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ABSTRACT 
Ridesharing is popular among travellers because it can reduce 
their travel costs, and it also holds the potential to reduce travel 
time, congestion, air pollution, and overall fuel consumption. 
Existing ridesharing systems (e.g., lyft, uberPOOL) often offer 
each traveler only one choice that aims to minimize system-wide 
vehicle travel distance or time. In this demonstration, we present a 
price-and-time-aware ridesharing system, termed as PTRider, 
which provides more options. It considers both pick-up time and 
price, so that travellers are able to choose the vehicle matching 
their preferences best. To answer the ridesharing request in real 
time, PTRider builds indexes on the road network and vehicles 
separately, and utilizes corresponding efficient matching methods. 
A real-life dataset that contains 432,327 trips extracted from 
17,000 Shanghai taxis for one day (May 29, 2009) is used to 
demonstrate that PTRider can return various options for every 
ridesharing request in real time. 
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1. INTRODUCTION 
Ridesharing refers to a transportation scenario where travellers 

with similar itineraries and time schedules share a vehicle for a 
trip and split the travel costs such as fuel, tolls, and parking fees. 
Many ridesharing systems (e.g., lyft [1], uberPOOL [2], etc.) 
already exist, due to the reduced travel costs, travel time, 
congestion, fuel consumption, and air pollution, for the travellers, 
for society, and for the environment. 

Existing real-time ridesharing systems [6], [7], [8] find only 
one option per request that tries to minimize system-wide vehicle 
travel time or distance. Nonetheless, considering the case below. 
Assume that a couple has finished dinner at the seaside, which is 
far from the city center. They now want to travel home. Given 
that there are few nearby vehicles, getting a vehicle quickly is 
likely to cost extra because some vehicles must make a detour in 
order to pick them up. However, if they are willing to wait longer, 

they may pay less since some vehicles will be nearby later on. If 
we offer more options with different pick-up times and prices, 
travellers can choose the options they prefer. Motivated by this, 
we develop a price-and-time-aware ridesharing system based on 
our previous work [5], termed as PTRider, which offers several 
options per ridesharing request. The options have different pick-
up times and prices as well as they do not dominate each other 
(option ri dominates option rj iff the pick-up time and price of ri 
are earlier and lower than those of rj [3]). 

Although one study [4] considers both pick-up time and price 
to return multiple options for each ridesharing request, it cannot 
be employed to solve our problem, due to the following two 
reasons. First, the problem definition is different. Cao et al. [4] 
assume that every vehicle has one pair of a start location and a 
destination, and serves only one group of riders during a trip, 
which limits the usability and scalability of the ridesharing system. 
In contrast, we assume that the destination of a vehicle is not 
limited and that it can accommodate any number of rider groups 
during a trip as long as it satisfies a capacity constraint. Second, 
Cao et al. [4] use Euclidean distance for pruning, which is 
inefficient. In order to answer the ridesharing request in real time, 
we build indexes on the road network and vehicles separately, and 
propose two efficient matching methods. To sum up, the key 
contributions of this demonstration are as follows: 

 PTRider considers both pick-up time and price, and thus, it 
can return different options for each rider to choose. 

 PTRider utilizes efficient indexing techniques for both the 
road network and the vehicles, and adopts two efficient 
matching approaches, which follow the single-side search 
paradigm and the dual-side search paradigm, respectively.  

 We demonstrate PTRider using a real dataset that contains 
432,327 trips extracted from Shanghai taxis, with high 
simulated ridesharing request and update workloads. 

The rest of the demonstration is organized as follows. Section 2 
defines the price-and-time-aware ridesharing. Section 3 presents a 
PTRider prototype. Section 4 provides demonstration details. 

2. DEFINITIONS FOR PTRIDER 
In this section, we give the definitions related to the price-and-

time-aware ridesharing. 

2.1  Road Network 
A road network G = V, E, W consists of a vertex set V and an 

edge set E. Each vertex v  V denotes the intersection of two 
roads. Each edge e = (u, v)  E that connects two vertices u and v 
is associated with a weight W(e), in which W(e) represents the 
travel cost between u and v. The travel cost could be either time 
or distance. When the speeds of vehicles are known, they can be 
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converted from one to another (e.g., distance = time  speed). In 
our demonstration, a constant speed is assumed. 

Given two vertices u and v in a road network, the shortest path 
distance dist(u, v) between u and v is defined as the minimal cost 
for paths connecting between u and v. Consider the road network 
in Fig. 1(a) where V = {v1, v2, …, v17} and the digit assigned for 
every edge denotes its weight. Based on the road network, we 
define the ridesharing request below. 

2.2  Ridesharing Request 
Every ridesharing request can receive multiple options, in 

which each option contains pick-up time and price. Thus, a rider 
is able to choose the option that is preferred. 

DEFINITION 1 (Ridesharing Request). A ridesharing request R 
= s, d, n, w,  on a road network G is defined as a start location s, 
a destination location d, the number n of riders, the maximal 
waiting time w (i.e., the maximal time allowed between the 
planned pick-up time and the actual pick-up time), and a service 
constraint  (the detour acceptable in a trip, i.e., the travel 
distance from s to d is bounded by (1 + )  dist(s, d)). 

The planned pick-up time is the pick-up time in a returned 
result, while the actual pick-up time is the time when the riders in 
R get on the vehicle. As an example, a request is submitted at 8:00 
PM, a result shows the pickup time is 8:05 PM, but the vehicle 
actually arrives at 8:12 PM, then the planned pickup time is 8:05 
PM and the waiting time is 7 min. In Fig. 1(a), a ridesharing 
request R1 = v2, v16, 2, 5, 0.2 means that two riders travel from v2 
to v16 with the maximal waiting time 5 and a service constraint 0.2. 

2.3 Vehicle Trip Schedule 
Each vehicle can be assigned an empty or a non-empty set of 

unfinished ridesharing requests. A non-empty vehicle (i.e., having 
a non-empty set of unfinished ridesharing requests) has a set of 
valid vehicle trip schedules. 

DEFINITION 2 (Vehicle Trip Schedule). Each trip schedule tr = 
o1, o2, …, ok contains a sequence of locations (i.e., vertices in G), 
where o1 is the current location c.l of vehicle c, and oi (2  i  k) 
represents the start location or destination of an unfinished 
ridesharing request. The whole trip distance disttr equals to  
dist(oi, oi+1). A valid trip schedule satisfies four conditions: 

(1) Capacity constraint: At any time, the number of riders in 
a vehicle cannot exceed vehicle’s capacity. 

(2) Point order: For any unfinished ridesharing request R = s, 
d, n, w,  in the vehicle trip schedule tri, the location of 

the vehicle that receives the request R must happen 
before the start location s, and s must happen before the 
destination d. 

(3) Waiting time constraint: For any unfinished request R 
= s, d, n, w,  of vehicle c, the waiting time between 
the planed and actual pick-up times should not exceed 
the constraint w. Let tri be the actual trip schedule for 
vehicle c to pick up the rider of R, and trj be the planned 
trip schedule when assigning R to c, (c.l, s)  

(c.l, s)  w. 
(4) Service constraint: For any vehicle trip schedule tr, the 

actual travel distance disttr(s, d) from a start location s to 
a destination d should not exceed (1 + )  dist(s, d). 

2.4 Price Model 
As with an existing price model [4], the price of a request is the 

sum of prices for the detour and the original trip distances. 

DEFINITION 3 (Price Model). For a ridesharing request R = s, 
d, n, w, , assume that tri is the current trip schedule of a vehicle 
c and trj is the new vehicle trip schedule after inserting R into tri, 
the price can be computed as fn  (  –  + dist(s, d)), in 
which fn is the price ratio that depends on the number n of riders. 

For simplification, we set fn = 0.3 + (n  1)  0.1. For instance, 
in Fig. 1(a), for a non-empty vehicle c1 with the trip schedule tr1 = 
v1, v2, v16, inserting the request R2 = v12, v17, 2, 5, 0.2 into tr1 
results in a new trip schedule tr2 = v1, v2, v12, v16, v17. Then, the 
price equals to f2  (    + dist(v12, v17)) = 4. 

2.5 Price-and-Time-Aware Ridesharing 
We proceed to present the definition of dynamic ridesharing. 

DEFINITION 4 (Price-and-Time-Aware Ridesharing). Given a 
set C of vehicles in the road network G at a specific time and a 
real-time trip request set SR, a price-and-time-aware ridesharing 
finds, for each request R  SR, all qualified and non-dominated 
results c, time, price. Here, result ri dominates another result rj 
iff (ri.time  rj.time  ri.price < rj.price) or (ri.time < rj.time  
ri.price  rj.price). 

In PTRider, a greedy strategy is used when multiple requests 
are issued simultaneously. Each vehicle c can offer one or more 
pairs of a pick-up time (i.e., time) and its corresponding price for 
R. Since time can be transformed to distance, we use the trip 
distance from c’s current location l to R’s start location s (termed 
as distpt) to denote time. Thus, the result can also be denoted as ri 
= c, distpt, price. In Fig. 1(a), assume that two vehicles c1 (with 
only one trip schedule tr1 = v1, v2, v16) and c2 (with only one trip 
schedule tr2 = v13) exist. Given a ridesharing request R2 = v12, 
v17, 2, 5, 0.2, a dynamic ridesharing returns results r1 = c1, 14, 4 
and r2 = c2, 8, 8.8, where r1 has a lower price, but r2 has an 
earlier pick-up time. 

3. PTRIDER PROTOTYPE 
In this section, we first introduce the framework of PTrider, and 

then, we present indexing and matching algorithms, respectively. 

3.1 Framework of PTRider 
Fig. 2 shows the framework of PTRider. The main components 

include two index modules (i.e., Road Network Index Module and 
Vehicles Index Module) and a matching method module. PTRider 
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answers a ridesharing request follows three steps. (i) A rider 
requests a trip using his/her smart phone. He/She specifies the 
number of riders, and the start location and destination of the 
request. PTRider sets a global maximum waiting time and a 
global service constraint. (ii) Once the request is submitted, the 
matching method module finds all the qualified options, and sends 
them to the rider. Here, an option contains the pick-up time and 
price provided by a specific taxi. (iii) The rider chooses one that 
matches his/her preference best, and sends it back to the system. 
Then, the index modules are updated according to the rider’s 
choice. Note that, the taxis update their locations periodically, and 
update their trip schedules when they pick up or drop off riders. 
Therefore, the index modules need to be updated. 

3.2 Indexing of PTRider 
3.2.1 Indexing the Road Network 

We partition the road network using a grid, as illustrated in Fig. 
1(a). If an edge e = (u, v) belongs to more than one grid cell, we 
call u and v border vertices. In order to estimate the shortest path 
distance more accurately, we maintain a matrix that stores the 
lower bound distance for every grid cell pair. Also, the lower 
bound distance is associated with a vertex pair (xi, yj), where xi 
and yj are border vertices in the grid cells gi and gj respectively, 
i.e., (xj, v1, …, vk, yj) is the shortest path connecting gi and gj. 

As depicted in Fig. 1(b), each grid cell maintains five lists: (i) a 
border vertex list of border vertices belonging to the grid cell; (ii) 
a vertex list of vertices belonging to the grid cell, as each vertex v 
is associated with its shortest path distances to the border vertices 
(BV) of the grid cell ({u, dist(v, u) | u  BV}) and is also 
associated with min{dist(v, u) | u  BV} (denoted as v.min); (iii) a 
grid cell list of other grid cells sorted in ascending order of the 
travel time from those grid cells to the grid cell (i.e., sorted in 
ascending order of the lower bound distances when speed is 
constant); (iv) an empty vehicle list of the vehicles with empty 
ridesharing requests in gi; and (v) a non-empty vehicle list of 
vehicles cj having a non-empty set of ridesharing requests, i.e., 
vehicles cj are currently located in gj or are scheduled to enter gi. 

Base on the grid index, several pruning lemmas are developed 
by estimating price and pick-up time. For more technical details, 
please refer to our full research paper [5]. 

3.2.2 Indexing Vehicles 
Each vehicle c is represented by using (i) the unique identifier 

c.ID of the vehicle; (ii) the current location c.l of the vehicle; (iii) 
the set c.S of unfinished ridesharing requests assigned to it, sorted 

in ascending order of their timestamps; and (iv) the set c.Str of all 
valid vehicle trip schedules. 

The set c.Str of all valid vehicle trip schedules can be managed 
by a kinetic tree [7], as illustrated in Fig. 3, where every branch 
denotes a valid trip schedule. In addition, we add three variables 
to each node ox in the kinetic tree: (i) a current vehicle’s capacity, 
(ii) the minimal detour distance allowed, and (iii) the trip distance 
disttr from c’s current location to ox. The detour can be computed 
easily from the waiting time and service constraints. If an edge ox, 
oy of vehicle c’s kinetic tree intersects with, or is contained in a 
grid cell gi (i.e., the shortest path between ox and oy intersects with 
or is included in gi), then ox, oy belongs to the non-empty 
vehicle list of gi. The kinetic tree is updated per time unit. 

3.3 Matching Algorithms 
A naive method can be extended directly from the kinetic tree 

algorithm. We evaluate every vehicle to find all possible pairs of 
pick-up time and price that cannot dominate each other when 
inserting the request R into its kinetic tree. However, it can be 
improved in two ways: (i) we can filter unqualified vehicles in 
advance instead of verifying all vehicles; and (ii) the number of 
the shortest path distance computations ([7] calculates all the 
distances before verification) can be reduced when inserting the 
request into the kinetic tree. To boost efficiency, PTRider utilizes 
two algorithms proposed in [5], as described below. 

Single-Side Search Algorithm. For each ridesharing request R 
= s, d, n, w, , single-side search algorithm starts from the grid 
cell gi where s locates, and then, it searches the grids in order of 
their distances to s. During the search, empty and non-empty 
vehicles are processed separately. For empty vehicles that cannot 
be pruned, R can be easily inserted into its trip schedule set. For 
every non-empty vehicle that cannot be pruned, the inserting is 
similar as that in [7], by estimating the lower and upper bounds of 
the shortest path distance to avoid unnecessary computations. 

Dual-Side Search Algorithm. Single-side search algorithm 
filters unqualified vehicles using pruning lemmas when searching 
from the start location. Similarly, we can also filter unqualified 
vehicles using pruning heuristics when searching from the 
destination. Take the following case as an example. One existing 
trip schedule is near the start location of a ridesharing request, but 
it is far from the destination of the ridesharing request. In this case, 
the dual-side search paradigm can avoid more unnecessary 
verifications of vehicles. Thereafter, similar as single-side search 
algorithm, dual-side search algorithm verifies each vehicle that 
cannot be pruned in order to find qualified results. 
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4. DEMONSTRATION 
PTRider is demonstrated by using a real data set that contains 

432,327 trips extracted from 17,000 Shanghai taxis for one day. 
The ridesharing requests are generated by using trips in the real 
dataset, or submitted by the users. The vehicles are initialized 
uniformly in the road network. They follow a specified route 
when customers are on board or, otherwise, follow the current 
road segment, choosing a random segment to follow at 
intersections. A constant speed D (48km/hr) is assumed. The 
underlying system of PTRider runs on an Intel Core i7 3.6GHz 
PC of a 16GB memory. PTRider can be visited through a 
smartphone interface to book a taxi in real time, or via a website 
interface to set the parameters and view the statistics. 

4.1 Smartphone Interface  
The smartphone interface allows the users to book a taxi that 

matches their requests best, i.e., sending a ridesharing request and 
finding their preferred taxis. First, as depicted in Fig. 4(a), the 
rider inputs a start location (suggested as the current location), a 
destination, and the number of riders in the textbox, and clicks the 
book button to send the ridesharing request to the system. Second, 
the system returns all the possible options back to the rider, 
including pick-up time and price, as illustrated in Fig. 4(b). Third, 
the rider selects his/her preferred option, and clicks the chosen 
option to send his/her choice to the system. 

4.2 Website Interface 
The website interface (i) shows the trip schedules on a map, (ii) 

provides the statistics of the trip information, and (iii) allows the 
system administrator to set the constraints. 

The left-side of Fig. 4(c) shows the trip secludes for any taxi. 
The system administrator first selects a taxi ID, and then, the 
unfinished ridesharing requests assigned to the selected taxi are 
depicted in a drop-down box next to the taxi ID. In addition, all 
possible trip schedules of the selected taxi are shown as the red 
lines on the map, where the red star denotes the current position 
of taxi. Each red line denotes a possible trip schedule for the 
selected taxi, i.e., each branch in the corresponding kinetic tree. 

The top-right of Fig. 4(c) illustrates the statistics of PTRider, 
including the current time, the average response time, and the 
average sharing rate. As observed, the system is efficient (low 
average response time) and effective (high average sharing rate). 

In the bottom-right of Fig. 4(c), the system administrator is able 
to input the parameters including the taxi capacity, the number of 
taxis, the maximal waiting time, the service constraint, and the 
price calculator function. Although some parameters can be set by 
the rider himself/herself (e.g., the maximal waiting time and the 
service constraint) or by the taxi driver (e.g., the taxi capacity), 
PTRider adopts a global setting for simplification. In addition, the 
particular matching algorithm (i.e., single-side search algorithm 
or dual-side search algorithm) used in PTRider can be specified. 
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