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ABSTRACT
To protect database confidentiality even in the face of full
compromise while supporting standard functionality, recent
academic proposals and commercial products rely on a mix
of encryption schemes. The recommendation is to apply
strong, semantically secure encryption to the “sensitive” col-
umns and protect other columns with property-revealing en-
cryption (PRE) that supports operations such as sorting.

We design, implement, and evaluate a new methodology
for inferring data stored in such encrypted databases. The
cornerstone is the multinomial attack, a new inference tech-
nique that is analytically optimal and empirically outper-
forms prior heuristic attacks against PRE-encrypted data.
We also extend the multinomial attack to take advantage
of correlations across multiple columns. This recovers PRE-
encrypted data with sufficient accuracy to then apply ma-
chine learning and record linkage methods to infer columns
protected by semantically secure encryption or redaction.

We evaluate our methodology on medical, census, and
union-membership datasets, showing for the first time how
to infer full database records. For PRE-encrypted attributes
such as demographics and ZIP codes, our attack outper-
forms the best prior heuristic by a factor of 16. Unlike any
prior technique, we also infer attributes, such as incomes and
medical diagnoses, protected by strong encryption. For ex-
ample, when we infer that a patient in a hospital-discharge
dataset has a mental health or substance abuse condition,
this prediction is 97% accurate.
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1 Introduction
Frequent large-scale breaches [3, 14, 81, 82] compromise mil-
lions of credit card numbers, email messages, and health-
care records. Several academic proposals [4,11,37,41,49,71]
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and commercial products [13, 47, 58, 61, 68, 75] aim to (1)
protect the data even in the event of a whole-system com-
promise, while (2) enabling standard applications to operate
on this data in its original database, whenever possible.

A popular approach is encrypted databases, in which a
client (or a proxy acting on his behalf) encrypts the data
before uploading it to the database. For efficiency, these sys-
tems employ various flavors of “property-revealing” encryp-
tion (PRE). PRE schemes reveal certain properties of the
underlying plaintexts, e.g., equality in the case of determin-
istic encryption or sort order in the case of order-preserving
encryption. Revealing this information enables essential op-
erations (e.g., searching and sorting) to be performed on the
encrypted database entries without decrypting them.

Efficiency in encrypted databases comes at a cost. Recent
inference attacks against PRE [23, 40, 53, 60] showed that,
in some situations, an adversary can recover plaintexts with
good accuracy. These inference attacks use public auxiliary
information to estimate the expected distribution of plain-
texts, then target each database column separately.

In response to these attacks, academics and practitioners
now suggest (e.g., [72]) increased protection based on “sen-
sitivity analysis”: apply PRE to the less sensitive database
columns (enabling efficient database operations on these col-
umns) and strong encryption to the more sensitive columns.
The database administrator decides which columns warrant
stronger protection. From an attacker’s perspective, this is
equivalent to redacting or segmenting the sensitive columns,
a common practice in medical databases [37,65,66].

None of the previously proposed inference attacks work
against strongly encrypted or redacted data. It may there-
fore appear that the state-of-the-art privacy protection meth-
ods based on “sensitivity analysis” ensure confidentiality of
the sensitive database columns. After all, how can an ad-
versary recover the data that is not even in the database?

Our contributions. We develop a new inference frame-
work to demonstrate that even the state-of-the-art protec-
tions described above cannot prevent an adversary from in-
ferring full database records in realistic scenarios. Unlike
prior heuristics, our framework exploits correlations across
database columns and databases. Our key tool is a new,
optimal inference attack against PRE-encrypted columns.

Consider a database in which some columns have been
encrypted using PRE, while the “sensitive” columns have
been strongly encrypted or redacted. At a high level, our in-
ference framework will (1) recover as many PRE-encrypted
values as possible, then (2) use the recovered values to infer
the redacted columns. Our attacks use public auxiliary data
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sources that provide the estimates not just of the distribu-
tions for individual columns but also of joint distributions,
as well as partial records of specific individuals.

Inference attacks on PRE-encrypted data. We first
develop a new inference technique against deterministic and
order-preserving encryption, the two PRE schemes that are
used in practice. It provides a theoretical basis for attacks
and greatly outperforms prior heuristics [23, 40,60].

Consider attacking a single PRE-encrypted column. We
treat the attacker’s task as a Bayesian inference problem
whose objective is to identify the most probable plaintext-
to-ciphertext mapping function that fits the constraints of
the type of encryption (i.e., a permutation for deterministic
encryption, an order-preserving injective function for order-
preserving encryption), conditioned on the observed leakage
from the ciphertexts and on the priors from the auxiliary
data. We call this a multinomial attack because we model
the vector of plaintexts as sampled according to the multi-
nomial distribution. Subject to this assumption, our new at-
tack is optimal: it is a maximum likelihood estimator (MLE)
and inherits the optimality guarantees of MLEs [63].

We efficiently instantiate our MLE for deterministic and
order-preserving encryption. For the former, our attack
finds the same solution as frequency analysis [53], match-
ing its optimality. For the latter, ours is the first provably
optimal attack. Our approach offers additional benefits over
prior work, e.g., the ability to calculate confidence estimates.

Even an optimal single-column attack does not work well
if, for example, the plaintexts of a column are almost uni-
formly distributed—even if the column is strongly correlated
with another, non-uniformly distributed column. To exploit
such correlations across PRE-encrypted columns, we extend
the multinomial attack to multiple columns, departing sig-
nificantly from the single-column viewpoint of prior work.

To avoid the curse of dimensionality, our multi-column at-
tack proceeds column by column. We start with a column
for which the single-column attack should perform well, then
pick another, correlated column as the target. To attack it,
we use (a) the plaintext-ciphertext mappings recovered for
the first column, and (b) the joint distribution, estimated
from the auxiliary data, over just these two columns. Hav-
ing recovered two columns, we proceed to the next target,
and so on, following a dependency graph between columns.
We explain how to build column dependency graphs that
perform well in practice, using auxiliary estimates of the
mutual information between columns.

Our multi-column multinomial attack greatly outperforms
single-column attacks. For example, in our ACS dataset case
study (Section 7.2), it recovers PRE-encrypted demographic
attributes 2 times better than our own single-column attack
and 16 times better than the best prior technique.
In the FOP dataset case study (Section 7.4), it recovers ZIP
codes 7 times better than the single-column attack and 17
times better than the best prior technique.

Inference attacks on redacted data. After accurately
inferring the values of the PRE-encrypted columns using our
multinomial attacks, we proceed to infer the values of “sen-
sitive” columns—which cannot be attacked using prior tech-
niques. We employ two methods that exploit cross-database
correlations: record linkage and machine learning.

If the target and (plaintext) auxiliary databases contain
records of the same individuals and overlap on some at-

tributes, we can use record linkage. Instead of the classic
techniques [59, 62, 76, 77] that assume plaintext records, we
use the attributes recovered by the multinomial attack as
quasi-identifiers to join the target and auxiliary databases.

The auxiliary database may provide only statistical infor-
mation, as opposed to the records of individuals from the
target database. In this case, we cast the problem of in-
ferring the redacted values as a prediction task where these
values are the target and the attributes recovered from PRE-
encrypted columns are the features. The prediction model
(a classifier or regression model) is trained on auxiliary data.

Case studies. We evaluate our framework on the HCUP
National Inpatient Sample (NIS) dataset with 7,000,000 hos-
pital stay records; the U.S. Census American Community
Survey (ACS) dataset with 2,500,000 records; and the Fra-
ternal Order of Police (FOP) dataset with the names and
addresses of 600,000 police officers. In our experiments, we
protect datasets using appropriate techniques—redacting di-
agnoses, incomes, and addresses. All attacks are simulated
and do not extract information that is not already public.

For the HCUP-NIS dataset, we recover all PRE-encrypted
attributes and then infer the redacted medical diagnosis
codes. Accurately inferring the condition of even a single
patient is a privacy breach, thus our inference algorithm
maximizes accuracy rather than coverage and only predicts
the condition of the patients for whom it is most confident.
When predicting that a patient has a mental health or sub-
stance abuse condition, its accuracy is 97%; for mood disor-
ders, accuracy is 96%. For the ACS dataset, we recover over
90% of PRE-encrypted attributes and infer annual income
to within $8.4K. We also demonstrate that the attack would
have succeeded even if the auxiliary data had been obsolete
and much smaller. For the FOP dataset, we infer the exact
home addresses of approximately 1 out of 13 police officers,
and as many as 1 out of 7 in Michigan and Pennsylvania
(equivalent to 7,200 officers in Pennsylvania).

2 Database Privacy Protection
We model a database DB as an m × k matrix of values
pj [i], for 1 ≤ i ≤ m and 1 ≤ j ≤ k. The database schema
specifies for column j the set Pj to which pj [i] must belong.
For example, P1 may hold names which are bounded-length
strings and P2 may hold salaries which are integers between
0 and 1,000,000. The data owner (client) applies the privacy
protections from Section 2.2 to the data before uploading
it to the database. For each encrypted column, the client
chooses an independent secret key unknown to the server.

2.1 Threat model
We focus on the common “smash-and-grab” attack that
compromises the entire system hosting the database but
does not establish a persistent attacker presence. We as-
sume a passive adversary who obtains a single snapshot of
the server’s entire disk and memory, including all server-
side secrets (thus defeating at-rest and full-disk encryption)
but not clients’ secrets. In reality, a single snapshot of an
encrypted database contains a wealth of information about
past queries [39], thus our threat model is a conservative
underestimate. Real-world compromises may reveal much
more than the attacks described in this paper.

The adversary’s goal is to recover as many rows of DB as
possible. We assume that the adversary has access to auxil-
iary data—informally, public databases that are correlated
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with the compromised database. In subsequent sections, we
will detail our assumptions about the auxiliary data and its
quality. For the purposes of this paper, we assume that the
adversary does not perform active attacks such as inserting
known plaintexts into the database (c.f., [38, 40]).

2.2 Privacy protection techniques
A privacy schema associates to each column a technique for
protecting the confidentiality of the data in that column.

Redaction. Sensitive data elements can be replaced with
random or otherwise unique identifiers chosen independently
of the plaintext values. For example, data segmentation
—advocated for electronic health records (EHR) of individ-
ual patients [37, 65, 66]—removes values or replaces them
with random values sampled from the same distribution.

Another approach is to use strong encryption that achieves
(at least) indistinguishability under chosen-plaintext attack
(IND-CPA) security. Each element pj [i] in the sensitive
column j is replaced by cj [i] = EK(pj [i]) for 1 ≤ i ≤ m,
where key K is not stored at the database server. In our
threat model, strong encryption is equivalent to segmen-
tation because the ciphertext carries no (computationally
learnable) information about the plaintext. We refer to both
segmented and strongly encrypted columns as “redacted.”

Property-revealing encryption. Redaction of columns
severely limits the utility of a database, restricting the server
to only insertion and retrieval queries; most processing must
be performed by clients or client proxies. Property-revealing
encryption (PRE) is an attractive alternative that intention-
ally reveals some properties of plaintexts in order to support
certain operations on the ciphertexts without the decryption
key. The two PRE schemes used in practice are determinis-
tic encryption DE and order-revealing encryption ORE.

DE is a form of symmetric encryption that ensures that en-
crypting the same message twice produces the same cipher-
text. Therefore, DE leaks plaintext equality. This enables ef-
ficient exact-match search: a client re-encrypts the word and
submits the resulting ciphertext as a query to the database.
Our treatment of DE covers a wide variety of specific re-
alizations, such as using a block cipher for short messages
or a deterministic length-preserving mode [42, 43]; format-
preserving [6, 8] and -transforming encryption [25, 55, 56];
and deterministic authenticated encryption [74].

(Ideal) ORE leaks plaintext equality and plaintext order.
We survey ORE schemes in Section 9. Our results apply to
most of these schemes, including [2, 9, 12,70].

Choosing privacy schema. Selecting the privacy schema
for a given database involves delicate decisions that must
balance confidentiality goals with database utility. For ex-
ample, a schema that strongly encrypts all columns will
achieve high confidentiality, but the database server will not
be able to perform any database operations (beyond inser-
tion and retrieval) without involving clients or client proxies.

In practice, schemas are chosen in a utility-first manner:
determine the operations for each column that must be per-
formed by the database server, then choose the most secure
scheme that still allows the server to perform those opera-
tions. For example, Microsoft’s Always Encrypted database
encryption guidelines [58] recommend “us[ing] deterministic
encryption for columns that will be used as search or group-
ing parameters.” This approach is often the only viable way
to satisfy legacy constraints and business needs.

Another approach, espoused by some academics [72], is
to task the security architect with column sensitivity analy-
sis to decide which columns warrant strong encryption (or,
equivalently, segmentation). We are not aware of any frame-
work or guidelines for these decisions. In Section 7.1, we
show that naive analyses based on cross-column correlations
can miss columns that are not strongly correlated with the
sensitive column yet enable accurate inference of the latter.

We assume that the adversary knows the privacy schema.
Even if the database encrypts column labels and randomizes
column order (c.f., [71]), discovering the mapping between a
known database schema and individual encrypted columns
is almost always straightforward [60]. The lengths of the
ciphertexts may reveal the column’s domain, or else the ad-
versary can find the closest match between the number of
distinct values in a column and domain sizes |P1|, . . . , |Pk|.

3 Overview
In Section 4, we develop a new framework, based on Bayesian
inference, for attacking individual PRE-encrypted columns.
The framework can be instantiated to attack both DE and
ORE. The resulting attacks are optimal in a well-defined
sense, and our attack against ORE-encrypted columns out-
performs prior heuristic approaches [40,60].

Next, in Section 5, we develop the first ever multi-column
attack against PRE-encrypted columns. It exploits corre-
lations between columns and outperforms the best known
single-column attacks. For example, attacking the state and
ZIP code attributes simultaneously recovers ORE-encrypted
ZIP codes with 36% accuracy whereas the best prior work [40]
only achieved 2% accuracy on the same dataset.

In Section 6, we develop a whole-database inference at-
tack. Unlike all previous heuristics, it targets “sensitive”
columns (e.g., medical diagnosis codes) protected by redac-
tion, i.e., strong encryption or segmentation. Our attacks
uses record linkage and machine learning techniques to in-
fer the values of the redacted columns from those of the
PRE-encrypted columns (recovered by our single- and multi-
column attacks) and the cross-column correlations. This
breaks the last defense encrypted databases use against in-
ference attacks, namely, “column sensitivity analysis.”

4 Inferring Single PRE Columns
In this section, we formalize a new approach to inference at-
tacks against a single column of data encrypted using DE or
ORE. The adversary has access to (1) auxiliary information
providing (an estimate of) the distribution of plaintext val-
ues, and (2) an observed ciphertext vector. In the DE case,
the vector leaks only frequency information (which cipher-
texts correspond to the same plaintext); in the ORE case,
the vector leaks both frequency information and ordering.
Our attack thus applies to any ORE scheme that leaks fre-
quency (including at least [12, 51, 70]). We make the most
conservative assumption about leakage and treat the ORE
scheme as “ideal,” but for ORE schemes that leak more, we
can extend the attack by adapting the techniques of Grubbs
et al. [40]. Our attacks against DE and ORE are instances of
a more general Bayesian inference framework. We first de-
scribe it, then instantiate it for DE and ORE. The resulting
attacks are optimal in a well-defined sense and also allow the
adversary to compute its confidence in the inferred values
(Section 4.5 of the full version [7]).
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4.1 General attack framework
We first design a general framework for attacking PRE-
encrypted columns via Bayesian inference, then instantiate
it for specific PRE schemes. Let ρ be the distribution of
plaintext values for the target column. There are m possible
plaintext values: [m] ≡ {1, 2, . . . ,m}. Let ρi be the proba-
bility (or expected proportion) of the ith value;

∑m
i=1 ρi = 1.

The ciphertext vector ~c contains n ciphertexts, each of which
is a valid encryption of a plaintext in [m]. Encryption is a
bijection, thus there are at most m distinct ciphertext val-
ues. Without loss of generality, relabel them to [m], then
the vector ~c can be regarded as a histogram over [m]. Let
cj be the number of times ciphertext j ∈ [m] appears in ~c.

Let f : [m] → [m] denote a bijective plaintext-ciphertext
mapping, f the random variable describing the choice of f
made by the PRE key generation algorithm, and F the sup-
port of f , i.e., all possible functions. We assume that the
attacker knows how f is chosen. His goal is to compute

Pr{f =f | ~c ; ρ} =
Pr{~c | f =f ; ρ} · Pr{f =f ; ρ}

Pr{~c ; ρ} (1)

which is simply the posterior probability f given ~c, ρ. Di-
rectly computing Pr{~c ; ρ} is infeasible in general: it scales
with |F |, which is exponential in m. The attack will instead
target just the most likely decryption of ~c by computing

fmax = arg max
f

Pr{f | ~c ; ρ}

= arg max
f

Pr{~c | f =f ; ρ} · Pr{f =f ; ρ} (2)

and then applying f−1
max to each ciphertext in ~c. The second

equality uses Bayes’ rule and then drops the denominator,
which cannot affect the maximization. Equation 2 is the
maximum likelihood estimator (MLE) for f if Pr{f = f ; ρ}
is uniform. The actual distribution will be indistinguishable
from uniform if the PRE scheme is indistinguishable from a
random permutation or random order-preserving function,
(q.v., [9,36]). Thus Equation 2 simplifies to arg maxf Pr{~c |
f = f ; ρ} and with all but negligible probability, the maxi-
mized value is equal to the true fmax.

To estimate the likelihood, we model it as the density of
a multinomial distribution, giving

Pr{~c | f =f ; ρ} = Kc

m∏
i=1

ρ
cf(i)

i (3)

where Kc is a normalization constant that depends on ~c but
not on f . Thus, the posterior need not be computed directly.

Subject to our assumption that data is aptly modeled by
the multinomial distribution, the above approach has the
optimality guarantees of an MLE.

Our Bayesian approach allows the attacker to compute
confidence values on the plaintext-ciphertext mappings. This
is significant because low-confidence recovered values are un-
likely to be useful in practice.

The general framework needs to be instantiated to attack
specific encryption schemes. This involves fixing a particular
random variable f and associated support F and specifying
an efficient way to compute Equation 3.

4.2 Attacking deterministic encryption
If the encryption scheme is DE, F is the set of all permuta-
tions on [m]. When m is large, evaluating Equation 3 for all
f is infeasible, since there are m! functions. However, if we

take the log of Equation 3, we get
∑m

i=1 cf(i) log (ρi), i.e., the
log likelihood of ciphertext j being an encryption of plaintext
i is cj log (ρi). Thus to find f that maximizes Equation 1
for DE, we solve a linear assignment problem. The solution
is the maximum-weight bipartite matching of the induced
graph where the weight on edge (i, j) is cj log (ρi).

Lacharité and Paterson [53] showed that frequency anal-
ysis is also an MLE for the permutation f . In the single-
column case, the multinomial attack and frequency analysis
are equivalent for recovering DE-encrypted values (they find
the same f). Frequency analysis, however, cannot incor-
porate information about other correlated values, thus our
approach is superior when this information is available.

4.3 Attacking order-revealing encryption
If the encryption scheme is ORE, F is the set of order-
preserving injective functions. As above, we find the MLE f
by computing a maximum-weight matching in the bipar-
tite graph where the weight of edge (i, j) is cj log (ρi), but
only consider candidate matchings that correspond to order-
preserving injective functions. (If an encryption of every
possible plaintext appears in ~c, only one such function ex-
ists, but this was not the case in any our case studies.)

Such matchings are “non-crossing” [40]: if the matching
contains edge (i, j), it cannot contain any edge (α, β) where
α < i but β > j. We use the maximum-weight non-crossing
matching algorithm from [40] to return a candidate f in
O(m2) time. In contrast to [40], which uses the L1 distance
as a heuristic to weigh the edges of the bipartite graph,
our attack is optimal because log-likelihood edge weights en-
sure that it maximizes the likelihood function. This is not
merely a theoretical advantage. In Section 7, we demon-
strate that our attack significantly outperforms [40] on real-
istic datasets. Additionally, the full version of the paper [7]
includes a comparison on datasets from prior work [40].

5 Inferring Multiple PRE Columns
Prior inference techniques against PRE-encrypted databases
target each column independently and fail in many situ-
ations, e.g., if the values in a column are uniformly dis-
tributed—even if they are strongly correlated with (and can
thus be inferred from) another column.

In this section, we extend our multinomial attack to multi-
ple columns. In Section 7.2, we show how this dramatically
increases recovery rates versus our single-column multino-
mial attack, which in turn outperforms previous work.

5.1 Exploiting cross-column correlations
A naive approach would extend the Bayesian inference task
to all PRE-encrypted columns, using their joint prior as esti-
mated from the auxiliary data. This suffers from the curse of
dimensionality: as the number of columns (the dimension)
grows, the ability of any realistic auxiliary data source to
provide accurate estimates of the full joint prior diminishes.

Another possible approach is partitioning: apply a single-
column attack to recover one column, then split the database
into separate databases (one for each of the recovered plain-
text values), then perform single-column attacks on the other
columns. This attack treats each partition separately and
uses only the relevant auxiliary data. For example, against
a database with states and first names, it would first recover
the state in each row, then attack first names separately us-
ing per-state auxiliary information. The problem is that the

1718



same name may be associated with different states in differ-
ent rows, thus this attack yields inconsistent results (i.e.,
maps the same ciphertext to different first names).

Instead, we extend our multinomial inference to directly
account for correlations across columns. We start with a
single target column. For expositional simplicity, we as-
sume that it depends on one other column, but the attack
generalizes to any number k ≥ 1 of dependent columns.

Let ft denote the (unknown) encryption function for the
target column, and let fd denote the (recovered) encryption
function for the dependent column. Assume that the target
column has m values, and the dependent column md values.
Using the chain rule for probability, Pr{ft =ft, fd =fd | ~c ; ρ}
is equal to Pr{fd =fd | ~c ; ρ} · Pr{ft =ft | ~c ; ρ, fd}.

The attack consists in estimating Pr{ft = f | ~c ; ρ, fd},
assuming we have already discovered the correct mapping
for the dependent column, fd. The inference is:

Pr{ft =f | ~c ; ρ, fd}

=
Pr{~c | ft =f ; ρ, fd} · Pr{ft =f ; ρ}

Pr{~c ; ρ, fd}
, (4)

where we assume the prior to be independent of fd.
The main technical challenge for finding the best mapping

ft is how to compute the term Pr{~c | ft =f ; ρ, fd}. Here, ~c is
a vector of pairs of ciphertexts and ρ is the joint distribution
over the two columns. Without loss of generality, we assume
that the first column is the target and the second is the
dependent. Then ρi,j is the joint probability of records with
the ith plaintext value for the target column and the jth

plaintext value for the dependent column. Similarly, let ci,j
denote the number of records with the ith ciphertext value
for the target and the jth ciphertext value for the dependent.

We model the likelihood as a multinomial distribution
with probabilities ρ given by the (known) value of fd:

Pr{~c | ft =f ; ρ, fd} = Pr{c1,1, . . . , cm,md | ft =f ; ρ, fd}

= Kc

∏
i,j

ρ
cf(i),fd(j)

i,j . (5)

Here Kc is a constant that depends only on ~c (as before).
The product is taken over all pairs of plaintexts for both the
target and dependent columns, but the unknown part (i.e.,
f) is only over the target column mapping.

To find f that maximizes Equation 4, we solve the appro-
priate maximum-weight bipartite matching problem. The
log-likelihood weight of edge (i, j) is

∑
k cj,k log (ρi,fd(k)).

For DE, we solve the associated linear assignment problem;
for ORE, we find the maximum-weight non-crossing match-
ing. The running time of both algorithms is the same as
for a single column, but the complexity of computing edge
weights increases by a factor of md.

5.2 Discovering correlated columns
To apply the techniques described above, the attacker must
discover dependent columns for a given target. He can use
the auxiliary data to search for them using a correlation
measure like conditional entropy, i.e., the amount of uncer-
tainty about the target column given knowledge of the de-
pendent column. Let D = {d1, . . . ,d`} be the set of random
variables corresponding to columns. If random variables dj

and di (i, j ∈ [`]) represent the target and dependent col-
umns, and H(·) is entropy, the attacker wants to find a col-
umn that minimizes H(dj|di) = H(di,dj)−H(di).

5.3 Attacking multiple columns
A pragmatic approach is to first use single-column attacks
against the columns where they are likely to be successful
and then, for each remaining column, identify one or more
dependent columns among those recovered in the first stage.
Once a remaining column is recovered by the multi-column
attack, it can be used as a dependent column for another
target. The attack against the entire database can thus be
represented as a directed acyclic dependency graph (DAG),
where the nodes are columns and an edge (i, j) indicates
that column i will be used as a dependent to attack col-
umn j. Columns with no incoming edges are attacked using
the single-column attack. The order in which the columns
are attacked is obtained via topological sort.

This formulation exposes the connection between our multi-
column attack and Bayesian networks (BNs). The above
approach can be viewed as a heuristic for inference on a
simple BN. In Section 7, we show that it already performs
extremely well, thus more principled algorithms (e.g., belief
propagation) for exact inference on BNs may not be more
beneficial in practice. In the full version [7], we explore the
connections between our multi-column attack and BNs in
more detail.

6 Inferring Redacted Columns
Because all previous inference heuristics target database col-
umns one at a time, none of them recover any information
about columns that are redacted, i.e., strongly encrypted or
segmented. This observation is the basis of “column sen-
sitivity analysis” [72], proposed as the defense against the
inference attack of [60]. Encrypt the sensitive columns us-
ing strong encryption, encrypt the rest of the columns using
PRE, and the sensitive columns will be protected even if the
PRE columns fall to an inference attack.

“Sensitivity analysis” implicitly assumes that columns are
independent, which is unlikely to hold in practice. We ex-
plore two techniques, both of which leverage the values re-
covered from the PRE columns, in combination with the
auxiliary data, to infer the values of the redacted columns.

Record linkage. If the auxiliary dataset includes records
of the same individuals as the target database, the attacker
can use classic record linkage [29,76]. The values of the PRE
columns recovered by the multinomial attack serve as quasi-
identifiers. The attacker performs an inner join of these
columns with the auxiliary data. In each row of the resulting
table, the value of the redacted column (which comes from
the auxiliary database) should be identical to the value of
the same column in the target database. In Section 7.4, we
successfully apply this technique to a real dataset using real
auxiliary data obtained from public sources.

Due to errors and incomplete data in the auxiliary dataset,
record linkage may not recover the redacted column for ev-
ery row. Our experiments in Section 7.4 are conservative
and require the exact match on all quasi-identifier columns
without any fuzziness (e.g., “William” and “Will” do not
match). Our reported recovery rates are therefore a lower
bound on what a real adversary might achieve, especially us-
ing techniques for partial matching on noisy attributes [59].

Machine learning. When the auxiliary data yields only
statistical information, as opposed to records of specific in-
dividuals, a more general approach is needed. The attacker
can use the auxiliary dataset to train a prediction model
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in which the PRE-protected and unencrypted columns are
the features and the redacted column is the prediction tar-
get. In our experiments in Section 7.2, we use classifiers for
categorical columns and regression for numerical columns.

Given a target database, the attacker applies the model to
each row, predicting the value of the redacted column. This
step depends on the previous single- and multi-column PRE
attacks because they produce the features needed to apply
the model. The accuracy of the recovery on the redacted
column can be as much as the cross-validation accuracy of
the model on the auxiliary dataset, provided the plaintexts
recovered by the PRE attacks are not too noisy.

Directly using the prediction to infer the redacted value
is not the best strategy if the correlations are weak or if the
target column is binary with a highly skewed distribution,
i.e., one label has a very low frequency. The latter case is
common in medical databases. If the target column is a
binary medical condition (e.g., some form of cancer), then
most records have 0 in this column and very few (e.g., 0.1%)
have 1. Simply predicting this binary value for each record is
not a good strategy because (1) always predicting 0 already
yields 99.9% accuracy, and (2) only the value of 1 is sensitive
(i.e., the patient has this condition).

In this scenario, the attacker should define the (minority)
sensitive value as the positive class and make predictions
only for a small subset of records. Because only positive
labels leak information, this strategy deliberately yields
low coverage due to the asymmetry of the reward. By con-
trast, predicting the negative label for all records yields full
coverage and high accuracy, yet is essentially useless.

The question then is how to predict the positive label so
as to maximize the number of true positives (i.e., accuracy).
Our classifier scores each record with respect to the positive
label and then predicts positive values for the k highest-
scoring records, where k is small enough that we expect
more than k records with positive labels in the dataset, yet
large enough that the results are statistically meaningful
(e.g., k = 100 or 1000 for a dataset of millions of records).

7 Case Studies
We now evaluate our inference framework on several realistic
case studies. In each scenario, we populate a database DB
with one of the datasets described below. These datasets are
publicly available (one is from an actual database compro-
mise leaked online), but all of them are representative of the
data that encrypted databases intend to protect. For each
DB, we apply an appropriate privacy schema (involving both
encryption and redaction), producing an encrypted database
EDB. Then, assuming an adversary has obtained EDB, as
well as some auxiliary data, we ask: how much information
about DB can the adversary infer? The ultimate goal is to
recover entire plaintexts with high accuracy, but even par-
tial leakage can be very damaging when the database holds
healthcare or financial data, or home addresses.

In each case study, the first step is auxiliary data pro-
cessing. It produces an estimate ρ of the distributions of
plaintext values in the columns of the target database DB.
The second step is inferring PRE columns. It uses ρ and
the multinomial attacks from Sections 4 and 5 to generate
a database DB′pred, where the PRE-encrypted columns are
filled with the inferred values. The third step is inferring
redacted values. It uses ρ and DB′pred to infer the strongly
encrypted and segmented columns of DB and produce the

Attribute Description Type Encryption

AGE Age (in years) N ORE
FEMALE Female indicator B DE
RACE Race C DE
DIED Patient died B DE
ELECTIVE Elective admission B DE
HOSPBRTH In-hospital birth B DE
NEOMAT Neonatal / maternal code C DE
LOS Length of stay N ORE
DISPUNIFORM Disposition of patient C DE
NCHRONIC Number of chronic conditions N ORE
ORPROC Major operating room procedure B DE
PAY1 Expected primary payer C DE
ZIPINC QRTL Median household income quartile

for patient’s ZIP code
C DE

TOTCHG Total charges N ORE
MORTALITY Risk of mortality C DE
SEVERITY Severity of illness C DE

Table 1: HCUP-NIS data elements, data types (C = categorical,
B = binary, N = numerical) and corresponding encryption type.
Omitted are the 262 binary-valued columns CAT1,CAT2,. . . for CCS
diagnosis codes. For schema (A) these are all DE encrypted ex-
cept a distinguished target CAT diagnosis code, which is redacted.
For schema (B) all 262 CAT codes are redacted.

final inferred database DBpred, where all cells are filled with
the inferred values or “don’t know.” Next, we describe the
datasets used in our case studies.

Hospital patient data. The Nationwide Inpatient Sam-
ple (NIS) of the Healthcare Cost and Utilization Project
(HCUP) [44], from the Agency for Healthcare Research and
Quality (AHRQ), is a database of U.S. hospital discharge
data. It is available for purchase after completing an online
training course describing the Data Use Agreement (DUA).
We strictly abide by this DUA. We do not perform re-
identification attacks on this data, nor do we present new
techniques that would enable others to perform such attacks.

We use the 2012 and 2013 datasets with 7, 296, 968 and
7, 119, 563 records, respectively. These datasets are random
samples of all hospital admissions for 2012 and 2013 (not
two years of admissions for the same hospitals). We cleaned
the data (e.g., removed records with missing attribute val-
ues), obtaining 6, 538, 031 and 6, 352, 914 records, respec-
tively. We then extracted a subset of the attributes, such as
demographic information (age, sex, race), medical informa-
tion (length of stay, disposition of patient, major operating
room procedures, etc.), and Clinical Classifications Software
(CCS) [45] category codes, which are fine-grained binary at-
tributes corresponding to specific medical conditions or sets
of related conditions. See Table 1 for the full list.

Census data. The American Community Survey (ACS)
dataset, publicly available from the U.S. Census Bureau [79],
consists of survey responses of millions of individuals. We
use the 2012 and 2013 versions of the dataset with 3, 113, 030
and 3, 132, 795 records, respectively. Because ACS data is
sampled independently for each survey year, the two datasets
do not cover the same households.

We cleaned the data (e.g., removed records with miss-
ing attribute values), obtaining 2, 563, 935 and 2, 582, 042
records, respectively. We then extracted a subset of the at-
tributes, such as demographic information (age and sex) and
the individual’s yearly income. See Table 4 for the full list.

Police union member data. The Fraternal Order of Po-
lice (FOP) is the oldest and largest law enforcement union in
the U.S. In 2015, their database servers were breached and
a dump of their membership database was released online,
with the full names, addresses, birthdates, and other sen-
sitive information of over 600,000 current and retired FOP
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members. We use a publicly available copy of this dataset.
See the full version [7] for the list of attributes.

Auxiliary data. Our attacks rely on auxiliary data to ob-
tain the distributions of values for a single attribute, corre-
lations between attributes, and records of individuals. Stan-
dard sources of auxiliary data include publicly available data.
For example, in our attack on the FOP dataset, we use U.S.
voter registration lists, which are available for many states
either for free, or for a nominal fee. We used databases from
7 states (Colorado, Connecticut, Florida, Michigan, North
Carolina, Oklahoma, Washington) that are available online
(e.g., [64]). The size of each dataset is shown in the full
version, but all datasets have over 100,000 records. We also
purchased the Pennsylvania voter database from the Penn-
sylvania Department of State [20]. Pennsylvania is one of
the most common states in the FOP dataset, which will be
relevant in one of our attack scenarios. The exact informa-
tion in the voter registration records varies from state to
state, but all states collect full name, residential address in-
cluding ZIP code, and birth year for each registered voter.
Four states collect full birth date, and all but one collect
gender. We also use per-state FOP membership statistics
from state FOP websites [30–35] for six of the eight states.

For our attacks on the hospital-discharge and ACS data,
we use the 2012 dataset as the auxiliary data for attacking
the 2013 dataset. Neither of these attacks exploit or assume
that some records in the 2012 dataset refer to the same in-
dividuals as the 2013 dataset. These attacks do not perform
record linkage and the attributes are not quasi-identifiers.
In fact, HCUP and ACS are random samples of their re-
spective populations (hospital patients and US households,
respectively) so the likelihood of any individual appearing
in both the 2012 and 2013 versions of these datasets is ex-
tremely small. It is impossible to quantify the exact overlap
between the 2012 and 2013 datasets; doing this would ne-
cessitate linking records from two different years to a single
person, itself a serious privacy breach. Attempting it would
likely violate data-use agreements for these datasets. In Sec-
tion 7.3, we demonstrate that our attacks are robust even
if the auxiliary data is noisy, incomplete, or outdated. This
provides evidence that the overlap between the two datasets
is negligible—if our attacks only worked because of a large
overlap between datasets, they would be totally ineffective
with bad auxiliary data. In any case, we use the auxiliary
data solely as a source of statistical information, such as cor-
relations between demographic attributes or distributions of
medical attributes.

7.1 Scenario 1: Sensitive medical conditions
This case study is based on the 2013 HCUP-NIS dataset
described above. The goal of this experiment is not to per-
form a re-identification attack, but to infer the values in the
encrypted database. We simulate an encrypted database
using two different privacy schemas. In schema (A), the
column corresponding to a specific medical condition (i.e.,
a CCS diagnosis code/category such as delirium dementia)
is marked as sensitive and redacted; the other columns are
less sensitive and encrypted with PRE. In schema (B), all
columns corresponding to medical conditions (i.e., all CCS
diagnoses) are marked as sensitive and redacted; the other
columns are encrypted with PRE as shown in Table 1.

We use statistics extracted from the auxiliary data (in this
scenario, the 2012 version of the dataset) to build a classi-

fier that models the relationship between PRE-encrypted
and sensitive columns. In Section 7.3 we consider noisier,
obsolete auxiliary data.

We use MATLAB to train a GentleBoost ensemble using
40 tree-based weak learners. We specify for each feature col-
umn whether it contains numerical or categorical values and
train the classifier with the default parameters on at least
1 million records. For both privacy schemas, the classifier
predicts the value of a binary column associated with some
medical condition. Predicting a value of 1 (the patient has
the condition) is called a positive prediction.

For schema (A), we iterate over all single-code CCS cat-
egories and train the classifiers for each using the selected
column as the target and the other columns as the features.
This corresponds to the case where information on specific
medical conditions (e.g., those related to mental health) is
redacted, as in prior work on segmentation [37,41].

For schema (B), we iterate over all single-code CCS cat-
egories and multi-code chapters and train the classifiers for
each using the selected column as the target and only the
non-CCS diagnosis columns (the first 16 columns from Ta-
ble 1) as the features. This is an extremely conservative
privacy schema, in which the information redacted from the
database far exceeds that considered in prior work [37, 41].
The attacker’s job is significantly harder in this case.

Inferring PRE columns. We use the single-column
multinomial attack from Section 4 against each PRE en-
crypted column. We start with the estimated probability
distribution ρ over the values of that column, where ρi is
the proportion of records with the ith value in the auxiliary
dataset. We then compute all cjs, the number of occurrences
of the jth ciphertext in the target. Finally, we perform the
attack using ρ and ~c with the appropriate graph assignment.

For DE columns, we use a MATLAB implementation of
the Hungarian Algorithm to find the best matching, i.e.,
pairs (j, i) such that the jth ciphertext is mapped to the ith

plaintext. For ORE, we use our own MATLAB implementa-
tion of the maximum-weight non-crossing matching [40].

For both privacy schemas, the attack almost fully recov-
ers the correct plaintexts all PRE columns. The plaintexts
of DE columns are recovered with 100% accuracy, i.e., we
correctly find the entire permutation for each such column.
The reason is that these columns have a highly non-uniform
distribution over small domains. For example, all CCS di-
agnosis columns are binary-valued with 0 mode.

The accuracy of recovery for the numerical columns is
also high. Columns AGE, LOS, and NCHRONIC have values
from a relatively small domain and the multinomial attack
recovers 100% of the plaintexts. By contrast, TOTCHG has
values from a large sparse domain (e.g., few patients have
the exact same total charges). The attack does not always
recover the exact value, but the median error for TOTCHG is
1, 052, thus the recovered plaintexts are close to the true
value. The accuracy is so high for our single-column attack
that there is no need to resort to the multi-column attack.

Inferring sensitive columns. As explained in Section 6,
if the fraction of records with the positive label in the sensi-
tive column is low (e.g., 1%), overall accuracy is not the right
metric. For example, always predicting the patient does not
have the condition has high accuracy, yet is useless.

Instead, we aim to maximize accuracy over positive pre-
dictions. For each sensitive column, we apply the classifier
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Medical Condition (CCS Category) Prevalence Accuracy (±stddev)

Privacy Schema (A)
Diabetes mellitus with complications 7.08% 100.00%(±0.00%)
Diabetes or abnormal glucose tolerance
complicating pregnancy; childbirth; or
the puerperium

0.91% 99.40%(±0.70%)

Other complications of pregnancy 5.56% 98.80%(±1.03%)
Chronic kidney disease 11.75% 97.50%(±1.18%)
Hypertension with complications and
secondary hypertension

11.80% 97.30%(±1.42%)

Respiratory failure; insufficiency; arrest
(adult)

8.09% 96.80%(±1.55%)

Mood disorders 14.59% 96.30%(±0.95%)
Congestive heart failure; nonhyperten-
sive

11.96% 95.90%(±1.66%)

Coronary atherosclerosis and other heart
disease

17.66% 95.80%(±1.81%)

Infective arthritis and osteomyelitis (ex-
cept that caused by TB or STD)

0.97% 95.80%(±1.81%)

Privacy Schema (B)
Other complications of pregnancy 5.56% 92.30%(±2.11%)
Respiratory failure; insufficiency; arrest
(adult)

8.09% 90.70%(±2.91%)

Mood disorders 14.59% 84.40%(±2.95%)
Chronic kidney disease 11.75% 82.40%(±2.46%)
Coronary atherosclerosis and other heart
disease

17.66% 81.90%(±2.60%)

Hypertension complicating pregnancy;
childbirth and the puerperium

1.25% 81.40%(±2.55%)

Osteoarthritis 8.29% 81.40%(±3.03%)
Hypertension with complications and
secondary hypertension

11.80% 79.10%(±4.38%)

Cardiac and circulatory congenital
anomalies

0.94% 78.70%(±3.50%)

Congestive heart failure; nonhyperten-
sive

11.96% 76.40%(±4.25%)

Group of Medical Conditions Accuracy (±stddev)

Mental Health / Substance Abuse (MHSA) 99.30%(±0.48%)
Strict Mental Health / Substance Abuse 97.10%(±1.85%)
Mental Health 96.90%(±1.29%)
Diseases of the musculoskeletal system and connective tissue 94.90%(±1.52%)
Congenital anomalies 93.40%(±2.76%)
Diseases of the nervous system and sense organs 82.70%(±2.98%)
Substance and Alcohol Abuse 81.00%(±2.21%)

Figure 2: (Top) Prediction accuracy (for 100 positive predic-
tions) for the redacted medical conditions, privacy schema (A).
Only the 10 conditions with the highest accuracy are shown.
There are 30 more conditions with an accuracy above 75%. (Mid-
dle) Same as above for privacy schema (B). These conditions are
a subset of those for privacy schema (A). Rows corresponding to
the conditions for which we achieve over 90% accuracy are shaded.
(Bottom) Prediction accuracy for groups of semantically related
medical conditions, privacy schema (B).

trained on the auxiliary data to the partial records recovered
by the multinomial attack on PRE columns. The classifier
scores them w.r.t. the positive labels, we pick 100 records
with the highest scores and only output those predictions.
Accuracy is the fraction of those that are true positives.

Of 262 medical conditions, positive labels for 40 can be in-
ferred with 75% or higher accuracy. Inferring even a single
medical condition is a serious privacy breach, thus failure
to infer certain conditions (false negatives) should not be
considered a flaw of our methodology, as long as our false
positives are low. Table 2 shows the results for the 10 condi-
tions with the highest accuracy for the privacy schema (A)
along with their prevalence, i.e., the proportion of records
with the positive label for that condition in the database.
To measure the mean accuracy and standard deviation, we
repeat the score-and-predict experiment 10 times on ran-
dom subsets of the partial records recovered by the PRE at-
tack. The results demonstrate successful inference of many
sensitive medical conditions, including hepatitis, leukemias,
chronic kidney disease, and mood disorders.

Figure 2 shows the results for the privacy schema (B). 10
of the 40 conditions can still be inferred, including chronic
kidney disease and mood disorders, albeit with slightly lower
accuracy. This is significant, because none of the 16 columns
available to the classifier in this scenario are sensitive; they
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Figure 3: Percentage of correct positive predictions for all CCS
categories for privacy schema (A) with 100 (blue solid line) and
1000 (blue dotted line) predictions, and privacy schema (B) with
100 (red dot-dashed line) and 1000 (red dashed line) predictions.

provide only general or aggregate information. This demon-
strates the limits of redaction: even strongly encrypted
or segmented medical conditions can be successfully
inferred from the non-sensitive columns, which, in
turn, are inferred using the multinomial attack.

An attacker may also group semantically similar cate-
gories and try to infer the whole group, e.g., find patients
who suffer from some mental illness as opposed to a specific
one. The bottom table of Figure 2 shows the results for
groups of related diagnoses. We found 7 groups (out of 20)
that can be inferred with accuracy of 75% or more.

Discussion. For the CCS categories other than those in
Figure 2 the attack accuracy is below 75%. Some cancer-
related categories are especially difficult to infer, e.g., for
cancer of bone and connective tissue (prevalence 0.15%),
only about 36% of the classifier’s predictions are correct.
Figure 3 shows the percentage of correct predictions for both
privacy schemas across all CCS categories.

Sensitivity analysis based on measuring correla-
tions between columns will fail to prevent our attack
because weak correlations can enable accurate inferences.
Consider Substance and Alcohol Abuse (Figure 2), which
has prevalence of about 8.6%. To understand the classifier’s
behavior, we look at the typical characteristics among the
positive predictions, i.e., features that are popular among
the positive records but rare in the population. Around 96%
of the positive records have 7 in the DISPUNIFORM column
(“disposition of patient: against medical advice”), whereas
only 1.02% of all records have 7 in this column.

The correlation between the target and the DISPUNIFORM

column is very low (the Pearson correlation coefficient is
−0.007). Therefore, even an experienced security architect
may deem the DISPUNIFORM column as not sensitive. Nev-
ertheless, because Pr{S. & A. Abuse = 1 | DISPUNIFORM =
7} = 0.411, the classifier uses this column to make accurate
positive predictions. Since Pr{S. & A. Abuse = 1} = 0.086,
predicting a positive label if DISPUNIFORM = 7 increases the
probability that this prediction is correct by five times.

7.2 Scenario 2: Sensitive demographic data
This case study is based on the 2013 ACS dataset. We apply
PRE to all columns except income, which is redacted. The
auxiliary information is the 2012 dataset. We also consider
noisier and more outdated auxiliary data in Section 7.3.
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Attribute Description Type Encryption

AGE Age (in years) N ORE
SEX Sex B DE
RACE Race C DE
REL Relationship code C DE
MS Marital status C DE
OCCFC Occupation code C DE
COGD Cognitive difficulty B DE
DIS Disability C DE
ENG English language ability C DE
LANX non-Engl. lang. spoken C DE
EDU Educational attainment C DE
FOD1 Field of degree 1 C DE
FOD2 Field of degree 2 C DE
WORKCLASS Class of worker C DE
HPW Work hours per week N ORE
WLW When last worked C DE
TTTW Travel time to work N ORE
CITZ Citizenship status C DE
ST State C DE
POW Place of work C DE
POB Place of birth C DE
PUMA Microdata area code C DE
INC Yearly income N Redacted

Table 4: ACS data elements, data types (C = categorical, B =
binary, N = numerical) and corresponding encryption type.
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Figure 5: (Top Left) Recovery accuracy for PRE-encrypted ACS
columns. The plot compares the single- and multi-column multi-
nomial attack with prior work across the columns that we cannot
recover with 100% accuracy in all cases. (Top Right) Empirical
CDF of the reduction in prediction error (higher is better) for
yearly income over a baseline predicting median yearly income
for each record. The reduction in prediction error for the attack
(blue dashed line) is compared to that of a model trained on the
plaintext (true) target database (green dashed line). (Bottom)
Median income prediction error for some sub-populations.

Auxiliary data. Because the redacted column (INC) is nu-
merical (as opposed to binary for the medical case study),
we train a regression model on 1 million records from the
auxiliary dataset. We do this in MATLAB with an ensem-
ble of 40 regression trees using bagging with the default
parameters. For each column, we specify whether it con-
tains numerical or categorical values. INC is the prediction
target, the other columns are the features. To improve the
quality of the regression model, we convert categorical fea-
tures to binary vectors. For example, we replace the column
SEX which can take two values (male and female) with two
new binary columns SEX MALE and SEX FEMALE.

Inferring PRE columns. We start with a single-column
multinomial attack on each PRE column independently, as
in Section 7.1. For about half of the columns, the recovery
is perfect (100% accuracy). These are AGE, SEX, MS, COGD,
DIS, ENG, LANX, WORKCLASS, HPW, WLW, and CITZ.

For the rest of the PRE columns, we improve the recov-
ery using the multi-column attack from Section 5. We first
create a dependency graph. To this end, we compute condi-

tional pairwise entropy between columns using the auxiliary
data. As explained in Section 5, we cannot simply pick the
most correlated dependent column because this may create a
cycle. Also, we must consider the number of plaintext values
in the dependent column (fewer is better due to the curse of
dimensionality) and the length of the longest path (longer
paths may result in cascading failures with mistakes).

We end up with the following acyclic dependency graph:
RACE depends on POB, REL on MS, OCCFC on WORKCLASS, EDU
on FOD1, FOD1 on OCCFC, FOD2 on FOD1, POW on EDU, ST on
POW, PUMA on ST, and POB on CITZ. With these, we discover
a valid topological order and perform the attack using the
edge weights computed as in Section 5.

We compare three attacks: best prior heuristic [40], single-
column multinomial, and multi-column multinomial. All
three are performed using the appropriate graph matching
algorithm for each column, i.e., the Hungarian algorithm
for DE and MWNCM [40] for ORE. We compute the over-
all row recovery rates, averaged over five experiments, as the
percentage of rows across all 22 PRE columns that are recov-
ered perfectly (no errors). These rates are 2.10% (±0.46%)
for the attack of [40], 2.75% (±0.55%) for the single-column
attack, and 33.38% (±7.05%) for the multi-column attack.
In other words, the recovery rate of our multi-column
multinomial attack is 16 times that of prior work.

Figure 5 shows the attack accuracy for the columns that
are not recovered perfectly. The multi-column attack greatly
outperforms the single-column attack, which in turn outper-
forms prior work. For OCCFC and PUMA, the multi-column
attack doubles accuracy of the single-column attack.

Inferring sensitive columns. To infer the value of the
redacted INC column, we apply our regression model trained
on the auxiliary data to the plaintexts recovered by the
multinomial attack. We compute the error as the absolute
difference between the predicted and true income. We plot
the empirical CDF of the reduction in error compared to a
baseline always predicting the median income of the pop-
ulation. This is shown in Figure 5, and compared with a
regression model trained on the true plaintext data.

The median error of our predictions is 8388.3 USD (i.e.,
income can be predicted within around 8.4k USD for 50%
of the records). This is much better than the baseline which
attains such precision for only 20% of the records. Fur-
thermore, the predictions almost perfectly coincide with a
regression model trained on the true data (Figure 5). Even
though the multinomial attack has recovered noisy plain-
texts for some columns, prediction quality has not suffered.

The table in Figure 5 shows examples of population sub-
groups that are especially vulnerable to the attack. These
subgroups share a common characteristic (e.g., the value of
a certain column) that further reduces the error. For ex-
ample, the median error for the sub-population whose ed-
ucational attainment (EDU) is “Grade 9” is less than 1400
USD. Overall, these results suggest that segmentation and
strong encryption cannot protect the confidentiality even of
large-domain, sparse, numerical columns.

7.3 Quality of auxiliary data
We evaluate the robustness of our attacks when the auxiliary
data is obsolete and noisy.

Inferring sensitive medical conditions. We repeat the
experiment from Section 7.1 with privacy schema (B), still
using the 2013 HCUP NIS dataset as the target but with
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the 2004 dataset as the auxiliary data. This dataset is both
outdated and sampled differently: 2013 is a random sample
of patients, but 2004 is all patients from a random sam-
ple of hospitals. The attributes are different, too: (1) the
2004 dataset is missing the attributes HOSPBRTH, NCHRONIC,
ORPROC and contains at most 15 different diagnosis codes (vs.
up to 25 for recent versions); and (2) it uses an older ver-
sion of CCS which (among other differences) has outdated
categories for mental health. In our experiment, we did a
best-effort remapping of the old categories to the new ones
in the auxiliary data and ignored the attributes of the target
data that are not present in the auxiliary data.

We follow the methodology from Section 7.1 to recover
PRE columns using a multi-column attack. Using cross-
column correlations makes our multi-column attack very
robust to high noise in the auxiliary data that would de-
stroy the accuracy of a single-column attack. For exam-
ple, a single-column attack on SEVERITY recovers little be-
cause the distribution differs between the 2004 and 2013
datasets. Instead, we use a correlated dependent column,
e.g., MORTALITY which is linearly correlated with SEVERITY

at about 0.72, to stage the attack from Section 5 with the
following (acyclic) dependency graph: SEVERITY depends on
MORTALITY and ZIPINC depends on RACE. With this, the re-
covery rate over all (non-numerical) PRE columns is 96.9%,
almost a 6-fold increase over the naive single-column attacks.
This demonstrates that even with stale auxiliary data,
the multi-column attack performs very well.

We then use the methodology from Section 7.1 to infer
sensitive medical conditions from the recovered plaintexts
of PRE columns. In spite of the 11.3% decrease in overall
prediction accuracy vs. Section 7.1, we still achieve 93.30%
accuracy for Mental Health / Substance Abuse (MHSA),
87.20% for Strict Mental Health / Substance Abuse, and
88.30% for Mental Health. This shows that our attack can
infer sensitive medical conditions even if the attacker’s aux-
iliary data is relatively poor. Additional results for this ex-
periment can be found in the full version [7].

Sensitive demographic data. We repeat experiments on
the 2013 ACS dataset but replace the auxiliary data with
sub-samples of 10, 50, and 100 thousand records from the
outdated ACS PUMS 2009, 2010, 2011, and 2012 datasets.
Figure 6 shows the attack accuracy for each combination
of year and sample size. Overall, using old auxiliary data
does not significantly lower the accuracy. For example, the
median recovery accuracy (across all PRE columns) with
2009 auxiliary data is near 100%, just like with 2012 data.
That said, for some columns (OCCFC and PUMA), the 2012
auxiliary data yields the highest accuracy by some margin.
Using small sub-samples has more impact on accuracy for
some columns across all years (e.g., compare the box length
for 10K and 100K), yet the overall accuracy remains high.

To evaluate the impact on income prediction (i.e., infer-
ring the sensitive column), we train a regression model as in
Section 7.2 but on the degraded auxiliary data, then apply
it to the plaintexts recovered from the PRE columns by the
multinomial attack. For space reasons, we defer the detailed
results to the full version of this work [7]. For incomes of
50k or more, the predictions are (almost) on par with those
of Section 7.2. In all cases, the prediction error is substan-
tially better than for the baseline (17702 USD). With the
smallest sample of the most outdated auxiliary data (from
2009) the median prediction error is only around 10% worse
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Figure 6: Recovery rates (accuracy) for degraded auxiliary data.
Each box-whisker plot shows accuracy across all PRE columns.

than in Section 7.2. Overall, this suggests that the attack
will succeed even using auxiliary data that is a few years
old, as long as it contains a few tens of thousands of records
(e.g., it works well with 50K records, which is only 2% of
the available auxiliary dataset).

7.4 Scenario 3: Home addresses
This case study is based on the FOP dataset described
above. It uses the values recovered from the PRE-encrypted
columns as quasi-identifiers in a record linkage attack on the
home addresses of police officers. We simulate an encrypted
database using a privacy schema informed by the practical
applications of encrypted databases. Prior work [40] moti-
vated the use of ORE for first name, last name, and ZIP
code, which are commonly sorted and queried by prefix in
electronic health records and customer relationship manage-
ment systems such as OpenEMR and Salesforce. State and
gender are encrypted using DE to enable grouping. Fre-
quency analysis easily infers both because statewide FOP
membership numbers are public (see the discussion above)
and because most police officers are men.

Home addresses of police officers are considered extremely
sensitive due to the risk of reprisal by criminals. In Florida
in 2010, a man was arrested for publishing the address of an
officer online [85]. Furthermore, they have little utility as a
query or filter value in applications. Therefore, we assume
that addresses are encrypted using IND-CPA encryption.
We use the publicly available state voter registration records
as the auxiliary data, as well as the ZIP code database with
the list of valid ZIP codes for each state and the estimated
population of each ZIP code [80]. We also use per-state first
and last name distributions taken from the voter records.

Inferring PRE columns. We use the multi-column at-
tacks to infer the first and last names and the ZIP code.
For first names, we use state and gender as dependent at-
tributes. For last names and ZIP codes, we use state as
the dependent attribute. Because possible ZIP codes are
uniquely determined by the state, we run an independent
attack on ZIP codes for each state.

Figure 7 shows the overall attribute recovery rates for the
eight states for which we have voter data, directly compar-
ing our multi-column attack to our single-column attack and
the best prior heuristic. The recovery rates for all attributes
are high. For first and last names, the accuracy of the multi-
column attack is modestly higher (around 4% and 12%, re-
spectively) than our single-column attack, which in turn is
more accurate than prior heuristics. The multi-column at-
tack on last names performs especially well: for two states,
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# rows ↓ FN LN ZC Addrs
Encr. type ORE ORE ORE STR

PA 54,428 92 69 58 7,251
MI 13,136 93 69 59 1,789
NC 14,862 92 83 44 1,683
OK 10,333 92 85 43 469
WA 5,297 92 74 49 397
CT 2,969 93 69 71 370
FL 45,423 90 72 3 164
CO 11,311 90 74 0 0
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Figure 7: (Left) Recovery rates for the multi-column attack on
FOP attributes. “# rows” is the number of rows in the FOP
database for the state; “Encr. type” is the encryption scheme
(STR is strong encryption); FN, LN, ZC, Addrs are the % of
correctly recovered first names, last names, ZIP codes, and home
addresses. (Right) Recovery rates of the multi-column, single-
column, and best prior attack on FN, LN, ZC, and all three to-
gether (RR) for all eight states.

it recovers over 80%, whereas even our own single-column
attack does not exceed 60%.

The multi-column attack on ZIP codes exhibits the most
striking increase in overall accuracy. Whereas both single-
column attacks (best prior [40] and our own) perform poorly
(2-5%), the multi-column attack recovers 36% of all ZIP
codes in the FOP records for the eight target states. This
is due to our ability to attack ZIP codes separately for each
state and the superiority of the multinomial attack over
prior techniques. Recovery is much worse for Florida and
Colorado because of the noise in the data: dozens of ZIP
codes from other states and even non-existent codes appear
in the FOP database, thus forcing the matching to preserve
the order prevents correct matches. Increasing robustness
of inference to noise in the target data is left to future work.

The whole-row recovery rate (i.e., first name, last name,
gender, and ZIP code) of the multi-column attack is nearly
one quarter, which is many times better than the single-
column attacks. It is much higher for some states, e.g., we
recover the full name, gender, and ZIP code of almost half
of FOP members in Connecticut.

Inferring sensitive columns. Once the first name, last
name, and ZIP code are recovered for each row, we link them
with the state voter records, using the usaddress [18] python
library to canonicalize street addresses. We are extremely
conservative when measuring the accuracy of our attack.
After canonicalization, we only consider an address to be
recovered if it is an exact match. We do not count correct
matches with typos, nor correct recoveries of the address
of an officer’s alternate residence. Another reason for the
undercount is that not every officer is a registered voter.
Using a more complete address list from a phone directory
would likely result in higher recovery rates.

For the eight states for which we had the auxiliary data,
our aggregate recovery rate is about 7.7%, i.e., roughly 1
out of every 13 FOP members would have their exact home
address revealed by this attack. Our attack was most suc-
cessful for Michigan and Pennsylvania, recovering 13-14%
for both. On a real encrypted database, this would have
been a massive privacy breach, with home addresses of over
7,000 officers compromised in Pennsylvania alone.

8 Limitations and Mitigations
Our multi-column attacks depend on the correlations be-
tween columns and will fail if they are uncorrelated (our
experiments show that this is unlikely to be the case in real-
world datasets). The success of our attacks also depends on
the privacy schema. If most or all columns are marked as

“sensitive” and redacted or strongly encrypted, there may
not be enough information revealed for successful inference.
Such a privacy schema defeats the purpose of PRE, and
we are not aware of any encrypted database that maintains
performance and functionality in this scenario.

Another limitation is that any inference method, including
ours, depends on the quality of the attacker’s auxiliary data.
In Section 7.3, we show that our attacks are robust even if
the auxiliary data is smaller and has low quality.

Ensuring that individual PRE-encrypted columns have
high entropy does not mitigate our attacks because the joint
distributions of two correlated columns can be useful for in-
ference even if the individual columns have high entropy. An
example is given in the full version [7].

In principle, inference potential could be detected by mea-
suring cross-column correlations, but this is not straightfor-
ward. In Section 7.1, we concretely showed that even weak
correlations can, in aggregate, have high predictive power.
Furthermore, in a database with m columns, the number of
measurements required to detect correlations grows as 2m.

9 Related Work
Encrypted databases. Companies including Ciphercloud
[13], Navajo Systems [26], Skyhigh Networks [61], and Per-
specsys [68] deploy proprietary PRE schemes to enable search-
ing and sorting of ciphertexts stored within software-as-a-
service (SaaS) systems. SAP’s SEEED system [75], IQcrypt
[47], Microsoft’s Always Encrypted [58], and Galois’s Jana [5]
use privacy schema where some columns are strongly en-
crypted and other columns are DE- or ORE-encrypted.

Damiani et al. [17] used DE with custom indexing tech-
niques to support some queries over encrypted data. An-
other proposal is CryptDB [71], which “onion-wraps” PRE-
encrypted data with strong encryption and relies on client
proxies to expose PRE ciphertexts for querying. With re-
spect to our inference methodology, this is equivalent to a
privacy schema in which the columns not used in queries
are strongly encrypted. After recent attacks against PRE-
encrypted databases (see below), CryptDB designers advo-
cated column sensitivity analysis and the use of strong en-
cryption for columns deemed “sensitive” [72]. Monomi [78]
performs a form of automated column sensitivity analysis
and uses a mix of strong encryption and PRE.

Some approaches to encrypted databases achieve stronger
security than the more practical systems we focus on in this
paper. Arx [69] is claimed to be secure against “snapshot”
attacks but requires garbled circuits to perform queries [86];
also, it is not actually secure against realistic “snapshot” at-
tacks [39]. Lewi and Wu [54], Faber et al. [27], and Roche et
al. [73] support only range queries but leak less information
to “snapshot” adversaries than the systems we investigate.
Lewi and Wu’s scheme can be adapted into a traditional
ORE scheme, but at a cost of leaking more information than
what is assumed by our attacks. Boneh et al. [10] and Ker-
schbaum [50] present frequency-hiding ORE; these schemes
are not used in practice due to inefficiency.

Attacks on encrypted databases. An early example
of an inference attack on a custom DE-encrypted index,
albeit based on an ad-hoc notion of privacy and without
optimality guarantees, appears in [17]. Naveed et al. [60]
demonstrated single-column attacks against PRE-protected
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databases. Grubbs et al. [40] suggest a more effective “non-
crossing attack” single-column ORE. Our multinomial at-
tack improves and outperforms these attacks. Kellaris et
al. [48] and Lacharité et al. [52] give generic attacks against
systems that support range queries. In the settings we
consider, their attacks require a prohibitively large num-
ber of uniform queries. Our attacks do not rely on observ-
ing queries and are always faster. None of the prior work
exploits cross-column correlations except Durak et al. [23],
who apply, two single-column attacks and then use corre-
lations between GPS coordinates. By contrast, our frame-
work is the first to (1) explicitly take into account arbitrary
cross-column correlations, and (2) provide a methodology
for inferring strongly encrypted columns.

Inference detection. There is a large body of work on
inference detection for databases [19, 28, 46, 57] and some
recent systems [87] use it to discover dependencies between
sensitive and seemingly non-sensitive columns. Inference de-
tection involves analyzing the database schema (e.g., using a
semantic graph to capture functional dependencies between
attributes [46]) and does not prevent our attacks because we
rely on statistical relationships that exist regardless of the
presence of certain columns in the schema. For example, if a
sensitive attribute is segmented from the database, inference
detection will declare the database safe even if the attribute
can still be inferred from the remaining attributes.

Inference control. The problem of linking records in
a protected database with other databases has been inves-
tigated since at least the 1950s [62]. In 1969, Fellegi and
Sunter published a theory of record linkage, i.e., “recog-
nizing those records in two files which represent identical
persons, objects or events” [29]. In 1975, Schlörer con-
cretely demonstrated how an attacker who has prior infor-
mation about an individual can identify his or her record in
a database using only non-unique identifiers and statistical
information [76]. A combination of attributes that are not
identifying by themselves but together uniquely identify an
individual is known as a quasi-identifier [16].

The goal of inference control [15] is to prevent inference
of sensitive information about individuals. Statistical dis-
closure control aims to answer statistical queries without
revealing individual entries [1,22,24,83,84]. Dozens of meth-
ods have been proposed for privacy-preserving release of in-
dividual records (microdata), including cell swapping, sup-
pression, microaggregation, and bucketization—see a sur-
vey in [21]. All of these techniques assume that a trusted
curator modifies the records or query answers before they
are released. Encrypted databases aim to address a differ-
ent scenario, when the system is unpredictably compromised
and the adversary obtains the database “as is.”

Our linkage methods draw on known techniques for link-
ing datasets on quasi-identifiers [77] and incomplete, noisy
common attributes [59]. Prior work on data segmentation
argued that segmented or redacted medical codes can po-
tentially be inferred using correlations between medical con-
cepts [11, 41]. Chan et al. show how to extract correlations
between medical concepts from the research literature and
use this to construct a hypothetico-deductive model [11].
We use a different type of classifier and, most importantly,
demonstrate how cross-column inference can be used on real
data in privacy-protected databases. Combining their ap-
proach and ours is an interesting topic for future work.

10 Conclusions
We developed a comprehensive methodology for inference
attacks against the state-of-the-art database privacy pro-
tections and evaluated it on real data. Our attacks apply to
commercial products used today to protect sensitive medical
and business information, as well as the best academic con-
structions of efficient encrypted databases based on mixing
property-revealing encryption (PRE) with strong encryption
or data segmentation. Our methodology yields an immense
improvement over prior attacks on PRE-protected columns,
as well as the ability to infer sensitive medical conditions,
yearly income, and the home addresses of police officers.

Our first conclusion is that segmentation and strong en-
cryption are insufficient to protect sensitive data when used
in conjunction with PRE. This contradicts recent claims [4,
49,71] that strong encryption protects a column from infer-
ence regardless of how other columns are treated.

Our second conclusion is that column sensitivity analy-
sis [47,58,72,78] and inference detection [19,28,46,57] have
fundamental limitations because they only examine individ-
ual columns and do not consider cross-column inferences or
linkage attacks. To fully protect sensitive columns in en-
crypted databases, the administrator must strongly encrypt
or segment not only these columns, but also all other col-
umns that may help infer the sensitive columns. This seems
difficult, if not impossible, in practice. Straightforward ex-
tensions of column sensitivity analysis, such as measuring
cross-column correlations, do not adequately measure the
risk of cross-column inference (e.g. the “substance and al-
cohol abuse” condition in Section 7.1). The administrator
must also be aware of the correlated information that ap-
pears in external databases that are not under his control or
must be public by law (e.g., voter registration). It remains
an open question whether any column sensitivity analysis
techniques can give meaningful confidentiality guarantees.

Alternatively, one can attempt to reduce leakage by using
stronger encryption. For example, several recent academic
proposals for encrypted databases [67, 69, 72] claim to be
fully secure against “snapshot” attacks. All of them are ei-
ther inefficient, or insecure in realistic scenarios [39]. How to
build practical encrypted databases that avoid leakage on re-
alistic datasets, even against snapshot adversaries, remains
an open question for future research.
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