OctopusFS in Action: Tiered Storage Management for Data
Intensive Computing

Elena Kakoulli
Cyprus University of
Technology

Nikolaos D. Karmiris
Cyprus University of
Technology

Herodotos Herodotou
Cyprus University of
Technology

elena.kakoulli@cut.ac.cy nd.karmiris@edu.cut.ac.cy herodotos.herodotou@cut.ac.cy

ABSTRACT

The continuous improvements in memory, storage devices,
and network technologies of commodity hardware introduce
new challenges and opportunities in tiered storage manage-
ment. Whereas past work is exploiting storage tiers in pairs
or for specific applications, OctopusFS—a novel distributed
file system that is aware of the underlying storage media—
offers a comprehensive solution to managing multiple stor-
age tiers in a distributed setting. OctopusF'S contains auto-
mated data-driven policies for managing the placement and
retrieval of data across the nodes and storage tiers of the
cluster. It also exposes the network locations and storage
tiers of the data in order to allow higher-level systems to
make locality-aware and tier-aware decisions. This demon-
stration will showcase the web interface of OctopusF'S, which
enables users to (i) view detailed utilization information for
the various storage tiers and nodes, (ii) browse the direc-
tory namespace and perform file-related actions, and (iii)
execute caching-related operations while observing their per-
formance impact on MapReduce and Spark workloads.

PVLDB Reference Format:

Elena Kakoulli, Nikolaos D. Karmiris, Herodotos Herodotou. Oc-
topusFS in Action: Tiered Storage Management for Data Inten-
sive Computing. PVLDB, 11 (12): 1914-1917, 2018.

DOI: https://doi.org/10.14778/3229863.3236223

1. INTRODUCTION

Over the past decade, a plethora of platforms have emerged
to support data intensive computing, including Hadoop [2],
Spark [9], Flink [1], and their growing ecosystems. Such
systems have been optimized for running on large clusters
of commodity hardware and processing data residing on dis-
tributed file systems such as HDFS [8]. Commodity ma-
chines have seen significant improvements over the years in
terms of memory, storage devices, and network technolo-
gies, which have been exploited recently in order to meet
the increasing data storage and I/O demands of modern
large-scale data analytics. New data-processing systems are

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/8.

DOI: https://doi.org/10.14778/3229863.3236223

utilizing memory or SSDs for primary storage [9] or for ac-
tively caching data [7], while others are using local disks for
caching data from remote or cloud storage [6].

Whereas past work is exploiting storage tiers in pairs or for
specific applications, OctopusFS [4] offers a comprehensive
solution to managing multiple storage tiers in a distributed
setting. Specifically, OctopusFS is a novel distributed file
system that is aware of the underlying storage media (e.g.,
memory, SSDs, HDDs) with different capacities and perfor-
mance characteristics. Hence, data can be distributed and
stored on one or multiple storage tiers, enabling efficient sup-
port of diverse workloads (e.g., batch processing, iterative,
interactive) executed from higher-level systems. OctopusFS
offers a spectrum of usage patterns ranging from fully au-
tomating data management to providing explicit data place-
ment and retrieval control to users and applications.

The system automates data management in terms of how
to replicate and distribute data both across nodes and across
tiers for increasing throughput and cluster utilization. It in-
cludes a variety of pluggable policies for automating data
placement, retrieval, and caching across the storage tiers
and cluster nodes. The policies employ multi-objective op-
timization techniques for making intelligent data manage-
ment decisions based on the requirements of fault tolerance,
data and load balancing, and throughput maximization.

At the same time, the storage media are explicitly exposed
to users and applications, allowing them to choose the distri-
bution and placement of replicas in the cluster based on their
own performance and fault tolerance requirements. Hence,
higher-level processing systems can build their own types of
automation in order to improve their efficiency and effec-
tiveness in analyzing large-scale data. For example, systems
such as Hadoop and Spark can improve their task schedul-
ing, Hive and Pig can improve their query processing, while
Oozie and Airflow can improve their workload management.

Contributions and Demo: We demonstrate OctopusF'S,
a multi-tier distributed file system built via making signifi-
cant modifications and additions to HDF'S, one of the most
widely used file systems in cluster deployments [8]. Yet, Oc-
topusFS remained backwards compatible with HDFS and
can, therefore, be used as its drop-in replacement. Our
demonstration of OctopusF'S aims at (i) introducing the Oc-
topusF'S architecture and methodology through a system
implementation, and (ii) demonstrating the immediate ben-
efits of using OctopusFS with (unmodified) data-intensive
processing systems, such as Hadoop and Spark, in terms of
both increased performance and better cluster utilization.
We visually demonstrate the behavior of its core compo-

1914

nents in a range of scenarios, giving the audience members
a complete visual insight into the behavior of OctopusFS.
In particular, the audience will have the ability to interact
with the system through a graphical web interface for:

e viewing detailed information about the utilization of
the different storage tiers and nodes, while workloads
are executing on the cluster;

e browsing the directory namespace of the file system,
uploading and downloading files, viewing file place-
ment information, and modifying the file replication;

e performing caching-related operations such as adding,
modifying, and deleting cache directives, while observ-
ing their impact on MapReduce and Spark workloads.

2. TIERED STORAGE MANAGEMENT

OctopusFS [4] facilitates scalable and efficient data stor-
age on compute clusters by utilizing directly-attached mem-
ory, SSDs, HDDs, and remote (network-attached or cloud)
storage. The main operations of the system are to store and
retrieve files broken into blocks, which are distributed across
nodes and storage tiers, and replicated for fault tolerance.

2.1 System Architecture

OctopusFS uses a multi-master /slave architecture shown
in Figure 1 (similar to HDF'S [8]) that consists of multiple
Primary and Backup Masters, Workers, and Clients.

Primary Masters: Each Primary Master maintains two
metadata collections, the directory namespace and the block
locations. The directory namespace contains a traditional
hierarchical file organization and offers typical operations
like opening, closing, renaming, and deleting files and direc-
tories. The file content is split into large blocks (128MB by
default) and each block is independently replicated at mul-
tiple Workers. In addition, each Primary Master is respon-
sible for maintaining the mapping of file blocks to Workers
and storage media. To scale the name service horizontally,
there are multiple Masters that form a federation and are
independent from each other.

Backup Masters: Each Backup Master maintains an in-
memory, up-to-date image of the directory namespace of
some Primary Master and is standing by to take over in case
the Primary fails. Moreover, it is responsible for periodically
creating a checkpoint of the namespace metadata so that the
system can restart from the most recent checkpoint quickly.

Workers: The main responsibilities of the Workers include
storing and managing the file blocks on the various stor-
age media they contain, as well as serving read and write
requests from the file system’s Client. The Workers are typ-
ically run one per node in the cluster and perform the block
creation, deletion, and replication upon instructions from
the Masters, in a similar way as HDFS [8]. The storage me-
dia available across the Workers are logically grouped into
storage tiers based on the I/O characteristics of the devices.
Specifically, a storage tier (e.g., the “SSD” tier) will en-
compass all Workers in a cluster that are associated with
the same storage media type (e.g., SSDs) of similar per-
formance. Figure 1 shows an example of four storage tiers,
namely “Memory”, “SSD”, “HDD”, and “Remote”. The file
blocks can be replicated and stored in one or more storage
tiers, based on requests from the Client or pluggable man-
agement policies. For example, a block may have 3 replicas

1915

Backup 1 Backup K
Master 1 MasterK °
Namespace oo Namespace
Block o Block D Metadata
Locations Locations
- ocation Block |Block (L_—ocaron
Gient X Reports 10ps [oY
Worker 1 P P Worker N
g Memory B!OCk. P Memory Memory
S Blocks Replication] Blocks Tier
S SSD & SSD SSD
£ Blocks] Blocks Tier
£ HDD eoo £ HDD HDD
& Blocks & Blocks Tier
@ ©
5 Remote s Remote
2 Adaptor = Adaptor Remote
Tier
[Remote Storage]

Figure 1: OctopusFS architecture configured with

four storage tiers

on the “HDD” tier (on 3 different nodes); or it may have 1
replica on each of the “Memory”, “SSD”, and “HDD” tier
(on 1, 2, or 3 different nodes); or any other combination.
Hence, users and applications have tremendous flexibility
on how to place and move data in the file system.

Clients: The Client exposes APIs for all typical file system
operations like reading, writing, and deleting files, as well
as creating and deleting directories. In addition, the APIs
expose locality and storage-media information to applica-
tions, enabling the scalability and performance benefits of
compute-data co-location. In order to enable tiered storage,
OctopusF'S expanded the Apache Commons FileSystem API
v2.7.0 with minimal extensions, as presented in [4].

2.2 Replication and Cache Management

The management of files with respect to the storage tiers is
achieved through the notion of the replication vector, which
specifies the number of replicas for each storage tier. The
representation of the replication vector is V. = <M, S, H,
R, U>, which is a shorthand notation for the tiers <“Mem-
ory”, “SSD”, “HDD”, “Remote”, “Unspecified”>. For ex-
ample, the replication vector V. = <1, 2, 0, 0, 0> for a
file F indicates that F has 1 replica in the “Memory” tier
and 2 replicas in the “SSD” tier. The special entry “U” in
the replication vector indicates the number of replicas to be
placed on any storage tier. Thus, by using the replication
vector mechanism, OctopusF'S enables the full spectrum of
choices between the user explicitly setting all storage tiers
and the system automatically selecting the storage tiers.

The replication vector can be specified at file creation and
modified (via the API or the web interface) to achieve vari-
ous functionalities, such as moving a file between tiers, copy-
ing a file between tiers, modifying the number of replicas
within a tier, and deleting a file from a tier. Note that
each time the replication vector of a file changes, a network-
aware and tier-aware placement policy is invoked for decid-
ing where the addition or deletion of a replica will take place.
Finally, the Client exposes the Workers and storage tiers of
the block replicas as well as useful information per tier (e.g.,
total /remaining capacity, read/write throughput, etc.), all
of which are also presented in the web interface.

Furthermore, OctopusFS provides explicit multi-tier cache
management, allowing users and applications to cache files
(i.e., create extra replicas) to higher storage tiers such as
“Memory”. This feature is important for various scenarios
such as caching frequently used data or the working set of

Hadoop | OctopusFS ~ Overview Datanodes ~ Snapshot Startup Progress Utilies - Storage Tiers ~ Caching

Storage Tiers

Navigate through Tiers Navigate through Nodes

Select atier: [MEMORY ~

Storage Tier Information

Overa

Total Tier Configured Capacity: 4468

Total Tier DFS Used: 11.836 GB
Total Tier DFS Remalning: 32128 GB
Total Tier Configured Cache Capacity: 268
Total Tier Cache Used: 4135GB

Total Tier Cache Remaining: 17.856 GB

Live Nodes

Node Total Tier

Capacity

Total DFS
Used

Total DFS
Remaining

Total Tier Cache Total Cache Total Cache
Capacity Used Remaining

diclo1 cut ac.cy:50010 1312GB 2683GB 268 0Bytes 268 Details

dicl14.cut.ac.cy:50010 17GB 2297 GB 268 168 1021.472 MB

Details
(o

dicl0B.cut ac.cy:50010 1747GB 2248GB 268 386.853 MB 1.621GB

dicl13.cut.ac.cy:50010 1196GB 2802GB 268 895.35 MB 1.124GB

Hadoop | OctopusFS ~ Overview Datanodes ~ Snapshot Startup Progress Utiliies - Storage Tiers ~ Caching

Storage Tiers

Navigate through Tiers ~ Navigate through Nodes

Select a node: |dicl02.cut ac.cy:50010 «
Overall Node Information
Configured Capacity: 1059 T8
DFS Used: 219268
Non DFS Used: 3.056 MB
DFS Remaining: 1,056 T8
Configured Cache Capacity: 14GB
Cache Used: 386.853 MB (2.6984708%)

Cache Remaining: 13.621 GB (97.29099%)

er Information
~ MEMORY
Statistics:

DFS
Used

Ccache
Used

Cache
Remaining

StoragelD Configured

Capacity

DFs Configured Cache
Remaining Capacity

DS-50971afe-9901-4955-902b-
71409e960a6c

4GB 800.79

MB

3215G8 386853 1.621GB

MB

268

Figure 2: Screenshots of the Storage Tiers view presenting storage utilization organized at the level of (A) a

single storage tier and (B) a single node

a high-priority workload. For example, Pegasus [5], a graph
mining system, can cache the relevant graph data needed by
an iterative graph application during its duration, leading
to great performance benefits [4]. The Client can be used to
issue cache directives containing the file or directory to be
cached along with a replication vector specifying the caching
tiers. Cache directives are grouped into cache pools, which
are used for resource management and permission checking.

2.3 Data Placement and Retrieval

OctopusF'S proposes automated placement and retrieval
policies for improving the I/O performance of the cluster.
An application or a user adds data to OctopusFS by creat-
ing a new file and writing the data to it using the Client. At
file creation, the Client can optionally specify a block size
as well as a replication vector. The Client then writes the
data one block at a time. Upon block creation, the Client
first contacts the Master and obtains a list of locations (i.e.,
Worker and storage tier pairs) that will host the replicas of
that block. This list is determined using a pluggable block
placement policy. The default one (explained in [4]) makes
placement decisions by formulating a multi-objective opti-
mization problem and solving it to find a Pareto optimal
solution that optimizes four objectives: (i) fault tolerance
for avoiding data loss due to corruption or failures; (ii) load
balancing for distributing I/O requests across storage me-
dia; (iii) data balancing for distributing data blocks across
storage media; and (iv) throughput maximization for opti-
mizing the overall I/O throughput of the cluster.

An application or a user accesses data from OctopusFS via
the Client, which contacts the Master and obtains a list of
locations (i.e., Worker and storage tier pairs) to read from.
This list is ordered using a pluggable block retrieval policy.
The default one (presented in [4]) takes into consideration
the Client location, the replica locations, the network topol-
ogy, the average data transfer rates from each Worker, the
read throughput rate of each media, the number of active
network connections per Worker, and the number of active
I/O connections per storage media. The Client then con-
tacts the first Worker directly and requests the transfer of
the desired block. In case of a read failure, the Client con-
tacts the next Worker on the list for reading the data.

1916

3. DEMONSTRATION PLAN

The demonstration will use the web interface of Octo-
pusFS, which is an extension of the HDFS web interface.
Hence, users accustomed to HDFS will find the OctopusF'S
interface familiar and easy to use. In addition to general
information about the cluster utilization and health already
provided by the HDFS interface, the new interface presents
information related to storage tier management and sup-
ports new functionalities exposed by OctopusFS. Users can
use the new web interface to (i) view detailed information
about the utilization of the different storage tiers and nodes
in the Storage Tiers view; (ii) browse the directory names-
pace of the file system and perform file-related actions in
the Browse Directory view; and (iii) perform caching-related
operations such as adding, modifying, and deleting cache
directives in the Caching view. For the purposes of the
demonstration, OctopusFS will be running on our 12-node
in-house cluster. Hadoop and Spark workloads from the Hi-
Bench benchmark [3] and Pegasus [5] will be executed on
the cluster so that the audience can experience the behavior
of OctopusF'S and get a better understanding of its benefits.
At the same time, a poster will be used to introduce the au-
dience to the OctopusFS architecture and inner workings.

3.1 Monitoring Storage Tier Utilization

The Storage Tiers view is important for users, especially
system administrators, to monitor the storage utilization of
the various storage tiers and nodes. The provided informa-
tion includes total, used, and available storage capacity as
well as total, used, and available cache capacity, presented at
different granularities. In particular, the storage utilization
can be viewed from two different perspectives: one organized
at the level of storage tiers as shown in Figure 2(A) and one
organized at the level of Worker nodes as shown in Figure
2(B). In the first case, users will see aggregate information
for each storage tier and for each node containing storage
media of that tier. It is also possible to drill down to indi-
vidual storage media of a particular storage type for each
node (notice the “Details” button in Figure 2(A)). In the
second case, users can see storage utilization aggregated for
each node available in the system as well as for each storage
media of each tier on that node.

Hadoop | OctopusFS ~ Overview Datanodes ~ Snapshot Startup Progress Utiliies -~ Storage Tiers ~ Caching

Browse Directory

Juser/hadooplgraph/nodes

Permission Owner Group Size Last Modified Replication Block Size Name

-TW-T--f hadoop supergroup 572.2 MB 6/26/2018, 12:08:53 PM [M=1S=1D=1] @ 128 MB part-m-00000

TW-r—r— hadoop supergroup 5722 MB 6/26/2018, 12:08:53 PM [M=1S=1D=1] @ 128 MB part-m-00001

Upload to FileSystem

Figure 3: Screenshot of the Browse Directory view

Select Replication

MEMORY 1
SSD 1
DISK

UNSPECIFIED 1

Figure 4: Screenshot of the Browse Directory view
when modifying the replication vector of a file

In this part of the demonstration, we plan to execute a
write-intensive workload, while varying the size of the gen-
erated datasets. We will then navigate the Storage Tiers
view in order for the audience to observe how the different
storage tiers and nodes are utilized for storing the data. In
this way, the audience will get a better understanding of
how our automated data placement policy distributes and
replicates data to the available storage media.

3.2 Browsing the File System Directory

The Browse Directory view, shown in Figure 3, enables
users to browse the directory namespace of the file system.
For each directory and file, the user can view typical meta-
data information such as permission settings, owner, group,
and last modification timestamp. In addition, for each file
the user can view its total size, block size, and replication
vector showing the storage tier of each replica. A link is
available for each file for drilling down to block-level infor-
mation, such as the actual storage media each block is stored
or cached on. Finally, users can modify the replication vec-
tor of a file and either (i) specify new tier locations for the
replicas; or (ii) specify the total number of replicas in the
“Unspecified” location and let OctopusF'S decide the tiers;
or (iii) specify both some explicit tier locations and a num-
ber of “Unspecified” locations (see Figure 4).

Continuing with the scenario of the write-intensive work-
load from Section 3.1, the audience will also observe how the
data placement policy sets the replication vector for various
files; thus getting a deeper understanding of this automated
policy. In addition, the audience will be given the opportu-
nity to modify the replication vector of files before running
read-intensive workloads. The audience will then directly
experience the effect that the replica locations can have on
the performance of the workload as well as get a better un-
derstanding of how the data retrieval policy operates.

3.3 Performing Caching Operations

The Caching view presents all cache-related information
and exposes all functionalities provided by the cache man-

1917

Hadoop | OctopusFS Overview Datanodes Snapshot Startup Progress Utilities Storage Tiers Caching

Cache Pools and Directives
Now showing: |All
Cache Pools

Name Owner Group Mode MaxTTL Type Limit Bytes Needed Bytes Cached Bytes OverLimit

GoldPool hadoop hadoop rwxr-xi-x never SSD

MEMORY

40GB 2000000000
10GB 4400000000

2000000000
4400000000

(1]

SilverPool hadoop hadoop rwxr-xrx 2Days MEMORY 2GB 5000000 5000000

00

Add Pool

Cache Directives

Id Path Pool Files Files

Needed Cached

Replication
Vector

Bytes
Needed

Bytes
Cached

Expiry Type

luser/hadoop/graphinodes GoldPool never [M=2] MEMORY 2400000000 2400000000

60
00

N

luser/hadoop/graph/edges GoldPool never [M=1,8=1] $SD 2000000000

MEMORY 2000000000

2 2
2000000000 5 5
2000000000 5 5
2 2

w

Iuser/hadoop/tera/in SilverPool 1Day [M=1] MEMORY 5000000 5000000

00

Figure 5: Screenshot of the Caching view

agement feature of OctopusFS, shown in Figure 5. In par-
ticular, the user is able to add, modify, or delete both cache
pools and cache directives. Each cache pool is given a name,
ownership and permission restrictions, as well as cache size
limits for each storage tier that it supports. Each cache di-
rective is placed in a cache pool and is given (i) an optional
expiration time in the future (after which it is removed from
the cache pool) and (ii) a replication vector indicating the
storage tiers to be cached on.

For this demonstration part, the audience will be able to
interact with all cache management features of OctopusF'S
such as adding and removing cache pools and directives. At
the same time, read-intensive and iterative workloads will be
executed on the cluster so that the audience can experience
first hand the impact of caching to the run-time performance
of the workloads. The MapReduce and Spark applications
will be monitored using the existing YARN and Spark Web
Uls, respectively.

4. REFERENCES

[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, et al.
Apache Flink: Stream and Batch Processing in a Single
Engine. Bulletin of the IEEE TCDE, 36(4), 2015.

Apache Hadoop, 2018. https://hadoop.apache.org.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The
HiBench Benchmark Suite: Characterization of the
MapReduce-based Data Analysis. In Proc. of ICDEW, pages
41-51. IEEE, 2010.

E. Kakoulli and H. Herodotou. OctopusFS: A Distributed
File System with Tiered Storage Management. In Proc. of
SIGMOD, pages 65-78. ACM, 2017.

U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS:
Mining Peta-scale Graphs. Knowledge and Information
Systems, 27(2):303-325, 2011.

M. Mihailescu, G. Soundararajan, and C. Amza. MixApart:
Decoupled Analytics for Shared Storage Systems. In Proc. of
FAST, pages 133-146. USENIX, 2013.

J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazieres, et al. The Case for RAMCloud.
Communications of the ACM, 54(7):121-130, 2011.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In Proc. of MSST, pages
1-10. IEEE, 2010.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, et al. Resilient
Distributed Datasets: A Fault-tolerant Abstraction for
In-memory Cluster Computing. In Proc. of NSDI, pages
15-28. USENIX, 2012.

(2]
(3]

4

(5]

(6]

[7]

(8]

[9]

