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ABSTRACT

Database management systems (DBMSs) have a plethora of tunable
knobs that control almost everything in the system. The perfor-
mance of a DBMS is highly dependent on these configuration knobs,
however, getting this tuning right is hard. Many organizations resort
to hiring experts to configure these knobs, but this is prohibitively
expensive. As databases grow in both size and complexity, opti-
mizing a DBMS has surpassed the abilities of even the best human
experts. We recently introduced OtterTune, a tuning service that
is able to automatically find good settings for a DBMS’s config-
uration knobs. OtterTune leverages data collected from previous
tuning efforts to train machine learning models, and recommends
new configurations that are as good as or better than ones generated
by existing tools or a human expert. In this demonstration, we show-
case OtterTune’s ability to automatically select a configuration that
improves a DBMS’s performance.
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1. INTRODUCTION

DBMSs are an important component of data-intensive applica-
tions. But achieving good performance in DBMSs is non-trivial.
Tuning a DBMS to perform well has many challenges. First, mod-
ern DBMSs are notorious for having many configuration knobs [7],
such as the amount of memory to use for caches and how often
data is written to storage. The number of DBMS knobs is always
increasing as new versions and features are released. Another chal-
lenge is that many of these knobs are not independent, which means
that changing one knob may affect the optimal setting for another
one. It is hard enough for humans to understand the impact of one
knob let alone the interactions between multiple knobs. Lastly, one
often cannot reuse the same configuration from one application to
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the next. This is because the optimal configuration depends heavily
on the application’s workload and the database server’s underlying
hardware. The best configuration for one application may not be the
best for another.

What is needed is a tuning tool that automatically selects the best
DBMS configuration for a particular application. Previous efforts
to create tools for this problem have made progress [3, 5], but they
have shortcomings that limit their usefulness in practice. Foremost
is that many of them only support a single DBMS. This is often
because they rely on some internal mechanism of the target DBMS
to reason about the workload (e.g., the optimizer’s cost model). A
small number of tuning tools do support multiple DBMSs tuning, but
they still require manual steps, such as having the DBA (1) deploy a
second copy of the database, (2) map dependencies between knobs,
or (3) guide the training process. The second is that none of these
tools are able to reuse previous training data. Instead, they must
tune each DBMS deployment from scratch without transferring
knowledge gained from previous tuning efforts, which takes time
and requires additional resources to collect enough information to
make the correct decision.

Given these deficiencies in existing tools, we developed the Otter-
Tune [1] automatic DBMS tuning service through machine learning.
OtterTune differs from other tuning tools because it leverages knowl-
edge gained from tuning previous DBMS deployments to tune new
ones. This reduces the amount of time and resources it takes to tune
a DBMS for a new application. To do this, OtterTune maintains a
repository of tuning data collected from previous tuning sessions.
It uses this data to build a combination of supervised and unsuper-
vised machine learning (ML) models, and uses these models to (1)
select runtime metrics to characterize workloads, (2) choose the
most impactful knobs to tune, (3) map unseen database workloads
to previous workloads from which it can transfer experience, and
(4) recommend knob settings that improve the target objective (e.g.,
throughput, latency). Our previous results [7] show that OtterTune
produces a DBMS configuration for both OLTP and OLAP work-
loads that achieves 58-94% lower latency compared to their default
settings or configurations generated by other tuning advisors. Otter-
Tune also generates configurations in under 60 min that are within
94% of ones created by expert DBAs.

In this paper, we provide the details of OtterTune’s implemen-
tation and lessons that we have learned in the process. We begin
with an overview of OtterTune’s architecture in Section 2. We then
describe its machine learning pipeline in Section 3. We conclude in
Section 4 with our description of the demonstration.
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Figure 1: OtterTune Architecture — The controller connects to the target DBMS, collects its knob/metric data, transforms the collected information into the
universal JSON schema, and sends it to the server-side tuning manager. The tuning manager stores the information in the data repository and schedules a new
task with the job scheduler to compute the next configuration for the target DBMS to try. The controller (1) sends the information to the tuning manager, (2) gets
a token from the tuning manager, (3) uses this token to check status of the tuning job, and (4) gets the recommended configuration when the job finishes.

2. ARCHITECTURE

As shown in Figure 1, OtterTune is comprised of two components:
(1) client-side controller and (2) server-side tuning manager. A
user deploys the controller in the same administrative domain as
the target DBMS. It begins a new tuning session by collecting
information from target DBMS (i.e., the system that the user wishes
to tune). It then collects this information again after an observation
period (five minutes by default) and transmits them to the tuning
manager. The tuning manager processes this data and recommends
a new knob configuration to the controller. The controller can then
install this new configuration, collect more performance data to
measure its impact, and repeat this process until the user is satisfied
with the target DBMS’s performance.

2.1 Client-side Controller

OtterTune’s Java-based controller acts as the intermediary be-
tween the target DBMS and the tuning manager. Since OtterTune
only requires access to the DBMS’s runtime metrics through JDBC,
the controller is deployed externally. That is, it does not need to
“observe” the application’s query trace or require the user to in-
stall special binaries inside of the DBMS. It also does not require
interruption of the application to collect this information.

At the beginning of a new tuning session, the controller connects
to the target DBMS and collects its current knob configuration. It
also takes a snapshot of the DBMS’s internal metrics at the be-
ginning of the session. Although we designed OtterTune to be
DBMS-agnostic as much as possible, the commands to retrieve this
information are different for each DBMS. The controller contains
modules for collecting the knobs and metrics from each DBMS that
OtterTune supports'. These DBMSs expose this information via
their catalogs and other internal tables that are accessible through
SQL. Therefore, adding support for a new DBMS requires only
basic SQL knowledge. We also found that different versions of the
same DBMS differ in what data is available. For example, Postgres
v9.4 includes a metric table about its WAL archiver process’s activ-
ity®, but this table is not available in earlier versions. Thus, each
DBMS collector module also supports different versions of the same

1As of March 2018, OtterTune supports Postgres (v9), MySQL (v5), MyRocks, Vec-
torWise, and Greenplum.

2Postgrn:s v9.4 —pg_stat_archiver
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DBMS. It remains future work to determine how to automatically
combine the metric data from different versions of the same DBMS.

Another challenge in collecting this data from the DBMS is that
some systems maintain knobs and metrics that are specific to a sub-
component in the system. Some systems, like MySQL, only report
aggregate statistics for the entire DBMS and each knob affects the
entire system. Other systems, however, provide separate knobs and
metrics for databases, tables, and even sub-elements of a table. For
example, MyRocks supports separate knobs and metrics for the
column families in a single table®. To handle these diverse data sets,
the controller transforms them into a universal schema that separates
elements into the “global” and “local” groups.

During the observation period, the controller does not interact
with the DBMS. This is to ensure that OtterTune has minimal inter-
ference with the execution of the application’s workload. At the end
of the observation period, the controller collects the same internal
metrics from the DBMS as it did in the beginning of the period and
uploads them to the tuning manager for processing. It receives a
unique token from the tuning manager, and uses it to check the task
status periodically. Once the task finishes and the tuning manager
recommends a configuration successfully, the controller downloads
it and employs a separate agent to install the new configuration and
restart the target DBMS. The agent is a stand-alone script used by
the controller for performing tasks on the target DBMS that cannot
be done through JDBC, such as those that require administrative
privileges (e.g., restarting the system). The controller then starts the
next observation period and uploads the collected information in the
next loop. This process continues until the user is satisfied with the
improvements over the initial configuration.

2.2 Server-side Tuning Manager

The tuning manager is responsible for processing and storing
tuning data, scheduling jobs to compute OtterTune’s ML models and
make configuration recommendations, and visualizing the results
from each tuning session in its front-end web interface. The tuning
manager is written in Python using the Django web framework. We
use the same MySQL v5.7 database for OtterTune’s data repository
and the Django back-end database. We use Django’s ORM APIs
to design and create all of the tables, and to query them for data

3MyRocks v5.6 —write_buffer_size, cur_size_active_mem_table
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Figure 2: Tuning Session — The user can view the performance of the target
DBMS as it tries the configurations recommended throughout the tuning
session. Users can also view detailed information about the knob settings
and metric values collected during each observation period.

to feed into the ML model training components. We use Celery
to schedule and execute tasks for creating OtterTune’s ML models
and recommending new configurations. Celery is a task queue and
scheduler that is easy to integrate with web frameworks like Django.
We implemented all of OtterTune’s ML models using Python’s
scikit-learn and Google TensorFlow.

When the tuning manager receives the target DBMS’s knob and
metric data from the controller via its REST API, it first stores this
information in its data repository and then visualizes the results in
the front-end. As shown in Figure 2, the user can view graphs of
the metrics to see the change in the target DBMS’s performance for
the different configurations that have been recommended so far in
the tuning session. Next, the tuning manager schedules a Celery
asynchronous task to incorporate the new knob and metric data into
its ML models and then compute the next configuration for the target
DBMS to try. As we described in Section 2.1, the tuning manager
returns to the controller a unique token for checking the status of the
task since it may take several minutes to complete if the task queue
is long. When the task finishes, a link is provided to the controller
to download the next configuration.

In addition to scheduling asynchronous tasks for making con-
figuration recommendations, the tuning manager also schedules
Celery background tasks to recompute the models in OtterTune’s
ML pipeline to incorporate any new data available in the data repos-
itory. These only need to be executed periodically (i.e., every 20
minutes) or whenever a new application begins a new tuning session.
We discuss OtterTune’s ML pipeline in more detail next in Section 3.

OtterTune cannot train its ML models when no data is available
in its data repository. The tuning manager provides two methods
for bootstrapping the tuning manager with initial training data. If
the user has previous tuning data available externally, then they can
use the “batch upload” option in the web interface to upload all
of it at once to OtterTune’s data repository. Otherwise, the tuning
manager generates initial training data by selecting random knob
configurations for the target DBMS to try. It starts the tuning session
once it collects enough data to train its ML models.

3. TUNING PIPELINE

The knob and metric data collected from past tuning sessions
resides in OtterTune’s repository. This data is processed in Otter-
Tune’s ML pipeline, which consists of three components: (1) Work-
load Characterization, (2) Knob Identification, and (3) Automatic
Tuning. OtterTune first passes the data to the Workload Charac-
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terization component. This component identifies a smaller set of
DBMS metrics that best capture the variability in performance and
the distinguishing characteristics for different workloads. Next, the
Knob Identification component generates a ranked list of the knobs
that most affect the DBMS’s performance. OtterTune then feeds all
of this information to the Automatic Tuner. This last component
maps the target DBMS’s workload to the most similar workload in
its data repository, and reuses this workload data to generate better
configurations. We now describe these components in more detail.

3.1 Workload Characterization

OtterTune uses the DBMS’s internal runtime metrics to charac-
terize how a workload behaves. These metrics provide an accurate
representation of a workload because they capture many aspects of
its runtime behavior. However, many of the metrics are redundant:
some are the same measurement recorded in different units, and oth-
ers represent independent components of the DBMS whose values
are highly correlated. It is important to prune redundant metrics
because it reduces the complexity of the ML models that use them.
To do this, OtterTune first uses factor analysis (FA) to model each
internal runtime metric as linear combinations of a few factors. It
then clusters the metrics via k-means, using their factor coefficients
as coordinates. Similar metrics are in the same cluster, and it selects
one representative metric from each cluster, namely, the one closest
to the cluster’s center. This set of non-redundant metrics is used in
subsequent components in OtterTune’s ML pipeline.

3.2 Knob Identification

DBMSs can have hundreds of knobs, but only a subset of them
affect the DBMS’s performance. OtterTune uses a popular feature-
selection technique, called Lasso, to determine which knobs have the
most impact the system’s overall performance. OtterTune applies
this technique to the data in its repository in order to identify the
order of importance of the DBMS’s knobs.

OtterTune must also decide how many of the knobs to use when
making configuration recommendations. Using too many of them
significantly increases OtterTune’s optimization time, however, us-
ing too few could prevent OtterTune from finding the best config-
uration. To automate this process, OtterTune uses an incremental
approach in which it gradually increases the number of knobs used
in a tuning session. This approach allows OtterTune to explore and
optimize the configuration for a small set of the most important
knobs before expanding its scope to consider others.

3.3 Automated Tuning

The Automatic Tuner determines which configuration OtterTune
should recommend by performing a two-step analysis after each
observation period. First, the system uses the performance data for
the metrics identified in the Workload Characterization component
to identify the workload from a previous tuning session that best
represents the target DBMS’s workload. It compares the metrics
collected so far in the tuning session with those from previous work-
loads by calculating the Euclidean distance, and finds the previous
workload that is most similar to the target workload, namely, the
one with smallest Euclidean distance.

Then, OtterTune chooses another knob configuration to try. It
fits a Gaussian Process Regression model to the data that it has
collected, along with the data from the most similar workload in
its repository. This model lets OtterTune predict how well the
DBMS will perform with each possible configuration. OtterTune
optimizes the next configuration, trading off exploration (gathering
information to improve the model) against exploitation (greedily
trying to do well on the target metric).
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Figure 3: OtterTune Demonstration — The user chooses a workload for the target DBMS and suggests a knob configuration for it to try. We provide users
with ten important knobs and five tuning options for each knob. Users can be notified via email with the performance and ranking of their configuration once the
observation period ends.The leaderboard shows the rankings of the knob configurations selected by OtterTune, an expert DBA, tuning tools, and other audiences.

4. DEMONSTRATION

Our demonstration of OtterTune is meant to showcase its abil-
ity to select DBMS configurations that exceed ones generated by
humans. We will challenge participants to tune Postgres (v9.6) to
achieve the best performance for OLTP and OLAP workloads (TPC-
C and TPC-H, respectively). For each configuration, we will deploy
it on the DBMS and run the target workload using the OLTP-Bench
benchmark suite [4]. We will also run OtterTune on separate ma-
chines and let it learn from these new trials. The system will rank
the users’ configuration against the OtterTune’s best configuration.

As shown in Figure 3, the demonstration is comprised of four
steps. Using a web interface, the user first selects which workload
they want to tune. The interface then provides the user with ten
most important configuration knobs in Postgres v9.6 (as selected by
OtterTune’s algorithms described in Section 3.2) that they can tune.
For each knob, the table includes (1) a short description of what that
knob does, (2) the default value, and (3) a list of five different pre-
selected possible values. The user can choose a different setting for
each knob or leave it set at the default value. After completing their
selection, the user then submits the configuration and it is scheduled
for execution in the testing cluster. They will then be shown how
their selection differs from the OtterTune’s best configuration.

We will run the benchmark using OLTP-Bench for five minutes
and report the average throughput. OLTP-Bench will then upload
this result to a leaderboard to show which user has the best con-
figuration and how it compares with the best configuration from
OtterTune. The leaderboard will also include additional results from
a human DBA expert and a heuristic-based tuning tool (PGTune [2]).

To ensure that each configuration is fully evaluated, we will run
the workload on OLTP-Bench for several minutes. Thus, the result
of a user’s submission is not known immediately. We will notify
them when their result is ready via email. This will take them to
a page that OtterTune generates with a breakdown of the perfor-
mance metrics that OtterTune’s controller collected from the DBMS.

Demo Takeways: The goals of this demo are threefold. First,
we seek to engage with the audience using a demonstration of
the challenges of DBMS tuning. This motivates the need for an
automated tuning tool like OtterTune. Second, we will showcase

OtterTune’s ability to incorporate new information from repeated
observation periods in its ML models and improve the efficacy of
its recommendations. Lastly, we hope that the game provides users
with insight into tuning DBMSs for different workloads.

S. CONCLUSION

We presented the design and implementation of OtterTune service
for automatically tuning DBMS configurations. Unlike previous
tuning tools, OtterTune reuses training data gathered from previous
tuning sessions. Our approach uses a combination of supervised
and unsupervised machine learning methods to (1) select the most
impactful knobs, (2) map previously unseen database workloads to
known workloads, and (3) recommend knob settings. In this paper,
we described the architecture of OtterTune and demonstration plans.
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