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ABSTRACT
Stream processing applications reduce the latency of batch
data pipelines and enable engineers to quickly identify pro-
duction issues. Many times, a service can log data to distinct
streams, even if they relate to the same real-world event
(e.g., a search on Facebook’s search bar). Furthermore, the
logging of related events can appear on the server side with
different delay, causing one stream to be significantly be-
hind the other in terms of logged event times for a given log
entry. To be able to stitch this information together with
low latency, we need to be able to join two different streams
where each stream may have its own characteristics regard-
ing the degree in which its data is out-of-order. Doing so in a
streaming fashion is challenging as a join operator consumes
lots of memory, especially with significant data volumes.
This paper describes an end-to-end streaming join service
that addresses the challenges above through a streaming join
operator that uses an adaptive stream synchronization algo-
rithm that is able to handle the different distributions we ob-
serve in real-world streams regarding their event times. This
synchronization scheme paces the parsing of new data and
reduces overall operator memory footprint while still provid-
ing high accuracy. We have integrated this into a streaming
SQL system and have successfully reduced the latency of
several batch pipelines using this approach.
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1. INTRODUCTION
Many data analysis pipelines are expressed in SQL. Al-

though less flexible than imperative APIs, using SQL en-
ables developers to quickly bootstrap new analytics jobs
with little learning effort. SQL queries can be executed in ei-
ther batch mode (e.g., running in Presto [5] or Hive [32]), or
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in streaming mode (running in Puma [15] or other domain-
specific frameworks). When running a query in batch mode,
data must first be ingested into the Data Warehouse. Once a
new partition of a table lands (daily or hourly), queries that
depend on the new partition can be started. In contrast,
when a query runs in a streaming fashion, data is continu-
ously processed as it is acquired, and the output is generated
as soon as all the input data required for its computation
is available. The generated results can then be immediately
consumed by other downstream applications or ingested into
the Data Warehouse for other use.

A common operation used in many analytic workloads is
to join different data sources. Doing so only after ingestion
into the Warehouse incurs high-latency, which causes several
problems for users. One such problem is the delay of com-
puting derived data sets, as the computation of a join can
only start after a partition has been fully ingested into the
Warehouse. Another disadvantage of this scheme is that the
results of joins cannot be used to power real-time metrics,
used for detecting and solving production issues.

We have implemented a streaming join operator to re-
duce the latency of analytics that stitch together informa-
tion from different sources. The operator focuses on joining
tuples according to an equality predicate (i.e., keys) and a
time proximity (i.e., time window). This handles the joining
of streams in which their joinable events occur close in terms
of event time, but that might be processed by the stream-
ing application somewhat far apart (i.e., minutes to hours).
This can happen when tuples related to the same real-world
event are logged into different streams with hours of delay.
For example, in mobile applications, event logging can be
delayed until a device reconnects to the network via Wi-Fi
after being connected via cellular network only. Using tuple
event time is a distinction from our work and other time-
based streaming join operators that use the time that the
tuple gets processed to establish windows [2, 22].

We have integrated the join operator into Puma - Face-
book’s SQL-based stream processing service, so that users
can easily spawn new automatically managed applications
that join matching tuples as they are processed. With
Puma, users can rely on deploying application updates with-
out loss of in-flight data, tolerance to failures, scaling, mon-
itoring, and alarming. Implementing event-time based joins
in a streaming fashion as a service should balance output
latency, join accuracy, and memory footprint. It also should
consider that streams have different characteristics regard-
ing the event time distributions of their events. Prior efforts
on this area range from a best-effort wall-clock time joins [22]
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to the persistence of metadata associated with every join-
able event on a replicated distributed store to ensure that
all joinable events get matched [11]. Our solution falls in
the middle, as we still provide a best-effort streaming join
but aim at maximizing the join accuracy by pacing the con-
sumption of the input streams based on the event-time of
incoming tuples.

To increase the accuracy of a best-effort join operator
while maintaining service stability, some of the techniques
we have evaluated are: (i) estimation of the stream time
based on the observed tuple event times to consume each of
the input streams, (ii) bound the number of tuples associ-
ated with a given key, in order to limit the in-memory state
of heavily skewed data, and (iii) leverage an intermediary
persistent message bus to avoid checkpointing part of the
in-memory state of the join operator.

To enable users to easily deploy streaming applications
using joins, we have integrated the join operator into our
streaming SQL language called PQL (Puma Query Lan-
guage). Users create an application by specifying a join
statement with an equality attribute and a window bound.
The PQL compilation service compiles the query and en-
sures that allowed application updates can be deployed in a
backward compatible manner without loss of in-flight data.
After deployment, Puma is responsible for automatically
scaling the application when it needs more resources than its
current reservation and setting up alarms to notify users and
service maintainers when failures or SLA violations occur.

The key contributions of this paper are: (i) a stream-
ing join operator that leverages a stream synchronization
scheme based on tuple event times to pace the parsing of
new data and reduce memory consumption. This opera-
tor leverages the required processing semantics of certain
applications [15] to provide a more efficient fault tolerance
scheme while still achieving a high join matching rate; (ii) a
query planner that produces streaming join plans that sup-
port application updates, ensuring users can modify their
queries without causing the join operator to lose its internal
state; and (iii) a stream time estimation scheme that auto-
matically handles the variations on the distribution of event
times observed in real-world streams and that achieves high
join accuracy. To the best of our knowledge, we are the
first to propose a streaming join operator that paces tuple
processing to reduce resource consumption and to generate
streaming SQL query plans with joins that support applica-
tion updates.

2. SYSTEMS OVERVIEW
The streaming join service was implemented in the context

of two of Facebook’s stream processing platforms: Puma
and Stylus. Both systems ingest data from Scribe [15] – a
persistent message bus – and can later publish data back to
Scribe, Scuba [8], or Hive.

2.1 Scribe
Scribe is a persistent and distributed messaging system

that allows any application within Facebook to easily log
events. New data written into Scribe can be read by a
different process within a few seconds. When writing or
reading data from Scribe, processes specify a category and
a bucket. A category contains all the logs of a system that
follow the same schema. A bucket allows the data to be
sharded according to a criterion (e.g., an attribute value)

Provisioner

Configuration
repository

Container	
managerScaler

Figure 1: Puma’s workflow.

and is equivalent to a shard or a partition. An application
can achieve data parallelism by reading different buckets of
the same category. In general, Scribe keeps data available
for a couple of days.

2.2 Puma
Puma enables developers to write streaming applications

written in PQL and easily deploy them to production. This
is because Puma is offered as a service and automatically
provides monitoring, alarming, fault-tolerance, and scaling.

Figure 1 shows Puma’s workflow. Developers start by
creating a Puma application in PQL (example in Figure 3)
via the Puma portal. Once testing and code review have
been completed, the PQL query is landed into Facebook’s
configuration repository [30]. Landing is allowed only if the
query compiles and passes safety checks meant to ensure
that it will not fail in production or hurt the performance
of other apps (e.g., consuming too many resources).

The provisioner service monitors any application landing
and constructs and deploys the application’s physical plan.
It first creates a directed acyclic graph (DAG) of operators
to execute the query. It then identifies if it needs to create
new or update existing production jobs to run the operators
in the DAG. For new jobs, it creates a job configuration and
contacts Facebook’s container manager [28] to start it up.
For existing jobs, it updates the job configuration with the
new application information (e.g., version number and re-
source requirements) and issues an update to the container
manager. The container manager is responsible for monitor-
ing the liveness of jobs, propagating configuration updates
upon a job restart, and assigning jobs to hosts according to
the requested resources. The provisioner also creates any re-
quired Scribe category to execute the application’s physical
plan. This is because all communication between operators
in a DAG happens through Scribe.

Once the application is running, it reports runtime infor-
mation (e.g., tuple processing rate, backlog), which is used
for monitoring and firing alarms. Depending on those run-
time metrics, the scaler component may decide to scale up
and down the jobs that compose an application. Scaling
can happen both in terms of the number of tasks per job
or the memory allocation per job. It does so by updating
the job configuration and contacting the container manager
to restart the updated job. If any of the current hosts can
no longer accommodate the updated job’s tasks with the
new specified resource entitlement (e.g., task needs 10GB
of memory, but only 5GB is available), then the container
manager moves the job to a host with sufficient resources.

One characteristic of Puma is its enforcement of backward
compatible application updates with respect to the inter-
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nal state of stateful operators. When a user modifies an
existing query, Puma ensures that the update can be per-
formed without any loss of state. For example, when the
query contains a statement for doing hourly window aggre-
gations, user might want to add more aggregations to that
same statement (e.g., count, sum, max). One simple way to
carry out such an update is to drop any current aggregation
value and restart the query. The disadvantage is that appli-
cations would lose the collected information from any ongo-
ing aggregations. Puma ensures that (i) the new statement
can be deployed in a backward compatible manner, and (ii)
aggregations will appear to continue to be computed from
the point where the application update operation started.

2.3 Stylus
Stylus [15] is a C++ framework for building stream pro-

cessing operators and provides a lower level of abstraction
than Puma. Stylus provides generic and flexible APIs for
implementing different kinds of operators, such as stateless,
stateful and monoid. The APIs and its specialized imple-
mentations for each kind of operator are also called a Stylus
engine. A common use case for Stylus is to ingest tuples
from a Scribe stream and output them to another Scribe
stream or other data stores. Given Stylus is a C++ API,
it is quite flexible for developers to implement various cus-
tomized tuple transformations. Developers only need to fo-
cus on their business logic, while Stylus handles the com-
mon operations needed by most streaming operators, such
as fault-tolerance, sharding, and scaling data processing.

Stylus allows an operator to read one or more buckets
from a Scribe category. Stylus automatically splits the
stream data into micro-batches and shards tuples into mul-
tiple threads for parallel processing. Stylus also provides
operators the ability to replay a Scribe stream for an ear-
lier point in time and persist any in-memory state to local
(RocksDB [6]) and remote storage (HDFS). Given Stylus
can both read and write to Scribe categories, operators can
be easily plugged into a Puma generated DAG. The join
operator is built on top of Stylus.

3. STREAMING JOIN SEMANTICS
Puma provides window-based equality joins, where the

window is defined using a tuple attribute as its event time.
Our design supports the join of two input streams, which we
refer to as left and right streams. Tuples from the left stream
are joined with tuples in the right stream when the specified
key attribute matches and the timestamps of the tuples in
the right stream fall within a join window, as defined below.

More specifically, event time is the creation time of a tu-
ple. The event time has a delay when compared to the wall
clock time that the tuple is processed by the streaming ap-
plication. This delay varies for different tuple sources, and
tuples in the same stream are not usually ordered by event
time. Using tuple creation time for a streaming join is a
distinction of our work when compared to other systems [2],
which assign a timestamp when first processing the tuple.
The join window is an interval on the right stream calculated
from the event time of a left stream tuple. Tuples from the
left stream are joined only with tuples on the right stream
that fall within the calculated interval. Although the win-
dow specification is the same for every tuple, each tuple has
its own window, which can be overlapping with the windows
of other tuples. The join key is the tuple attributes that are

Now

Left stream

Right stream

11:5912:01

11:5812:06 12:0212:0112:0211:5711:55

Figure 2: The join operator uses the event times
of tuples on the left stream to calculate their join
window on the right stream.

used to do the join equality check. Left and right-side tuples
only join when their join keys are the same.

The join result is an inner join or a left outer join, and
it outputs a projection of the attributes from the left and
matching right tuples. In the left outer join case, right event
attributes are filled with null values for failed matches. The
join output can be all matching tuples within a window (1-
to-n) or a single tuple within a window (1-to-1). The last
case is useful when a single match is sufficient and enables
reduced output latency, as the operator does not have to
wait for the whole join window to be available before emit-
ting a match.

Figure 2 shows an example of the join windows for two
different events on the left stream (green and red) for a win-
dow interval of [-3 minutes, +3 minutes]. The color rep-
resents the join key, and the timestamp represents the tuple
event time. Streams are not ordered by event time and the
join window is computed based on the left tuple timestamp.
Depending on the desired join output, the red left event
(event time of 11:59) could match one or both of red tu-
ples on the join window (event times of 12:01 and 11:58).
If there is no assumption regarding the time of a stream, a
tuple would have to wait forever for a match, as it is always
possible to process a new tuple with a timestamp that would
belong to a valid window interval. Deciding when a tuple
should be emitted as a non-match or that all matches in a
1-to-n scenario can be emitted is related to how we do pro-
cessing time estimation and stream synchronization. This
process is described in more detail in Sections 5.2 and 5.3.

4. QUERY LANGUAGE AND PLANNING
This section describes the language-level constructs avail-

able for developers, and how Puma’s planner builds a DAG
of operators for streaming join queries. Left outer joins
match a tuple from the left stream with all tuples from the
right stream that match the join condition within the speci-
fied time window (Figure 2). We plan to support other types
of streaming joins in the future.

4.1 Streaming Join Query
Users build a streaming application by writing a query in

PQL, which is similar to SQL but designed to target stream-
ing use cases. A query is a sequence of 4 kinds of statements:

1. create application - specifies a unique application name
within Puma’s namespace;

2. create input table - names an input stream and de-
scribes its schema. It indicates which Scribe category the
data must be consumed from;

3. create view - specifies a stream transformation via ex-
pressions, user-defined functions, column projection, and tu-
ple filtering. A view can specify joins between two streams;

4. create table - describes additional transformations on
the data from a view, including time-based aggregations. It
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also includes information about where to store the results of
the table’s transformations (e.g., Hive). Depending on the
storage chosen, users can specify a sharding expression.

A PQL query must have a single create application state-
ment, but it can have an unbounded number of create input
table, create view, and create table statements. A user can
assemble a DAG by chaining the statements above.

Figure 3 shows a PQL query with a view containing a
streaming join clause. In this example, we specify that
the left stream has 4 attributes and consumes data from
a Scribe category named left (lines 02-04). Similarly, the
right stream has 4 attributes and reads data from the right
category (lines 06-08). Users do not need to specify types
when declaring a schema. Puma does type inference de-
pending on the expressions and functions that the attribute
is used in. Users can do explicit casting when necessary. The
join view specification indicates the left stream (line 16), the
right stream (line 17), and the equality expression (line 18).
The window itself is expressed with the BETWEEN function
and using intervals on the timestamp attributes (lines 19-
21). This example shows an interval of 6 minutes. The
lower and upper bounds can have different sizes and can
be defined in hours or seconds. The timestamp attribute
for each stream is inferred from the BETWEEN function called
from the ON expression. The output of the application is
published to a Scribe category named result (lines 23-28).

00: CREATE APPLICATION sample_app;
01:
02: CREATE INPUT TABLE left (
03: eventtime, key, dim_one, metric
04: ) FROM SCRIBE("left");
05:
06: CREATE INPUT TABLE right (
07: eventtime, key, dim_two, dim_three
08: ) FROM SCRIBE("right");
09:
10: CREATE VIEW joined_streams AS
11: SELECT
12: l.eventtime AS eventtime, l.key AS key,
13: l.dim_one AS dim_one, r.dim_two AS dim_two,
14: COALESCE(r.dim_three, "example") AS dim_three,
15: ABS(l.metric) AS metric
16: FROM left AS l
17: LEFT OUTER JOIN right AS r
18: ON (l.key = r.key) AND
19: (r.eventtime BETWEEN
20: l.eventtime - INTERVAL ‘3 minutes’ AND
21: l.eventtime + INTERVAL ‘3 minutes’);
22:
23: CREATE TABLE result AS
24: SELECT
25: eventtime, key, dim_one, dim_two,
26: dim_three, metric
27: FROM joined_streams
28: STORAGE SCRIBE (category = "result");

Figure 3: PQL query with left outer streaming join
and a time window of 6 minutes.

4.2 Query Planning
Given a PQL query, Puma compiles it and determines its

execution plan. The planner itself has two main constraints.
The first is to divide the work across operators according to
their capabilities. The second is to generate a plan that
is backwards compatible with existing system data prior to
the update, which includes state and in-transit data. The
latter fulfills users’ expectations regarding application up-
dates. Even though an application is being restarted (e.g.,

Join

Slicer

Slicer

Slicer

Left stream

Right stream

Sharded left 
stream

Sharded right 
stream

Joined stream Result stream

Figure 4: Logical operator graph for join query.

adding a new filtering condition), Puma attempts to reduce
the amount of data duplication and data loss for end users.
Puma ensures that any in-memory state of stateful oper-
ators and in-transit data being used before an update are
still readable after the update takes place. This is not en-
forced unless explicitly requested in the PQL query change,
for example by removing existing views or output tables.

For joins, the Puma planner targets two operators:
1. Slicer - This is a Puma operator similar to a map-

per in a MapReduce [17] system. Slicers can ingest data
from Scribe, evaluate expressions, do tuple filtering, project
columns, do stream sharding according to an expression, and
write data to to Scribe, Hive, and other storage sinks.

2. Join - This is a Stylus operator and it was developed
as part of this work. The join operator ingests data from
two Scribe streams, maintains the join windows, executes
the join logic, and outputs the result tuples into another
Scribe stream. For historical reasons, Stylus operators do
not share expression evaluation logic with Puma.

Example plan. Figure 4 shows the resulting plan of such
a query. In short, the query is planned as (i) a left slicer that
ingests the Scribe category (blue box) specified on the left
side of the join and shards it according to the equality at-
tribute, (ii) a right slicer with the same functionality as the
left slicer but consuming the right-side Scribe category in-
stead, (iii) a join operator that consumes the output Scribe
category of both the left and right slicers and generates an
output Scribe stream, and (iv) a post-join slicer, which does
any other required stream transformation and writes it into
the specified output system (e.g., Scribe). The figure illus-
trates the logical plan of the query. During execution, there
are several parallel instances of each operator, where each
instance reads one or more buckets of the input Scribe cat-
egory. The degree of parallelism of each operator depends
on the input traffic of its input Scribe category. This degree
gets adjusted dynamically by the scaler component through-
out the day and is independent for each operator.

PQL rewriting. Planning a streaming join query as de-
scribed in Figure 3 is equivalent to re-writing it as a PQL
query with the input table, view, and table statements ex-
panded into multiple simpler statements. We can do so
leveraging an extensible part of the Puma compiler and
planner called the PQL transformer. With the transformer,
we can do a sequence of PQL rewritings, which enables us
to add new features without making significant changes to
other parts of Puma.

For streaming joins, we have two rewritings. The first
one is straightforward and it targets at eliminating the ta-
ble aliasing specified in the streaming join view (lines 16-17
in Figure 3). It generates a new PQL query in which any
reference to an alias is replaced by a reference to the full in-
put table name (e.g., l.eventtime AS eventtime becomes
left.eventtime AS eventtime). The second transforma-
tion is more elaborate, and it generates a PQL query that
explicitly translates into a sequence of two slicers, a join op-
erator, and a third slicer. This is equivalent to 4 groups of
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create input table, create view, and create table statements:
1 for each input stream, 1 for joining the streams, and 1
post-processing the join output stream. This ensures that
each sequence is assigned to exactly one operator.

Left-side stream transformation. The objective of this
transformation is to generate an equivalent PQL segment
that is able to pre-compute the join equality and timestamp
expressions, project and/or compute expressions on top of
any left-side attribute used by the streaming join view, and
shard the output stream by the equality attribute. The in-
put table for this segment remains the same as in the original
PQL query, as it just indicates the schema of the original in-
put stream. The view statement selects first the expressions
computing the timestamp and equality referred to in the ON

clause (Figure 3 uses the raw values of eventtime and key

only). It then projects any attributes, constants, or expres-
sions that refers exclusively to attributes of the left stream.
Expressions referring to multiple tables are currently not al-
lowed. Given this is a left outer join, it is safe to evaluate
expressions before performing the join. Finally, the out-
put table statement selects all attributes from the view and
writes them to a new intermediary Scribe category sharded
by the equality attribute.

Right-side stream transformation. This transformation is
similar to the left side stream with one key difference. Ex-
pressions involving attributes from the right-side stream are
not evaluated until after the join operator. This is because
the outcome of the join may influence the result of the ex-
pression.

Join view transformation. Given the expressions from
the original join view are evaluated by the pre or post-join
slicers, the transformed join view only refers to the results
of evaluating the right and left side stream transformations,
available in the Scribe categories they write to. The join
operator writes its results to another Scribe category.

Post join transformation. The objective of this operator
is to evaluate expressions involving attributes from the right
side stream, as well as execute any other expressions spec-
ified in the original CREATE TABLE statement. The trans-
formed CREATE TABLE statement also includes the specifica-
tion of the storage to publish to from the original statement.

Backward compatibility. As described above, the need
to make the generated plan being backward compatible
comes from the expectations users have for application up-
dates. Such updates should not cause massive data duplica-
tion or data loss. When assembling DAGs, such as the one
in streaming joins, Puma uses Scribe categories as the com-
munication substrate between stages. This choice enables
operators to be less coupled and simplifies fault-tolerance,
scalability, debugging, monitoring and alerting [15]. Due to
the nature of Scribe, after an update, data from the previ-
ous version of an application may exist in the message bus,
waiting to be processed. As a result, to enable backward
compatible updates, we need to enforce that the planner
creates an execution plan that extends the both the wire
format and the state preserved by stateful operators in a
compatible way (e.g., new columns are appended to the end
stream schema). The wire format is enforced on the input
and output categories of the join, and the state format is
enforced for the join operator itself.

To make the plan backward compatible, we limit the
changes that the user can perform in the streaming join view
and forgo some possible optimizations to make application

updates more flexible. Two examples of rules an update
must follow are (i) preservation of the join equality expres-
sion, as its modification can cause resharding of the Scribe
categories; and (ii) projection of new attributes must be
specified at the end of the select list, as adding an attribute
in the middle of the select list would cause the join operator
to consume old attribute values as the value of a different
attribute - both for tuples in the wire and tuples preserved
as join operator state. This is required because the schema
of Scribe categories is based on order. One example of an
optimization we forgo is the possibility of projecting con-
stants only at the final stage of the DAG. The planner ends
up projecting constant expressions specified at the stream-
ing join view to be performed by the left side slicer, as we
need to maintain the wire format. Doing so enables users
to later change the specification of the constant expression.
Another example of optimization we do not do is to auto-
matically remove projected attributes that do not get used
by downstream operators. Automatically removing them
would also cause a change in the wire format, which we
must maintain for compatibility.

Update rules are enforced by the PQL compiler. Any
violation is displayed to the developer coupled with alterna-
tives for how to proceed with such an update. If the updated
streaming join is significantly different, then users have the
option of creating a view with a new name and deleting the
old one. In such cases, the users are aware that any in-flight
data will get discarded. The rules fit most of the update use
cases, as often times developers just want to project a new
attribute from the input streams.

5. JOIN OPERATOR
As shown in Figure 4, the join operator ingests the data

computed by the left and right slicers sharded according to
the specified equality attribute. The join operator processes
data for both the left and right streams corresponding to the
same key space (i.e., belonging to the same Scribe bucket).
As a result, all the join matching decisions are performed
locally within a single process.

Overall, our join operator continuously builds an in-
memory hash table for the right stream, keeping all tuples
belonging to the specified time window. For every tuple on
the left stream, the operator performs a look up to find the
events with the same key (i.e., hash join [34]) and falling into
the join window as calculated from the tuple event time.
Once matching tuples are identified, the operator calls a
function that implements the different join scenarios, such
as 1-to-1 join, or 1-to-n join, as described in Section 3.

The sections below describe in more detail how the opera-
tor is implemented on top of Stylus and how it synchronizes
the two input streams, so that it can achieve a high join
matching rate while limiting memory consumption.

5.1 Overview
We implemented the join operator on top of Stylus. By

doing so, we inherit all its built-in features, such as scala-
bility, fault-tolerance, and parallelism. Figure 5 shows the
overall structure of the join operator. It consists of 3 compo-
nents: (i) a stateful engine, used to process the left stream,
(ii) a stateless engine, processing the right stream, and (iii)
a coordinator, to bridge the two engines together.

Left stateful engine. This engine processes the left
stream and it stores the incoming tuples in a buffer. The
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buffer is encapsulated into Stylus states, which are used
by the framework to automatically do incremental state
checkpointing. State is periodically persisted into a local
RocksDB [6] instance and is replicated asynchronously to
remote HDFS clusters in order to tolerate host and data-
center failures. When a tuple in the left stream is processed,
the operator looks for matching tuples on the right join win-
dow. When a lookup succeeds, it calls a function to generate
the join result. If there are no matches, the tuple is retained
in the buffer to retry later. Once a match succeeds or per-
manently fails (i.e., the window has closed and there is no
match), the tuple may be emitted as a non-match (in the
case of a left outer join) and gets evicted from the buffer.
Note that input tuple order is not preserved on the output
stream. Order is not a requirement for our applications and
enables us to trim the buffer more aggressively.

Right stateless engine. This engine ingests the right
stream and maintains a window of tuples on the right stream
that matches the specified join window for the incoming left
stream tuples. The engine stores incoming tuples in an in-
memory hash map on the joining attribute. The engine
provides a lookup API to retrieve all matching events. The
window is periodically trimmed when existing tuples fall out
of the join window. This happens when the estimated stream
processing time moves forward. Note that even though the
engine maintains an in-memory state, the engine is stateless
with respect to the Stylus framework. This is because the
join window does not have to be checkpointed to local or
remote storage. Here, we leverage the fact that (i) certain
applications do not need exactly-once processing semantics,
and (ii) that we use a persistent message bus (Scribe) for
inter-operator communication. With that, we can easily
replay data to re-populate the window upon an operator
restart. This simplifies our implementation and the main-
tenance of our service, as the overhead of data backup is
avoided. Based on our current deployment and applications,
even if the window has several hours of data, it only takes a
couple of minutes to recover a full window.

Join coordinator . The coordinator brings both engines
together by providing APIs for the left engine to look up
matching tuples in the right engine, and for both engines
to query each other’s stream time estimations. The latter
is used for stream synchronization. The APIs effectively
hide the implementation of the 2 engines from each other,
decoupling the designs of the two engines.

The startup of a join operator occurs as follows: (i) the
left engine reads the last saved checkpoint from either lo-
cal or remote storage, and reconstructs its state; (ii) the
coordinator pauses the left engine; (iii) the right engine is
initialized and replays data from Scribe; (iv) after the right
engine’s current stream time is fully caught up to the left
engine’s, the coordinator resumes the left engine.

Pacing input of tuples for the join operator can be seen
as similar to the pull-based engines that request the next
tuple from its upstream operators on demand [21]. Our
join operator always reads data that is already materialized
in Scribe and does so by considering the estimated stream
processing time.

5.2 Synchronizing Two Streams
Some streaming join algorithms are built on the assump-

tion that tuples from opposing streams with similar event
times will arrive in the system close in time. A common
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Figure 5: The join operator overview.

approach is to assign a timestamp a tuple when it is first in-
gested by the source operators of a streaming application [2].
However, in our scenarios, tuples with similar event times in
different streams can arrive at significantly different times.
One cause of this is the way that logging works in differ-
ent platforms; data from mobile clients can be uploaded to
the server-side hours after an event occurs. Another rea-
son is processing delays in upstream systems. For example,
systems that do sessionization emit events several minutes
after ingestion (e.g., 30 minutes). Furthermore, failures in
upstream systems can be a source of processing delay.

One simple solution to cover late data is to use a large join
window. There are, however, drawbacks to this approach.
First, it leads to inefficient memory utilization, as the oper-
ator may end up buffering data that does not get used for
current matches. Second, using a fixed length join window
falls apart when the stream delay changes over time. This
is common especially when upstream systems have a back-
log. Since the join semantics we offer is based on tuple event
time, one natural solution is to align the left and right in-
gestion by the event time of their tuples. Our join operator
solves these challenges by synchronizing the input stream
ingestion based on a dynamically estimated processing time.
In this way, tuples that are in memory overlap in terms of
their event time, increasing the chance of tuple matches.

The estimated processing time, or PT for short, is a low
watermark of the event times that have been processed in
one stream, i.e., there is a high chance that a new incom-
ing tuple will have an event time greater than the cur-
rently estimated PT. Details on the calculation of the pro-
cessing time can be found in Section 5.3. In our opera-
tor, the join operator executes the stream synchronization.
It does so by pausing the stream that has its PT too far
ahead of the other. The synchronization uses the following
formula: left PT + window upper boundary = right PT ,
where left PT represents the processing time estimated for
the left stream, right PT is the processing time for the right
stream, and window upper boundary is the upper boundary
of the window. If the window is specified as [-3 minutes, +
3 minutes], then the upper boundary is +3 minutes.

Figure 6 illustrates the formula rationale. Green boxes il-
lustrate tuples currently maintained from both streams. All
tuples have event times that are smaller than the currently
estimated PT. The triangle represents newly processed tu-
ples that have event times that are greater than the current
PT. To give tuples a high chance of a match, we keep a
full window on the right stream according to the estimated
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Figure 6: Buffers maintained by the synchronization
algorithm to yield high join matching rates.

left PT. This means that we have nearly all tuples in the
expected range to do a match. Note that the PT indicates
that it is very unlikely that new events will have a timestamp
lower than the estimated value. As a result, when PT moves
forward, it is safe to discard tuples from the lower boundary
of the window, as it is unlikely that they will yield matches.

Let’s assume that we use p to compute processing time,
where p is measured as a percentile of the event time dis-
tribution. For example, if the processing time is set to be
the 1% lower watermark, p is equal to 1. The same p value
is used for both the left and right streams. For a limited
period of time, it is estimated that the buffer maintained
in the right stream covers (100 − p)% of the tuples with an
event time that is within the left PT’s join window and also
smaller than the right PT (i.e., tuples in the green box in
Figure 6). As a result, assuming that the PT estimation is
perfect, a lookup operation using the left PT would miss at
most p% of the tuples from the right stream buffer. To cal-
culate the join success rate, let’s look at the two cases that
can happen when a new tuple comes in the left stream.

The new left tuple’s event time can be smaller than the
current left PT. Based on the PT definition, this case can
occur with a probability of p% and it can have up to a 100%
chance to miss matches from the right stream’s buffer. The
max join failure percentage for this case is p% ∗ 100%;

The new left tuple’s event time can be equal to or greater
than the current left PT. The probability of this case is
(100−p)%. Joins can happen until the left PT becomes big-
ger than this tuple’s event time, and the join failure possibil-
ity for tuples with an event time equal to the left PT is p%.
As a result, it has at most p% chance to miss matches. The
max join failure percentage for this case is (100− p)% ∗ p%.

The minimum join success percentage can be described as
100% minus the maximum failure percentages above.
min join success percentage = 100% − p% ∗ 100% −

(100 − p)% ∗ p%
When p is equal to 1, the minimum join success rate is ap-

proximately 98%. In practice, the PT estimation is not per-
fect. Our experience has shown that we are able to achieve
matching rates that are very close to the ideal case.

The join operator synchronizes both streams by pacing the
ingestion of new data based on the PT estimates as to main-
tain the buffers according to the constraint described above.
The operator pauses the ingestion of data from the right
stream when the difference between the right PT and the left
PT is bigger than the upper window boundary. This means
that if the operator ingests more data from the right stream,
it will end up evicting tuples that could still be matched with
new left stream events. The operator pauses the ingestion
of data from the left stream when the left PT plus the upper
boundary of the window specification is ahead of the right
PT. This ensures that the operator is not buffering tuples

unnecessarily and increasing memory consumption, as these
would be tuples that will likely have to be retried to join
later.

In our implementation, the synchronization of the left and
right streams is made when processing new data and are not
strictly aligned. As a result, we end up buffering some extra
minutes of data for the right stream window. This is in
addition to the window size buffer. The extra buffer avoids
frequent stream pauses and reduces join failure rates.

5.3 Processing Time Calculation
As described in Section 5.2, processing time (PT) indi-

cates the estimated time of a stream, i.e., a time for which
we estimate that there will be no new tuples whose event
time attribute has a value that is smaller than the process-
ing time. In Stylus, the processing time is implemented as
a percentile of the processed event times, similar to other
systems [9, 10]. As tuples are not ordered by their event
times in a stream and we can only use event times that
have been observed so far, we must calculate PT based on
a statistic on top of the processed event time distribution
(e.g., percentile, or average). To do so, the Stylus engine
splits a stream’s events into micro-batches with configurable
size (e.g., 2 seconds or every 1000 events). It then uses the
chosen statistic to calculate the PT for the batch. In other
words, it makes a histogram of the raw event times for each
batch. For an x percentile statistic, it then assumes that
any future micro-batch will have at most x% of events with
an event time that is smaller than PT.

The assumption above is based on the observation that the
event times of tuples in a stream tend to increase over time.
As a result, as long as we use a statistic that reflects that
trend, PT should also increase. The problem though is to
understand the granularity (i.e., the window size) over which
to make PT calculations, so that the PT can continuously
increase. If we observe events over a small window, their
event times are likely to appear very disordered. However, if
we observe them over a larger window, new events will tend
to have event times that are more recent than previously
processed tuples. The ideal size of the window is stream
dependent, as the distribution of event times depends on
how the logging happens. Event time distributions can differ
greatly between streams containing server side events and
streams containing client side events.

It is expected that if we have a very large window, we can
observe more events and therefore have a higher confidence
on the PT estimation. However, having a large window
leads to increased latency, as one needs to wait longer for
computing subsequent PTs. Furthermore, the PT itself will
tend to progress slower, as the statistic will consider a larger
number of older tuples. As a result, the PT calculation must
balance accuracy and latency. Accuracy means how well the
PT estimation can fulfill the low watermark assumption that
at most x% of events processed after a given PT will have an
event time smaller than it. Latency means the delta between
the PT estimate and the wall-clock time, which, in the case
of the join operator, manifests as the tuple output delay.
If higher accuracy is preferred, the window of observation
must be larger, resulting in a higher latency.

Our PT calculation algorithm aims at finding the mini-
mum window size that still generates ascending PTs. The
window size indirectly represents how out-of-order a stream
is. This means that if the stream is somewhat ordered, we
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Window size Estimated processing time Ascending
w 2 3 1 2 4 1 3 5 3 4 7 5 6 4 8 7

2w 2.5 1.5 2.5 4 3.5 6 5 7.5

4w 2 3.25 4.75 6.25
Now

Figure 7: PT estimation on small window sizes re-
sults in PT not being an ascending sequence. In-
creasing the window size enables the PT value to
capture the true time trend.

can generate ascending PTs with a small window. If the
stream has data that is very disordered, then we need a
larger window. The steps to calculate the PT are as follows:
(i) split the stream into micro-batches of events. This is
provided by Stylus, which was already designed to process
data from Scribe in micro-batches; (ii) for each micro-batch,
calculate a PT using a statistic (e.g., percentile) over the
observed event-time distribution. The value calculated for
each micro-batch is used to find the ascending PT series;
(iii) if the PTs of the micro-batches are not ascending, the
adjacent windows are continuously merged so that we can
obtain an estimation for a larger window. The window size
is the main knob to balance between accuracy and latency.
Our algorithm dynamically chooses the window size, but we
have knobs in to manually tune the window parameter and
customize the operator for different use cases if necessary.

Figure 7 illustrates how the window size is adjusted to find
an ascending PT sequence. Each cell in the table represents
the PT value computed using a statistic over the event times
of the tuples processed within a given time window of the
specified size (w, 2w, or 4w). For simplicity, the figure shows
PT as a small integer and uses average as a statistic to
estimate the window PT. When looking at the PT value for a
small window (w), one can see it does not form an ascending
PT sequence (red values). As the window size increases
(2w), the trend of increasing PTs starts showing up, but
still cannot form an ascending sequence. When the window
size increases to 4w, an ascending sequence is found. After
that, 4w is used as the window size for PT computation and
PT is set to be the result of the PT calculation over the
most recent window (6.25 in this case).

In our implementation of the method above, we fix the
number of windows for a PT calculation (e.g., 4 windows of
observation) and increase their size by fitting more event-
time values into each window as more tuples are consumed.
We also use a maximum window size to limit the memory
growth of the operator.

6. STREAMING JOINS AS A SERVICE
This section elaborates on some of Puma’s features that

enable PQL queries written by developers to run smoothly
in production.

6.1 Fault Tolerance
Fault tolerance is desirable in many scenarios. Examples

include application updates, Puma and Stylus software up-
dates, planned or unplanned hardware maintenance, among
others. The join operator uses both replay and checkpoint-
based approaches. As the operator is designed to maintain
the whole window of data in-memory for the right stream,
checkpointing the operator state is expensive, as the window
can grow to tens of gigabytes. To solve this, we leverage the
fact that the input stream of the join operator is stored in

Scribe. On a crash, the operator can easily repopulate the
state by rereading the data from Scribe.

For the left stream, the join operator ingests a small chunk
of data into memory each time and then does a look up.
After the two streams are properly synchronized, most of
the events either succeed or fail by having their join win-
dows fully covered by the right stream’s buffer. As a result,
only a small percentage of events need to be kept in mem-
ory for later retry. Checkpointing such in-memory state
is much more affordable when compared to the right in-
memory state. The join operator checkpoints its state to
local disk using RocksDB [6]. The state gets replicated to
multiple HDFS clusters in different data centers. Saving
state to RocksDB is synchronous, while backing up to HDFS
is asynchronous (except during a graceful shutdown), as the
HDFS write latency is higher than writing to local disk.

To optimize the access latency to operator state, jobs run-
ning the join operator have both host-level and region-level
stickiness during scheduling. Host-level stickiness is con-
ceptually the same as host affinity in Samza [29]. A join
operator instance is always scheduled on the same host as it
was before so that it can recover quickly by reading states
locally. When this is not possible (e.g., the host needs to
be taken away for maintenance), the scheduler picks a host
from a data center where an HDFS snapshot can be found.

6.2 Scaling
The system must account for changes in stream traffic and

data characteristics over time. The join operator is horizon-
tally scalable. As shown in Figure 4, the output streams of
the slicer operators are partitioned into disjoint substreams
based on the join key. The substreams are written into dif-
ferent Scribe buckets, which are then processed by a join
operator instance. In each substream, there is another level
of sharding for higher scalability. Each tuple carries a DB
shard ID, which is also calculated based on the join key. The
DB shard ID is then used by the operator to further split its
in-memory state into different RocksDB instances. This en-
ables more efficient and scalable persistence and recovery of
state. The operator also supports multi-threading for both
left and right engines. Each worker thread handles tuples
containing a subset of join keys. In this way, contention
is avoided during lookup because worker in the left engine
only needs to communicate with a specific worker in the
right engine. This design also effectively partitions the join
window into multiple smaller, disjoint sub-windows which
can be efficiently handled by multi-core machines.

Puma’s scaler is responsible for managing the resources
allocated to the operators of an application throughout its
lifetime. The scaler continuously monitors application met-
rics and takes actions as a response. For streaming joins, it
must scale both slicers and joins. Since slicers are stateless,
the scaler adjusts the number of parallel tasks, targeting
the minimum number required to keep pace with the input
data stream. In our scenarios, the join operator is mostly
memory-intensive, and the scaler must be able to adapt their
memory reservation during runtime. If the memory reser-
vation is larger than necessary, then we are underutilizing
our hosts. If the memory reservation is too small, the host
can run out of resources, causing an out-of-memory crash,
killing all streaming jobs running on the same host. The
scaler periodically measures the memory the job is using,
and scales the memory reservation accordingly.

1816



6.3 Memory Optimization
The join operator is mostly memory-bound as the right en-

gine needs to buffer a whole window of data to ensure a high
match rate. We leverage compression to reduce in memory
data footprint. The compression is based on Zstd [7] dictio-
nary compression. The dictionary adapts during runtime so
that it can effectively compress new data.

In our use cases, dictionary compression achieved com-
pression ratios from 3 to 10 for different use cases and re-
duced the overall memory consumption in our fleet to one
third. This approach generally has better performance than
standard Zstd because it adapts to stream changes quickly.
Although using compression incurs more CPU consumption,
memory is typically the bottleneck for the join operator, so
CPU resources are abundant.

6.4 Monitoring and Alerting
Puma automatically sets alarms for deployed applications.

For streaming joins, Puma monitors and alerts when a back-
log of tuples accumulates beyond a certain threshold (e.g.,
more than 30 minutes of data to process). For the join op-
erator, it can happen that one stream is always backlogged
when compared to the other stream because of stream syn-
chronization. In that case, our alarms fire only when both
streams are backlogged, as that is a certain sign that the
operator is not being able to keep up with the incoming traf-
fic. Our system also automatically exports application-level
metrics, such as join success rate and operator throughput.
Changes on these metrics are often triggered by changes up-
stream (e.g., application logging). Users can set their own
alarms for those metrics for their own debugging purposes.

6.5 Join Window Configuration
Oftentimes users are unsure of how to set the join window

boundary for their applications. Intuitively, the larger the
join window is, the higher the join success rate is. However,
there are other tradeoffs to consider. First, a larger win-
dow leads to higher memory consumption, as the operator
must store all of the right stream’s tuples over the entire
window. Second, the recovery time after a job restart is also
longer, as more data needs to be replayed to rebuild a larger
in-memory state. Third, the output latency can increase
with a larger window upper boundary, as, depending on the
join configuration, tuples may be emitted only after a full
window is available in-memory.

In practice, users find it hard to figure out a good setting
for the join window, unless they have an equivalent batch
pipeline to experiment with. To help users find the ideal con-
figuration, our service measures how close the timestamps of
the matched events are to the join window’s lower and up-
per boundaries. It then exports the 99th percentile of these
deltas. A small value for the percentile indicates that the
matches are very close to the window boundaries, so the win-
dow can be extended to further increase the matching rate.
If the value is large, then users can safely reduce the window
size, leading to memory savings and reduced latency.

6.6 Data Skew
Some streams have a skew regarding the distribution of

events associated to a given join equality key. Given we
use hashing to partition data, skew can lead to partition
imbalance. This can lead to two undesired behaviors. First,
disproportionately higher memory consumption in one task

causes more memory to be allocated for all parallel tasks,
as the resource reservation is the same for all parallel tasks.
This causes memory to be wasted, as the reservation is made
but the extra memory is not really consumed by most tasks.
Second, if the skew is on the left stream, then it means that
the operator must checkpoint much more data to local disk,
which will cause higher utilization of the I/O subsystem. To
address both issues, we cap the number of tuples the join
operator holds for a given key. If the cap is reached for
a tuple on the left side, the operator processes the oldest
tuple with the same key and emits matches immediately.
For the right side, the operator just evicts the oldest tuple.
This causes a decrease in matching rate, but it has shown
to have negligible effect for our use cases.

6.7 Timestamp Validity
As our streaming join operator is based on tuple event

time, the stream synchronization scheme relies on the in-
coming timestamps to estimate a PT value. If the times-
tamp is too far in the past or in the future, and it affects
the PT estimation, then it can result in the operator taking
a long time to find an ascending sequence of PTs. To ensure
that the operator progresses smoothly in such situations we
do the following. For timestamps too far back in the past, it
is very likely that is already outside of the PT estimate and
the window size. As a result, if those are in the left stream,
they are emitted with a null match if it uses a left outer join.
Tuples in the right stream are discarded. If the timestamp
is too far in the future (e.g., 7 days from the current wall
clock time), then we discard the tuple from the PT estima-
tion. For the left stream, we emit the tuple immediately as
a non-match. For the right stream, we discard the tuple.

7. EXPERIMENTAL EVALUATION
In this section, we describe several experiments we have

conducted to evaluate the effectiveness of our techniques
with respect to accuracy and performance. All our experi-
ments were conducted on a reserved set of production hosts
using a subset of existing streaming applications.

7.1 Join Accuracy
The first question we want to answer is how accurate is

our streaming join operator – with a limited join window size
– compared to a batch join using daily partitions? When the
batch join operates on a window of 24 hours of data, it would
seem to have a very good chance of matching tuples, as a
tuple can be matched even if its matching tuple is ingested
many hours later. The exception is for tuples ingested close
to the 24-hour cut off, given matching tuples may end up
on the other side of the cut off, in the next daily partition.
The latter is a gap where a streaming solution can help, as
tuples are processed as they come. When the accuracy of the
streaming join is close to its batch version, we can effectively
replace it and gain the benefits of a real-time solution.

To do the evaluation, we selected one existing query using
streaming joins. This query aims at understanding how well
our search algorithms are doing by joining client and server
search sessions. When a client sends a request, the server
sends a response with a unique identifier. From then on,
the client uses the identifier in all subsequent search-related
requests. On the PQL query, we then stitch both client-side
and server-side information together. Prior to Puma, the
query was running in Hive using daily partitions. With the
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streaming version of the query, search system developers can
understand in real-time if a new deployment affects search
quality and take an action as a result.

The Puma version of the query is specified with the left
stream matching any tuple in the right stream with times-
tamps within the [-3 hours, 30 min] interval. We then have
three batch versions of the query: (i) join of 24 hours of the
left stream with 24 hours of the right stream, (ii) join of 24
hours of the left stream with 48 hours of the right stream,
and (iii) join of 24 hours of the left stream with 24 hours
of the right stream, but where the join considers only the
matching interval specified for the streaming version. The
join with 2 days of data shows how many more tuples we
can join when ignoring the cutoff of the daily partition. We
use a Hive query to join both tables. The matching rate
for both cases is computed as the number of tuples on the
output that led to a match over the total number of tuples
on the left-side table/stream.

Figure 8 shows the comparison of the Hive queries and
the real-time version over a one week period. The average
matching rate for 7 days for a 1-day to 1-day join is 93.23%
(batch-1d-to-1d). When joining with 2 days of data, the
matching rate increases to 94.07% (batch-1d-to-2d), indi-
cating that eliminating the 1-day partition cutoff gives an
additional 0.83% matching rate. When applying the 3.5
hours constraint, the batching matching rate drops to an
average of 92.49% (batch-1d-to-3.5h), which is less than 1%
when compared to joining the data with a full day. This
indicates that the matching window of 3.5 hours still gives
this application good accuracy when compared to 1-day of
data. The streaming version achieves a matching rate of
92.44% on average (realtime-ws-3.5h), which is very close to
the batch join version with the interval constraint. Although
the operator loses some matches for bounding the window
based on the PT estimation for tuples joining during the
day, it compensates it by providing smooth joins over the
partition cut off time. For the search application, it is ac-
ceptable for the streaming version to have a lower matching
rate than the 1-day batch version, as the latency benefits
far outweighs the marginal loss in accuracy.
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Figure 8: Streaming join accuracy is very close to
the batch join accuracy.

7.2 Join Window Size vs. Join Success Rate
The second question we want to answer is what is the gain

in join accuracy when varying the join window interval?.
Intuitively, the larger the join window is, the higher the join
success rate is. However, the cost of running the streaming
application increases, as the join operator stores the whole
window in memory. Given that, we need to evaluate how

much one is actually gaining in accuracy to understand if
the increase in computing cost is justifiable.

We evaluated the effect of increasing the window size on
the join success rate (i.e., matched tuples / total tuples pro-
cessed). We used the same production application as the
one described in Section 7.1, and varied the window size
from 1 hour to 6 hours. We limited the memory footprint
evaluation to a single process of a parallel join.

Figures 9 and 10 show the results of running the join oper-
ator on production data for 3 days. Figure 9 shows that the
memory consumption increases with the join window size,
varying from about 10GB to more than 50GB at peak traffic.
When looking at the accuracy (Figure 10), the improvement
in success rate is not large when comparing a 1-hour window
(ws-1h) to a 6 hours window (ws-6h). There is an average
improvement of 1.24% on success rate observed between the
1-hour window and the 6-hour window. The small difference
is due to the long tail of tuples that get processed after the
PT estimation has moved forward and their matching win-
dows have already been evicted. They would only success-
fully match if the operator would keep a significant larger
window, similar to the Hive daily partition. The impact of
window size on success rate is application-dependent and the
level of loss in accuracy depends on the application at hand.
When such loss in accuracy is acceptable, a streaming query
becomes a computationally affordable solution with signifi-
cantly lower latency when compared to a batch join.
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the window size.
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7.3 Failure Recovery
With this experiment, we answer the following question:

is the approach of leveraging Scribe’s persistency to replay
data after a process restart feasible without causing an ir-
recoverable backlog? As described in Section 6.1, we avoid
persisting in-memory state of the right-side window to stor-
age during checkpoints and fully replay hours of data from
Scribe to rebuild the join window. This design helps us re-
duce the stress on the hosts’ I/O, but also leads to increased
recovery time. The longer the operator stays in recovery
mode, the longer it can build a backlog of tuples and the
further it will increase latency on application output.

On replay, the main cost is re-reading data from Scribe
and rebuilding the key-value map in memory. Recovering
the left stream state from RocksDB or HDFS is generally
very fast, as the amount of data is much less compared to
the right stream. With host-level sticky scheduling, the state
can be recovered in just a few seconds.

To do this test, we used the same application as in Sec-
tion 7.1 and with a 3-hour join window. This setup has
a memory footprint of about 20GB. We then restarted the
process on the same host to see how fast the join operator re-
covers from a failure (minute 28). Figure 11 shows that the
operator can rebuild its state in about 9 minutes. Right af-
ter the operator finishes rebuilding its state (minutes 31-32),
there is a peak in memory consumption, which is caused by
the operator processing through its backlog (minutes 33-37).
After that, the operator is fully recovered, and its memory
footprint is back to pre-failure levels.
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Figure 11: The join operator rebuilds 3 hours of
data in about 9 minutes after a failure.

The recovery time depends on several factors. The main
ones are (i) the amount of data, which depends on the right
stream’s throughput and the window size, (ii) the speed data
can be read from Scribe, and (iii) the available CPU cycles
on the host. The latter is important, as building the key-
value map and compressing data are both CPU intensive.
As mentioned before, the CPU is not the biggest constraint
for our scenario, as we do equality joins and the number of
processes co-located in the same host is limited. The host
only executes processes running join operators, which are
mostly memory intensive. This leads to a limited number
of processes competing for CPU. This enables our operators
to go through any accumulated backlog fairly fast.

7.4 Processing Time Estimation
This experiment answers the following question: can the

join operator dynamically adapt to different event time dis-

tributions in the incoming streams while preserving accu-
racy? To effectively provide streaming joins as a service, the
operator should be able to adapt to the different event time
distributions present in different streams. This is because
application developers may write a PQL query that con-
sumes data from any Scribe stream. Furthermore, the event
time distributions may vary throughout the day within the
same stream. The operator should also handle such varia-
tions, otherwise we risk reducing the accuracy.

As described in Section 5.3, our PT calculation algorithm
aims at achieving a stable accuracy by dynamically adjust-
ing the window sizes according to the distribution of the
observed event times. In this experiment, we validate our
algorithm by observing the accuracy that the join opera-
tor achieves for 2 different streams that have different event
time distributions over a period of one day starting at 12PM
(Hour 0). Stream A contains tuples published by clients and
its event times are very disordered. Stream B contains tu-
ples published by servers and its event times are relatively
well ordered. In this setup, we use a micro-batch size of 2
seconds. The operator is also configured to look for an as-
cending PT sequence of length 5. The statistic we use to
estimate the PT is the 5th percentile.

Figure 12(a) shows the average stream delay throughout
the day. The delay is calculated as the difference between
the current wall clock time and the estimated PT. As the
graph shows, the calculated PT is not constant when com-
pared to the wall clock time. The variation depends on how
disordered the stream is over time. The more disordered, the
more tuples are needed to find an ascending sequence, which
causes the PT to progress slower and, therefore, increasing
the delay. Throughout the day, Stream A’s PT delay varies
from 16 minutes up to 31 minutes. Note that Stream A’s
stream delay has a bump at night time, as logs from client
side have a larger difference from wall clock time at night,
causing a more disperse event time distribution. For Stream
B, the PT varies little (5-6 seconds). Although Stream B is
not ordered, the event times are growing steadily as the de-
lay between when an event is created and when its processed
by the streaming application is very small.

Figure 12(b) shows the number of windows used to achieve
an increasing PT sequence throughout the day. As Stream
A is more disordered, it needs a significantly bigger window
(up to 73) than Stream B, which is always 1. As the graph
shows, the size of the window gets automatically adjusted
throughout the day as the event time distributions varies.
As Figure 12(c) shows, this dynamic adaptation ensures that
we get good accuracy on the estimated PT. The accuracy is
computed as the percentage of tuples in a batch that have
their event time greater than or equal to the estimated PT.
If there is a large number of tuples with their event times
lower than the estimated PT, it means that the PT is moving
too fast and the join matching rate may suffer.

8. RELATED WORK
Das et al. [16] is one of the first works to describe stream-

ing joins with resource constraints in mind. The authors
apply a semantic load shedding technique so that tuples are
not dropped at random, which can cause a lower join match-
ing rate. Kang et al. [24] proposes a framework to under-
stand what join algorithm is best for processing each input
stream depending on resource constraints. Gedik et al. [19]
proposes selective tuple processing to shed CPU load. Our

1819



 0

 500

 1000

 1500

 2000

 0  3  6  9  12  15  18  21  24
 0

 2

 4

 6

 8

D
e

la
y
 o

f 
S

tr
e

a
m

-A
 (

s
e

c
o

n
d

)

D
e

la
y
 o

f 
S

tr
e

a
m

-B
 (

s
e

c
o

n
d

)

Time (hour)

Stream-A Stream-B

(a) Average tuple delay

 0

 20

 40

 60

 80

 100

 0  3  6  9  12  15  18  21  24
 0

 0.4

 0.8

 1.2

 1.6

 2

A
v
g

 #
 o

f 
w

in
d

o
w

 u
n

it
 o

f 
S

tr
e

a
m

-A

A
v
g

 #
 o

f 
w

in
d

o
w

 u
n

it
 o

f 
S

tr
e

a
m

-B

Time (hour)

Stream-A Stream-B

(b) Average number of windows

 50

 60

 70

 80

 90

 100

 0  3  6  9  12  15  18  21  24

A
c
c
u

ra
c
y
 (

%
)

Time (hour)

Stream-A Stream-B

(c) Average PT accuracy

Figure 12: Stream A contains client-side events and is highly disordered, while Stream B contains server-side
events and is fairly ordered. Our PT estimation algorithm dynamically adapts the size of the window of
observation to capture the different characteristics and dynamics of real world data streams.

use cases are memory constrained. We deal with that by
leveraging a persistent message bus to pace the consump-
tion of tuples from the right and left stream according to
the estimated stream time. If more memory is needed, our
auto-scaler makes sure that the operator gets restarted with
a higher memory reservation (up to a maximum bound).

PWJoin [18] explores punctuations to trim join states.
Punctuations propagate patterns and purge the tuples in
the window that match them. Punctuations are specified in
terms of properties of the join attribute. Our stream time es-
timation scheme and its use to emit tuples can be considered
a punctuation scheme where punctuations are generated by
the operator itself. A difference is that it is established in
terms of the timestamp attributes of a tuple. k -Mon [13]
uses k-constraints to trim operator state. One such exam-
ple is the ordered-arrival constraint, which establishes that
out-of-order tuples are within k tuples of each other. This
does not fit well in our scenario, as k can be different for
different applications and even within the same stream.

Photon [11] uses a consistent ID registry to ensure that
every tuple gets processed exactly once. Photon supports
longer aggregation window by storing all events on persis-
tent storage. Our solution is optimized for analytical ap-
plications that require shorter windows (e.g., several hours)
by holding the events in memory, avoiding cross datacenter
traffic on lookup. InfoSphere Streams [23] uses distributed
snapshots to ensure exactly once semantics for stream pro-
cessing graphs. Flink [14] implements fault-tolerance with
a global and asynchronous snapshot of application state.
AthenaX [1] is a stream processing service built upon Flink,
and is similar to Puma’s service model. Spark supports
streaming joins [4] and guarantees no data loss when re-
liable receivers are used. It adopts write ahead logs and
periodically checkpoints the application state to a reliable
storage [12]; however, its bulk-synchronous parallel (BSP)
computation model can introduce a non-trivial overhead
when scheduling micro batches, which requires more ad-
vanced management techniques to achieve low latency [33].
Our scenarios have a less strict fault-tolerance requirement,
which enables us to leverage a scheme with lower overhead.

Samza [29] has similarities with our system regarding
fault-tolerance, as they use a persistent message bus and
use local and remote storage to persist operator state. Our
streaming join operator can be implemented on Samza.

Prior research uses specialized hardware to improve the
throughput of streaming join operators. HELLS-Join [25]
splits the join execution between CPU and GPU. Gedik
et al. [20] investigates how to split sequential and paral-

lel segments of joins onto a Cell processor. The Handshake
join [31] finds join matches by processing each of the streams
in different directions. This scheme shows advantages on
processors with a high number of cores. These works can
be helpful for processing large windows. Our case focuses
on equality joins, where we can use hash tables as indexing
data structures. Even though our windows can be large, the
size of the window per key is generally small.

Similar to our work, Lin et al. [27] focuses on distributed
stream joins that can scale and be memory efficient. Their
window-based stream joins leverage timestamps assigned
when the tuple is first ingested in the system. Window-
Oblivious join [35] does not force users to specify a window
size for the join. Unlike our work, it assumes streams are
ordered or partially ordered. Our streaming join in PQL is
is similar to Apache Calcite’s SQL specification [3]. Calcite
does not specify how to implement operators and how to
generate backward compatible query plans.

An alternative approach to reduce join query latency is
to incrementally maintain materialized views directly in the
Data Warehouse [26]. View materialization is not currently
supported by our SQL engines [5, 32].

9. CONCLUSION
This paper describes how we enable users to deploy new

real-time queries with event time based streaming joins. The
main challenges we had to tackle were (i) how to devise a ro-
bust stream synchronization scheme that can achieve a high
matching rate while still controlling the memory consump-
tion of the operator, and (ii) how to support application
updates, so that query modifications do not lead to signif-
icant output delay, data duplication, and data loss. Our
system has enabled several teams to reduce the latency of
their analytics and monitor key service metrics in real-time.
In the future, we plan to look into a DAG level stream time
estimation, expand the types of supported joins (right outer
join) and enable functors to be applied to matching tuples to
decide which tuple should be emitted on a 1-to-1 matching
scenario (e.g., tuple with most recent event time).
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S. Schneider, R. Soulé, and K.-L. Wu. IBM Streams
Processing Language: Analyzing big data in motion.
IBM Journal of Research and Development, 57(3/4):7,
2013.

[23] G. Jacques-Silva, F. Zheng, D. Debrunner, K.-L. Wu,
V. Dogaru, E. Johnson, M. Spicer, and A. E. Sariyüce.
Consistent regions: Guaranteed tuple processing in
IBM Streams. PVLDB, 9(13):1341–1352, 2016.

[24] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In ICDE, 2003.

[25] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner.
The HELLS-join: A heterogeneous stream join for
extremely large windows. DaMoN, 2013.

[26] P. A. Larson and J. Zhou. Efficient maintenance of
materialized outer-join views. In ICDE, pages 56–65,
April 2007.

[27] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable
distributed stream join processing. SIGMOD, 2015.

[28] A. Narayanan. Tupperware: Containerized
deployment at Facebook. In DockerCon, 2014.

[29] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh,
J. Bringhurst, I. Gupta, and R. H. Campbell. Samza:
Stateful scalable stream processing at LinkedIn.
PVLDB, 10(12):1634–1645, 2017.

[30] C. Tang, T. Kooburat, P. Venkatachalam,
A. Chander, Z. Wen, A. Narayanan, P. Dowell, and
R. Karl. Holistic configuration management at
Facebook. In SOSP, 2015.

[31] J. Teubner and R. Mueller. How soccer players would
do stream joins. SIGMOD, 2011.

[32] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive -
a petabyte scale data warehouse using hadoop. In
ICDE, 2010.

[33] S. Venkataraman, A. Panda, K. Ousterhout,
M. Armbrust, A. Ghodsi, M. J. Franklin, B. Recht,
and I. Stoica. Drizzle: Fast and adaptable stream
processing at scale. In SOSP, 2017.

[34] A. Wilschut and P. Apers. Dataflow query execution in
a parallel main-memory environment. In PDIS, 1991.

[35] J. Wu, K. L. Tan, and Y. Zhou. Window-oblivious
join: A data-driven memory management scheme for
stream join. In SSDBM, 2007.

1821


