
Sherlock: A System for Interactive
Summarization of Large Text Collections

Avinesh P.V.S.1, Benjamin Hättasch1, Orkan Özyurt1,
Carsten Binnig1,2, Christian M. Meyer1

1 TU Darmstadt, Germany 2 Brown University, USA
{avinesh,oezyurt,meyer}@ukp.tu-darmstadt.de,{benjamin.haettasch,carsten.binnig}@cs.tu-darmstadt.de

ABSTRACT
There exists an ever-growing set of data-centric systems that allow
data scientists of varying skill levels to interactively manipulate,
analyze and explore large structured data sets. However, there are
currently not many systems that allow data scientists and novice
users to interactively explore large unstructured text document col-
lections from heterogeneous sources.

In this demo paper, we present a new system for interactive text
summarization called Sherlock. The task of automatically produc-
ing textual summaries is an important step to understand a collec-
tion of multiple topic-related documents. It has many real-world
applications in journalism, medicine, and many more. However,
none of the existing summarization systems allow users to provide
feedback at interactive speed. We therefore integrate a new ap-
proximate summarization model into Sherlock that can guarantee
interactive speeds even for large text collections to keep the user
engaged in the process.

PVLDB Reference Format:
Avinesh P.V.S., Benjamin Hättasch, Orkan Özyurt, Carsten Binnig, and
Christian M. Meyer. Sherlock: A System for Interactive Summarization
of Large Text Collections. PVLDB, 11 (12): 1902–1905, 2018.
DOI: https://doi.org/10.14778/3229863.3236220

1. INTRODUCTION
Motivation: Existing data-centric systems for interactively ma-

nipulating, analyzing and exploring large data sets focus particu-
larly on structured data. For example, tools like Tableau or Cognos
allow to quickly analyze high-dimensional data using an interac-
tive and visual interface. Research prototypes like imMens [13],
DICE [8, 9] or IDEA [3] aim to improve upon systems like Tableau
by using specialized data structures, pre-fetching and/or approxi-
mation techniques to guarantee interactive latencies over big data
sets. Other research projects like SeeDB [11] or Data Polygamy
[2], help users during the exploration process by providing recom-
mendations for interesting visualizations or correlations, whereas
systems like DataWrangler [10], Trifacta [17] or Paxata [16] assist
users in data wrangling and cleaning.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236220

Figure 1: Scalability of Text Summarization Models

While the before-mentioned interactive exploration systems tar-
get mainly structured data, there are currently not many systems
apart from [6] and [5] that allow data scientists of varying skill
levels and novice users to interactively explore unstructured text
document collections. Most of the existing interactive text explo-
ration systems, however, only allow users to apply classical key-
word searches [6] and rank the documents according to static met-
rics (e.g., frequency [1] or centrality [15]). While keyword-based
search systems are important to filter down the number of rele-
vant documents, they still do not support users in understanding
the document collection. Imagine for example a journalist who just
received a large collection of documents to start an investigative
case, or a lawyer who needs to screen a large collection of e-mail
conversations. In all these examples, an important step to better un-
derstand the collection of documents is to produce a concise textual
summary that captures most of the important information relevant
to a user’s individual goal.

The task of producing textual summaries from a collection of
multiple topic-related documents is a well-established task in the
text analysis community. Despite a lot of research in this area, it is
still a major challenge to automatically produce summaries that are
on par with human-written ones. To a large extent, this is due to
the complexity of the task: a good summary must include the most
relevant information, omit redundancy and irrelevant information,
satisfy a length constraint, and be cohesive and grammatical. But
an even bigger challenge is the high degree of subjectivity in the
summarization task, as it can be seen in the small overlap of what
is considered important by different users [14]. Optimizing a sys-
tem towards one single best summary that fits all users, as it is

1902

Figure 2: A Screenshot of Sherlock

assumed by current state-of-the-art systems, is highly impractical
and diminishes the usefulness of a system for real-world use cases.

Contributions: To this end, in a recent research paper [14] we
have suggested an interactive concept-based model to assist users
in creating a personalized summary based on their feedback. While
we could show that user feedback significantly improves the quality
of the summary, each iteration in our model can take from several
seconds for small document collections to hours for larger collec-
tions with thousands of sentences as shown in Figure 1. However,
one of the most important aspects is to keep users involved in the
exploration process. In fact, a recent study [12] has shown that even
small delays (more than 500ms) significantly decrease a user’s ac-
tivity level, dataset coverage, and insight discovery rate.

In this demo paper, we build on our own prior work [14] and
integrate the interactive summarization model into a new system
with an interactive user interface called Sherlock. A screenshot of
the web-based user interface of our system can be seen in Figure 2.
Using our system, in every interaction loop the system suggests a
potential summary and the user can accept or reject individual con-
cepts (e.g., entities) shown as green or red in the suggested sum-
mary. The feedback is then used to refine the summary for the next
iteration. In order to get a better overview of how the system works,
we recommend the readers to watch the demo video1.

In order to provide interactive response times, the backend of
Sherlock implements a novel approximate version of our interac-
tive summarization model. The main idea is similar to sample-
based approximate query processing in databases: Instead of look-

1http://vimeo.com/257601765

Interactive	Backend	

Interactive	
Summarizer	

Approximate	
Model	

Document	Store	

Web-based	User	Interface	

Summary	 Concepts	

!	 User	Feedback	

Figure 3: Sherlock System Overview

ing at the complete document collection in every iteration, we only
consider a sample from the documents per iteration to compute the
summary in a given time threshold (e.g., 500ms). We therefore de-
veloped a new sampling strategy to select a smaller set of “promis-
ing” sentences from all input documents. As we show in Figure 3,
that way our approximate summarization model can provide inter-
active latency for each interaction loop independent of the size of
the text collection that is being summarized.

Outline: The remainder of the demo paper is structured as fol-
lows: In Section 2 we give an architectural overview of our system
and describe the high-level idea of the interactive summarization
procedure. We then discuss the details of the existing interactive
summarization model and our new extensions to support approx-
imate summaries in Section 3. Afterwards, we discuss the demo
scenario that shows how users can interact with our system to pro-
duce text summaries interactively for document collections of dif-
ferent sizes.

2. SYSTEM OVERVIEW
The Sherlock system consists of two major components as shown

in Figure 3: a web-based user interface and a novel backend that
implements our interactive text summarization model. The back-
end hosts multiple components, a document store as well as the
required indexes, the summarization component that accumulates
the user feedback and creates the summaries for every iteration as
well as an approximation model to enable an interactive execution
of the summarization.

User Interface: We designed a web-based interface that allows
users to summarize a collection of textual documents in an inter-
active manner. A screenshot was already shown in Figure 2. In a
typical setup, a user would need to read all the documents and man-
ually summarize it. In our interactive approach, the user is shown
a summary and marks all the important concepts (marked green in
Figure 2) and the unimportant concepts (marked red in Figure 2).
The accepted and rejected concepts then appear on the right-hand
side of the user interface. In the final step, the user can review his
feedback and submit them for the next iteration.

Interactive Backend: The main task of the backend is to com-
pute the text summary for each iteration by taking the documents
and the user feedback into account. The first summary which is
presented to the user is created without any feedback. Afterwards,
in every iteration the summarization component takes the user feed-
back of all previous iterations into account. The current version of
the backend implements both summarization models; the original
one as well as the new approximate one that relies on sampling.
An important component that is leveraged by the the new approxi-
mate summarization model is the cost-based approximation model

1903

http://vimeo.com/257601765

which selects only a relevant sample of sentences for the summa-
rization component. An important task of the approximation model
is to estimate the size of the sample for a given document collection
and an interactivity threshold (e.g., 500ms) that should be met by
the backend. The details of our summarization model are explained
in the next section.

3. INTERACTIVE SUMMARIZATION

3.1 Basic Summarization Model
ILP-based summarization: Boudin et al. [1] propose an auto-

matic summarization framework based on integer linear program-
ming (ILP), whose goal is to select sentences St ⊆ D from a docu-
ment collection D that maximize the occurrence of important con-
cepts c ∈ C (e.g., bigrams, named entities, syntactic phrases) in St
under a given length constraint L for St. Binary variables ci, i ∈ C
and sj , j ∈ D of the ILP indicate if a concept (ci = 1) or sentence
(sj = 1) is present in the resulting summary St. The ILP is formu-
lated as follows:

max
∑|C|
i=1 wici (1)∑|D|

j=0 `jsj ≤ L (2)
∀i ∈ C, j ∈ D. sj ·Occij ≤ ci (3)

∀i ∈ C. ci ≤
∑|D|
j=1 Occij · si (4)

∀i ∈ C. ci ∈ {0, 1} (5)
∀j ∈ D. sj ∈ {0, 1} (6)

Equation (1) is the optimization goal of the ILP: The concepts cov-
ered by St should yield a maximal overall weight. As concept
weights wi, we use the document frequency (i.e., number of docu-
ments in D that contain concept i). The length of St is the sum of
all sentence lengths `j of all sentences j ∈ St, which is constrained
by the length parameter L (2). The equations (3) and (4) ensure the
selection of all concepts in a selected sentence j and that a concept
i is only selected if it is present in at least one selected sentence.
The last equations (5) and (6) constrain ci and sj to binary values.

Algorithm 1 Basic Interactive Summarization
1: procedure INTERACTIVESUMMARIZER()
2: input: Documents D
3: C ← extractConcepts(D)
4: W ← conceptWeights(C)
5: for t = 0...T do
6: St ← getSummary(D,C,W)
7: Ct ← extractConcepts(St)
8: if

⋃t
τ=0 Cτ = C then

9: return St
10: else
11: Rt ← obtainFeedback(St, Ct)
12: W ← updateWeights(W,Rt, Ct)
13: end if
14: end for
15: end procedure

Interactive summarization: On the basis of this model, we re-
cently proposed an interactive summarization approach [14] that
learns from user feedback. Algorithm 1 shows this procedure in
pseudo code. Given a document collection D, we first extract the
concepts C and initialize the set of concept weights W (lines 3–
4). In an interactive loop over t = 0, . . . , T (line 5), we collect

feedback from the user. In every iteration, a summary St (line
6) is created using the concept-based ILP summarization frame-
work discussed above. We display this summary along with its
concepts Ct in our web-based UI. Afterwards, the user may ac-
cept concepts considered important or reject irrelevant concepts by
clicking. Based in this feedback Rt, we update the concept weights
by increasing the weight of important concepts and decreasing the
weights for irrelevant ones (see [14] for details). We terminate the
summarization after T iterations, if the user is satisfied with the re-
sult, or if all concepts have been seen. For small reference datasets
from the summarization community, ten iterations are typically suf-
ficient when assuming perfect feedback [14].

3.2 Approximate Summarization Model
The main problem of the basic summarization model discussed

before is that the runtime to provide a summary in every iteration
ranges from seconds for small collections of ten documents up to
hours for larger collections of several hundred documents. How-
ever, when users are involved they want to provide feedback in an
interactive manner instead of waiting potentially for hours to start
the next feedback loop. We therefore extended Algorithm 1 as fol-
lows: Instead of executing the ILP-based summarization model on
all sentences D of the document collection, we only use a sample
Dt of sentences in every iteration t. In our extended version of the
algorithm, the sample Dt is used as the input to create the summary
(line 6) instead of all sentences.

For creating the sample Dt, two important factors play a role:
The first factor is the sample size K = |Dt| (i.e., the number of
sentences in the sample), which determines the runtime of the sum-
marization method. The second factor is the sampling procedure,
that determines which K sentences are part of the sample. In the
following, we discuss how these two factors are implemented in
our current prototype of Sherlock.

In order to determine the sample size K, we need to define an in-
teractivity threshold (say 500ms [12]) that an iteration should take
maximally. Based on this threshold, we then derive a maximal K
such that the resulting ILP can be solved in the given threshold us-
ing a cost model. Therefore, the cost model first needs to determine
the approximate complexity of the ILP (in number of constraints)
for a given K and then needs to estimate the runtime of solving
this ILP. For estimating the runtime, we rely on calibration runs
with the particular ILP solver that should be used in Sherlock to
map a given number of constraints to an estimated runtime.

For deciding which sentence should be contained in the sample
Dt, we developed a novel heuristic called information density that
is computed for each sentence in D. In a nutshell, the heuristic is
the weight density of concepts normalized by the sentence length.
For sampling, we then only select the top-K sentences based on this
heuristic. The intuition is that sentences with a higher information
density are more relevant to the user. It is important to note, that the
information density of a sentence changes based on the user feed-
back since the feedback is used to update the weights of concepts
and this also changes the information density of sentences that con-
tain those concepts. For example, if all concepts of a sentence are
not seen to be relevant based on the feedback, their weights will all
be set to 0 and thus the information density of that sentence will
also be 0.

4. DEMONSTRATION
In our demonstration video at https://vimeo.com/257601765, we

show two scenarios of how Sherlock2 can be used interactively to

2https://sherlock.ukp.informatik.tu-darmstadt.de

1904

https://vimeo.com/257601765
https://sherlock.ukp.informatik.tu-darmstadt.de

produce personalized summaries. We describe these two scenarios
below.

Query-driven summarization: As our first scenario, consider
parents of an elementary student. As they are worried about their
kid having ADHD, they explore a topically focused document col-
lection in order to learn, how ADHD is diagnosed and treated. In
this scenario, we use a query-focused summarization corpus DUC
’06 [4]. The parents start by exploring a preliminary summary
of the document collection by entering their feedback on impor-
tant concepts such as ‘behavioral studies’, ‘short attention span’,
‘jumpiness’, ‘impulsive behavior’, ‘stimulant medication’, ‘Ritalin
acts on the serotonin levels in the brain’, ‘children who do not re-
spond to methylphenidate’, etc. They also reject unrelated con-
cepts like ‘overprescribing drugs’, ‘academy began developing’,
and ‘doctors may be overdiagnosing’. The parents then review the
accepted and the rejected concepts on the right-hand side of the
user interface and submit them to let the system improve the sum-
mary of the next iteration. Sherlock learns from this feedback and
creates a new summary based on the adapted concept weights. This
process continues for five to six iterations, until the parents fulfilled
their information need and they are satisfied with the resulting sum-
mary text.

Exploratory summarization: As the document collection used
grows larger, the efficiency of the approach becomes a severe bot-
tleneck. Runtimes of tens of seconds per iteration and more reduce
the user’s activity level and thus limit the effectiveness of the sys-
tem. Sherlock’s approximate model prevents this even for large
document collections of thousands of sentences. Our second sce-
nario particularly highlights the need for efficient system responses:
Imagine a journalist investigating the situation in schools. This
scenario deals with the exploration of large document collection
(more than 1,000 documents) for a user’s information need using
the DIP corpus [7]. As her exact information need is yet unclear,
she explores a large collection of educational reports, web docu-
ments, and forum entries using Sherlock. During the first itera-
tions, the summary is yet very broad and generic, but highlights
some of the issues discussed in the documents. The journalist re-
jects concepts that do not seem interesting for her news story, such
as ‘legal issues’ or ‘curriculum’. She, however, also identifies con-
troversial issues about ‘handling conflicts between children’, ‘bul-
lying’, or ‘religious classes’. By exploring the document collec-
tion further, spanning multiple iterations, the journalist decides to
write a news story about parents’ concerns about religious classes
in school, starting from Sherlock’s personalized summary, that she
revises and extends by additional facts and interviews.

5. CONCLUSION AND FUTURE WORK
In this demo paper, we presented a new system for interactive

text exploration and summarization at interactive speed. We pro-
pose an approximate model that bounds the runtime to engage the
user’s activity. We discuss two usage scenarios illustrated in a
video. Our system is however applicable to a wide range of re-
alistic use cases, including the interactive summarization of legal
documents for a particular case or exploring medical publications
for adverse drug reaction.

6. ACKNOWLEDGMENTS
This work has been supported by the German Research Foun-

dation as part of the Research Training Group “Adaptive Prepara-
tion of Information from Heterogeneous Sources” (AIPHES) under

grant No. GRK 1994/1. We thank Hendrik Lücke-Tieke for his as-
sistance with the GUI.

7. REFERENCES
[1] F. Boudin, H. Mougard, and B. Favre. Concept-based

summarization using integer linear programming: From
concept pruning to multiple optimal solutions. In EMNLP,
pages 1914–1918. ACL, 2015.

[2] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire.
Data polygamy: the many-many relationships among urban
spatio-temporal data sets. In ACM SIGMOD, pages 1–15.
ACM, 2016.

[3] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and
T. Kraska. The case for interactive data exploration
accelerators (IDEAs). In HILDA@SIGMOD, page 11. ACM,
2016.

[4] Document understanding conference 2006 corpus.
http://duc.nist.gov/duc2006. Accessed: 2018-03-01.

[5] T. Falke and I. Gurevych. GraphDocExplore: A framework
for the experimental comparison of graph-based document
exploration techniques. In EMNLP, pages 19–24. ACL,
2017.

[6] D. Glowacka, T. Ruotsalo, K. Konuyshkova, K. Athukorala,
K. Samuel, and G. Jacucci. Directing exploratory search:
Reinforcement learning from user interactions with
keywords. In ACM IUI, pages 117–127. ACM, 2013.

[7] I. Habernal, M. Sukhareva, F. Raiber, A. Shtok, O. Kurland,
H. Ronen, J. Bar-Ilan, and I. Gurevych. New Collection
Announcement: Focused Retrieval Over the Web. In
Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, SIGIR ’16, pages 701–704, 2016.

[8] P. Jayachandran, K. Tunga, N. Kamat, and A. Nandi.
Combining user interaction, speculative query execution and
sampling in the dice system. PVLDB, 7(13):1697–1700,
2014.

[9] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed and interactive cube exploration. In ICDE, pages
472–483. IEEE, 2014.

[10] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In ACM SIGCHI, pages 3363–3372. ACM, 2011.

[11] M.-T. Ke, S. Fujimoto, and T. Imai. Seedb: a simple and
morphology-preserving optical clearing agent for neuronal
circuit reconstruction. Nature neuroscience, 16:1154–1161,
2013.

[12] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE transactions on
visualization and computer graphics, 20:2122–2131, 2014.

[13] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. In Computer Graphics Forum,
volume 32, pages 421–430. Wiley Online Library, 2013.

[14] Avinesh P. V. S. and C. M. Meyer. Joint optimization of
user-desired content in multi-document summaries by
learning from user feedback. In ACL, pages 1353–1363.
ACL, 2017.

[15] R. Mihalcea and P. Tarau. Textrank: Bringing order into
texts. In EMNLP, pages 404–411. ACL, 2004.

[16] Paxata. http://www.paxata.com, 2018. Accessed:
2018-03-01.

[17] Trifacta. http://www.trifacta.com, 2018. Accessed:
2018-03-01.

1905

http://duc.nist.gov/duc2006
http://www.paxata.com
http://www.trifacta.com

	Introduction
	System Overview
	Interactive Summarization
	Basic Summarization Model
	Approximate Summarization Model

	Demonstration
	Conclusion and Future Work
	Acknowledgments
	References

