
PTRider: A Price-and-Time-Aware Ridesharing System
Lu Chen

#,

‡,

1, Yunjun Gao

#,

2, Zixian Liu

#,

3, Xiaokui Xiao

§,

4, Christian S. Jensen

‡,

5, Yifan Zhu

#,

6

#
 College of Computer Science, Zhejiang University, Hangzhou, China

‡
 Department of Computer Science, Aalborg University, Denmark

§
 School of Computing, National University of Singapore, Singapore

{1
 luchen, 2 gaoyj, 3 zx_liu, 6 xtf_z}@zju.edu.cn 4 xkxiao@nus.edu.sg 5 csj@cs.aau.dk

ABSTRACT
Ridesharing is popular among travellers because it can reduce
their travel costs, and it also holds the potential to reduce travel
time, congestion, air pollution, and overall fuel consumption.
Existing ridesharing systems (e.g., lyft, uberPOOL) often offer
each traveler only one choice that aims to minimize system-wide
vehicle travel distance or time. In this demonstration, we present a
price-and-time-aware ridesharing system, termed as PTRider,
which provides more options. It considers both pick-up time and
price, so that travellers are able to choose the vehicle matching
their preferences best. To answer the ridesharing request in real
time, PTRider builds indexes on the road network and vehicles
separately, and utilizes corresponding efficient matching methods.
A real-life dataset that contains 432,327 trips extracted from
17,000 Shanghai taxis for one day (May 29, 2009) is used to
demonstrate that PTRider can return various options for every
ridesharing request in real time.

PVLDB Reference Format:
Lu Chen, Yunjun Gao, Zixian Liu, Xiaokui Xiao, Christian S.
Jensen, and Yifan Zhu. PTRider: A Price-and-Time-Aware
Ridesharing System. PVLDB, 11(12): 1938-1941, 2018.
DOI: https://doi.org/10.14778/3229863.3236229

1. INTRODUCTION
Ridesharing refers to a transportation scenario where travellers

with similar itineraries and time schedules share a vehicle for a
trip and split the travel costs such as fuel, tolls, and parking fees.
Many ridesharing systems (e.g., lyft [1], uberPOOL [2], etc.)
already exist, due to the reduced travel costs, travel time,
congestion, fuel consumption, and air pollution, for the travellers,
for society, and for the environment.

Existing real-time ridesharing systems [6], [7], [8] find only
one option per request that tries to minimize system-wide vehicle
travel time or distance. Nonetheless, considering the case below.
Assume that a couple has finished dinner at the seaside, which is
far from the city center. They now want to travel home. Given
that there are few nearby vehicles, getting a vehicle quickly is
likely to cost extra because some vehicles must make a detour in
order to pick them up. However, if they are willing to wait longer,

they may pay less since some vehicles will be nearby later on. If
we offer more options with different pick-up times and prices,
travellers can choose the options they prefer. Motivated by this,
we develop a price-and-time-aware ridesharing system based on
our previous work [5], termed as PTRider, which offers several
options per ridesharing request. The options have different pick-
up times and prices as well as they do not dominate each other
(option ri dominates option rj iff the pick-up time and price of ri
are earlier and lower than those of rj [3]).

Although one study [4] considers both pick-up time and price
to return multiple options for each ridesharing request, it cannot
be employed to solve our problem, due to the following two
reasons. First, the problem definition is different. Cao et al. [4]
assume that every vehicle has one pair of a start location and a
destination, and serves only one group of riders during a trip,
which limits the usability and scalability of the ridesharing system.
In contrast, we assume that the destination of a vehicle is not
limited and that it can accommodate any number of rider groups
during a trip as long as it satisfies a capacity constraint. Second,
Cao et al. [4] use Euclidean distance for pruning, which is
inefficient. In order to answer the ridesharing request in real time,
we build indexes on the road network and vehicles separately, and
propose two efficient matching methods. To sum up, the key
contributions of this demonstration are as follows:

 PTRider considers both pick-up time and price, and thus, it
can return different options for each rider to choose.

 PTRider utilizes efficient indexing techniques for both the
road network and the vehicles, and adopts two efficient
matching approaches, which follow the single-side search
paradigm and the dual-side search paradigm, respectively.

 We demonstrate PTRider using a real dataset that contains
432,327 trips extracted from Shanghai taxis, with high
simulated ridesharing request and update workloads.

The rest of the demonstration is organized as follows. Section 2
defines the price-and-time-aware ridesharing. Section 3 presents a
PTRider prototype. Section 4 provides demonstration details.

2. DEFINITIONS FOR PTRIDER
In this section, we give the definitions related to the price-and-

time-aware ridesharing.

2.1 Road Network
A road network G = V, E, W consists of a vertex set V and an

edge set E. Each vertex v V denotes the intersection of two
roads. Each edge e = (u, v) E that connects two vertices u and v
is associated with a weight W(e), in which W(e) represents the
travel cost between u and v. The travel cost could be either time
or distance. When the speeds of vehicles are known, they can be

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236229

1938

converted from one to another (e.g., distance = time speed). In
our demonstration, a constant speed is assumed.

Given two vertices u and v in a road network, the shortest path
distance dist(u, v) between u and v is defined as the minimal cost
for paths connecting between u and v. Consider the road network
in Fig. 1(a) where V = {v1, v2, …, v17} and the digit assigned for
every edge denotes its weight. Based on the road network, we
define the ridesharing request below.

2.2 Ridesharing Request
Every ridesharing request can receive multiple options, in

which each option contains pick-up time and price. Thus, a rider
is able to choose the option that is preferred.

DEFINITION 1 (Ridesharing Request). A ridesharing request R
= s, d, n, w, on a road network G is defined as a start location s,
a destination location d, the number n of riders, the maximal
waiting time w (i.e., the maximal time allowed between the
planned pick-up time and the actual pick-up time), and a service
constraint (the detour acceptable in a trip, i.e., the travel
distance from s to d is bounded by (1 +) dist(s, d)).

The planned pick-up time is the pick-up time in a returned
result, while the actual pick-up time is the time when the riders in
R get on the vehicle. As an example, a request is submitted at 8:00
PM, a result shows the pickup time is 8:05 PM, but the vehicle
actually arrives at 8:12 PM, then the planned pickup time is 8:05
PM and the waiting time is 7 min. In Fig. 1(a), a ridesharing
request R1 = v2, v16, 2, 5, 0.2 means that two riders travel from v2
to v16 with the maximal waiting time 5 and a service constraint 0.2.

2.3 Vehicle Trip Schedule
Each vehicle can be assigned an empty or a non-empty set of

unfinished ridesharing requests. A non-empty vehicle (i.e., having
a non-empty set of unfinished ridesharing requests) has a set of
valid vehicle trip schedules.

DEFINITION 2 (Vehicle Trip Schedule). Each trip schedule tr =
o1, o2, …, ok contains a sequence of locations (i.e., vertices in G),
where o1 is the current location c.l of vehicle c, and oi (2 i k)
represents the start location or destination of an unfinished
ridesharing request. The whole trip distance disttr equals to
dist(oi, oi+1). A valid trip schedule satisfies four conditions:

(1) Capacity constraint: At any time, the number of riders in
a vehicle cannot exceed vehicle’s capacity.

(2) Point order: For any unfinished ridesharing request R = s,
d, n, w, in the vehicle trip schedule tri, the location of

the vehicle that receives the request R must happen
before the start location s, and s must happen before the
destination d.

(3) Waiting time constraint: For any unfinished request R
= s, d, n, w, of vehicle c, the waiting time between
the planed and actual pick-up times should not exceed
the constraint w. Let tri be the actual trip schedule for
vehicle c to pick up the rider of R, and trj be the planned
trip schedule when assigning R to c, (c.l, s)

(c.l, s) w.
(4) Service constraint: For any vehicle trip schedule tr, the

actual travel distance disttr(s, d) from a start location s to
a destination d should not exceed (1 +) dist(s, d).

2.4 Price Model
As with an existing price model [4], the price of a request is the

sum of prices for the detour and the original trip distances.

DEFINITION 3 (Price Model). For a ridesharing request R = s,
d, n, w, , assume that tri is the current trip schedule of a vehicle
c and trj is the new vehicle trip schedule after inserting R into tri,
the price can be computed as fn (– + dist(s, d)), in
which fn is the price ratio that depends on the number n of riders.

For simplification, we set fn = 0.3 + (n 1) 0.1. For instance,
in Fig. 1(a), for a non-empty vehicle c1 with the trip schedule tr1 =
v1, v2, v16, inserting the request R2 = v12, v17, 2, 5, 0.2 into tr1
results in a new trip schedule tr2 = v1, v2, v12, v16, v17. Then, the
price equals to f2 (+ dist(v12, v17)) = 4.

2.5 Price-and-Time-Aware Ridesharing
We proceed to present the definition of dynamic ridesharing.

DEFINITION 4 (Price-and-Time-Aware Ridesharing). Given a
set C of vehicles in the road network G at a specific time and a
real-time trip request set SR, a price-and-time-aware ridesharing
finds, for each request R SR, all qualified and non-dominated
results c, time, price. Here, result ri dominates another result rj
iff (ri.time rj.time ri.price < rj.price) or (ri.time < rj.time
ri.price rj.price).

In PTRider, a greedy strategy is used when multiple requests
are issued simultaneously. Each vehicle c can offer one or more
pairs of a pick-up time (i.e., time) and its corresponding price for
R. Since time can be transformed to distance, we use the trip
distance from c’s current location l to R’s start location s (termed
as distpt) to denote time. Thus, the result can also be denoted as ri
= c, distpt, price. In Fig. 1(a), assume that two vehicles c1 (with
only one trip schedule tr1 = v1, v2, v16) and c2 (with only one trip
schedule tr2 = v13) exist. Given a ridesharing request R2 = v12,
v17, 2, 5, 0.2, a dynamic ridesharing returns results r1 = c1, 14, 4
and r2 = c2, 8, 8.8, where r1 has a lower price, but r2 has an
earlier pick-up time.

3. PTRIDER PROTOTYPE
In this section, we first introduce the framework of PTrider, and

then, we present indexing and matching algorithms, respectively.

3.1 Framework of PTRider
Fig. 2 shows the framework of PTRider. The main components

include two index modules (i.e., Road Network Index Module and
Vehicles Index Module) and a matching method module. PTRider

g1 g2 g4

g5

v1
v2

v3v4

g7 g8

g9 g12

g14 g16g15

v5 v6v7
v8

v9 v10

v11 v12

v14

v13

v15 v16

v17

g13

2

1

1

1
1

1
2

2
32

32

3

3

21
3 1

6

g3

g6

g10
g11

g10

v9

v11

v10

v9

v11
v12

v9 v10v11min
g6
g11
g13

g3

v10

c1 c20

0

0

4 2 0

4

2

3

6 0

0

1
6
5 1

... ...
...

BV
list vertex list grid list

empty
vehicle

list non-empty
vehicle list

capacity

detour

disttr

dist
2 3.6 19 18

(a) Grid partition (b) Information of a grid cell g10

Fig. 1. Illustration of a road network grid index

1939

answers a ridesharing request follows three steps. (i) A rider
requests a trip using his/her smart phone. He/She specifies the
number of riders, and the start location and destination of the
request. PTRider sets a global maximum waiting time and a
global service constraint. (ii) Once the request is submitted, the
matching method module finds all the qualified options, and sends
them to the rider. Here, an option contains the pick-up time and
price provided by a specific taxi. (iii) The rider chooses one that
matches his/her preference best, and sends it back to the system.
Then, the index modules are updated according to the rider’s
choice. Note that, the taxis update their locations periodically, and
update their trip schedules when they pick up or drop off riders.
Therefore, the index modules need to be updated.

3.2 Indexing of PTRider
3.2.1 Indexing the Road Network

We partition the road network using a grid, as illustrated in Fig.
1(a). If an edge e = (u, v) belongs to more than one grid cell, we
call u and v border vertices. In order to estimate the shortest path
distance more accurately, we maintain a matrix that stores the
lower bound distance for every grid cell pair. Also, the lower
bound distance is associated with a vertex pair (xi, yj), where xi
and yj are border vertices in the grid cells gi and gj respectively,
i.e., (xj, v1, …, vk, yj) is the shortest path connecting gi and gj.

As depicted in Fig. 1(b), each grid cell maintains five lists: (i) a
border vertex list of border vertices belonging to the grid cell; (ii)
a vertex list of vertices belonging to the grid cell, as each vertex v
is associated with its shortest path distances to the border vertices
(BV) of the grid cell ({u, dist(v, u) | u BV}) and is also
associated with min{dist(v, u) | u BV} (denoted as v.min); (iii) a
grid cell list of other grid cells sorted in ascending order of the
travel time from those grid cells to the grid cell (i.e., sorted in
ascending order of the lower bound distances when speed is
constant); (iv) an empty vehicle list of the vehicles with empty
ridesharing requests in gi; and (v) a non-empty vehicle list of
vehicles cj having a non-empty set of ridesharing requests, i.e.,
vehicles cj are currently located in gj or are scheduled to enter gi.

Base on the grid index, several pruning lemmas are developed
by estimating price and pick-up time. For more technical details,
please refer to our full research paper [5].

3.2.2 Indexing Vehicles
Each vehicle c is represented by using (i) the unique identifier

c.ID of the vehicle; (ii) the current location c.l of the vehicle; (iii)
the set c.S of unfinished ridesharing requests assigned to it, sorted

in ascending order of their timestamps; and (iv) the set c.Str of all
valid vehicle trip schedules.

The set c.Str of all valid vehicle trip schedules can be managed
by a kinetic tree [7], as illustrated in Fig. 3, where every branch
denotes a valid trip schedule. In addition, we add three variables
to each node ox in the kinetic tree: (i) a current vehicle’s capacity,
(ii) the minimal detour distance allowed, and (iii) the trip distance
disttr from c’s current location to ox. The detour can be computed
easily from the waiting time and service constraints. If an edge ox,
oy of vehicle c’s kinetic tree intersects with, or is contained in a
grid cell gi (i.e., the shortest path between ox and oy intersects with
or is included in gi), then ox, oy belongs to the non-empty
vehicle list of gi. The kinetic tree is updated per time unit.

3.3 Matching Algorithms
A naive method can be extended directly from the kinetic tree

algorithm. We evaluate every vehicle to find all possible pairs of
pick-up time and price that cannot dominate each other when
inserting the request R into its kinetic tree. However, it can be
improved in two ways: (i) we can filter unqualified vehicles in
advance instead of verifying all vehicles; and (ii) the number of
the shortest path distance computations ([7] calculates all the
distances before verification) can be reduced when inserting the
request into the kinetic tree. To boost efficiency, PTRider utilizes
two algorithms proposed in [5], as described below.

Single-Side Search Algorithm. For each ridesharing request R
= s, d, n, w, , single-side search algorithm starts from the grid
cell gi where s locates, and then, it searches the grids in order of
their distances to s. During the search, empty and non-empty
vehicles are processed separately. For empty vehicles that cannot
be pruned, R can be easily inserted into its trip schedule set. For
every non-empty vehicle that cannot be pruned, the inserting is
similar as that in [7], by estimating the lower and upper bounds of
the shortest path distance to avoid unnecessary computations.

Dual-Side Search Algorithm. Single-side search algorithm
filters unqualified vehicles using pruning lemmas when searching
from the start location. Similarly, we can also filter unqualified
vehicles using pruning heuristics when searching from the
destination. Take the following case as an example. One existing
trip schedule is near the start location of a ridesharing request, but
it is far from the destination of the ridesharing request. In this case,
the dual-side search paradigm can avoid more unnecessary
verifications of vehicles. Thereafter, similar as single-side search
algorithm, dual-side search algorithm verifies each vehicle that
cannot be pruned in order to find qualified results.

Road Network
Index Module

Vehicles Index
Module

Road Network Vehicles
Mapping

Matching Algorithm ModuleRequest

Results

Choice

System

control

Dropoff update Pickup update Location update

Fig. 2. Framework of PTRider Fig. 3. Kinetic tree examples on vehicle trip schedules

1940

4. DEMONSTRATION
PTRider is demonstrated by using a real data set that contains

432,327 trips extracted from 17,000 Shanghai taxis for one day.
The ridesharing requests are generated by using trips in the real
dataset, or submitted by the users. The vehicles are initialized
uniformly in the road network. They follow a specified route
when customers are on board or, otherwise, follow the current
road segment, choosing a random segment to follow at
intersections. A constant speed D (48km/hr) is assumed. The
underlying system of PTRider runs on an Intel Core i7 3.6GHz
PC of a 16GB memory. PTRider can be visited through a
smartphone interface to book a taxi in real time, or via a website
interface to set the parameters and view the statistics.

4.1 Smartphone Interface
The smartphone interface allows the users to book a taxi that

matches their requests best, i.e., sending a ridesharing request and
finding their preferred taxis. First, as depicted in Fig. 4(a), the
rider inputs a start location (suggested as the current location), a
destination, and the number of riders in the textbox, and clicks the
book button to send the ridesharing request to the system. Second,
the system returns all the possible options back to the rider,
including pick-up time and price, as illustrated in Fig. 4(b). Third,
the rider selects his/her preferred option, and clicks the chosen
option to send his/her choice to the system.

4.2 Website Interface
The website interface (i) shows the trip schedules on a map, (ii)

provides the statistics of the trip information, and (iii) allows the
system administrator to set the constraints.

The left-side of Fig. 4(c) shows the trip secludes for any taxi.
The system administrator first selects a taxi ID, and then, the
unfinished ridesharing requests assigned to the selected taxi are
depicted in a drop-down box next to the taxi ID. In addition, all
possible trip schedules of the selected taxi are shown as the red
lines on the map, where the red star denotes the current position
of taxi. Each red line denotes a possible trip schedule for the
selected taxi, i.e., each branch in the corresponding kinetic tree.

The top-right of Fig. 4(c) illustrates the statistics of PTRider,
including the current time, the average response time, and the
average sharing rate. As observed, the system is efficient (low
average response time) and effective (high average sharing rate).

In the bottom-right of Fig. 4(c), the system administrator is able
to input the parameters including the taxi capacity, the number of
taxis, the maximal waiting time, the service constraint, and the
price calculator function. Although some parameters can be set by
the rider himself/herself (e.g., the maximal waiting time and the
service constraint) or by the taxi driver (e.g., the taxi capacity),
PTRider adopts a global setting for simplification. In addition, the
particular matching algorithm (i.e., single-side search algorithm
or dual-side search algorithm) used in PTRider can be specified.

5. ACKNOWLEDGEMENTS
This work was supported in part by the 973 Program Grant No.

2015CB352502, NSFC Grants No. 61522208, and U1609217,
MOE2015-T2-2-069, SUG from NUS, DiCyPS project, and Obel
Family Foundation. Yunjun Gao is a corresponding author.

6. REFERENCES
[1] [online] lyft. https://www.lytf.com
[2] [online] uberPOOL. https://www.uber.com
[3] S. Borzsonyi, D. Kossmann, and L. Stocker. The skyline

operator. In ICDE, 2001, 421–430.
[4] B. Cao, L. Alarabi, M. F. Mokbel, and A. Basalamah.

SHAREK: A scalable dynamic ride sharing system. In MDM,
2015, 4–13.

[5] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C.S. Jensen.
Price-and-Time-Aware Dynamic Ridesharing. In ICDE, 2018.

[6] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale
dynamic taxi ridesharing service. In ICDE, 2013, 410–421.

[7] Y. Huang, F. Bastani, and R. Jin. Noah: A dynamic
ridesharing system. In SIGMOD, 2013, 985–988.

[8] R. S. Thangaraj, K. Mukherjee, G. Raravi, and A. Metewar.
Xhare-a-Ride: A search optimized dynamic ride sharing
system with approximation guarantee. In ICDE, 2017, 1117–
1128.

(a) Request input interface (b) Result display interface (c) The website interface

Fig. 4. Demonstration of PTRider

1941

