been extensive work on efficiently material-
izing OLAP cubes by leveraging partial computations [20].
There has been extensive followup work that computed in-
teresting statistical aggregates on OLAP cubes such as [13,
9, 36, 16]. The work [13] is especially relevant to our
problem. Prediction cubes summarizes a predictive model
trained on the data corresponding to an OLAP data cube.
Our approach can be used to speedup [13] by building ap-
proximate ML models for data cubes from its component

cubes. Another recent work [5] is complementary to our ef-
fort as it focuses on speeding mean value and multi-variate
regression queries. In contrast, we focus on ML analytic
queries for classification and clustering.

Approximating ML Models. A number of ML algo-
rithms often use iterative algorithms such as gradient de-
scent. A common approach for approximating the ML model
is to stop after a fixed number of iterations [11, 43]. How-
ever, this typically does not provide any rigorous guarantees.
Coresets were originally proposed in computational geome-
try that provide strong approximation guarantees. There
has been extensive work on coresets for various ML models
such as K-Means [8, 25, 18, 48], GMM [17], kernel density
estimation [46], logistic regression [28, 24], SVM [10, 52, 51],
Bayesian networks [42] and so on. A recent work [56] also
used the concept for coresets. They focused on speeding up
analytic queries for feature selection process by using core-
sets as a principled sampling appproach. In contrast, our
work assumes that feature selection/engineering is already
completed and use coresets to build models with strong ap-
proximation guarantees. They also have an elegant idea of
warm starting where they train some models more efficiently
by reusing prior models with related features. For example,
a model with feature set F can be used to speed up another
one that has feature set F \ f or F ∪ f where f is a single
feature. In contrast, our approach is for a fixed feature set
F where the data that is used to train the model varies.

Another area related to our work is transfer learning [50]
where the objective is to train a model for one domain/dataset
and reuse it for another. Our work primarily considers a sin-
gle dataset. How to adapt ideas from transfer learning so
that we can transfer the model trained on a query Q to a
related query Q′ is an interesting research problem.

9. CONCLUSION
In this paper, we presented an approach to answer ad-hoc

analytic queries on ML models in an approximate manner
at interactive speeds. Our key observation was that most
of these queries are often aligned on OLAP hierarchies and
it must be possible to materialize and reuse ML models.
We presented two orthogonal approaches based on coresets
and model merging to answer popular ML algorithms in
classification and clustering. We also proposed an algorithm
to identify an optimal execution strategy for an analytic
query and to determine which models to materialize. Our
experimental results on a wide variety of real-world datasets
show that our approach can result in orders of magnitude in
speedup with negligible approximation cost.
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[26] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, et al. The madlib analytics library: or mad
skills, the sql. PVLDB, 5(12):1700–1711, 2012.

[27] C. Hennig. Methods for merging gaussian mixture
components. Advances in data analysis and
classification, 4(1):3–34, 2010.

[28] J. Huggins, T. Campbell, and T. Broderick. Coresets
for scalable bayesian logistic regression. In NIPS,
pages 4080–4088, 2016.

[29] Z. Kaoudi, J.-A. Quiané-Ruiz, S. Thirumuruganathan,
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