
Causal Consistency and Latency Optimality:
Friend or Foe?

Diego Didona1, Rachid Guerraoui1, Jingjing Wang1, Willy Zwaenepoel1,2
1EPFL, 2 University of Sydney

first.last@epfl.ch

ABSTRACT
Causal consistency is an attractive consistency model for
geo-replicated data stores. It is provably the strongest model
that tolerates network partitions. It avoids the long laten-
cies associated with strong consistency, and, especially when
using read-only transactions (ROTs), it prevents many of
the anomalies of weaker consistency models. Recent work
has shown that causal consistency allows “latency-optimal”
ROTs, that are nonblocking, single-round and single-version
in terms of communication. On the surface, this latency op-
timality is very appealing, as the vast majority of applica-
tions are assumed to have read-dominated workloads.

In this paper, we show that such “latency-optimal” ROTs
induce an extra overhead on writes that is so high that
it actually jeopardizes performance even in read-dominated
workloads. We show this result from a practical as well as
from a theoretical angle.

We present the Contrarian protocol that implements “al-
most latency-optimal” ROTs, but that does not impose on
the writes any of the overheads incurred by latency-optimal
protocols. In Contrarian, ROTs are nonblocking and single-
version, but they require two rounds of client-server com-
munication. We experimentally show that this protocol not
only achieves higher throughput, but, surprisingly, also pro-
vides better latencies for all but the lowest loads and the
most read-heavy workloads.

We furthermore prove that the extra overhead imposed on
writes by latency-optimal ROTs is inherent, i.e., it is not an
artifact of the design we consider, and cannot be avoided by
any implementation of latency-optimal ROTs. We show in
particular that this overhead grows linearly with the number
of clients.
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1. INTRODUCTION
Geo-replication is gaining momentum in industry [9, 16,

20, 22, 25, 44, 51, 52, 66] and academia [24, 35, 48, 50, 60,
70, 71, 72] as a design choice for large-scale data platforms
to meet the strict latency and availability requirements of
on-line applications [5, 56, 63].
Causal consistency. To build geo-replicated data stores,
causal consistency (CC) [2] is an attractive consistency model.
On the one hand, CC has an intuitive semantics and avoids
many anomalies that are allowed under weaker consistency
models [25, 68]. On the other hand, CC avoids the long
latencies incurred by strong consistency [22, 32] and toler-
ates network partitions [41]. CC is provably the strongest
consistency level that can be achieved in an always-available
system [7, 45]. CC has been the target consistency level of
many systems [4, 19, 27, 28, 31, 41, 42]. It is used in plat-
forms that support multiple levels of consistency [13, 40],
and it is a building block for strong consistency systems [12]
as well as for formal checkers of distributed protocols [30].

Read-only transactions. High-level operations such as
producing a web page often translate to multiple reads from
the underlying data store [51]. Ensuring that all these reads
are served from the same consistent snapshot avoids un-
desirable anomalies, in particular the following well-known
anomaly: Alice removes Bob from the access list of a photo
album and adds a photo to it, but Bob reads the original per-
missions and the new version of the album [41]. Therefore,
the vast majority of CC systems provide read-only transac-
tions (ROTs) to read multiple items at once from a causally
consistent snapshot [3, 4, 28, 41, 42]. Large-scale applica-
tions are often read-heavy [6, 44, 51, 52]. Hence, achieving
low-latency ROTs is a first-class concern for CC systems.

Earlier CC ROT designs were blocking [3, 4, 27, 28] or
required multiple rounds of communication to complete [4,
41, 42]. The recent COPS-SNOW system [43] shows that
it is possible to perform CC ROTs in a nonblocking fash-
ion, using a single round of communication, and sending
only a single version of the objects involved. Because it ex-
hibits these properties, the COPS-SNOW ROT protocol was
termed latency-optimal (LO). COPS-SNOW achieves LO by
imposing additional processing costs on writes. One could
argue that doing so is a correct tradeoff for the common
case of read-heavy workloads, because the overhead affects
the minority of operations and is to the advantage of the
majority of them. This paper sheds a different light on this
tradeoff.

Contributions. In this paper we show that the extra cost
on writes is so high that so-called LO ROTs in practice
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exhibit performance inferior to alternative designs, even in
read-heavy workloads. Not only does this extra cost reduce
the available processing power, leading to lower through-
put, but it also causes higher resource contention, and hence
higher latencies. We demonstrate this counterintuitive re-
sult from two angles.

(1) From a practical standpoint, we propose Contrarian,
a CC design that achieves all but one of the properties of
a LO design, without incurring the overhead on writes that
LO implies. In particular, Contrarian is nonblocking and
single-version, but it requires two rounds of communication.
Measurements in a variety of scenarios demonstrate that, for
all but the lowest loads, Contrarian provides better latencies
and throughput than an LO protocol.

(2) From a theoretical standpoint, we show that the extra
cost imposed on writes to achieve LO ROTs is inherent to
CC, i.e., it cannot be avoided by any CC system that im-
plements LO ROTs. We also provide a lower bound on this
extra cost in terms of communication overhead. Specifically,
we show that the amount of extra information exchanged
potentially grows linearly with the number of clients.

Roadmap. The remainder of this paper is organized as
follows. Section 2 provides introductory concepts and defi-
nitions. Section 3 surveys the complexities involved in the
implementation of ROTs. Section 4 presents our Contrarian
protocol. Section 5 compares Contrarian and an LO design.
Section 6 presents our theoretical results. Section 7 discusses
related work. Section 8 concludes the paper. We provide the
pseudo-code of Contrarian, and we sketch an informal proof
of its correctness in an extended technical report [26].

2. SYSTEM MODEL
We consider a multi-version key-value store, as in the vast

majority of CC systems [3, 28, 41, 42, 43]. We denote keys
by lower-case letters, e.g., x, and versions of keys by the
corresponding upper-case letters, e.g., X.

2.1 API
The key-value store provides the following operations:

• X ← GET (x) : returns a version of key x, or ⊥, if there
is no version identified by x.

• PUT (x,X) : creates a new version X of key x.

• (X,Y, ...) ← ROT (x, y, ...) : returns a vector (X, Y , ...)
of versions of keys (x, y, ... ). A ROT returns ⊥ for a key
x, if there is no version identified by x.

In the remainder of this paper we focus on PUT and ROT
operations. DELETE can be treated as a special case of
PUT.

2.2 Partitioning and Replication
We target a key-value store whose data set is split into

N > 1 partitions. Each key is deterministically assigned
to one partition by a hash function, and each partition is
assigned to one server. A PUT(x, X) is sent to the partition
that stores x. Read requests within a ROT are sent to the
partitions that store the keys in the specified key set.

Each partition is replicated at M ≥ 1 data centers (DC).
Our results hold for both single and replicated DCs. In the
case of replication, we consider a multi-master design, i.e.,
all replicas of a key accept PUT operations.

2.3 Properties of ROTs

2.3.1 LO ROTs.
We adopt the same terminology and definitions as in the

original formulation of latency-optimality [43]. An imple-
mentation provides LO ROTs if it satisfies three properties:
one-version, one-round and nonblocking. We now informally
describe these properties. A more formal definition is de-
ferred to § 6.

Nonblocking requires that a partition that receives a re-
quest to perform reads within a ROT can serve such reads
without being blocked by any external event (e.g., the ac-
quisition of a lock or the receipt of a message) 1. One-round
requires that a ROT is served in two communication steps:
one step from the client to the servers to invoke the ROT,
and another step from the servers to the client to return the
results. One-version requires that servers return to clients
only one version of each requested key.

2.3.2 One-shot ROTs.
As in Lu et al. [43], we consider one-shot ROTs [34]: the

input arguments of a ROT specify all keys to be read, and
the individual reads within a ROT are sent in parallel to
the corresponding partitions. A read that depends on the
outcome of an earlier read has to be issued in a subsequent
ROT. We focus on one-shot ROTs for simplicity and because
our results generalize: multi-shot ROTs incur at least the
same overhead as one-shot ROTs.

2.4 Causal Consistency
The causality order is a happens-before relationship be-

tween any two operations in a given execution [2, 38]. For
any two operations α and β, we say that β causally depends
on α, and we write α ; β, if and only if at least one of
the following conditions holds: i) α and β are operations in
a single thread of execution, and α happens before β; ii)
∃x,X such that α creates version X of key x, and β reads
X; iii) ∃γ such that α ; γ and γ ; β. If α is a PUT that
creates version X of x, and β is a PUT that creates version
Y of y, and α ; β, then (with a slight abuse of notation)
we also say Y causally depends on X, and we write X ; Y .

A causally consistent data store respects the causality or-
der. Intuitively, if a client c reads Y and X ; Y , then any
subsequent read performed by c on x returns either X or a
newer version. In other words, c cannot read X ′ : X ′ ; X.
A ROT operation returns versions from a causally consis-
tent snapshot [41, 46]: if a ROT returns X and Y such that
X ; Y , then there is no X ′ such that X ; X ′ ; Y .

To circumvent trivial implementations of causal consis-
tency, we require that a version, once written, becomes even-
tually visible, meaning that it is available to be read by all
clients after some finite time [11].

Causal consistency does not establish an order among con-
current (i.e., not causally related) updates on the same key.
Hence, different replicas of the same key might diverge and
expose different values [68]. We consider a system that even-
tually converges: if there are no further updates, then even-
tually all replicas of any key take on the same value, for
instance using the last-writer-wins rule [65].

1The meaning of the term nonblocking in this paper fol-
lows the definition in Lu et al. [43], and is different from
the definition used in the distributed transaction processing
literature [17, 59].
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PUT(x, X1)

y = Y1
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x = X1

PUT(x, X1) done

PUT(y, Y1)
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T1(x,y)

TI
M

E

PUT(y, Y1) done

Figure 1: Challenges in implementing CC ROTs. C1 issues
T1 = ROT (x, y). If T1 returns X0 to C1, then T1 cannot
return Y1, because there is a version of x, X1, such that
X0 ; X1 ; Y1.

Hereafter, when we use the term causal consistency, even-
tual visibility and convergence are implied.

3. BACKGROUND
Challenges of CC ROTs. Even in a single DC, parti-
tions involved in a ROT cannot simply return the most re-
cent version of a requested key if one wants to ensure that
a ROT observes a causally consistent snapshot. Consider
the scenario of Figure 1, with two keys x and y, with initial
versions X0 and Y0, and residing on partitions px and py,
respectively. Client C1 performs a ROT(x, y), and client C2

performs a PUT(x,X1) and later a PUT(y, Y1). By asyn-
chrony, the read on x by C1 arrives at px before the PUT by
C2 on x, and the read by C1 on y arrives at py after the PUT
by C2 on y. In this case, py cannot return Y1 to C1, because
a snapshot consisting of X0 and Y1, with X0 ; X1 ; Y1,
violates the causal consistency property for snapshots (see
Section 2.4).

Existing non-LO solutions. COPS [41] and Eiger [42]
provide a first solution to the problem. In these protocols, a
ROT(x, y) returns the latest versions of x and y, combined
with meta-data that encodes their dependencies (a depen-
dency graph in COPS and a timestamp in Eiger). The client
uses this meta-data to determine whether the returned ver-
sions belong to a causally consistent snapshot. If not, then
the client issues a second round of requests for those keys
for which the versions it received do not belong to a causally
consistent snapshot. In these requests it includes the nec-
essary information for the server to identify which version
has to be returned for each of those keys. This protocol is
nonblocking, but requires (potentially) two rounds of com-
munication and two versions of key(s) being communicated.

Later designs [3, 28] opt for a timestamp-based approach,
in which each version has a timestamp ts that encodes causal-
ity (i.e., X ; Y implies X.ts < Y.ts), and each ROT also is
assigned a snapshot timestamp (st). Upon receiving a ROT
request, a partition first makes sure that its local clock has
caught up to st [3], ensuring that all future versions have a
timestamp higher than st. Then, the partition returns the
most recent version with a timestamp ≤ st. The snapshot
timestamp is picked by a transaction coordinator [3, 28].
Any server can be the coordinator of a ROT. The client
provides the coordinator with the highest timestamp it has
observed, and the coordinator picks the transaction times-
tamp as the maximum of the client-provided timestamp and

Pz 
(Coord)

Req Snap

Snap

1

2

Pz 
(Coord)

Px

Py

X

Y

Z

3

3

3

Read(z, Snap)

Read(x,
 Snap)

Read(y, Snap)

4

4

4

Figure 2: ROT implementation in the timestamp-based
approach, requiring two rounds of client-server communica-
tion. Numbered circles depict the order of operations. The
client always piggybacks on its requests the last snapshot
it has seen (not shown), so as to observe monotonically in-
creasing snapshots. Any server involved in a ROT can act
as its coordinator.

its own clock value. 2 This protocol returns only a single
version of each key, but it always requires two rounds of com-
munication: one to obtain the snapshot and one to read the
key versions from said snapshot (as shown in Figure 2). In
addition, if physical clocks are used to encode timestamps [3,
28], the protocol is also blocking, because a partition may
need to wait for its physical clock to reach st.

LO CC ROTs. COPS-SNOW [43] is the first CC system
to implement LO ROTs. We depict in Figure 3 how the
COPS-SNOW protocol works using the same scenario as in
Figure 1. Each ROT is given a unique identifier. When a
ROT T1 reads X0, px records T1 as a reader of x (Xrdrs

in Figure 3). It also records the (logical) time at which the
read occurred. On a later PUT on x, T1 is added to the “old
readers of x” (Xold in Figure 3), the set of transactions that
have read a version of x that is no longer the most recent
version, again together with the logical time at which the
read occurred.

When C2 sends its PUT on y to py, it includes in this
request that this PUT is dependent on X1. Partition py
interrogates px as to whether there are old readers of x,
and, if so, records the old readers of x into the old reader
record of y, together with their logical time. When later
the read of T1 on y arrives, py finds T1 in the old reader
record of y. py therefore knows that it cannot return Y1.
Using the logical time in the old reader record, it returns
the most recent version of y before that time, in this case
Y0. In the rest of the paper, we refer to this procedure as the
readers check. By virtue of the readers check, COPS-SNOW
is one-round, one-version and nonblocking.

COPS-SNOW, however, incurs a very high cost on PUTs.
We demonstrate this cost by slightly modifying our example.
Let us assume that hundreds of ROTs read X0 before the
PUT(x,X1), as might well occur with a skewed workload
in which x is a hot key. Then, all these transactions must
be stored as readers and later as old readers of x, commu-
nicated to py, and examined by py on each incoming read
from a ROT. Let us further modify the example by assuming
that C2 reads keys from partitions pa, . . . , pz different from

2The client cannot pick st itself, because its timestamp may
be arbitrarily far behind, compromising eventual visibility.
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Figure 3: COPS-SNOW design. C2 declares that Y1 de-
pends on X0. Before completing the PUT of Y1, py runs
a “readers check” with px and is informed that T1 has ob-
served a snapshot that does not include Y1.

px and py before writing Y1. Because C2 has established a
dependency on all the versions it has read, in order to com-
pute the old readers for y, py needs to interrogate not only
px, but also the other partitions pa, . . . , pz.

Challenges of geo-replication. Further complications
arise in a geo-replicated setting with multiple DCs. We as-
sume that new versions are replicated asynchronously, so
a new version X may arrive at a DC before its causal de-
pendencies. COPS, Eiger and COPS-SNOW deal with this
situation through a technique called dependency checking.
When X is replicated, the list of causal dependencies of X
is sent along (without the corresponding values). Before X
is installed, the system checks by means of dependency check
messages to other partitions that X’s causal dependencies
are present. When X’s dependencies have been installed in
the DC, X can be installed as well. In COPS-SNOW, in
addition, the readers check for X proceeds in a remote DC
as it does in the DC where X has been created.

An alternative technique, commonly used with timestamp-
based methods, is to use a stabilization protocol [3, 8, 28].
Variations exist, but in general each DC establishes a cutoff
timestamp below which it has received all remote versions.
Versions with a timestamp lower than this cutoff can be in-
stalled. Stabilization protocols are more lightweight than
dependency checking [28], but they lead to a complication
in making ROTs nonblocking, in that one needs to ensure
that the snapshot timestamp assigned to a ROT is below the
cutoff timestamp, so that there is no blocking upon reading.

4. CONTRARIAN
Contrarian implements all but one of the properties of

LO ROTs, without incurring the overhead that stems from
achieving all of them. In this section we describe the salient
aspects of the design of Contrarian, and the properties it
achieves. We provide additional details on the protocols
implemented in Contrarian in a technical report [26].

4.1 Tracking causality
Contrarian uses logical timestamps and a stabilization

protocol to implement CC, but unlike what was described
in Section 3, it tracks causality using dependency vectors,
with one entry per DC, instead of scalar timestamps, and
the stabilization protocol determines, in each DC, a vector of

cutoff timestamps, also with one entry per DC [3]. We refer
to such cutoff vector as the Global Stable Snapshot (GSS).

The GSS encodes the set of remote versions that are sta-
ble in the DC. A version is stable in the DC when all its
dependencies have been received in the DC. A remote ver-
sion can be read by clients in a DC only when it is stable.
Determining when a remote version is stable is important to
achieve nonblocking ROTs. Assume Y ; Z and Z is made
accessible to clients in DCi before Y is received in DCi.
Then, if a client in DCi reads Z and subsequently wants
to read y, the latter read might block waiting for Y to be
received in DCi. The dependencies of a version created in
DCi on other versions created in the same DCi are trivially
satisfied. Hence, versions created in DCi are stable in DCi

immediately after being created 3.

Encoding dependencies. Each versionX tracks its causal
dependencies by means of a dependency vector DV , with
one entry per DC. If X.DV [i] = t, then X (potentially)
causally depends on all versions created in DCi with a times-
tamp lower than or equal to t. Similarly, each client c main-
tains a dependency vector to track the set of versions on
which c depends. The semantics of the entries of the de-
pendency vector maintained by clients is the same as in the
dependency vectors of versions.
X.DV encodes the causal dependencies established by the

client c that createsX by means of a PUT. When performing
the PUT, c piggybacks its dependency vector. The partition
that serves the PUT sets the remote entries of X.DV to the
values in the corresponding entries of the dependency vector
provided by the client. The local entry of X.DV is the
timestamp of X. This timestamp is enforced to be higher
than any timestamps in the dependency vector provided by
the client. This enforces causality: if Y ; X, then the
timestamp of X is higher than the timestamp of Y .
X is considered stable in a remote DCr when all X ′s

dependencies have already been received in DCr. This con-
dition is satisfied if the remote entries in X.DV are smaller
than or equal to the corresponding entries in the current
GSS of the partition that handles x in DCr.

GSS computation. The GSS is computed independently
within each DC. Each entry tracks a lower bound on the
set of remote versions that have been received in the DC.
If GSS[i] = t in a DC, it means that all partitions in the
DC have received all versions created in the i-th DC with a
timestamp lower than or equal to t.

The GSS is computed as follows. Every partition main-
tains a version vector V V with one entry per DC. V V [m]
is the timestamp of the latest version created by the parti-
tion, where m is the index of the DC. V V [i], i 6= m, is the
timestamp of the latest update received from the replica in
the i-th DC. Periodically, the partitions in a DC exchange
their V V s and compute the GSS as the aggregate minimum
vector. Hence, the GSS encodes a lower bound on the set of
remote versions that have been received by every partition in
the DC. The partitions also move their local clocks forward,
if needed, to match the highest timestamp corresponding to
the local entry in any of the exchanged VVs.

3This also implies that the local entry of the GSS is not
used to track dependencies. However, the local entry is kept
in our discussion for simplicity, so that the i-th entry in the
GSS refers to the i-th DC.
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To ensure that the GSS progresses even in absence of up-
dates, a partition sends a heartbeat message with its current
clock value to its replicas if it does not process a PUT for a
given amount of time.

4.2 ROT implementation
Contrarian’s ROT protocol runs in two rounds, is one-

version, and nonblocking. In other words, it sacrifices one
round in latency compared to the theoretically LO protocol,
but retains the low cost of PUTs of non-LO designs.

Contrarian uses the coordinator-based approach described
in Section 3 and shown in Figure 2. The client identifies the
partitions to read from, and selects one of them as the coor-
dinator for the ROT. The client sends its dependency vector
to the coordinator, which picks the snapshot corresponding
to the ROT and sends it back to the client. The client then
contacts the partitions involved in the ROT, communicating
the list of keys to be read and the snapshot of the ROT.

The ROT protocol uses a vector SV to encode a snapshot.
The local entry of SV is the maximum between the clock
at the coordinator and the highest local timestamp seen by
the client. The remote entries of SV are given by the entry-
wise maximum between the GSS at the coordinator and
the dependency vector of the client. Upon receiving a ROT
request with snapshot SV , a partition moves its own clock
to match the local entry of SV , if needed. A version Y
belongs to the snapshot encoded by SV if Y.DV ≤ SV . For
any requested key, a partition returns the version belonging
with the highest timestamp that belongs to the specified
snapshot.

Freshness of the snapshots. The GSS is computed by
means of the minimum operator. Because logical clocks on
different partitions may advance at different paces, a lag-
gard partition in one DC can slow down the progress of the
GSS, thus increasing the staleness of the ROT snapshots.
A solution to this problem is to use loosely synchronized
physical clocks [3, 27, 28]. However, physical clocks cannot
be moved forward to match the timestamp of an incoming
ROT, which can compromise the nonblocking property [3].

To achieve fresh snapshots and nonblocking ROTs, Con-
trarian uses Hybrid Logical Physical Clocks (HLC) [36]. In
brief, an HLC is a logical clock that generates timestamps on
a partition by taking the maximum between the local phys-
ical clock on the partition and the highest timestamp seen
by the partition plus one. On the one hand, HLCs behave
like logical clocks, so a server can move its clock forward to
match the timestamp of an incoming ROT request, thereby
preserving the nonblocking behavior of ROTs. On the other
hand, HLCs behave like physical clocks, because they ad-
vance even in absence of events and inherit the (loosely) syn-
chronized nature of the underlying physical clocks. Hence,
the stabilization protocol identifies fresh snapshots. The cor-
rectness of Contrarian does not depend on the synchroniza-
tion of the clocks, and Contrarian preserves its properties
even if it were to use plain logical clocks.

4.3 ROT Properties
Nonblocking. Contrarian implements nonblocking ROTs
by using logical clocks and by including in the snapshot as-
signed to a ROT only remote versions that are stable in the
DC. Then, Contrarian’s ROT protocol is nonblocking, be-
cause i) partitions can move the value of their local clock
forward to match the local entry of SV , and ii) the remote

entries of SV correspond to a causally consistent snapshot
of remote versions that are already present in the DC.

Despite embracing the widely-used coordinator-based ap-
proach to ROTs, nonblocking ROTs in Contrarian improve
upon existing designs. These designs can block (or delay by
retrying) ROTs due to clock skew [3], to wait for the receipt
of some remote versions [27, 28, 47, 61], or to wait for the
completion of some PUT operations in the DC where the
ROT takes place [4].

One-version. Contrarian achieves the one-version prop-
erty, because partitions read the version with the highest
timestamp within the snapshot proposed by the coordina-
tor.

Eventual visibility. Contrarian achieves eventual visibil-
ity, because every version is eventually included in every
snapshot corresponding to a ROT. Let X be a version cre-
ated on partition px in DCi, and let ts be its timestamp.
px piggybacks its clock value (that is at least ts) during the
stabilization protocol. Therefore, each partition in DCi sets
its clock to be at least ts.

By doing so, Contrarian ensures that every coordinator in
DCi eventually proposes a ROT snapshot whose local en-
try is ≥ ts. Furthermore, every partition in DCi eventually
sends a message with timestamp ≥ ts to its replicas (either
by a replication or a heartbeat message). Hence, the i-th
entry of the V V of each remote partition eventually reaches
the value ts. Therefore, every i-th entry in the GSS com-
puted in every DC eventually reaches the value ts. Because
the remote entries of ROT snapshots are computed starting
from the GSS, Contrarian ensures that X and its depen-
dencies are eventually stable in remote DCs and included in
all ROT snapshots.

5. EXPERIMENTAL STUDY
We show that the resource demands to perform PUT op-

erations in the LO design are in practice so high that they
not only affect the performance of PUTs, but also the per-
formance of ROTs, even with read-heavy workloads. In
particular, with the exception of scenarios corresponding to
very modest loads, where the two designs are comparable,
Contrarian achieves ROT latencies that are lower than the
state-of-the-art LO design. In addition, Contrarian achieves
higher throughput for all workloads we consider.

5.1 Experimental environment
Implementation and optimizations. We implement Con-
trarian and the COPS-SNOW design in the same C++ code-
base. Clients and servers use Google Protocol Buffers [29]
for communication. We call CC-LO the system that imple-
ments the design of COPS-SNOW. We improve its perfor-
mance over the original design by more aggressive eviction
of transactions from the old readers record. Specifically, we
garbage-collect a ROT id after 500 msec from its insertion
in the readers record of a key (vs. the 5 seconds of the origi-
nal implementation), and we enforce that each readers check
response message contains at most one ROT id per client,
i.e., the one corresponding to the most recent ROT of that
client. These two optimizations reduce by one order of mag-
nitude the number of ROT ids exchanged, approaching the
lower bound we derive in Section 6.

We use NTP [53] to synchronize clocks in Contrarian, the
stabilization protocol is run every 5 msec, and a partition
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Table 1: Workload parameters considered in the evaluation. The default values are given in bold.

Parameter Definition Value Motivation

Write/read ratio (w) #PUTS/(#PUTs+#individual reads)
0.01 Extremely read-heavy workload
0.05 Default read-heavy parameter in YCSB [21]
0.1 Default parameter in COPS-SNOW [43]

Size of a ROT (p) # Partitions involved in a ROT 4,8,24 Application operations span multiple partitions [51]

Size of values (b) Value size (in bytes). Keys take 8 bytes.
8 Representative of many production workloads [6, 51, 57]

128 Default parameter in COPS-SNOW [43]
2048 Representative of workloads with large items

Skew in key popularity (z) Parameter of the zipfian distribution.
0.99 Strong skew typical of many production workloads [6, 14]
0.8 Moderate skew and default in COPS-SNOW [43]
0 No skew (uniform distribution) [14]

sends a heartbeat if it does not process a PUT for 1 msec
(similarly to previous systems [28, 61]).

Platform. We use an AWS platform composed of up to
3 DCs (Virginia, Oregon and Ireland). Each DC hosts 45
server virtual machines (VM), corresponding to 45 parti-
tions, and 45 client VMs. We use c5.xlarge instances (4
virtual CPUs and 8 GB of RAM) that run Ubuntu 16.04
and a 4.4.0-1022-aws Linux kernel.

Methodology. We generate different loads for the system
by spawning different numbers of client threads, which issue
operations in a closed loop. We spawn from 1 to 1,800 client
threads per DC, uniformly distributed across the client VMs.

Each point in the performance plots we report corresponds
to a different number of client threads (starting from 1 per
DC). We spawn as many client threads as necessary to sat-
urate the resources of the systems. Increasing the num-
ber of threads past that point leads the systems to deliver
lower throughput despite serving a higher number of client
threads. We do not report performance corresponding to se-
vere overload. Therefore, the performance plots of the two
systems may have a different number of points for the same
workload, because the systems may saturate with different
number of client threads.

Experiments run for 90 seconds. We have run each exper-
iment up to 3 times, with minimal variations between runs,
and we report the median result.

Workloads. Table 1 summarizes the workload parameters
we consider. We use read-heavy workloads, in which clients
issue ROTs and PUTs according to a given write/read ratio
(w), defined as #PUT/(#PUT + #READ). A ROT reading
k keys counts as k READs. ROTs span a target number of
partitions (p), chosen uniformly at random, and read one
key per partition. Keys in a partition are chosen according
to a zipfian distribution with a given parameter (z). Every
partition stores 1M keys. Keys are 8 bytes long, and items
have a constant size (b).

We use a default workload with w = 0.05, i.e., the default
value for the read-heavy workload in YCSB [21]; z = 0.99,
which is representative of skewed workloads [6]; p = 4,
which corresponds to small ROTs (which exacerbate the
extra communication in Contrarian); and b = 8, as many
production workloads are dominated by tiny items [6]. We
generate additional workloads by changing the value of one
parameter at a time, while keeping the other parameters at
their default values.

Performance metrics. We focus our study on the laten-
cies of ROTs, because, by design, CC-LO favors ROT la-
tencies over PUTs. As an aside, in our experiments CC-LO
incurs up to one order of magnitude higher PUT latencies

than Contrarian. We study how the latency of ROTs varies
as a function of system throughput and workload parame-
ters. We measure the throughput as the number of PUTs
and ROTs performed per second.

We focus on 95-th percentile latency, which is often used
to study the performance of key-value stores [39, 51]. By
reporting the 95-th percentile, we capture the behavior of
the vast majority of ROTs, and factor out the dynamics
that affect the very tail of the response time distribution. We
report and discuss the average and the 99-th percentile of the
ROT latencies for a subset of the experiments. As a final
note, the worst-case latencies achieved by Contrarian and
CC-LO are comparable, and on the order of a few hundreds
of milliseconds.

5.2 Default workload
Figure 4a and Figure 4b show the performance of Contrar-

ian and CC-LO with the default workload running on 1 DC
and on 3 DCs, respectively. Figure 4c reports the readers
check overhead in CC-LO in a single DC. Figure 4d depicts
the average and the 99-th percentile of ROT latencies in a
single DC.

Latency. Contrarian achieves lower latencies than CC-
LO for nontrivial throughput values. Contrarian achieves
better latencies than CC-LO by avoiding the extra over-
head incurred by performing the readers check. This over-
head induces higher resource utilization, and hence higher
contention on physical resources. Ultimately, this leads to
higher latencies, even for ROTs.

ROTs in Contrarian become faster than in CC-LO start-
ing from loads corresponding to ≈200 Kops/s in the single-
DC case and to ≈350 Kops/s in the geo-replicated case, i.e.,
≈17% and ≈12% of the maximum throughput achievable by
Contrarian. Contrarian achieves better latencies than CC-
LO in the geo-replicated case starting from a relatively lower
load than in the single-DC case. This result is due to the
higher replication costs in CC-LO, which has to communi-
cate the dependency list of a replicated version, and perform
the readers check in all DCs. CC-LO achieves faster ROTs
than Contrarian only at very moderate loads, which cor-
respond to under-utilization scenarios. At the lowest load
(corresponding to a single thread running per DC), in the
single-DC case ROTs in Contrarian take 0.31 msec vs. 0.18
in CC-LO; in the geo-replicated scenario, ROTs in Contrar-
ian take 0.36 msec vs. 0.22 in CC-LO.

Throughput. Contrarian achieves a higher throughput
than CC-LO. Contrarian’s maximum throughput is 3.7x CC-
LO’s in the 1-DC case (1,150 Kops/s vs. 310), and 5x in the
3-DC case (3,000 Kops/s vs. 600). In addition, Contrarian
achieves a 2.6x throughput improvement when scaling from
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Figure 4: Performance with the default workload. Contrarian achieves better latencies (except at very modest load) and
higher throughput (a,b) by avoiding the extra overhead posed by CC-LO on PUTs (c). The effects of the overhead incurred
by CC-LO is more evident at the tail of the latency distribution (d).
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Figure 5: Performance with different w/r ratios. Contrarian achieves lower ROT latencies than CC-LO, except at very
moderate load and for the most read-heavy workload. Contrarian also consistently achieves higher throughput. Higher write
intensities hinder the performance of CC-LO because the readers check is triggered more frequently.

1 to 3 DCs. By contrast, CC-LO improves its throughput
only by ≈2x. Contrarian achieves higher throughput values
and better scalability by avoiding the resource utilization
overhead to perform the readers check and by implementing
a lightweight stabilization protocol.

Overhead analysis. Figure 4c reports the average number
of ROT ids collected during a readers check, as a function
of the number of client threads. The same ROT id can
appear in the readers set of multiple keys. Hence, we re-
port both the total number of ROT ids collected, and the
number of distinct ones. The overhead of a readers check
grows linearly with the number of clients in the system. This
result matches our theoretical analysis (Section 6) and high-
lights the inherent scalability limitations of LO. For exam-
ple, at peak throughput, corresponding to 270 client threads,
a readers check collects on average 1023 ROT ids, of which
267 are distinct. Using 8 bytes per ROT id, the readers
check causes on average 9KB of data to be collected.

Tail vs. average latency. We now investigate the effect
of Contrarian’s and CC-LO’s design on the distribution of
ROT latencies. To this end, we report in Figure 4d the
average ROT latency and the 99-th percentile (1 DC). In

terms of the 99-th percentile, Contrarian wins over CC-LO
starting at a load value of approximately 100 Kops/s, much
lower than the load value at which Contrarian wins over CC-
LO for the 95-th percentile. In terms of the average, CC-
LO wins up to 290 Kops/s, which is close to CC-LO’s peak
throughput. This experiment shows that the extra overhead
imposed by LO does not affect all ROTs in the same way,
and that, in particular, its effect is more evident at the tail of
the distribution of ROT latencies. This result is explained
as follows. At one end of the spectrum, some ROTs do
not experience any readers check overhead, and benefit from
the one-round nature of CC-LO. Since the average latency
is computed over all ROTs, these “lucky” ROTS figure in
the calculation, resulting in a low average latency for CC-
LO. At the other end, some ROTs experience a very high
readers check overhead, which dwarfs the benefit of the one-
round nature of CC-LO. The 99-th percentile measures the
latency of these “unlucky” ROTs. More precisely, it is the
lower bound on the latency experienced by the slowest 1%
of the ROTs. Since performance of key-value stores is often
quoted in terms of tail latencies, we argue that Contrarian
offers an important advantage in this regard.
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Figure 6: Average overhead per readers check in CC-LO
as a function of w: # partitions involved, # keys checked
and # ROT ids exchanged (1 DC, 270 client threads).

5.3 Effect of write intensity
Figure 5 shows how the write intensity (w) of the workload

affects the performance of the systems in the 1-DC case (a)
and in the 3-DC case (b). Figure 6 reports the effect of write
intensity on the overhead to perform the readers check in
CC-LO (1 DC, 270 client threads).

Latency. Similar to what was seen with the default work-
load, for nontrivial load conditions Contrarian achieves lower
ROT latencies than CC-LO both with and without geo-
replication, and with all write intensity values. The best
case for CC-LO is with w = 0.01, when readers checks are
more rare.

Throughput. Contrarian achieves a higher throughput
than CC-LO in all scenarios, from a minimum of 2.33x in
the 1-DC case for w = 0.01 (1,050 vs. 450 Kops/s) to a
maximum of 3.2x in the 3-DC case for w = 0.1 (3,200 vs.
1,000 Kops/s). The throughput of Contrarian grows with
the write intensity, because PUTs only touch one partition
and are thus faster than ROTs. Instead, higher write inten-
sities hinder the performance of CC-LO, because they cause
more frequent execution of the expensive readers check.

Overhead analysis. Surprisingly, the latency benefits of
CC-LO are not very pronounced, even at the lowest write
intensity. The explanation resides in the inherent tension
between the frequency of writes and their costs, as shown
Figure 6. On the one hand, a high write intensity leads to
frequent readers check on relatively few keys (because few
keys are read before performing a PUT). As a result, fewer
partitions need to be contacted during a readers check, and
fewer ROT ids are exchanged. On the other hand, a low
write intensity leads to more infrequent readers checks, that,
however, are more costly, because they require contacting
more partitions and exchanging more ROT ids.

5.4 Effect of skew in data popularity
Figure 7 depicts how the performance (a) and the readers

check overhead (b) vary with the skew in data popularity
(z). We analyze the single-DC case to factor out replication
dynamics (which are different in Contrarian and CC-LO)
and to focus on the inherent costs of LO.

Latency. Similar to earlier results, Contrarian achieves
ROT latencies that are lower than CC-LO’s for nontrivial
load conditions (> 150 Kops/s, i.e., less than 1/7 of Con-
trarian’s maximum throughput).

Throughput. Increased data popularity skew has little
effect on Contrarian, but it hampers the throughput of CC-
LO. The performance of CC-LO degrades, because a higher
skew causes longer causal dependency chains among opera-
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Figure 7: Effect of the skew in data popularity (1 DC).
Skew hampers the performance of CC-LO (a), as it leads to
long causal dependency chains among operations and thus to
much information exchanged during the readers check (b).

tions [11, 28], leading to a higher overhead incurred by the
readers checks.

Overhead analysis. With low skew, a key x is infrequently
accessed, so it is likely that many entries in the old reader
list of x can be garbage-collected by the time x is involved in
a readers check. With higher skew levels, a few hot keys are
accessed most of the time, which causes the old reader list
to contain many fresh entries. High skew also leads to more
duplicates in the ROT ids retrieved from different partitions,
because the same ROT id is likely to be present in many of
the old reader records. Figure 7b portrays these dynam-
ics. The reported plots also show that, at any skew level,
the number of ROT ids exchanged during a readers check
grows linearly with the number of clients (which matches
the results of our theoretical analysis in Section 6).

5.5 Effect of size of transactions
Figure 8 shows the performance of the systems while vary-

ing the number of partitions involved in a ROT (p). We
again focus on the single-DC platform.

Latency. Contrarian achieves ROT latencies that are lower
than or comparable to CC-LO’s for any number of partitions
involved in a ROT. The latency benefits of CC-LO over Con-
trarian at low load decrease as p grows, because contacting
more partitions amortizes the impact of the extra commu-
nication round needed by Contrarian to execute a ROT. At
the lowest load, with p = 4, the latency of ROTs in Con-
trarian is 1.72x the latency in CC-LO (0.31 msec vs. 0.18).
With p = 32, instead, the latency of ROTs in Contrarian is
only 1.46x the latency in CC-LO (0.6 msec vs. 0.41).

Throughput. Contrarian achieves a throughput increase
with respect to CC-LO that ranges from 3.4x (p = 4) to
4.25 (p = 32). Higher values of p amortize the extra resource
demands for contacting the coordinator in Contrarian, and
hence allow Contrarian to achieve a comparatively higher
throughput with respect to CC-LO.

1625



 1

 2

 3

 4

 5

 6

 7

 0  150  300  450  600  750  900  1050  1200

R
e

s
p
. 
ti
m

e
 (

m
s
e

c
)

Throughput (Kops/s)

CC-LO p=4
Contrarian p=4

p=8
p=8

p=32
p=32

Figure 8: Throughput vs. 95-th percentile of ROT laten-
cies while varying # partitions involved in a ROT (1 DC).

5.6 Effect of size of values
Figure 9 reports the performance of Contrarian and CC-

LO when manipulating values of different sizes (b). Larger
values naturally result in higher CPU and network costs for
marshalling, unmarshalling and transmission. As a result,
the maximum throughput of the systems decreases and the
latency increases.

Contrarian maintains its performance lead over CC-LO
for any value size we consider, except for throughput values
lower than 150 Kops/s. We could only experiment with
values of size up to 2 KB because of memory limitations
on our machines. We argue that with even bigger values
the performance differences between the two systems would
decrease. With bigger values, in fact, the performance of the
two systems would be primarily determined by the resource
utilization to store and communicate values, rather than by
differences in the designs.

6. THEORETICAL RESULTS
Our experimental study shows that the state-of-the-art

CC design for LO ROTs delivers sub-optimal performance,
caused by the overhead (imposed on PUTs) for dealing with
old readers. One can, however, conceive of alternative LO
ROT implementations. For instance, rather than storing old
readers at the partitions, one could contemplate an imple-
mentation which stores old readers at the client, when the
client does a PUT. This client could then forward this infor-
mation to other partitions on subsequent PUTs. Albeit in
a different manner, this implementation still communicates
the old readers between the partitions where causally re-
lated PUTs are performed. One may then wonder: is there
an implementation that avoids this overhead, in order not
to exhibit the performance issues we have seen with CC-LO
in Section 5?

We now address this question. We show that the extra
overhead on PUTs is inherent to LO. Furthermore, we show
that the extra overhead grows with the number of clients,
implying the growth with the number of ROTs and echo-
ing the measurement results we have reported in Section 5.
Our theorem applies to the system model described in Sec-
tion 2. We refine some aspects of the model for the purpose
of establishing our theoretical results. We provide a more
precise system model in Section 6.1, and a more precise def-
inition of LO in Section 6.2. Then we present our theorem
in Section 6.3 and its proof in Section 6.4.

6.1 Assumptions
For the ease of definitions as well as proofs, we assume the

existence of an accurate real-time clock to which no parti-
tion or client has access. When we mention time, we refer
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Figure 9: Throughput vs 95-th percentile of ROT latencies
while varying the size of items (1 DC).

to this clock. Furthermore, when we say that two client op-
erations are concurrent, we mean that the durations of the
two operations overlap according to this clock.

Among other things, this clock allows us to give a precise
definition of eventual visibility. If PUT(x,X) starts at time
T (and eventually ends), then there exists finite time τX ≥ T
such that any ROT that reads x and is issued at time t ≥ τX
returns either X or some X ′ such that PUT(x,X ′) starts no
earlier than T ; we say X is visible since τX .

We assume the same APIs as described in Section 2.1.
Clients and partitions exchange messages whose delays are
finite, but can be unbounded. The clock drift between the
local clocks of clients and partitions can be arbitrarily large
and infinite. We assume that reads do not rely on the clients’
local clocks. By doing so, eventual visibility does not depend
on the advancement of the clients’ clocks, and depends solely
on the state of the key-value store and the actions under-
taken by the partitions implementing it.

We assume that an idle client does not send messages.
When performing an operation on some keys, a client sends
messages only to the partitions which store values for these
keys. Vice versa, a partition sends messages to client c only
when responding to an operation issued by c. Clients do
not communicate with each other, they issue a new opera-
tion only after their previous operation returns, and every
operation returns. We assume at least two partitions and a
potentially growing number of clients.

6.2 Properties of LO ROTs
We adopt the definition of LO ROTs from Lu et al. [43],

which refers to three properties: one-round, one-version,
and nonblocking.

• One-round : For every ROT α of client c, c sends one
message to each partition p involved in α and receives one
message from p.

• Nonblocking : Any partition p to which c sends a message
during α (the message defined in the one-version property)
eventually sends a message back to c, even if p does not
receive during α any message from another partition. This
definition essentially states that a partition cannot commu-
nicate with other partitions when serving a ROT to decide
which version of a key to return to the ROT. This definition
extends the more restrictive one given in Section 2, which
also disallows blocking p, e.g., by the acquisition of a lock
or for the expiration of a timer. To establish our theoretical
results, it suffices to disallow blocking p by inter-partition
communication during a ROT. Because our proof holds for
a more general definition of nonblocking, it implies that the
proof also holds for the more restrictive definition in Sec-
tion 2.
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• One-version: Let M be the maximum amount of informa-
tion that, for each ROT α of client c, can be calculated by
any implementation algorithm based on the messages which
c receives during α. 4 Then, given any (non-empty) subset
of partitions, Par, and given the messages which c receives
from Par during α, M contains only one version per key for
the keys which Par stores and α reads.

6.3 The cost of LO
Definitions. We introduce some additional terminology
before we state the theorem.

We say that a PUT operation α completes if i) α returns
to the client that issued α; and ii) the value written by α
becomes visible. We say that a PUT operation α is danger-
ous if α causally depends on some PUT that overwrites a
non-⊥ value.

If client c issues a ROT operation that reads x, then we
say c is a reader of x. We call client c an old reader of x, with
respect to PUT(y, Y1),5 if c issues a ROT operation which
(1) is concurrent with PUT(x,X1) and PUT(y, Y1) and (2)
returns X0, where X0 ; X1 ; Y1.

Theorem 1 (Cost of LO ROTs). Achieving LO ROT re-
quires communication, potentially growing linearly with the
number of clients, before every dangerous PUT completes.

Intuition. After a dangerous PUT on y completes, parti-
tion py needs to choose between the newest version of y (i.e.,
the one written by the dangerous PUT) and a previous one
to be returned to an incoming ROT. The knowledge of the
old readers with respect to the dangerous PUT allows py to
determine a version.

As the ROT must be nonblocking, py cannot wait for mes-
sages containing that information during the ROT proto-
col after the dangerous PUT completes. As the ROT must
be one-round and one-version, the client which requests the
ROT cannot choose between versions sent in different rounds
or between multiple versions sent in the same round.

Thus py needs the knowledge of old readers before or at
the latest by the time the dangerous PUT on y completes.
Assuming that there are D clients and since in the worst case
they can all be old readers, an LO ROT protocol needs, in
the worst case, at least D bits of information to encode the
old readers.

6.4 Proof
Proof overview. The proof assumes the scenario in Fig-
ure 10, which depicts executions in which X0 ; X1 ; Y1.
Without loss of generality we consider that such executions
are the result of client cw doing four PUT operations in the
following order: PUT(x,X0), PUT(y, Y0), PUT(x,X1) and
PUT(y, Y1); cw issues each PUT (except the first one) after
the previous PUT completes.

To prove Theorem 1, we consider the worst case: all clients
except cw can be readers. We identify similar executions

4As values can be encoded in different ways in messages,
we use the amount of information in the definition of one-
version. For example, if a message contains X1 and X1⊕X2,
then to some implementation, there is only one version, yet
there exists some implementation which can calculate two
versions. Our definition of the one-version property excludes
such messages as well as such implementations.
5The definition of an old reader of x here specifies a certain
PUT on y to emphasize the causal relation X0 ; X1 ; Y1.
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Figure 10: Two (in)distinguishable executions in the proof
of Theorem 1.

where a different subset of clients are readers. Let D be the
set of all clients except cw. We construct a set of executions,
E , such that each execution has one subset of D as readers
(before PUT(x,X1) and PUT(y, Y1)). Hence E contains 2|D|

executions in total. We later show that for at least one
execution in E the communication carrying readers grows
linearly with |D|, and thereby prove Theorem 1.

Construction of E. Each execution E ∈ E is based on
a subset R of D as readers. Every client c in R issues
ROT(x, y) at the same time t1. By the one-round prop-
erty, c sends two messages mx, my to px and py respectively
at t1. We denote the event that px receives mx by rx, the
event that py receives my by ry. By the nonblocking prop-
erty, px and py can be considered to receive messages from c
and send messages to c at the same time t2 (for simplicity).
Finally, c receives messages from px and py at the same time
t3. We order events as follows: X0 and Y0 are visible, t1,
rx = ry = t2, PUT(x,X1) is issued, t3, PUT(y, Y1) is is-
sued. Let τY1 be the time when PUT(y, Y1) completes. For
every execution in E , t1, t2, t3 take the same values while τY1

denotes the maximum value of all executions in E .
The executions in E are the same until time t1. Since t1,

these executions, especially the communication between px
and py, may change. Moreover, starting at t1, an infinite
number of message schedules is possible for each set R. To
show the lower bound result, we construct these executions
after t1 so that executions share the same prefix as much as
possible. Fixing the message schedule in this way enables
us later to argue the complexity in communication without
the variety in the infinite number of message schedules.

We construct all executions in E together, and try to di-
vide these executions into different groups during the con-
struction (where, roughly speaking, the same prefix is shared
by the executions in the same group). We start with all exe-
cutions in E in one same group. If at some time point, in one
execution, some process other than px or py sends a mes-
sage or some process receives a message, then we construct
all other executions such that the same event occurs, which
is legal. Once in one execution, w.l.o.g., px sends a message,
we thus examine all executions: if the server can not send
the same message across all executions, then we group them
by the message that the server indeed sends.6

6In some executions, the server may need to receive one
or more messages before it sends some message. Thus the
precise schedule is to let all these messages to be received in
all executions first (where the number of such messages is
finite). Because in the same group, the same prefix (except
for the communication with D) is shared, the schedule is
legal.
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Two messages are considered to be the same if they have
the same content and are sent by the same process to the
same recipient. Moreover, if an event is to send a message
to any process in D or to receive a message by any pro-
cess in D, then this event respects the schedule of LO ROT
as shown previously and is not considered repeatedly in the
construction. As a result, between two groups, the messages
sent are different, whereas in the same group, they are the
same. In our construction, we focus on these same messages,
and schedule them to be received at the same time across
all executions in the same group, which constitute the same
prefix. If after grouping, some group contains only one ex-
ecution, then we do not restrict the schedule of this single
execution afterwards. The construction ends at time τY1 .

We show that the worst-case execution exists, as promised
by our proof overview, in our construction of E . To do so,
we first show a property of E ; i.e., for any two executions
E1, E2 in E (with different readers), the communication of
px and py must be different, as formalized in Lemma 1.7

Lemma 1 (Different readers, different messages). Consider
any two executions E1, E2 ∈ E. In Ei, i ∈ {1, 2}, denote by
Mi the messages which px and py send to a process not in D
during [t1, τY1 ] in Ei, and denote by stri the concatenation
of ordered messages in Mi ordered by the time when every
message is sent. Then str1 6= str2.

The main intuition behind Lemma 1 is that if commu-
nication were the same regardless of readers, pY would be
unable to distinguish readers from old readers. Suppose now
by contradiction that str1 = str2. Then our construction of
E allows us to construct a special execution E∗ based on
E2 (as well as E1). Let the subset of D for Ei be Ri for
i ∈ {1, 2}. W.l.o.g., R1\R2 6= ∅. We construct E∗ such that
clients in R1\R2 are old readers (and show that E∗ breaks
causal consistency due to old readers).

Execution E∗ with old readers. In E∗, both R1 and R2

issue ROT(x, y) at t1. To distinguish between events (and
messages) resulting from R1 and R2, we use superscripts 1
and 2 to denote the events, respectively. For simplicity of
notations, in E2, we call the two events at the server-side
(i.e., px and py receive messages from R2 respectively) also
r2x and r2y, illustrated in Figure 10a. In E∗, we now have four
events at the server-side: r1x, r1y, r2x, r2y. We construct E∗

based on E2 by scheduling r1x and r2y in E∗ at t2 (the same
time as r2x and r2y in E2), and postponing r1y (as well as r2x),
as illustrated in Figure 10b. The ordering of events in E∗ is
thus different from E2. More specifically, the order is: X0

and Y0 are visible, t1, r1x = r2y = t2, PUT(x,X1) is issued,
PUT(y, Y1) is issued, τY1 , r1y (for every client in R1\R2 as r2y
has occurred), r2x (for every client in R2\R1, not shown in
Figure 10b), R1\R2 returns ROT. By asynchrony, the order
is legitimate, which results in old readers R1\R2.
Proof of Lemma 1. Our proof is by contradiction. As str1 =
str2, according to our construction, every process receives
the same message at the same time instant in two executions

7Lemma 1 abstracts the way of communication between px
and py so that it is independent of certain implementations,
and covers the following example implementations of com-
munication for old readers as in CC-LO, as the example
introduced at the beginning of this section, as well as the
following: py keeps asking px whether a reader of y is a
reader which returns X0 to determine whether all old read-
ers have arrived at py (so that there is no old reader with
respect to Y1).

E1 and E2 (except for D1∪D2). Therefore even if we replace
r2x in E2 for r1x in E∗ (as in E1), then by τY1 , pY is unable
to distinguish between E2 and E∗.

Previously, our construction of E2 is until τY1 . Let us
now extend E2 so that E2 and E∗ are the same after τY1 .
Namely, in E2, after τY1 , every client c1 ∈ R1\R2 issues
ROT(x, y); and as illustrated in Figure 10, r1y is scheduled
at the same time in E2 and in E∗.

Let ~v be the return value of c1’s ROT in either execution.
By eventual visibility, in E2, vy = Y1. We now examine
E∗. By eventual visibility, as t1 is after X0 and Y0 are
visible, vx, vy 6= ⊥. As r1x is before PUT(x,X1) is issued,
vx 6= X1. By py’s indistinguishability between E2 and E∗,
and according to the one-version property, vy = Y1 as in E2.
Thus in E∗, vx = X0 and vy = Y1, a snapshot that is not
causally consistent. A contradiction.

Lemma 1 demonstrates a property for any two executions
in E , which implies another property of E : if for any two
executions, communication has to be different, then for all
executions, the number of possibilities of what is communi-
cated grows with the number of elements in E . Recall that
|E| is a function of |D|. Hence, we connect the communica-
tion and |D| in Lemma 2.

Lemma 2 (Lower bound on the cost). Before PUT(y, Y1)
completes, in at least one execution in E, the communication
of px and py takes at least L(|D|) bits where L is a linear
function.

Proof of Lemma 2. We index each execution E by the set
R of clients which issue ROT(x, y) at time t1. We have

therefore 2|D| executions: E = {E(R)|R ⊆ D}. Let b(R) be
the concatenation of ordered messages which px and py send
in E(R) as defined in Lemma 1, and let B = {b(R)|R ⊆ D}.
By Lemma 1, we can show that ∀b1, b2 ∈ B, b1 6= b2. Then
|B| = |E| = 2|D|. Therefore, it is impossible that every
element in B has fewer than |D| bits. In other words, in E ,
we have at least one execution E = E(R) where b(R) takes

at least log2(2|D|) = |D| bits, a linear function in |D|.

Recall that |D| is a variable that grows linearly with the
number of clients. Thus following Lemma 2, we find E con-
tains a worst-case execution that supports Theorem 1 and
thereby complete the proof of Theorem 1.

Connecting the theory to the implementation. One
may wonder about the relationship between the ROT iden-
tifiers that are sent as old readers in CC-LO, and the worst-
case communication linear in the number of clients derived
in the theorem. To establish the theorem it suffices for the
client to issue a single ROT, while in the implementation a
client can issue multiple ROTs that have to be distinguished
from one another. Hence, in the implementation, ROT iden-
tifiers are used to track old readers to distinguish between
different ROTs issued by the same client.

7. RELATED WORK
CC systems. Table 2 classifies existing systems with ROT
support according to the cost of performing ROT and PUT
operations. COPS-SNOW is the only LO system. COPS-
SNOW achieves LO at the expense of more costly writes,
which carry detailed dependency information and incur ex-
tra communication overhead.
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Table 2: Characterization of CC systems with ROTs support, in a geo-replicated setting. N, M and K represent, respectively,
the number of partitions, DCs, and clients in a DC. † indicates a single-master system, and P represents the number of DCs
that act as master for at least one partition. c↔ s, resp., s↔ s, indicates client-server, resp. inter-server, communication.

System
ROT latency optimality Write cost

Clock
Nonblocking #Rounds #Versions

Communication Meta-data
c↔ s s↔ s c↔ s s↔s

COPS [41] 3 ≤ 2 ≤ 2 1 - |deps| - Logical
Eiger [42] 3 ≤ 2 ≤ 2 1 - |deps| - Logical
ChainReaction [4] 7 ≥ 2 1 1 ≥ 1 |deps| M Logical
Orbe [27] 7 2 1 1 - NxM - Logical
GentleRain [28] 7 2 1 1 - 1 - Physical
Cure [3] 7 2 1 1 - M - Physical
OCCULT† [47] 3 ≥ 1 ≥1 1 - O(P) - Hybrid
POCC [61] 7 2 1 1 - M - Physical
COPS-SNOW [43] 3 1 1 1 O(N) |deps| O(K) Logical

Contrarian 3 2 1 1 - M - Hybrid

ROTs in COPS and Eiger might require two rounds of
client-server communication and rely on fine-grained proto-
cols to track and check the dependencies of replicated up-
dates (see Section 3), which limit their scalability [3, 27,
28, 62]. ChainReaction uses a potentially-blocking and po-
tentially multi-round protocol based on a per-DC sequencer
node. Orbe, GentleRain, Cure and POCC use a coordinator-
based approach similar to Contrarian but use physical clocks
and hence may block ROTs because of clock skew. In addi-
tion, Orbe and Gentlerain may block ROTs to wait for the
receipt of remote updates. Occult uses a primary-replica ap-
proach and uses HLCs to avoid blocking due to clock skew.
Occult implements ROTs that run in potentially more than
one round and that potentially span multiple DCs (i.e., it
does not tolerate cross-DC network partitions).

By contrast, Contrarian uses HLCs to implement ROTs
that are nonblocking, one-version, complete in two rounds
of communication and tolerate cross-DC network partitions.

Other CC systems include SwiftCloud [69], Bolt-On [11],
Saturn [19], Bayou [55, 64], PRACTI [15], ISIS [18], lazy
replication [37], causal memory [2], EunomiaKV [31] and
CausalSpartan [58]. These systems either do not support
ROTs, or target a different model from the one considered
in this paper, e.g., they do not implement sharding the data
set in partitions. Our theoretical results require at least
two partitions. Investigating the cost of LO in other system
models is an avenue for future work.

CC is also implemented by systems that support differ-
ent consistency levels [24], implement strong consistency on
top of CC [12], and combine different consistency levels de-
pending on the semantics of operations [13, 40] or on target
performance [5, 63]. Our theorem provides a lower bound on
the overhead of LO ROTs with CC. Hence, any system that
implements CC or a strictly stronger consistency level can-
not avoid such overhead. We are investigating how the lower
bound on this overhead varies depending on the consistency
level, and what is its effect on performance.

Theoretical results on CC. Lamport introduces the con-
cept of causality [38], and Hutto and Ahamad [33] provide
the first definition of CC, later revisited from different an-
gles [1, 23, 49, 67]. Mahajan et al. prove that real-time
CC is the strongest consistency level that can be obtained
in an always-available and one-way convergent system [45].
Attiya et al. introduce the observable CC model and show

that it is the strongest that can be achieved by an eventually
consistent data store implementing multi-value registers [7].

The SNOW theorem [43] shows that LO can be achieved
by any system that i) is not strictly serializable [54] or ii)
does not support write transactions. Based on this result,
the SNOW paper suggests that any protocol that matches
one of these two conditions can be improved to be LO. In
this paper, we prove that achieving LO in CC implies an
extra cost on writes, which is inherent and significant.

Bailis et al. study the overhead of replication and de-
pendency tracking in geo-replicated CC systems [10]. By
contrast, we investigate the inherent cost of LO CC designs,
i.e., even in absence of (geo-)replication.

8. CONCLUSION
Causally consistent read-only transactions (ROT) are an

attractive primitive for large-scale systems, as they eliminate
a number of anomalies and ease the task of developers. Be-
cause many applications are read-dominated, low latency of
ROTs is key to overall system performance. It would there-
fore appear that latency-optimal (LO) ROTs, which provide
a nonblocking, single-version and single-round implementa-
tion, are particularly appealing.

In this paper we show that, surprisingly, LO induces a
resource utilization overhead that can actually jeopardize
performance. We show this results from two angles. First,
we present an almost LO protocol that, by avoiding the
aforesaid overhead, achieves better performance than the
state-of-the-art LO design. Then, we prove that the over-
head posed by LO is inherent to causal consistency, i.e., it
cannot be avoided by any implementation. We provide a
lower bound on such overhead, showing that it grows lin-
early with the number of clients.
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