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ABSTRACT
This paper presents Maverick, a system for discovering exceptional
facts about entities in knowledge graphs. Maverick is built upon
a beam-search based algorithmic framework which we proposed
in a research paper that is published in SIGMOD 2018. In this
demonstration proposal, we showcase an end-to-end system that
includes a user-facing portal and a cache server. In Maverick, an
exceptional fact about an entity of interest is modeled as a context-
subspace pair, in which the subspace is a set of attributes and the
context is defined by a graph query pattern of which the entity is
a match, together with other matching entities. The entity is ex-
ceptional among the entities in the context, with regard to the sub-
space. The portal allows users to search entities in a knowledge
graph and explores exceptional facts about the entities of interest.
It presents exceptional facts to users in forms of natural language
sentences and illustration charts, for better interpretability of the
discovered exceptional facts. The cache server stores intermediate
computation results, such as pattern evaluations, exceptionality cal-
culations, and candidate patterns. It is built for sharing computation
across entities, such that repetitive computation across entities can
be avoided.
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1. INTRODUCTION
Knowledge graphs such as DBpedia, Freebase, Wikidata, and

YAGO record properties of and relationships between real-world
entities. These data are used in numerous applications, including
search, recommendation, and business intelligence. Given an en-
tity in a knowledge graph, we propose a system that discovers ex-
ceptional facts about the entity. Informally, such exceptional facts
separate the entity from many other entities. We have witnessed a
lot of such facts in published news articles:
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1. “Denzel Washington followed Sidney Poitier as only the sec-
ond black to win the Best Actor award.” (abcnews.go.com)

2. “This was Brazil’s first own goal in World Cup history ...” (
yahoo.com)

3. “Hillary Clinton becomes first female presidential nominee.”
(chicagotribune.com)

An exceptional fact consists of three components: an entity of
interest, a context, and a set of qualifying attributes. In each excep-
tional fact, among all entities in the context, the entity of interest
is one of the few or even the only one that bears a particular value
combination on the qualifying attributes. For example, in the above
statement 1, the entity of interest is Denzel Washington, the context
is the Academy Award Best Actor winners, and the qualifying at-
tribute is ethnicity.

Discovery of exceptional facts is useful to important applications
such as computational journalism [1], recommendation systems,
and data cleaning. a) In fact-finding [6, 4], journalists are interested
in monitoring data and discovering attention-seizing factual state-
ments such as the aforementioned examples. These facts help make
news stories substantiated and interesting, and they may even be-
come leads to news stories. b) In fact-checking [3], for vetting the
statements made by humans, fact-checkers at news organizations
such as The Washington Post, CNN, and PolitiFact can compare
the statements with automatically-discovered facts. For example,
an algorithm may find that Hillary Clinton is the second female pres-
idential nominee, which contradicts with the statement 3 above. 1

c) Exceptional facts can help promote friends, news, products, and
search results in various recommendation systems. d) When the
discovered facts are inconsistent with known truth or apparent com-
mon sense, it reveals incomplete data or data errors. Such insights
aid knowledge base cleaning and completion. For example, the
above statement 3 may be generated using an incomplete source
that misses the nomination of Victoria Woodhull.

To the best of our knowledge, there is no previous system for
discovering exceptional facts about entities in knowledge graphs.
The two most related areas are outlier detection in graphs and out-
lying aspect mining. Duan et al. [2] and Vinh et al. [5] discussed
the differences between these two areas. They achieve different
goals. Outlier detection searches for all outlying objects among a
set of objects. Outlying aspect mining, however, focuses on only
one given object and returns the subspaces of attributes in which the
object is relatively outlying, regardless of its true degree of outly-
ingness. In terms of objectives and problem modeling, the excep-
tional fact discovery problem is closer to outlying aspect mining
than outlier detection. However, it focuses on graph data. In con-
trast, existing outlying aspect mining methods assume a single rela-

1The first female presidential nominee was Victoria Woodhull, accord-
ing to http://www.snopes.com/victoria-woodhull-hillary-clinton/ .
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tional table and cannot be effectively applied to knowledge graphs,
as explained in [7].

This paper presents Maverick, a system for discovering excep-
tional facts about entities in knowledge graphs. Maverick is built
upon the beam-search based framework we proposed in [7]. In
Maverick, an exceptional fact about an entity of interest is mod-
eled as a context-subspace pair, in which the subspace is a set of
attributes and the context is defined by a graph query pattern of
which the entity is a match, together with other matching entities.
The entity is exceptional among the entities in the context, with
regard to the subspace. The search spaces of both patterns and sub-
spaces are exponentially large. Maverick conducts beam search on
the patterns which uses a match-based pattern construction method
to evade the evaluation of invalid patterns. It applies two heuris-
tics to select promising patterns to form the beam in each itera-
tion. Maverick traverses and prunes the subspaces organized as a
set enumeration tree by exploiting the upper bound properties of
exceptionality scoring functions.

In this demonstration proposal, we showcase an end-to-end sys-
tem that includes a user-facing portal and a cache server, in addi-
tion to the algorithmic framework in [7]. The portal allows users
to search entities in a knowledge graph and explores exceptional
facts about the entities of interest. It provides functionalities such
as entity auto-completion to aid users in searching and exploration.
More importantly, Maverick presents exceptional facts to users in
the forms of natural language sentences and illustration charts, for
better interpretability of the discovered facts. The cache server is
built for improving the performance of Maverick, which is achieved
by avoiding repetitive computation across entities. Intermediate re-
sults, such as pattern evaluations, exceptionality calculations, and
candidate patterns, are stored in the cache server, so that excep-
tional facts of similar entities can be efficiently discovered.

2. CONCEPTS
Knowledge graph, Patterns, Matches A knowledge graphG(VG,
EG) is a set of RDF triples with node set VG ⊆ I and edge set
EG ⊆ VG × I × VG, where I is the universe of Internationalized
Resource Identifiers (IRIs).

A pattern is a weakly connected graph P (VP , EP ), where VP ⊆
I ∪ V , EP ⊆ VP × I × VP , and V is the universe of variables. A
subgraph M of G is a match to pattern P if M is edge-isomorphic
to P and, for each non-variable node v in P , its counterpart in the
match has the same identifier.
Context A context is a set of entities defined by a pattern and
a variable in the pattern. The entities are those in the matching
patterns that correspond to the variable. This definition implies
that the entities in a context share some common characteristics,
e.g., “players who play for Brazil”.
Attributes Given an entity v, its attributes Av is the union of
its incoming and outgoing edge labels: Av = {(l,←) | ∃(x, l, v)
∈ EG} ∪ {(l,→) | ∃(v, l, x) ∈ EG}. Given an attribute a, the
attribute value v.a of an entity is the set of other incidents of the
related edges. A subspace A is a subset of Av .
Exceptionality function Given a context C of an entity v and
a subspace A, an exceptionality scoring function χ(v,A,C) ∈ R
measures entity v’s degree of exceptionality with regard to A in
comparison with other entities in C. Without loss of generality, we
assume the range of χ is [0, 1], with larger χ implying greater ex-
ceptionality. We will demonstrate three exceptionality functions
as described in [7]: Isolation, Outlierness, and One-of-the-Few.
Isolation is based on the principle of minimum description length

Figure 1: The framework of Maverick.

(MDL). An entity is peculiar if the description length of its at-
tributes is longer than others. Outlierness is based on the distribu-
tion of attribute values. An entity receives a high score if it has rare
attribute values while a lot of other entities share common attribute
values. The crux of One-of-the-Few is that a factual claim about
an entity is interesting when equally or more significant claims
can be made about only few other entities. For example, “Denzel
Washington is one of the only two black who won the Best Actor
award.”
Exceptional Fact Discovery Problem Given a knowledge graph
G, an entity of interest v0, an integer k, and an exceptionality scor-
ing function χ, the problem of exceptional fact discovery is to find
the top-k exceptional facts about v0.

3. SYSTEM OVERVIEW
Figure 1 illustrates the components of Maverick. While the three

components Context Evaluator (CE), Exceptionality Evaluator (EE),
and Pattern Generator (PG) work together in an iterative fashion of
beam search to discover exceptional facts, which are highly-scored
context-subspace pairs, component Cache Server (CS) caches (in-
termediate) results of PG, CE and EE to improve efficiency by
avoiding repetitive computation, and component Fact Reporter re-
ports highly-scored context-subspace pairs to users in natural lan-
guage sentences as well as charts. Intuitively, the process can be
viewed as nested loops. The outer loop enumerates contexts, while
the inner loop enumerates subspaces for each context. Given the
entity of interest v0, while subspace enumeration in the inner loop
enumerates the subsets of Av0 , the outer loop enumerates contexts
by patterns. Conceptually, Maverick organizes all the possible con-
texts as a partial order on patterns, i.e., a Hasse diagram, in which
each node is a pattern and each edge represents the subsumption
(subgraph-supergraph) relationship between the two patterns. The
essence of the outer loop is thus a traversal of the search space of
patterns.

At each iteration, Maverick maintains a beam B of a fixed size
w. The beam consists of heuristically the best w patterns (e.g., P2,
P3 in Figure 1 where w = 2). For each pattern P in B, component
CE obtains the matches MP to the pattern and the correspond-
ing contexts C of v0. For each context C in C (e.g. C1 in Fig-
ure 1), component EE finds the top-k scored subspaces according
to a given exceptionality scoring function χ. Component PG finds
the children of the visited pattern based on its matches. Since there
are usually much more children than what the beam size w allows,
PG applies a set of heuristics to prune the child patterns. Each child
pattern is given a score that measures how promising it is accord-
ing to the heuristics. The best w patterns among all the children of
patterns in B will become the new beam B, which is the input to
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the next iteration, e.g., {P7, P9} in Figure 1. When the algorithm
terminates, Maverick returns the k context-subspace pairs with the
highest exceptionality scores. Below we explain these components
in more detail.
Context Evaluator (CE) This component is responsible for ob-
taining the matches to a given pattern as well as the corresponding
contexts. CE employs a graph query system to take a pattern as
the input and return all the matches to the pattern. Although CE in
our implementation uses Neo4j as the graph query system, CE is
agnostic to the choice of the specific query processing system.
Exceptionality Evaluator (EE) For each context C of the en-
tity of interest v0, this component finds the k subspaces A with
the highest χ(v,A,C) scores. Section 4.1 briefly discusses how
EE uses a set enumeration tree to avoid exhaustively enumerating
exponential number of possible subspaces. Specifically, Maverick
exploits the upper bound properties of exceptionality scoring func-
tions to guide the traversal of the set enumeration tree.
Pattern Generator (PG) At each iteration of the beam search on
patterns, this component finds the children of each visited pattern P
in the current beam. A child pattern, if not pruned (see Section 4.3),
is given a score that measures how promising it is according to a
few heuristics. Among all the children of the patterns in the current
beam, the w children with the highest scores are returned to form
the new beam, where w is the predefined beam width. The new
beam becomes the input to the next iteration.
Cache Server (CS) This component stores and reuses the inter-
mediate results of the aforementioned components, to avoid repeti-
tive computation in discovering facts about different entities. Enti-
ties usually share common characteristics, for example, entities of
the same type usually have the same set of attributes and share a
lot of common patterns. As a result, CS can improve the efficiency
of the system by caching the pattern evaluation results in compo-
nent CE, the exceptionality calculations in component EE, and the
search of candidate patterns in component PG.
Fact Reporter (FR) This component presents exceptional facts
of the given entity to users in form of natural language sentences as
well as charts. In order to help users interpret the exceptionality of
each fact, FR collects statistics about the qualifying attribute val-
ues as well as the context, such as the attribute value distributions,
context size and so on. Furthermore, FR provides summaries of the
statistics in natural language sentences to improve the interpretibil-
ity of the exceptional facts.

4. ALGORITHMS
To discover the exceptional facts about an entity, we must ex-

plore two extremely large search spaces, one of attribute subspaces
and the other of patterns. In this section, we briefly explain how we
approach the challenges.

4.1 Finding Top-k Subspaces
EE applies a set enumeration tree to avoid exhaustively enumer-

ating subspaces. Each node in the tree is a subspace—a subset of
v’s attributes Av . The children of a node correspond to various su-
persets of the node’s associated attributes. The gist is to explore the
set enumeration tree using heuristic search methods such as best-
first search and to prune branches that are guaranteed to not con-
tain highly-scored subspaces. What is particularly challenging is
that an exceptionality scoring function χ usually does not have the
downward closure property with respect to subspace inclusion, i.e.,
χ(v,A,C) can be greater than, less than, or equal to χ(v,A′, C)

for any A′ ⊇ A. EE uses upper bounds on the exceptionality scor-
ing function χ to allow for pruning of the set enumeration tree.The
set enumeration tree nodes (i.e., subspaces) are visited in the de-
scending order of their upper bounds. If the upper bound score
of a node is not greater than the score of the current k-th ranked
subspace, the node and all its children are pruned.

4.2 Match-based Construction of Patterns
In the search of context, Maverick organizes the candidate pat-

terns as a Hasse diagram, in which each node is a pattern and
each edge represents the subgraph-supergraph relationship between
the two nodes. To construct the child patterns of a pattern P ,
a simple approach is to enumerate all possible ways of expand-
ing P by adding one more edge. A major drawback of this ap-
proach is it may construct many invalid patterns that do not have
any match. Some invalid patterns can be easily recognized by re-
ferring to the schema graph of the data. However, chances are most
of the schema-abiding patterns are still invalid because they do not
have matching instances in the data graph, given the sheer diversity
of a knowledge graph. The system will evaluate such patterns in
vain to get empty results in order to realize they are invalid.

To avoid evaluating invalid patterns, we propose a match-based
pattern construction method. Instead of constructing the child pat-
terns by directly expanding pattern P , this method expands the
matches of P and constructs the child patterns from the expanded
matches. It guarantees to construct only valid patterns and evade
the evaluation of invalid patterns. Specifically, given a match M
of P , it finds each of its weakly connected supergraphs by adding
an edge that exists in the data graph G and is adjacent to a node in
M . The supergraphs are then used to generate P ’s child patterns
by optionally replacing the newly added node with a variable.

4.3 Candidate Pruning and Candidate Rank-
ing

To ensure efficiency, PG employs two pruning rules to exclude
irrelevant patterns and to avoid repeated constructions of patterns
from certain type of parent patterns: 1) exclude a pattern if it does
not define any context for the entity of interest v0; 2) expand a pat-
tern only if the new edge has at least one variable. The rationale
behind the first rule is, for discovering exceptional facts about v0, a
pattern is relevant only if it defines a context for v0. Enforcing the
second rule reduces the number of candidate patterns by eliminat-
ing the patterns that define same contexts of v0.

To further limit the number of candidates, PG applies two scor-
ing heuristics for selecting promising patterns to visit: Optimistic
hopt and Convergent hconv . hopt simply uses the exceptionality
score upper bound of P , which essentially selects the patterns that
define large contexts. The hconv score of P is a weighted sum
of the upper bound of P (for any subspace) and the best score of
the parent pattern P ′. Compared with hopt, hconv is potentially
both more efficient and more effective. It can be more efficient
since it may favor child patterns that define smaller contexts. Such
child patterns usually can be evaluated more efficiently since they
have less matches. It can be more effective since it discards child
patterns that define contexts where the entity of interest may not
be exceptional, based on the highest score of the context-subspace
pairs for the parent pattern.

5. USER INTERFACE AND DEMONSTRA-
TION PLAN

We will demonstrate Maverick using two knowledge graphs:
Film and FIFA World Cup. A demonstration video can be found
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a Entity search page

b Exceptional fact page

Figure 2: The main user interface of Maverick.

in the supplementary materials. Film, a subgraph of Freebase, con-
tains two Freebase domains: Film and Award. The knowledge
graph FIFA World Cup is constructed from https://www.fifa.com/
worldcup/ . Figure 2 shows the main user interface of Maverick
when it is applied on Denzel Washington in Film. Some functions in
the user interface are still under development, e.g., the natural lan-
guage interpretation of exceptional facts. We are also constantly
adding more features to the system.

When a user visits the Maverick system, it shows a landing page
which has a banner and a search box. The landing page is iden-
tical to the top part of Figure 2a. The banner allows the user to
choose a knowledge graph to explore. The search box allows the
user to search entities by names. The search box is also equipped
with auto-completion to help users search entities more efficiently.
Figure 2a shows a screenshot when a user enters “Denzel” in the
search box. The page shows the descriptions of a list of matching

entities to help the user choose the entity of interest. Below the de-
scription of each entity, it provides a link to the page of exceptional
facts of the entity, which will be described below. When there are
many entities in the search result, the system provides a pagination
bar at the bottom of the page for the user to navigate through the
search results.

Figure 2b shows a screenshot of the exceptional fact page of en-
tity Denzel Washington. The exceptional fact page of a given entity
displays a list of exceptional facts about the entity as well as the
entity’s description. We will demonstrate exceptional facts based
on 3 different exceptionality functions: Isolation, Outlierness, and
One-of-the-Few. In the system, we will show top-5 exceptional
facts from each exceptionality function.

Each exceptional fact is shown as a fact card in Figure 2b. There
are four elements in a fact card: interpretation, exceptionality score,
context graph, and subspace chart. The interpretation is usually a
sentence or two describing the fact. The exceptionality score is a
real value between 0 and 1 indicating how exceptional the fact is.
The context graph shows a graph pattern. The graph pattern along
with the orange node together define the context of the entity. The
subspace chart is a set of tangent circles. The outermost circle rep-
resents the context. Each nested circle represents the entities sat-
isfying the conjunctions of the qualifying attributes represented by
outer circles. For example, let the set of qualifying attributes be
{a1, a2, a3}, and the entity of interest be v0, then there are four
circles in the subspace chart. From outermost to innermost, the cir-
cles represent entities V0 = C, V1 = {v ∈ C | v.a1 = v0.a1},
V2 = {v ∈ C | v.a1 = v0.a1 ∧ v.a2 = v0.a2}, and V3 = {v ∈
C | v.a1 = v0.a1 ∧ v.a2 = v0.a2 ∧ v.a3 = v0.a3}, respectively,
where C is the context. The size of each circle reflexes the cardi-
nality of the corresponding set of entities in logarithmic scale.
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