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ABSTRACT
Deciding the equivalence of SQL queries is a fundamental prob-
lem in data management. As prior work has mainly focused on
studying the theoretical limitations of the problem, very few im-
plementations for checking such equivalences exist. In this pa-
per, we present a new formalism and implementation for reason-
ing about the equivalences of SQL queries. Our formalism, U-
semiring, extends SQL’s semiring semantics with unbounded sum-
mation and duplicate elimination. U-semiring is defined using only
very few axioms and can thus be easily implemented using proof
assistants such as Lean for automated query reasoning. Yet, they
are sufficient enough to enable us reason about sophisticated SQL
queries that are evaluated over bags and sets, along with various in-
tegrity constraints. To evaluate the effectiveness of U-semiring, we
have used it to formally verify 68 equivalent queries and rewrite
rules from both classical data management research papers and
real-world SQL engines, where many of them have never been
proven correct before.
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1. INTRODUCTION
All modern relational database management systems (DBMSs)

contain a query optimizer that chooses the best means to execute
an input query. At the heart of an optimizer is a rule-based rewrite
system that uses rewrite rules to transform the input SQL query
into another (hopefully more efficient) query to execute. A key
challenge in query optimization is how to ensure that the rewrit-
ten query is indeed semantically equivalent to the input, i.e., that
the original and rewritten queries return the same results when exe-
cuted on all possible input database instances. History suggests that
the lack of tools to establish such equivalences has caused long-
standing, latent bugs in major database systems [32], and new bugs
continue to arise [7, 10]. All such errors lead to incorrect results
returned that can cause dire consequences.
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In the past, query optimizers were developed by only small num-
ber of commercial database vendors with dedicated teams to handle
customer reported bugs. Such teams effectively acted as “manual
solvers” for query equivalences. The explosive growth of new data
analytic systems in recent decades (e.g., Spark SQL [12], Hive [4],
Dremel [42], Myria [39, 55], among many others) has unfortu-
nately exacerbated this problem significantly, as many such new
systems are developed by teams that simply lack the dedicated re-
sources to check every single rewrite implemented in their system.
For example, the Calcite open source query processing engine [1]
is mainly developed by open-source contributors. While it con-
tains more than 232 rewrite rules in its optimization engine, none
of which has been formally validated. The same holds true for sim-
ilar engines.

On the other hand, deciding whether two arbitrary SQL queries
are semantically equivalent is a well-studied problem in the data
management research community that has shown to be undecid-
able in general [11]. Most subsequent research has been directed
at identifying fragments of SQL where equivalence is decidable,
under set semantics [17, 47] or bag semantics [24]. This line of
work, focused on theoretical aspects of the problem [51, 47, 41],
led to very few implementations, most of which were restricted to
applying the chase procedure to conjunctive queries [14].

An alternative approach to query equivalence was recently pro-
posed by the COSETTE system [23] based on a new SQL seman-
tics. It interprets SQL relations as K-relations [35]. A K-relation
is semiring that maps each tuple t to a value R(t) that denotes the
multiplicity of the tuple in the relation. Normally, the multiplicity
is an integer, thus the semiring K is the semiring of natural num-
bersN, but in order to support some of the SQL constructs (such as
projections, with or without DISTINCT), COSETTE resorts to using
a much more complex semiring, namely that of all univalent types
in Homotopy Type Theory (HoTT) [50]. Equivalence of two SQL
queries is then proven in COSETTE using the Coq proof assistant
extended with the HoTT library [36]. While the system can han-
dle many features of SQL, its reliance on HoTT makes it difficult
to extend as HoTT is both a Coq library under development and
an active research area itself. As a result, COSETTE has a number
of shortcomings. For example, COSETTE does not support foreign
keys as they are difficult to model using the HoTT library in Coq.

In this paper, we propose a new algebraic structure, called the
unbounded semiring, or U-semiring. We define the U-semiring
by extending the standard commutative semiring with a few sim-
ple constructs and axioms. This new algebraic structure serves as
a foundation for our new formalism that models the semantics of
SQL. To prove the semantic equivalence of two SQL queries, we
first convert them into U-semiring expressions, i.e., U-expressions.
Deciding the equivalence of queries then becomes determining the
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equivalence of two U-expressions which, as we will show, is much
easier compared to classical approaches.

Our core contribution is identifying the minimal set of axioms for
U-semirings that are sufficient to prove sophisticated SQL query
equivalences. This is important as the number of axioms deter-
mines the size of the trusted code base in any proof system. As
we will see, the few axioms we designed for U-semirings are sur-
prisingly simple as they are just identities between two U-expres-
sions. Yet, they are sufficient to prove various advanced query op-
timization rules that arise in real-world optimizers. Furthermore,
we show how integrity constraints (ICs) such as keys and foreign
keys can be expressed as U-expressions identities as well, and this
leads to a single framework that can model many different features
of SQL and the relational data model. This allows us to devise dif-
ferent algorithms for deciding the equivalences of various types of
SQL queries including those that involve views, or leverage ICs to
rewrite the input SQL query as part of the proof.

To that end, we have developed a new algorithm, UDP, to au-
tomatically decide the equivalence of two arbitrary SQL queries
that are evaluated under mixed set/bag semantics,1 and also in the
presence of indexes, views, and other ICs. At a high level, our
algorithm performs rewrites reminiscent to the chase/back-chase
procedure [45] but uses U-expressions rather than first order logic
sentences. It performs a number of tests for isomorphisms or homo-
morphisms to capture the mixed set/bag semantics of SQL. Our al-
gorithm is sound in general and is complete in two restricted cases:
when the two queries are Unions of Conjunctive Queries (UCQ)
under set semantics, or UCQ under bag semantics. We implement
UDP on top of the Lean proof assistant [26]. The implementation
includes the modeling of relations and queries as U-expressions,
axiomatic representations of ICs as simple U-expression identities,
and the algorithm for checking the equivalence of U-expressions.

We evaluate UDP using various optimization rules from classi-
cal data management research literature and as implemented in the
Apache Calcite framework [1]. These rules consist of sophisti-
cated SQL queries with a wide range of features such as subqueries,
grouping and aggregate, DISTINCT, and integrity constraints.In fact,
only 1 of them have been proven before. UDP can formally and au-
tomatically prove most of them (39 of 45). The running time of
UDP on each of these 39 rules is within 30 seconds. Our system
only proves equivalence. In prior work [22] we described the com-
plementary task that uses a model checker to find counterexamples
to identify buggy rewrites [32, 7, 10]; of course, the model checker
cannot prove equivalence, which is our current focus.

In summary, our paper makes the following contributions:

• We describe a new algebraic structure, the U-semiring, which
extends the standard semiring with the necessary operators to
model the semantics of a wide range of SQL queries (Sec. 3).

• We propose a new formalism for expressing different kinds of
integrity constraints over a U-semiring. We implement such con-
straints using a number of axioms (in the form of simple identi-
ties) such that they can be easily implemented using a proof as-
sistant. Doing so allows us to easily utilize them in equivalence
proofs (Sec. 4).

• We describe a new algorithm for deciding the equivalences of
different types of SQL queries. The algorithm operates entirely
on our representation of SQL queries as U-expressions. We show

1Mixed set/bag semantics is the bag semantics that allows explicit
DISTINCT on arbitrary subqueries, bag semantics and set semantics
are special cases of mixed set/bag semantics.

Equivalent SQL Queries

SELECT * FROM R t WHERE t.a >= 12 -- Q1

SELECT t2.* FROM I t1, R t2 -- Q2
WHERE t1.k = t2.k AND t1.a >= 12

where k is a key of R, and I is an index on R defined as:

I := SELECT t3.k AS k, t3.a AS a FROM R t3

Corresponding Equivalence in Semirings

Q1(t) = λ t. JRK(t)× [t.a ≥ 12]

Q2(t) = λ t.
∑

t1,t2,t3

[t2 = t]× [t1.k = t2.k]× [t1.a ≥ 12]×

[t3.k = t1.k]× [t3.a = t1.a]× JRK(t3)× JRK(t2)

Figure 1: Proving that a query is equivalent to a rewrite using
an index I requires proving a subtle identity in a semiring.

that this algorithm is sound for general SQL queries and is com-
plete for Unions of Conjunctive Queries under set and bag se-
mantics (Sec. 5).

• We have implemented UDP using the Lean proof assistant, and
have evaluated UDP by collecting 69 real-world rewrite rules as
benchmarks, both from prior research work done in the database
research community, and from Apache Calcite [1], an open-source
relational query optimizer. To our knowledge, the majority of
these rules have been never proven correct before, while UDP can
automatically prove 62 of 68 correct ones and fail as intended on
the 1 buggy one (Sec. 6).

2. OVERVIEW
We motivate our new semantics using an example query rewrite.

As shown in Fig. 1, the rewrite changes the original query Q1 by us-
ing an index I for look up. We follow the GMAP framework [52],
where an index is considered as a view definition, and a query plan
that uses the index I to access the relation R is represented logi-
cally by a query that selects from I then joins on the key of R.

Our goal is to devise a semantics for SQL along with various
integrity constraints that can be easily implemented as a tool for
checking query equivalences. Unfortunately, the SQL standard [25]
is expressed in English and is difficult to implement programmati-
cally. One recent attempt is Q*cert [13], which models SQL using
NRA (Nested Relational Algebra). NRA is implemented using the
Coq proof assistant, with relations modeled using lists. To prove
that Q1 and Q2 are equivalent in Q*cert, users need to prove that
the output from the two are equal up to element reordering and du-
plicate elimination (for set semantics). As Q*cert models relations
as lists, this amounts to writing an inductive proof on the size of R,
i.e., if R is empty, then Q1 outputs the same relation as Q2; if R is
of size n and the two outputs are equivalent, then the two outputs
are also equivalent if R is of size n + 1. Writing such proofs can
be tedious. As an illustration, Q*cert requires 45 lines of Coq to
prove that selection can be distributed over union [9] while, as we
will see, using U-semiring only requires 1 line of Lean: distribute
multiplication over addition, which is one of the semiring axioms.

Another formalism proposed by Guagliardo et al. [38] models
relations as bags. While it models NULL semantics, it (like Q*cert)
does not model integrity constraints, which are widely used in al-
most all database systems and are involved in the rewrites in many
real world optimizers. There is no known algorithm based on their
formalism to automatically check the equivalence of SQL queries.

We instead base our semantics on K-relations, which was first
proposed by Green et al [35]. Under this semantics, a relation is
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modeled as a function that maps tuples to a commutative semiring,
K = (K, 0, 1,+,×). In other words, a K-relation,R, is a function:

JRK :Tuple(σ)→ K

with finite support. Here, Tuple(σ) denotes the (possibly infinite)
set of tuples of type σ, and JRK(t) represents the multiplicity of t
in relationR. For example, a relation under SQL’s standard bag se-
mantics is an N-relation (where N is the semiring of natural num-
bers), and a relation under set semantics is aB-relation (whereB is
the semiring of Booleans). All relational operators and SQL queries
can be expressed in terms of semiring operations; for example:

JSELECT * FROM R x, S yK = λ (t1, t2) . JRK(t1)× JSK(t2)

JSELECT * FROM R WHERE a > 10K = λ t . [t.a > 10]× JRK(t)

JSELECT a FROM RK = λ t.
∑

t′:Tuple(σ)

[t′.a = t]× JRK(t′)

For any predicate b, we denote [b] the element of the semiring de-
fined by [b] = 1 if the predicate holds, and [b] = 0 otherwise.
K-relations can be used to prove many simple query rewrites

by reducing query equivalences to semiring equivalences, which
are much easier since one can use algebraic reasoning rather than
proofs by induction. However, for sophisticated rewrites like the
one shown in Fig. 1, K-relations are not sufficient to prove query
equivalences, let alone automate the proof search. One problem is
that K-relation does not model integrity constraints (keys, foreign
keys, etc.), which are usually expressed as generalized dependen-
cies [11] (i.e., logical formulas of the form ∀x(ϕ ⇒ ∃yψ)). For
example, consider the two queries in Fig. 1: Q1 is a selection on
R.a ≥ 12, while Q2 rewrites the given query using an index I .
These two queries are indeed semantically equivalent in that scan-
ning a table using a given attribute (a in the example) is the same as
performing an index scan on the same attribute. However, consider
their corresponding expressions overK-relations, shown at the bot-
tom of Fig. 1; it is unclear how to express formally the fact thatR.k
is a key, yet alone prove automatically that these two expressions
are equal.

To extend K-relations for automatically proving SQL equiva-
lences under database integrity constraints, we develop a novel al-
gebraic structure, U-semiring, as the semiring in K-relations. A
U-semiring extends a semiring with three new operators,

∑
, ‖·‖,

not(·), and a minimal set of axioms, each of which is a simple iden-
tity2 that is easy to implement using a proof assistant. We also dis-
cover a set of U-semiring identities that models database integrity
constraints such as keys and foreign keys. With these additions,
SQL equivalences can be reasoned by checking the equivalences
of their corresponding U-expressions using only these axioms ex-
pressed in U-semiring identities.

Using our semantics, the rewrite shown in Fig. 1 can be proved
by rewriting the Q2 into the Q1 using U-semiring axioms in three
steps. First, the sum over t1 can be removed by applying the axiom
of the interpretation of equality over summation (Eq. (15)):

λ t.
∑
t2,t3

[t2 = t]× [t3.k = t2.k]× [t3.a ≥ 12]×R(t3)×R(t2)

Since k is a key ofR, applying the U-semiring definition of the key
constraint (Def. 4.1) we get:

[t3.k = t2.k]× JRK(t3)× JRK(t2) = [t3 = t2]× JRK(t3)
2An axiom is a logical sentence, such as ∀xR(x)⇒ S(x). An identity, or
an equational law, is an equality, such as x+ y = y + x. The implication
problem for identities is much simpler than for arbitrary axioms. Traditional
generalized dependencies [11] are expressed as axioms, ∀x(ϕ ⇒ ∃yψ),
and only apply to queries under set semantics.

h ∈ Program ::= s1; . . . ; sn;
s ∈ Statement ::= verify q1 ≡ q2

| schema σ(a1 : τ1, . . . , an : τn)
| table r(σ)
| key r(a1, . . . , an);
| foreign key r1(a′1, . . . , a

′
n)

references r2(a1, . . . , an);
| view v q;
| index i on σ(a1, . . . , an);

a ∈ Attribute ::= string
q ∈ Query ::= r

| SELECT p q
| FROM q1 x1, . . . , qn xn
| q WHERE p
| q1 UNION ALL q2
| DISTINCT q

x ∈ TableAlias ::= string
b ∈ Predicate ::= e1 = e2

| NOT b | b1 AND b2 | b1 OR b2
| TRUE | FALSE
| EXISTS q

e ∈ Expression ::= x.a | f(e1, . . . , en) | agg(q)
p ∈ Projection ::= * | x.* | e AS a | p1, p2
f ∈ UDF, agg ∈ UDA ::= string

Figure 2: SQL fragment supported by our semantics

Thus, the Q2 can be rewritten to:

λ t.
∑
t2,t3

[t2 = t]× [t3.a ≥ 12]× JRK(t2)× [t2 = t3]

Applying Eq. (15) again to the above makes Q2 is equivalent to
Q1. We present a detailed proof in Ex 4.7.

We next explain these axioms in detail and show how we use
them to develop an algorithm to formally and automatically check
the equivalences of general SQL queries.

3. AXIOMATIC FOUNDATIONS
In this section we introduce a new algebraic structure, U-semiring,

and show that it can be used to give semantics to SQL queries.

3.1 U-semirings
Under standard bag semantics, a SQL query and its input rela-

tions can be modeled as N-relations [35], i.e., relations over the
semiring (N, 0, 1,+,×). However, as we saw SQL queries in-
clude constructs that are not directly expressible in a semiring, such
as projection (requiring an unbounded summation), DISTINCT, and
non-monotone operators (e.g., NOT EXISTS). We now define a new
algebraic structure that can be used for such purposes.

DEFINITION 3.1. An unbounded semiring, or U-semiring, is
(U , 0, 1,+,×, ‖·‖ , not(·), (

∑
D)D∈D), where:

• (U , 0, 1,+,×) forms a commutative semiring.3

• ‖·‖ is a unary operation called squash that satisfies:

‖0‖ = 0 , ‖1 + x‖ = 1 (1)
‖‖x‖+ y‖ = ‖x+ y‖ (2)
‖x‖ × ‖y‖ = ‖x× y‖ (3)
‖x‖ × ‖x‖ = ‖x‖ (4)
x× ‖x‖ = x (5)
x2 = x ⇒ ‖x‖ = x (6)

3Recall that the semiring axioms are: associativity and commutativity of +
and ×, identity of 0 for +, identity of 1 for ×, distributivity of × over +,
and 0× x = 0; see [35] for details.
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• not(·) is a unary operation that satisfies the following:

not(0) = 1
not(x× y) = ‖not(x) + not(y)‖
not(x+ y) = not(x)× not(y)

not(‖x‖) = ‖not(x)‖ = not(x)

• D is a set of sets; each D ∈ D is called a summation domain.
For each D, the operation

∑
D : (D → U) → U is called

an unbounded summation: its input is a function f : D → U ,
and its output is a value in U . We will write the summation as∑
t∈D f(t), or just

∑
t f(t), where f is an expression and t is a

free variable.

• Unbounded summation further satisfies the following axioms:∑
t

(
f1(t) + f2(t)

)
=

∑
t

f1(t) +
∑
t

f2(t) (7)∑
t1

∑
t2

f(t1, t2) =
∑
t2

∑
t1

f(t1, t2) (8)

x×
∑
t

f2(t) =
∑
t

x× f2(t) (9)∥∥∥∥∥∑
t

f(t)

∥∥∥∥∥ =

∥∥∥∥∥∑
t

‖f(t)‖

∥∥∥∥∥ (10)

Thus, a U-semiring extends the semiring with unbounded sum-
mation, the squash operator (to model the SQL DISTINCT operator),
and negation (to model NOT EXISTS). We chose a set of axioms that
captures the semantics of SQL queries. For example, Eq.(2) implies
‖‖x‖‖ = ‖x‖, which, as we will see, helps us prove that DISTINCT
of DISTINCT equals DISTINCT. Eq.(4) captures equality of queries
under set semantics, such as SELECT DISTINCT R.a FROM R and
SELECT DISTINCT x.a FROM R x, R y WHERE x.a = y.a.
Eq.(6) captures even more subtle interactions between subqueries
with and without DISTINCT as described in [44]. We will illustrate
this in Sec. 5.4.

If a summation domain D is finite, say D = {a1, . . . , an}, we
could define ΣDf directly as f(a1)+ · · ·+f(an). However, as we
saw, the meaning of a projection requires us to sum over an unspec-
ified set, namely, all tuples of a fixed schema. Even though all SQL
summation domains are finite, proving this automatically is diffi-
cult and adds considerable complexity even for the simplest query
equivalences (for instance, we need to prove that all operators pre-
serve domain finiteness). Instead, we retain unbounded summation
as a primitive in a U-semiring.

We now illustrate four simple examples of U-semirings. (1)
If all summation domains are finite, then the set of natural num-
bers, N, forms a U-semiring, where the unbounded summation is
the standard sum, the squash and negation operators are ‖0‖ =
not(x) = 0, and ‖x‖ = not(0) = 1 for all x 6= 0. (2) Its clo-

sure, N̄ def
= N∪{∞}, forms a U-semiring over arbitrary summation

domains.4 (3) The univalent types [50] form an U-semiring; in our
prior system, COSETTE [23], we used univalent types to prove SQL
query equivalence. (4) Finally, the cardinal numbers (which form a
subset of univalent types) also form a U-semiring.

To appreciate the design of U-semirings, it may be helpful to
see what we excluded. Recall that fewer axioms translate into a
4+ and × are extended by x +∞ = ∞, 0 ×∞ = 0, and x ×∞ = ∞
for x 6= 0. Unbounded summation is defined as

∑
D f

def
= f(a1) + · · ·+

f(an) when the support of f is finite, supp(f) def
= {x | f(x) 6= 0} =

{a1, . . . , an}, and
∑
D f =∞ otherwise.

simpler proof system; hence, the need for frugality. A complete-
semiring [30] also extends a semiring with unbounded summation.
However, it requires a stronger set of axioms: summation must be
defined over all subsets of some index set, and includes additional
axioms, such as

∑
{a,b} f = f(a) + f(b), among others. In a

U-semiring, summation is defined on only a small and fixed set
of summation domains that do not include {a, b}. This removes
the need for axioms involving complex index sets. Similarly, the
axioms for ‖·‖ and not(·) are also kept to a minimum; for example,
we omitted unnecessary conditional identities like if x 6= 0 then
‖x‖ = 1. One example of a U-semiring where this conditional
axiom fails is the set of diagonal 2 × 2 matrices with elements
in N̄, where 0 def

= diag(0, 0), 1 def
= diag(1, 1), and all operations

are performed on the diagonal using their meaning in N̄. In this
semiring, ‖x‖ ∈ {diag(0, 0), diag(0, 1), diag(1, 0), diag(1, 1)}.

Another important decision was to exclude order relations, x ≤
y, which we could have used to define key constraints (by stating
that every key value occurs ≤ 1 times). An ordered semiring (see
also a dioid [33]) is a semiring equipped with an order relation ≤
such that 0 ≤ a for all a, and x ≤ y implies x + z ≤ y + z. We
did not require a U-semiring to be ordered, instead we define key
constraints using only the existing axioms (Sec. 4).

With all these simplifications, one wonders if it is possible to
prove any non-trivial SQL equivalences, let alone those in the pres-
ence of complex integrity constraints. We answer this in the affir-
mative, as we shall next explain.

3.2 U-semiring SQL Semantics
Every SQL query is translated into a U-expression, which de-

notes the K-relation of the query’s answer; to check the equiva-
lences of two SQL queries, the system first translates them to U-
expressions, then checks their equivalence using the UDP algorithm
described in Sec. 5. In this section, we describe the translation from
SQL queries to U-expressions.

Fig. 2 shows the SQL fragment currently supported by our im-
plementation. We require the explicit declaration of table schemas,
keys, foreign keys, views, and indexes, and support a rich fragment
of SQL that includes subqueries and DISTINCT. We also support
GROUP BY by de-sugaring them into subqueries as follows:

SELECT x.k as k, agg(x.a) as a1 FROM R x
GROUP BY x.k

is rewritten to ⇓
SELECT y.k as k,

agg(SELECT x.a as a
FROM R x WHERE x.k=y.k) as a1

FROM R y

where R can be any SQL expression. Our implementation of UDP
currently supports aggregates by treating them as uninterpreted func-
tions.

Each SQL query Q is translated into a U-expression as follows.
We denote a U-expressions by a capital letter E, denote a SQL
expression by a lower case letter e (Expression in Fig. 2, e.g.,
t.price/100), and denote a SQL predicate by b (Predicate in
Fig. 2, e.g. t.price/100 > s.discount).

• For each schema σ in the program, there is a summation domain
Tuple(σ), which includes all tuples with schema σ.

• For each relation name R, there is a predefined function JRK :
Tuple(σ) → U . Intuitively, JRK(t) returns the multiplicity of
t ∈ R, or 0 if t 6∈ R. If the context is clear, we will drop J·K and
simply write R(t). Unlike prior work [35], we do not require
the support of R to be finite, as that would make it difficult to
axiomatize as discussed.
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• For each SQL predicate expression b, there is a U-expression
[b] ∈ U that satisfies:

[b] = ‖[b]‖ (11)

Under the standard interpretation of SQL, [b] is either 0 (false) or
1 (true), but formally we only require Eq.(11). The equality pred-
icate has a special interpretation in U-semiring and is required to
satisfy the following axioms, called excluded middle (Eq. (12)),
substitution of equals by equals (Eq. (13)), and uniqueness of
equality (Eq. (14)):

[e1 = e2] + [e1 6= e2] =1 (12)
f(e1)× [e1 = e2] =f(e2)× [e1 = e2] (13)∑

t

[t = e] =1 (14)

These axioms are sufficient to capture the semantics of equality
(=). For example, we can prove:5∑

t

[t = e]× f(t) = f(e) (15)

• For each uninterpreted aggregate operator agg and U-expression
E : Tuple(σ) → U , e ::= agg(E) is a valid value expression.
It can be used in a predicate, e.g., [agg(E) = t.a].

Every SQL query q is translated, inductively, to a U-expression
denoted JqK. For example, a tableR is translated into its predefined
semantics JRK; a SELECT-FROM-WHERE is translated by generalizing
K-relation SQL semantics (shown in Sec. 2); predicates are also
translated inductively: NOT, AND, OR become not(·),×,+, while
JEXISTS qK = ‖JqK‖ and JNOT EXISTS qK = not(JqK). Notice
that the language includes nested queries both in the FROM and the
WHERE clauses; their translation is based on standard unnesting. We
omit the details and state only the main property:

DEFINITION 3.2. Every SQL expression q in Fig. 2 is trans-
lated into a U-expression JqK : Tuple(σ) → U . The translation
is defined inductively on the structure of q; see the full paper for
details [20].

We write q instead of JqK when context permits. Strictly speak-
ing q is a function, q = λt.E, but we use the more friendly notation
q(t) = E(t), where E is an expression with a free variable t.

3.3 Sum-Product Normal Form
To facilitate the automated equivalence proof, our algorithm, UDP,

first converts every U-expression into the Sum-Product Normal Form
(SPNF). Importantly, this conversion is done by repeated applica-
tions of the U-semiring axioms; thus, our system can prove that any
expression translated into SPNF is semantically equivalent to the
original input U-expression.

DEFINITION 3.3. A U-expression expressionE is in SPNF if it
has the following form:

• E ::= T1 + . . .+ Tn

• Furthermore, each term Ti has the form:∑
t1,...,tm

[b1]× . . .× [bk]× ‖Es‖ × not(En)×M1 × . . .×Mj

where each tuple variable ti ranges over Tuple(σi). Each ex-
pression inside the summation is called a factor. Multiple sum-
mations are combined into a single sum using Eq. (8). There is
no summation in the case where m = 0.

5Using (13), 9, and (14) we can show that:
∑
t[t = e]× f(t) =

∑
t[t =

e]× f(e) = f(e)×
∑
t[t = e] = f(e)× 1 = f(e).

SQL Query q

SELECT t2.*
FROM (SELECT t1.k as k, t1.a as a

FROM R t3) t1, R t2
WHERE t1.k = t2.k AND t1.a ≥ 12

Its corresponding U-expression in SPNF

JqK(t) =
∑
t1,t2

[t2 = t]× (
∑
t3

[t3.k = t1.k]× [t3.a = t1.a]×

R(t3))× R(t2)× [t1.k = t2.k]× [t1.a ≥ 12]

=
∑
t1,t2

[t2 = t]× [t1.k = t2.k]× [t1.a ≥ 12]×

(∑
t3

[t3.k = t1.k]× [t3.a = t1.a]× R(t3)
)
× R(t2) Rule (4)

=
∑
t1,t2

[t2 = t]× [t1.k = t2.k]× ([t1.a ≥ 12]×

∑
t3

[t3.k = t1.k]× [t3.a = t1.a]× R(t3)× R(t2) Rule (7)

=
∑

t1,t2,t3

[t2 = t]× [t1.k = t2.k]× [t1.a ≥ 12]×

[t3.k = t1.k]× [t3.a = t1.a]× R(t3)× R(t2) Rule (6)

Figure 3: A SQL query q (the second query shown in Fig. 1), its
semantics JqK in U-semiring and its rewriting into sum-product
normal form.

• Each factor [bi] is a predicate.

• There is exactly one factor ‖Es‖, where Es is an expression in
SPNF. When Es = 1, ‖Es‖ can be omitted.

• There is exactly one factor not(En), where En is an expression
in SPNF. When En = 0, not(En) can be omitted.

• Each factor Mi is an expression of the formR(t), for some rela-
tion name R, and some tuple variable t.

THEOREM 3.4. For any U-expression E, there exists an SPNF
expression E′ such that E = E′ in any U-semiring.

PROOF. We briefly sketch the proof idea here. Formally, any U-
expressionE can be rewritten intoE′ in SPNF using the following
rewrite system:

E1 × (E2 + E3)  E1 × E2 + E1 × E3 (1)
(E1 + E2)× E3  E1 × E3 + E2 × E3 (2)
E1 × (E2 × E3)  (E1 × E2)× E3 (3)
. . .×M × [b]× . . . . . .× [b]×M × . . . (4)∑
t

(
f1(t) + f2(t)

)
 

∑
t

f1(t) +
∑
t

f2(t) (5)

E ×
∑
t

f(t)  
∑
t

E × f(t) (6)

(∑
t

f(t)
)
× E  

∑
t

f(t)× E (7)

‖E1‖ × ‖E2‖  ‖E1 × E2‖ (8)
not(E1)× not(E2)  not(E1 + E2) (9)

Each rule above corresponds to an axiom of U-semirings. Rule (1)-
(4) are axioms of commutative semirings, while the rest are axioms
of U-semirings. All rewrite rules in SPNF are unidirectional and
guaranteed to make progress. For example Rule (1) and (5) apply
distributivity to remove any + inside each Ti. Rule (3) and (4)
normalize the × expressions so they remain left associative with
all boolean expressions moved to the left. The last two rules, Rule
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(8) and (9), consolidate a product of multiple factors into a single
factor.

Figure 3 shows how a U-expression is converted into SPNF by
applying Rules (4, 7), and (6). In general, the rules described above
are applied recursively until none of them is applicable.

4. INTEGRITY CONSTRAINTS
Our system checks the equivalence of two SQL queries in the

presence of a set of integrity constraints: keys, foreign keys, views,
and indexes (see Fig. 2). In this section we introduce a new ax-
iomatic interpretation of integrity constraints using identities in a
U-semiring.

4.1 Axiomatic Interpretation of Constraints
Key Constraints. To the best of our knowledge, key constraints
have not to date been defined for semiring semantics. Therefore,
we give the following definition.

DEFINITION 4.1. Let R be a relation with schema σ, and let k
be an attribute (or a set of attributes). The KEY constraint is the
following identity, for all t, t′ ∈ Tuple(σ):

[t.k = t′.k]×R(t)×R(t′) = [t = t′]×R(t)

For each key constraint in the SQL specification the system gen-
erates one such identity, adds it as an axiom, and uses it later to
prove equivalences of SQL expressions. We show two simple prop-
erties implied by the key constraint. First, setting t = t′, we have
(R(t))2 = R(t) for every tuple t. Second, for two tuples t 6= t′

such that t.k = t′.k, we have R(t)× R(t′) = 0. Therefore, if the
U-semiring is the semiring of natural numbers, N, then R.k is a
standard key: the first property implies that R(t) ∈ {0, 1}, and the
second implies that R(t) = 0 or R(t′) = 0. Hence, only one tuple
with a given key may occur in R, with its multiplicity being 1:

THEOREM 4.2. IfR.k satisfies the key constraint (Def. 4.1) over
the U-semiring of natural numbersN, then R.k is a standard key.

We briefly discuss our choice in Def. 4.1. The standard axiom
for a key is ∀t, t′.(t ∈ R ∧ t′ ∈ R ∧ t.k = t′.k ⇒ t = t′) [11].
However, it applies only to set semantics and uses a first-order sen-
tence instead of an identity in a semiring. An alternative attempt at
defining a key is: ∑

t

R(t)× [t.k = e] ≤ 1 (10)

This says that the sum of all multiplicities of tuples that have their
keys equal to a constant e must be ≤ 1. However, (10) requires an
ordered semiring, which leads to additional complexity, as argued
earlier. In contrast, Def. 4.1 does not require order and is a simple
identity, i.e., it has the form E1 = E2. A better attempt is to state:

R(t′)×
∑
t

R(t)× [t.k = e] = R(t′) (11)

This axiom is an identity and, furthermore, it can be shown that
Eq.(10) implies Eq.(11) in any ordered semiring; in other words,
Eq.(11) seems to be the right reformulation of Eq.(10) without re-
quiring order. On the other hand, Eq.(11) already follows from our
key identity (Def. 4.1): simply sum both sides over t and observe
that the RHS is equal toR(t′). We prove here a consequence of the
key constraint, which we use in Sec. 5.4 to prove some non-trivial
SQL identities described by [44]:

THEOREM 4.3. If R.k satisfies the key constraint (Def. 4.1),
then the following U-expression is preserved under the squash op-
erator ‖·‖, for any U-expression E, expression e, predicate b:∑

t

[b]×‖E‖ × [t.k = e]×R(t) =∥∥∥∥∥∑
t

[b]× ‖E‖ × [t.k = e]×R(t)

∥∥∥∥∥
PROOF. By Eq.(6) in Sec. 3.1, it suffices to show that the LHS

squared equals itself. From Def. 4.1, we derive:6

[t.k = e]× [t′.k = e]× [b]2 × ‖E‖2 ×R(t)×R(t′) =

[t = t′]× [t.k = e]× [b]× ‖E‖ ×R(t)

Next, we sum over t and t′ on both sides:∑
t,t′

[t.k = e]× [t′.k = e]× [b]2 × ‖E‖2 ×R(t)×R(t′) =

∑
t,t′

[t = t′]× [t.k = e]× [b]× ‖E‖ ×R(t)

By applying Eq. (9) in Sec. 3.1 twice on the left, and Eq. (15) in
Sec. 3.2 on the right:(∑

t

[b]× ‖E‖ × [t.k = e]× R(t)
)
×
(∑

t′
[b]× ‖E‖ × [t

′
.k = e]× R(t

′
)
)

=
∑
t

[b]× ‖E‖ × [t.k = e]× R(t)

Hence Theorem 4.3 follows from Eq. (6) in Sec. 3.1: x2 = x
implies ‖x‖ = x.

Foreign Key Constraints. We now define foreign keys in a U-
semiring:

DEFINITION 4.4. Let S,R be two relations, and k′, k be two
attributes (or two sets of attributes), in S and R, respectively. The
FOREIGN KEY constraint from S.k′ to R.k is the following:

S(t′) = S(t′)×
∑
t

R(t)× [t.k = t′.k′]

If S(t′) 6= 0 and the U-semiring is the standard semiringN, then
this definition implies

∑
tR(t)× [t.k = t′.k′] = 1, i.e., a tuple in

R has the same value k, the tuple is unique, and its multiplicity is
1. There is no constraint on the multiplicity of S(t′). Thus:

THEOREM 4.5. If S.k′, R.k satisfies the foreign key constraint
(Def. 4.4) over the U-semiring of natural numbers N, then R.k is
a standard key in R, and S.k′ is a standard foreign key to R.k.

Views and Indexes. We convert a view definition in Fig. 2 into an
assertion v(t) = q(t); every occurrence of v in a query is inlined
according to its definition. We follow the GMAP approach [52]
and consider an index to be a view definition that consists of the
projection on the key and the attribute to be indexed. For example,
an index I on the attribute R.a is expressed as:

I := SELECT x.a, x.k FROM R x

where k is the KEY (Def. 4.1) of R. The indexes are treated as views
and inlined in the main query when compiling to U-expressions.

6We also used [b]2 = [b] and ‖E‖2 = ‖E‖.
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4.2 SQL Equivalence with Integrity Constraints
We can now formally define the equivalence of two SQL expres-

sions under U-semiring semantics.

DEFINITION 4.6. Consider two queries, q1 and q2, along with
definitions of schemas, base relations, and constraints (Fig. 2). q1
and q2 are U-equivalent if, for any U-semiring and interpretation
of the base relations, when all key and foreign key constraints are
satisfied, then the following identity holds: Jq1K = Jq2K.7

We will refer to U-equivalence simply as equivalence when the
context is clear. We illustrate this concept with an example.

EXAMPLE 4.7. We show how to formally prove that the opti-
mization rule at the top of Fig. 1 is correct by showing that Q1 is
equivalent to its rewrite, Q2 using an index lookup. Recall that R
has key k, and I is an index on R.a.

The U-expression of Q1 is:

Q1(t) = R(t)× [t.a ≥ 12]

After inlining the definition of I , Q2 is the query shown in Fig.3,
and its U-expression in SPNF is:

Q2(t) =
∑

t1,t2,t3

[t2 = t]× [t1.k = t2.k]× [t1.a ≥ 12]×

[t3.k = t1.k]× [t3.a = t1.a]×R(t3)×R(t2)

Since t1 is a tuple returned by I , its schema consists of the two
attributes a and k; hence, [t3.k = t1.k] and [t3.a = t1.a] im-
ply [t1 = (t3.k, t3.a)]. We use Eq. (15) to remove the summation
over t1, the two equalities [t3.k = t1.k] and [t3.a = t1.a], and
substitute t1.k with t3.k and t1.a with t3.a to get:

Q2(t) =
∑
t2,t3

[t2 = t]× [t3.k = t2.k]× [t3.a ≥ 12]×R(t3)×R(t2)

Applying the key constraint definition (Def. 4.1) on Q2(t), we get:

Q2(t) =
∑
t2,t3

[t2 = t]× [t3.a ≥ 12]×R(t2)× [t2 = t3]

Now, we use Eq. (15) to remove the summation over t3 as t2 = t3:

Q2(t) =
∑
t2

[t2 = t]× [t2.a ≥ 12]×R(t2)

And similarly remove the summation over t2 since t2 = t:

Q2(t) = [t.a ≥ 12]×R(t)

This shows that Q1 and Q2 are equivalent by Def. 4.6.

The example above reveals a strategy for proving queries: first,
express both queries in SPNF. Then, repeatedly reduce the expres-
sion using the available constraints until the they become isomor-
phic and hence are equivalent. We formally present our equivalence
deciding algorithm in the next section.

Discussion. Definition 4.6 is sound because two U-equivalent
queries are also equivalent under the standard interpretation in the
semiring of natural numbers. However, the definition is not com-
plete: there exists SQL queries that are equivalent under the stan-
dard semantics but not U-equivalent. One such example consists of
queries that are equivalent over all finite relations but not equiva-
lent over infinite relations. For example, there exists sentences ϕ
in First Order Logic, called infinity axioms, that are always false
when R is finite, but can be satisfied by an infinite R; for exam-
ple, ϕ may say “R is non-empty; for every x occurring in R there
7We assume all views are inlined into q1 and q2 as discussed above.

exists a unique y such that R(x, y) (i.e. R is a function); the map-
ping x 7→ y is injective; and it is not surjective.”8 Such a sen-
tence ϕ can be converted in SQL query Q that returns ∅ when ϕ
is false, and returns 1 when ϕ is true. Then, on any finite database
Q is equivalent to the empty-set query Q′ (e.g, written in SQL as
select distinct 1 from R where 0 6= 0), but Q,Q′ are not
U-equivalent, because they are distinct over the U-semiring N̄.

5. DECISION PROCEDURE FOR SQL
We now present UDP (U-expression Decision Procedure) for check-

ing the equivalence of two U-expressions with constraints, where
equivalence is the U-equivalence given by Definition 4.6. As we
are unaware of any theorem provers that can automatically reason
about the equivalences of U-expressions, we implement our deci-
sion procedure using proof assistants, which ensures that our pro-
cedure implementation is provably correct given the U-expression
axioms that we have defined.

UDP supports the SQL fragment in Fig. 2. The input SQL queries
are evaluated under mixed set and bag semantics, which is the se-
mantics that most real-world database systems use. We show that
UDP is sound and also complete when the input are Union of Con-
junctive Queries (UCQ) and evaluated under set semantics only, or
under bag semantics only. To the best of our knowledge, this is the
first algorithm implemented that can check the equivalence of UCQ
with integrity constraints and evaluated under set or bag semantics.

At a high level, UDP proceeds recursively on the structure of a U-
expression as shown in Alg. 2. Recall from Def. 3.3 the structure
of a normalized U-expression E and of a term T :

E ::=T1 + . . .+ Tn

Ti ::=
∑

t1,...,tm

[b1]× . . .× [bk]×
∥∥E′∥∥× not(E′′)×M1 × . . .×Mj

UDP takes two U-expressions (E1 and E2), and a set of integrity
constraints (C) in the form of U-expression identities. It first calls
canonize (line 2) to transform each U-expression into a canoni-
cal representation (to be discussed Sec. 5.1). Then, UDP proceeds
recursively on the structure of the two canonical U-expressions by
calling TDP (line 7) shown in Alg. 3 to check the equivalence of
each term. Similarly, procedure TDP calls SDP (line 4) shown in
Alg. 4 to check the equivalence of two squashed U-expressions (U-
expressions in the form of ‖E‖). We discuss the details below.

5.1 Canonical Form
As we have illustrated in Ex 4.7, to prove the equivalence of SQL

queries under integrity constraints, we rewrite the input query U-
expressions using the axiomatic interpretations of these constraints
as shown in Sec. 4.1. We call these rewritten U-expressions the
canonical form of U-expressions under integrity constraints.

Algorithm 1 shows the detail of canonization. To convert a U-
expression E from SPNF to canonical form, we rewrite E by the
axioms and definitions discussed in Sec. 3 and Sec. 4. The algo-
rithm contains the following four rewrites:

1. Apply the transitivity of the equality predicate (line 2): [e1 =
e2]× [e2 = e3] = [e1 = e2]× [e2 = e3]× [e1 = e3].

2. Remove unnecessary summations using Eq. (15) (line 3).

3. For each key constraint, rewriteE using the identities defined
in Def. 4.1 and Theorem 4.3 (line 5).

8A different, shorter infinity axiom is given in [15, pp.307]:
ϕ≡∀x∃y∀z(¬R(x, x) ∧R(x, y) ∧ (R(y, z)→ R(x, z))).
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Algorithm 1 Canonization
1: procedure canonize(E,C)

// E is an U-expression in SPNF; C is a set of constraints
2: E′ ← TC(E) // Transitive closure of equalities
3: E′ ← recursively and repeatedly apply Eq. (15) on E′

4: for c ∈ C do
5: E′ ← recursively and repeatedly apply Def. 4.1 and

Theorem 4.3 on E′

6: E′ ← recursively and repeatedly apply Def. 4.4 on E′

7: end for
8: return E′ // E′ is now in canonical form
9: end procedure

4. For each foreign key constraint, rewrite E using the identity
defined in Def. 4.4 (line 6).

When using an identity to rewrite E, we find a matching subex-
pression on E with the identity’s LHS, and then replace it with the
RHS. More importantly, these rewrites are performed recursively
on the structure of E, and repeatedly until the following termi-
nation conditions: 1) The first 3 rewrites (line 2, 3, and 5) ter-
minate until no further rewrite can be applied. 2) When applied
on squashed expressions, e.g., ‖E′‖, the last rewrite (line 6) is re-
peatedly applied until the rewritten squashed expression is equiv-
alent to the one before applying the rewrite. The equivalence of
the squashed expressions (before and after applying the rewrite) is
checked using procedure SDP that will be presented in Algorithm 4
(Sec. 5.2). 3) When applied on other expressions, the last rewrite
(line 6) is repeatedly applied until no new base relation is intro-
duced.

Does canonize terminate? The rewrites using key and foreign
key definitions resemble the chase procedure [45]. The difference
is that our rewrites are on U-expressions rather than on relational
queries. It is known that the chase procedure may not terminate [31],
and so may our rewrite steps; for example, a cycle in the key/foreign-
key graph may lead to non-termination. While this is possible in
theory, we did not encounter any case that does not terminate, as
our evaluation in Sec. 6 shows.

5.2 Equivalence of U-expressions
We now present the algorithm for checking if two U-expressions

are equivalent after converting them into canonical form.

Algorithm 2 UDP: U-expression Decision Procedure
1: procedure UDP(E1, E2, C) // E1 and E2 are in SPNF
2: E1 ← canonize(E1, C), E2 ← canonize(E2, C)

// E1 is in the form of T1,1 + . . .+ T1,n, and
// E2 is in the form of T2,1 + . . .+ T2,m

3: if m 6= n then
4: return false
5: end if
6: for p ∈ P([T1,1, . . . , T1,n]) do
7: if ∀i ∈ {1, . . . , n}, TDP(p[i], T2,i, C) == true then
8: return true
9: end if

10: end for
11: return false
12: end procedure

Alg. 2 shows the detail of UDP for checking the equivalence of
two U-expressions. On line 2, UDP first converts the two input U-

expressions (E1 and E2) to canonical forms under integrity con-
straints as described in Sec. 5.1. Recall that a U-expression is a
sum of terms E = T1 + . . . + Tn. To check for U-equivalence of
E1 andE2, UDP searches for an isomorphism between each of their
constituent terms Ti in line 3-10. It returns false if the number of
terms of E1 and E2 are not equal (line 4). Otherwise, it searches
for a permutation p of E1’s terms (here P represents the set of all
possible permutations of its arguments) such that each pair of terms
in p andE2 are equivalent. This is determined by calling TDP in line
8, which we discuss next.

Equivalence of Terms
The TDP procedure shown in Alg. 3 checks the equivalence be-

tween terms. Recall that a term is an unbounded summation of the
form T =

∑
t1,...,tm

(. . .). To check for the equivalence of the
following input terms:

T1 =
∑

#»
t1

[b1,1]× . . .× [b1,k]× ‖E1,1‖ × not(E1,2)×M1,1 × . . .×M1,j

T2 =
∑

#»
t2

[b2,1]× . . .× [b2,m]× ‖E2,1‖ × not(E2,2)×M2,1 × . . .×M2,`

TDP searches for an isomorphism between T1 and T2. Let h ∈
BI #»

t2,
#»
t1

be a bijection from the set of variables that T2 sums over
( #»
t2) to the set of variables that T1 sums over ( #»

t1) (line 2).9 TDP find
an isomorphism if, after substituting #»

t1 with p( #»
t2) in T2 (we call

this new expression T ′
2) (line 3), the equivalence of T1 and T ′

2 is
checked as following (line 4):

• The predicate parts of two terms are equivalent: [b1,1] × . . . ×
[b1,k] = [b2,1] × . . . × [b2,m]. This requires checking that
two Boolean expressions are equivalent. We check the equiva-
lences of boolean expressions using the congruence procedure
[43], which first computes the equivalent classes of variables
and function applications and then checks for equivalence of the
expressions using the equivalent classes. For example, [a =
b] × [c = d] × [b = e] × [f(a) = g(d)] is equivalent to
[a = b] × [a = e] × [c = d] × [f(e) = g(c)], since there
are the following equivalent classes:

{a, b, e}, {c, d}, {f(a), f(e)}, {g(c), g(d)}

A predicate in T1 (e.g., [b1,i]) may contains aggregate functions
(for example, [avg(· · · ) = t.a]). These aggregate functions are
treated as uninterpreted functions like f and g in the example
above.
• ‖E1,1‖ is U-equivalent to ‖E2,1‖. We explain the procedure for

checking equivalences of squashed U-expressions, SDP, in the
next section.
• The negated expressions not(E1,2) and not(E2,2) are U-equivalent.

This is checked by calling UDP recursively in line 4.
• The two terms have the same number ofM subterms, i.e., j = `,

and the terms M1,1, . . . ,M1,j are identical to the terms
M2,1, . . . ,M2,`. Recall that each Mi1,i2 has the form R(t) for
some relation name R and some tuple variable t (Def. 3.3).

Equivalences of Squashed Expressions
Finally, Alg. 4 shows SDP, the procedure for checking the equiv-

alence of two squashed U-expressions, ‖E1‖ and ‖E2‖. Recall that
squash expressions ‖·‖ are used to model the semantics of
(sub-)queries with the DISTINCT operator.

The first step of SDP is to remove any nested squash subexpres-
sions (line 2). We do so by applying the following lemma:
9For ease of presentation, we use the vectorized notation #»

t as a shorthand
for t1, t2, . . .
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Algorithm 3 TDP: Decision Procedure for Terms
1: procedure TDP(T1, T2, C)

// T1, T2 is in SPNF, C is a set of constraints. In particular,
// T1 has the form

∑
#»
t1

[b1,1]× . . .× [b1,k]× ‖E1,1‖×
// not(E1,2)×M1,1 × . . .×M1,j , and
// T2 has the form

∑
#»
t2

[b2,1]× . . .× [b2,m]× ‖E2,1‖×
// not(E2,2)×M2,1 × . . .×M2,`

2: for p ∈ BI #»
t2,

#»
t1

do
3: T ′

2 ← p(T2) // substitute #»
t2 in T2 using p( #»

t2)
4: if T1 == T ′

2 then
5: return true
6: end if
7: end for
8: return false
9: end procedure

LEMMA 5.1. The following holds in any U-semiring:

‖a× ‖x‖+ y‖ = ‖a× x+ y‖ (12)

PROOF. By Eq. (2) in Sec. 3, LHS = ‖‖a× ‖x‖‖+ y‖. And
by Eq. (3), LHS = ‖‖a‖ × ‖‖x‖‖+ y‖. By Eq. (2) (when y = 0
in Eq. (2)), ‖‖x‖‖ = x; thus:

LHS = ‖‖a‖ × ‖x‖+ y‖

Apply Eq. (3) again:

LHS = ‖‖a× x‖+ y‖

And apply Eq. (2) from right to left:

LHS = ‖a× x+ y‖

Algorithm 4 SDP: Decision Procedure for Squashed Expressions
1: procedure SDP(‖E1‖ , ‖E2‖ , C) // E,E′ are in SPNF
2: remove ‖‖ inside E1, E2 by applying Lem. 5.1
3: ‖E1‖ ← ‖canonize(E1, C)‖

// ‖E1‖ is now in the form of ‖T1 + . . .+ Tm‖
4: ‖E2‖ ← ‖canonize(E2, C)‖

// ‖E2‖ is now in the form of ‖T ′
1 + . . .+ T ′

n‖
5: return ∀i ∃ j. minimize(‖Ti‖) == minimize(

∥∥T ′
j

∥∥)

&& ∀j ∃ i. minimize(
∥∥T ′

j

∥∥) == minimize(‖Ti‖)
6: end procedure

SDP then converts the expressions ‖E1‖ and ‖E2‖ to canonical
forms under constraints by calling canonize on (lines 3-4). After
that, SDP checks the equivalence of two expressions ‖T1 + · · ·+ Tm‖
and ‖T ′

1 + · · ·+ T ′
m‖.

If Ti and T ′
i (for i = 1, . . . ,m) are conjunctive queries, then

‖T1 + · · ·+ Tm‖ and ‖T ′
1 + · · ·+ T ′

m‖ represent two queries in
the class of unions of conjunctive queries under set semantics. A
classical algorithm exists for checking the equivalence of such
queries [47]: given Q = q1 ∨ · · · ∨ qm and Q′ = q′1 ∨ · · · ∨ q′n,
where each q is a conjunctive query, equivalence is established by
checking whether Q ⊆ Q′ and Q′ ⊆ Q. The former is checked by
showing that for every i, there exists a j such that qi ⊆ qj which, in
turn, requires checking for a homomorphism from qj to qi. Q′ ⊆ Q
is checked similarly.

However, it is challenging to express the homomorphism check-
ing algorithm in [47] purely using U-semiring axioms since U-
semiring axioms are all identities (equations). There is no no-
tion of inclusion or ordering in U-semiring. To check the equiv-
alences of two canonized squashed expressions, ‖E1‖ and ‖E2‖,
we instead minimize each term, Ti, inside ‖E1‖ and ‖E2‖ using
only the U-semiring axioms (this is implemented in the minimize
procedure) and then check the syntactic equivalences of the min-
imized terms. This procedure is equivalent to minimizing con-
junctive queries [11]. Thus, our equivalence checking procedure is
sound and complete for squashed expressions derived from UCQs.
For squashed expressions that represent SQL queries beyond UCQs,
SDP is not complete, however, our procedure is still sound. Next,
we explain how to minimize a term in a squashed expression us-
ing only U-semiring axioms. minimize follows exactly the same
steps as shown in the example, except needs to be performed on all
possible pairs of summation variables.

EXAMPLE 5.2. We illustrate SDP on these two queries:

SELECT DISTINCT x.a FROM R x, R y -- Q1
SELECT DISTINCT R.a FROM R -- Q2

It first convertsQ1 to a U-expressions canonical form (line 2-4):

Q1(t) =

∥∥∥∥∥∥
∑
t1,t2

[t1.a = t]×R(t1)×R(t2)

∥∥∥∥∥∥
Eq.((12))

=

∥∥∥∥∥∥
∑
t1,t2

([t1 = t2] + [t1 6= t2])× [t1.a = t]×R(t1)×R(t2)

∥∥∥∥∥∥
Next, it uses the rewrite rules in Sec. 3.3 to convert it to SPNF:

Q1(t) = ‖
∑
t1,t2

[t1 = t2]× [t1.a = t]×R(t1)×R(t2)+

∑
t1,t2

[t1 6= t2]× [t1.a = t]×R(t1)×R(t2) ‖

Using Eq. (15), it removes the summation over t2 as t1 = t2:

Q1(t) = ‖
∑
t1

[t1.a = t]×R(t1)×R(t1)+

∑
t1,t2

[t1 6= t2]× [t1.a = t]×R(t1)×R(t2) ‖

By Eq. (10) and Eq. (4) (‖R(t1)×R(t1)‖ = ‖R(t1)‖), we have:

Q1(t) = ‖
∑
t1

[t1.a = t]×R(t1)+

∑
t1,t2

[t1 6= t2]× [t1.a = t]×R(t1)×R(t2) ‖

Now, we can factorize the expression inside squash using Eq. (7):

Q1(t) = ‖
∑
t1

[t1.a = t]×R(t1)(1 +
∑
t2

[t1 6= t2]×R(t2) ‖

Finally, we simplify Q1(t) using Eq. (1) and Eq. (3):

Q1(t) = ‖
∑
t1

[t1.a = t]×R(t1)× 1 ‖

= ‖
∑
t1

[t1.a = t]×R(t1) ‖= Q2(t)

thus proving that Q1(t) and Q2(t) are equivalent.
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5.3 Soundness and Completeness
We now show that UDP, our procedure for checking the equiva-

lence of two U-expressions, is sound. Furthermore, it is complete
if two U-expressions are unions of conjunctive queries evaluated
under set or bag semantics.

THEOREM 5.3. Algorithm 2 is sound. For any pair of SQL
queries, if algorithm 2 returns true, then the pair is equivalent un-
der the standard SQL semantics [25].

PROOF. All transformations in algorithms 1 and 2 are based on
axioms of U-semiring and proven identities. Since the standard
SQL semantics [25] is based on the semiring of natural numbers
N, it follows that the equivalence also holds under the standard
semantics.

When there is no integrity constraint and Q is a CQ evaluated
under bag semantics, i.e., Q has the form SELECT p FROM R1
t1, ... , Rn tn WHERE b, and b is a conjunction of equality
predicates, then JQK has a unique canonical form, namely

canonize(JQK, ∅) =
∑

t1,...,tn

[b]×R1(t1)× . . .×Rn(tn)

In addition, if Q is a CQ evaluated under set semantics, i.e., Q
has the form SELECT DISTINCT p FROM R1 t1, ..., Rn tn
WHERE b, then Q has a similar unique canonical form (the same
form as bag semantics CQ but within ‖·‖).

This allows us to prove the following two theorems on the com-
pleteness of UDP.

THEOREM 5.4. Algorithm 2 is complete for checking the equiv-
alence of Unions of Conjunctive Queries (UCQ) evaluated under
bag semantics.

PROOF. Two UCQ queries under bag semantics are equivalent
if and only if they are isomorphic [47] (see also [24, Theorem 4.3,
4.4]), implying that our algorithm is complete in this case.

THEOREM 5.5. Algorithm 2 is complete for checking the equiv-
alence of Unions of Conjunctive Queries (UCQ) evaluated under
set semantics.

PROOF. The U-expression of a conjunctive query evaluated un-
der set semantics is

∥∥∑
~t[b1]× · · · × [bn]×R1(t1)× · · · ×Rj(tj)

∥∥,
where all predicates bi are equalities [t.a1 = t′.a2]. In this case,
UDP simply checks for the existence of a homomorphism for the
input queries, which has been shown to be complete [47].

5.4 An Illustration
We demonstrate how UDP works using an example rewrite evalu-

ated under mixed set-bag semantics from the Starburst optimizer [44]:

-- Q1
SELECT ip.np , itm.type , itm.itemno
FROM (SELECT DISTINCT itp.itemno as itn ,

itp.np as np
FROM price price
WHERE price.np > 1000) ip, itm itm

WHERE ip.itn = itm.itemno;

-- Q2
SELECT DISTINCT price.np, itm.type , itm.itemno
FROM price price , itm itm
WHERE price.np > 1000 AND

itp.itemno = itm.itemno;

Here itemno is a key of itm.

Below is the U-expression representing Q1(t):

Q1(t) =
∑
t1,t2

[t1.np = t.np]× [t2.type = t.type]×
[t2.itemno = t.itemno]× [t1.itn = t2.itemno]×
‖
∑
t′ [t

′.itemno = t1.itn]× [t′.np = t1.np]×
[t′.np > 1000]× price(t′) ‖ ×itm(t2)

Next, Q1(t) is canonized by canonize (called by UDP in line 2).
As tuple t1 is generated by the subquery in Q1, it has two attributes:
np and itn. Because [t1.np = t.np)] and [t1.itn = t2.itemno],
the summation on t1 is removed after applying Eq. (15) in line 3 in
canonize:

Q1(t) =
∑
t2
[t2.type = t.type]× [t2.itemno = t.itemno]×

‖
∑
t′ [t

′.itemno = t.itemno]× [t′.np = t.np]×
[t′.np > 1000]× price(t′) ‖ ×itm(t2)

Since ite.itemno is a key, Theorem 4.3 is applied (line 5 in
canonize):

Q1(t) = ‖
∑
t2,t′

[t2.type = t.type]× [t2.itemno = t.itemno]×
[t′.itemno = t.itemno]× [t′.np = t.np]×
[t′.np > 1000]× price(t′)× itm(t2) ‖

Similarly, Q2(t) is canonized to:

Q2(t) = ‖
∑
t1,t2

[t2.type = t.type]× [t2.itemno = t.itemno]×
[t1.itemno = t.itemno]× [t2.itemno = t1.itemno]×
[t1.np = t.np]× [t1.np > 1000]× price(t1)× itm(t2) ‖

At the end, since Q1(t) and Q2(t) are squashed expressions,
SDP is called. SDP finds a homomorphism from Q2(t) to Q1(t),
namely {t1 → t′, t2 → t2} and a homomorphism from Q1(t) to
Q2(t) defined by the function {t′ → t1, t2 → t2}. Hence Q1 is
equivalent toQ2. To the best of our knowledge, this is the first time
that this rewrite rule is formally proved to be correct. By modeling
the semantics of SQL using U-expressions, our procedure can be
used to automatically deduce the equivalence of complex rewrites.

6. EVALUATION
In this section we describe our implementation and evaluation

of UDP. We first describe our implementation in Sec. 6.1. Then,
in Sec. 6.2, we report on the two sets of query rewrite rules or
query pairs that we used in the evaluation: one set from well-known
data management research literature, and another from a popular
open-source query optimization framework called Calcite [1]. We
summarize the evaluation results of our query equivalence check-
ing algorithm in Sec. 6.2 and characterize these results in Sec. 6.3.
Sec. 6.4 concludes with the limitations of our current implementa-
tion.

6.1 Implementation
We have implemented our UDP equivalence checking algorithm,

and Fig. 4 shows its architecture. As shown in the figure, Our im-
plementation takes as input a pair of SQL queries to be checked
(Q1 and Q2) and the precondition for these queries in the form of
integrity constraints (C). It compiles the queries to U-expressions
(E1 and E2) and checks the equivalence of the resulting U-expres-
sions using UDP. We implemented UDP in Lean, a proof assistant,
which guarantees that if UDP returns true then the input queries are
indeed equivalent according to our U-semiring semantics.

UDP is implemented in two components: a U-expression gener-
ator that parses the input SQL queries (expressed using the syntax
shown in Fig. 2) to ASTs (Abstract Syntax Trees), and a converter
that translates the ASTs to U-expressions. The parser is written in
440 lines of Haskell, and the converter is written using 202 lines
of Lean. In addition, the implementation of the axioms discussed
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Proof Assistant (Lean)

UDP: 
Decision Procedure for U-Exp. 

U-Exp. Generator

SQL: Q1 = Q2 ? 
Constraints: C

U-Exp.: E1 = E2?
False: 

Proof Not Found Q1 !=Q2 under C 
/ Unknown

Q1 = Q2 under C
Figure 4: UDP implementation

in Sec. 3 and Sec. 4 consists of 129 lines of Lean. UDP is imple-
mented using 1422 lines of Lean’s metaprogramming language for
proof search [29]. The parser, converter, and axiom code form the
trusted code base of our implementation. All other parts, such as
the implementation of UDP, are formally verified by implementing
in Lean on top of our trusted code base.

6.2 Evaluation Summary
To evaluate UDP, we used it to prove various real-world SQL

queries and rewrite rules from the following two sources10:

Literature. We manually examined the SIGMOD papers in the
last 30 years looking for rewrite rules that contain integrity con-
straints. We found 6 rewrite rules from research papers published in
SIGMOD (such as rules with mixed bag-set semantic queries from
starburst [49]), technical reports, and blog articles. These rules are
conditional, i.e., they all claim to be valid only under integrity con-
straints that are expressible in SQL. These constraints include key
constraints, foreign key constraints, and the use of indexes. We
also include 23 rewrite rules that are interactively proven in a proof
assistant from our previous work [23], including the well-known
magic set rewrites [49].

Apache Calcite. Apache Calcite [1] is an open-source query op-
timization framework that powers many data processing engines,
such as Apache Hive [4], Apache Drill [2], and others [8, 6, 3, 5].
Calcite includes an extensive rule-based rewrite optimizer that con-
tains 83 rules total. To ensure the correctness of these rewrite rules,
Calcite comes with 232 test cases, each of which contains a SQL
query, a set of input tables, and the expected results. Passing a test
case means that the Calcite rewritten query returns the correct re-
sult on the specific test data. For each Calcite’s test case, we use the
input query as Q1 and the rewritten query after applying Calcite’s
rules as Q2. Among these 232 pairs of SQL queries, 39 pairs use
SQL features that UDP currently supports, and we discuss why UDP
cannot support the rest in Sec. 6.4. Note that the Calcite test cases
lead us to verify pairs of queries rather than rules. For example,
one of the test cases checks for R 1 S = S 1 R, where R,S
are concrete tables rather than arbitrary SQL expressions. As Cal-
cite implements its rewrite rules in Java code rather than our input
language as shown in Fig. 2, we instead treat every pair of queries
in the test cases as query instances by replacing the concrete table
names with general SQL expressions using our syntax, while re-
taining any integrity constraints and ignoring the actual contents of
the tables. We then send the queries to our system and ask it to
prove the semantic equivalence of the two queries for all possible
table contents.

Among the set of rules/equivalent query pairs used in our eval-
uation, 8 from the literature and 2 from Calcite require database

10The detailed benchmark queries and rules can be found in [20].

Dataset Total No. of No. of No. of
No. Supported Proved Unproved

Literature 29 29 29 0
Calcite 232 39 33 6
Bugs 3 1 0 1

Figure 5: Summary of proved and unproved cases

Dataset Proved
Total UCQ Cond.

Grouping,
Aggregate,
and Having

DISTINCT
in

Subquery
Literature 29 15 9 2 4
Calcite 34 21 2 11 1

Figure 6: Characterization of the proved cases, where the cate-
gories are not mutually exclusive.

integrity constraints as preconditions. Furthermore, 14 from the
literature and 12 from Calcite were not conjunctive query rewrites.

Fig. 5 summarizes our evaluation result. Among the 6 condi-
tional query rewrites from the literature, UDP can automatically
prove all of them. Among Calcite’s 39 test cases that use SQL
features supported by UDP, 33 (i.e., 85%) of them are automatically
proved. 5 unproven test cases involve integer arithmetic and string
casting, which UDP currently does not support. The last unproven
test case involves two very long queries, and UDP does not return a
result after running for 30 minutes.

Previously Documented Bugs. We tried using our system to

prove the count bug [32]. As expected, our system failed to prove
equivalence within the time limit of 30 minutes; two other bugs
in the literature [7, 10] are based on the NULL semantics, which
we currently do not support. As our prior work work [22] already
shows how to use a model checker to find counterexamples to in-
validate such rules, our current system instead focuses on proving
equivalent rules instead.
6.3 Characterizing Results

As shown in Fig. 6, we categorize the proved cases based on the
SQL features that were used into the following:

• UCQ: Rewrites involving only unions of conjunctive queries,
i.e., unions of SELECT-FROM-WHERE with conjunctive predicates.

• Cond: Rewrites that involve integrity constraints as precondi-
tions, for instance a rewrite that is only valid in the presence of
an index on a particular attribute.

• Grouping, Aggregate, and Having: Rewrites that use at least
one of GROUP BY, aggregate functions such as SUM, and HAVING.

• DISTINCT in Subquery: Rewrites with DISTINCT in a subquery.

As Fig. 6 shows, UDP can formally prove the equivalence of many
of the SQL rewrites described above. The running time of UDP
on all these cases are within 15 seconds. Many such rewrites in-
volve queries that are beyond UCQ, i.e., they are not part of the
decidable fragment of SQL, such as the 3 rewrite rules from Star-
burst [44] (we described one of them in Sec. 5.4). To the best of our
knowledge, none of these 3 rules (along with 35 other rules that UDP
proved) were formally proven before. Proving the equivalences of
these rewrite rules is non-trivial: it requires reasoning equivalence
of queries evaluated under mixed of bag and set semantics, and
modeling various preconditions and subqueries that use DISTINCT.

Fig. 7 shows the run time of UDP for proving the rewrites in each
category. For the rewrite rules from Literature, UDP takes 6594.3
ms on average. For the ones from Calcite, UDP takes 4160.4 ms on
average. As expected, UDP takes longer time on rewrites with rich
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Dataset Overall Avg. UCQ Cond.
Grouping,
Aggregate,
and Having

DISTINCT
in

Subquery
Literature 6594.3 3480.8 9983.9 8628.1 8223.7
Calcite 4160.4 2704.9 6429.0 6909.4 6427.7

Figure 7: UDP execution time (ms)

SQL features such as integrity constraints, grouping and aggregate,
and DISTINCT in subquery.

An interesting question to ask is whether converting a U-expres-
sion to SPNF increases its size significantly in practice. Theoreti-
cally, Rule 1 and Rule 2 can increase the size of U-expression ex-
ponentially. We recorded the sizes of U-expression before and after
converting them to SPNF. U-expression sizes increase by 4.1% on
average in the Literature category, and increase by 0.7% on aver-
age in Calcite. Despite the exponential growth at the worst case,
our evaluation shows that the growth of U-expressions after nor-
malization is not a big concern.

Comparison to COSETTE. We also compare UDP with
COSETTE [23]. UDP supports a wider range of SQL queries and
provides more powerful automated proof search compared with
COSETTE. In fact, COSETTE can only express 61 out of 69 cases
that UDP proved (Fig. 5) as COSETTE does not support all types of
database integrity constraints that UDP supports. For the 61 rules
that COSETTE can express, only 17 of them (Ex. 4.7) was manu-
ally proven by COSETTE, and none of them can be proved automat-
ically. As a comparison, COSETTE’s manual proof script contains
320 lines of Coq to prove Ex. 4.7, in contrast to UDP automatically
proving this rewrite rule.

6.4 Limitations
Unsupported SQL Features. UDP currently does not support SQL
features such as CASE, UNION (under set semantics), NULL, and
PARTITION BY. The queries in the rest of Calcite dataset (193 query
pairs) contains at least one of these features and hence cannot be
processed by our current prototype. Many of these features can be
handled by syntactic rewrites. For example, UNION can be rewritten
using UNION ALL and DISTINCT. Further engineering will enable
us to support the majority of the remaining rewrite rules and they
do not represent any fundamental obstacles to our approach.

Unproven Cases. There are a few rewrites that use only the sup-
ported features but UDP still fails to find proofs for them (6 out of 39
in the Calcite dataset). An example from Calcite is shown below:

SELECT * -- Q1
FROM (SELECT * FROM EMP AS EMP

WHERE EMP.DEPTNO = 10) AS t
WHERE t.DEPTNO + 5 > t.EMPNO;

SELECT * -- Q2
FROM (SELECT * FROM EMP AS EMP0

WHERE EMP0.DEPTNO = 10) AS t1
WHERE 15 > t1.EMPNO;

Proving the above rewrite requires modeling the semantics of
integer arithmetic (which is undecidable in general), while other
cases require modeling the semantics of string concatenation and
conversion of strings to dates. We leave supporting such cases as
future work.

7. RELATED WORK
Containment and equivalence of relational queries. Relational
query containment and equivalence is a well studied topic in data
management research. Equivalence of general relational queries

has been proven to be undecidable [51], and subsequent research
has focused on identifying decidable fragments of SQL, such as
under set [17, 47] or bag semantics [24, 41, 18, 40]. As mentioned
in Sec. 1, this line of work has focused on the theoretical aspects
of the problem and has led to very few implementations, most of
which has been restricted to applying the chase procedure to con-
junctive queries for query optimization [14]. A recent work [38]
proposes a new semantics to model many features of SQL (includ-
ing NULL semantics), despite the lack of evaluation using real-
world benchmarks and a usable implementation.
Semantic query optimization. Semantic query optimization is an
important topic in query processing. While typical database en-
gines optimizes queries using rule-based [44] or cost-based [34,
16] techniques, the line of work mentioned above has led to alter-
native approaches, most notably the chase and backchase (C&B)
algorithm [46, 45, 27, 28], which guarantees to find a minimal se-
mantic equivalent query for conjunctive queries under constraints.
While our algorithm (Alg. 1) bears resemblance to C&B, our work
fundamentally differs in that our goal is the find a formal, machine-
checkable proof for the equivalence of two queries using a small
number of axioms, while C&B aims to find a minimal equivalent
query to the input. Second, our algorithm is sound for general SQL
queries and complete for UCQ under set and bag semantics, while
the original C&B are applicable only to CQ evaluated under set se-
mantics [46, 45, 27], and the bag semantics version [28] is sparse
in formal details and proofs.
Formalization of SQL semantics. The most related SQL formal-
izations include [23, 22, 21, 38, 13, 19]. COSETTE [23, 22, 21] for-
malized K-relation in the Coq proof assistant using univalent types
in Homotopy Type Theory (HoTT) [50]. Compared to COSETTE,
UDP has a much smaller axiomatic foundation and yet more power-
ful decision procedures that can find proof scripts for wider range
of SQL queries. We have already discussed [38, 13] in detail in
Sec. 2. Related formalizations of SQL or SQL like declarative lan-
guages in SMT solvers include Qex [54, 53], a tool for verifying the
equivalences of Spark programs [37], Mediator, a tool for verifying
database driven applications [56], and Blitz, a tool for synthesize
big data queries [48]. Unlike UDP, Qex is used for test generation.
The Spark verifier [37] can automatically verify the equivalences
for a small set of Spark programs. However, it cannot be applied to
SQL queries due to its syntactical restrictions. Mediator focuses on
verifying transactions and programs that make updates to databases
and is orthogonal to our work. Blitz [48] can only check SQL query
equivalence up to bounded size inputs and is not a full verifier.

8. CONCLUSION
In this paper we presented U-semiring, a new semantics for SQL

based on unbounded semirings. Using only a few axioms, U-semiring
can model many SQL features including integrity constraints, which
is not handled in prior work. To show the usefulness of U-semiring,
we have developed a novel algorithm, UDP, for checking the equiv-
alence of SQL queries and have used it to prove the validity of 62
real-world SQL rewrites, many of which were proven for the first
time. As future work, we plan to support more SQL features and
other non-relational data models such as Hive and Spark.
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