Fault-Tolerance for Distributed lterative Dataflows in Action

*
Chen Xut , Rudi Poepsel Lemaitret, Juan Soto?, Volker Markl?
TEast China Normal University, Shanghai 200062, China
$Technische Universitat Berlin, Berlin 10587, Germany
fexu@dase.ecnu.edu.cn, ffirstname.lastname@tu-berlin.de, r.poepsellemaitre@campus.tu-berlin.de

ABSTRACT

Distributed dataflow systems (DDS) are widely employed in
graph processing and machine learning (ML), where many
of these algorithms are iterative in nature. Typically, DDS
achieve fault-tolerance using checkpointing mechanisms or
they exploit algorithmic properties to enable fault-tolerance
without the need for checkpoints. Recently, for graph pro-
cessing, we proposed utilizing unblocking checkpointing, to
parallelize the execution pipeline and checkpoint writing,
as well as confined recovery, to enable fast recovery upon
partial node failures. Furthermore, for ML algorithms im-
plemented using broadcast variables, we proposed utilizing
replica recovery, to leverage broadcast variable replicas and
facilitate failure recovery checkpointing-free. In this demon-
stration, we showcase these fault-tolerance techniques using
Apache Flink. Attendees will be able to: (i) run represen-
tative iterative algorithms including PageRank, Connected
Components, and K-Means, (ii) explore the internal behav-
ior of DDS under the influence of unblocking checkpointing,
and (iii) trigger failures, to observe the effects of confined
recovery and replica recovery.

PVLDB Reference Format:

Chen Xu, Rudi Poepsel Lemaitre, Juan Soto, Volker Markl. Fault-
Tolerance for Distributed Iterative Dataflows in Action. PVLDB,
11 (12): 1990-1993, 2018.

DOI: https://doi.org/10.14778/3229863.3236242

1. INTRODUCTION

In recent years, the growing demand for large-scale da-
ta analysis, which includes graph processing and machine
learning (ML) algorithms has led to the development of var-
ious data processing systems. To simplify the entire analyt-
ics workflow, we need general-purpose distributed dataflow
systems (DDS) (e.g., Flink [2], MapReduce [3], Spark [6])
that support distributed iterative processing with high-level
primitives. Typically, both graph and ML computations are
known to incur a long runtime since iteration is expensive.

*Work done when author was working at TU Berlin.

This work 1is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 11, No. 12

Copyright 2018 VLDB Endowment 2150-8097/18/8.

DOI: https://doi.org/10.14778/3229863.3236242

1990

However, over execution periods, some of the nodes may fail
(e.g., due to operating system crashes, network interrup-
tions, or problems associated with cloud operations, such
as virtual machine shutdowns). Hence, it is indispensable
that DDS tolerate such failures and continue the iterative
process.

Checkpoint-based strategies are commonly adopted to han-
dle failures. They periodically write the status of a dataset
into stable storage as a checkpoint during execution and
recover from the last checkpoint upon failure. These strate-
gies must reduce both the checkpoint-writing overhead as
well as the recovery costs whenever failures occur. In con-
trast, checkpoint-free strategies exploit algorithmic proper-
ties to achieve failure recovery. Recently, for graph process-
ing, we proposed unblocking checkpointing [4], to parallelize
the execution pipeline and checkpointing, as well as confined
recovery, to employ preserved outgoing messages from live
nodes and enable fast recovery upon partial node failures.
In addition, for ML algorithms implemented via broadcast
variables, we proposed replica recovery [5] to leverage the
implicit replicas of broadcast variable and ease failure re-
covery checkpointing-free.

In this work, we showcase our fault-tolerance techniques
using Apache Flink and address three questions: (1) How
does unblocking checkpointing reduce the checkpoint-writing
overhead efficiently? (2) How does confined recovery resume
computation from a checkpoint upon failure? (3) How does
replica recovery continue to compute, despite failures and
without the need for checkpoints?

2. BACKGROUND

In this section, we briefly revisit the checkpoint-based and
checkpoint-free strategies in our recent studies [4, 5]. For our
purposes, we primarily focus on graph and ML algorithms.

2.1 Checkpoint-based Strategies

Checkpoint-based strategies enable failure recovery via
the use of checkpoints, i.e., by writing checkpoints during
normal execution. However, these strategies incur an over-
head. Therefore, we reduce the checkpoint-writing cost us-
ing unblocking checkpointing. Also, we propose confined re-
covery [4] to achieve a fast recovery from failures. Next,
we apply unblocking checkpointing and confined recovery to
enable fault-tolerance for graph processing.

Unblocking Checkpointing. In general, each iteration in
graph processing reads vertex states as well as edges and
performs operations. Thereby, generating new vertex states
as input for a subsequent iteration. As edges are usually

static data in graph processing, failure recovery will solely
depend on the vertex states. Hence, saving vertex states as
checkpoints is sufficient for fault-tolerance. One way to save
checkpoints is to write them independent of the computa-
tion. For example, Spark issues a new job to materialize a
checkpoint, which typically incurs a high overhead.

In constrast to managing vertex checkpointing indepen-
dently as in Spark, we incorporate materialization check-
pointing into the normal execution [4]. In particular, we em-
ploy tail checkpointing to inject checkpoints into the tail of
an execution plan, which parallelizes both checkpoint writ-
ing and an iteration computation in an unblocking manner.
Note that the vertex state at the beginning of an iteration is
exactly the same as the one generated by the previous iter-
ation, since the vertex states are updated iteratively during
graph processing. Alternatively, we can employ head check-
pointing, which writes checkpoints at the head of each iter-
ation. Here, checkpointing in the (i + 1)** iteration saves
the vertex state result in the i*" iteration as a checkpoint.
Hence, unlike tail checkpointing, which parallelizes iterative
data generation and checkpointing, head checkpointing en-
ables the parallel execution of both checkpoint writing and
the entire data computation at each iteration. Consequent-
ly, head checkpointing is preferable over tail checkpointing.
Confined Recovery. With the help of checkpoints, DDS
are able to replay the computation and recover from failure.
That is, all of the nodes must repeat calculations from the
last saved checkpoint, which is time-intensive. However, in
the case of partial node failures, live nodes still retain the
most recent states. Hence, it is unnecessary for the live
nodes to recompute the states. Instead, DDS only need to
recompute state on those nodes that have failed.

Based on this idea, we introduced confined recovery [4]
for iterative graph processing in a join-groupBy-aggregation
pattern on DDS. Confined recovery keeps outgoing messages
locally during normal execution, and when failure occurs, it
explores messages on live nodes, in order to recover failed
nodes from the last checkpoint and avoid asking all of the
nodes to do a complete recomputation. However, preserving
messages locally for all of the operators incurs an addition-
al overhead, which is high. To maintain the fewest number
of messages and reduce the overhead, confined recovery s-
tores outgoing messages only for the groupBy operator. For
the join operator, we reconstruct those edges that were lost
from input datasets, since the edges in a graph are static
and apply a join with those vertices that were lost from the
last checkpoint upon failure. For the aggregation operator,
we require the input data to be partitioned using the same
partition function used with the vertex states and then al-
1 of the nodes will aggregate the data locally. Hence, upon
failure, the aggregated data will be recomputed without any
additional information locally.

2.2 Checkpoint-free Strategies

In contrast to checkpoint-based strategies, checkpoint-free
strategies never adopt checkpoints explicitly. To disregard
the need for checkpoints, we propose replica recovery [5],
which leverages implicit replicas to recover. Next, we ap-
ply replica recovery to enable fault-tolerance without any
requirements on checkpoints for specific ML algorithms.
Replica Recovery. In our investigations, we examine ML
algorithms, such as K-Means whose model parameters (i.e.,
computational state) fit onto a single machine. Even though

1991

the overhead costs of checkpointing model parameters in a
single instance is negligible, over time the overhead costs
will accumulate and become significant. Incidentally, to im-
prove performance, it is common practice to use broadcast
variables to implement model parameters, which provides
built-in replicas in all of the nodes. These replicas enable us
to adopt a checkpoint-free strategy.

Consequently, we propose replica recovery for ML algo-
rithms, whose model parameters fit onto a single machine.
Here, we implement model parameters using broadcast vari-
ables. Upon failure, replica recovery explores the replicas on
healthy nodes to continue the computations without impos-
ing any additional requirements on checkpoints.

3. DEMONSTRATION

This demonstration implements three fault-tolerance tech-
niques, i.e., unblocking checkpointing, confined recovery and
replica recovery, in Apache Flink as well as a user-interface
(UI), which is deployed on a laptop. Here, we initialize a
JobManager and four TaskManagers in Flink to simulate
a distributed deployment. In addition, we employ Hadoop
Distributed File System (HDFS) version 2.6.1 to save both
the input and output data as well as the checkpoint data.
For unblocking checkpointing and confined recovery, we em-
ploy the PageRank (PR) and Connected Components (CC')
algorithms and use the cnr-2000' dataset as input. For
replica recovery, we employ the K-Means algorithm and use
synthetic data generated with Peel [1], a framework designed
to help users define, execute, analyze, and share experiments
for distributed systems and algorithms.

3.1 Unblocking Checkpointing

Initially, attendees see a UI for “Unblocking Checkpoint-
ing” as depicted in Figure 1. Next, they pick either the PR
or CC algorithm as well as a checkpointing strategy, i.e.,
no checkpointing, tail checkpointing, or head checkpointing.
Then, they are able to explore the execution plans expressed
in JSON format, visualize the plans and observe the internal
behavior of the system for unblocking checkpointing.

For example, Figure 2 shows a partial execution plan for
the PageRank algorithm under varying checkpointing strate-
gies. Figure 2a depicts the case when there is no checkpoint-
ing. The Map operator (enclosed in one red box, in the tail
end of the execution plan) generates an iterative dataset
that is fed back to a Partial Solution operator (enclosed
in another red box, near the head of the execution plan).
Figure 2b depicts the case when tail checkpointing is em-
ployed. A DataSink operator (enclosed in a yellow box, in
the tail end of the execution plan) saves checkpoints in an
external HDF'S directory. Figure 2c depicts the case when
head checkpointing is adopted. Similarly, a DataSink oper-
ator (enclosed in a yellow box, near the head of the execu-
tion plan) saves checkpoints in an external HDFS directory.
However, in contrast to Figure 2b, the DataSink operator is
located at the head of the execution plan in Figure 2c.

3.2 Confined Recovery

Upon clicking on a drop down menu, attendees will see
a Ul for “Confined Recovery” as depicted in Figure 3. Un-
der “Cluster Status,” they observe a JobManager and four
TaskManagers. Next, attendees pick either the PR or CC

"http://law.di.unimi.it /datasets.php

FAuLT-ToLERANCE FOR DISTRIBUTED ITERATIVE DATAFLOWS IN ACTION

Unblocking Checkpointing Demonstration

v

PageRank

Execution Plan

No Checkpointing

Reset

Tail Checkpointing @ Head Checkpointing Run Demo

Map (iD=2)

Map at main(PageRank java:104)
parlieiism: 4

Driver Swrategy: Map

Data Source (1D = 15)
af getlinksDataSet(PageRank ja
va:318) (org.apache.fink api
java.io.CsvinputFormat)
Parallelism: 4

w

Paraliefism: 4

Partial Solution

partialSolution

Join (ID=12) FlatMap (ID = 11)

Join at main(PageRank java:116 FlatMap at main(PageRank ja
) 116)

Farward

iParalielism: 4 Parallelism: 4

nade

Driver Serategy: Merge

4

Driver Strateqy: FlatMap

Data Sink (ID = 16)

Group:
Gi

main(PageRank |

Parallelism: 4
Driver Strateqy: Soned Group Reduce

CsvOutputFormat (path: hafs:
Iocathost-S000/checkpointichec
kpoint, defimiter. .)

Parallelism: 4

Reduce (ID = 14)

roupReduce at

ava:107)

Figure 1: Illustrating Unblocking Checkpointing.

algorithm and experience confined recovery under the sin-
gle, multiple, or cascading failure scenarios. To create a
failure scenario, attendees specify the TaskManagers that
should fail. In addition, they specify three parameters, in-
cluding the: 1) number of iterations: the maximum number
of iterations for the corresponding algorithm, 2) checkpoint
interval: the interval between two consecutive checkpoints,
and 3) failed iteration: the iteration where failure occurs.
In particular, we employ the head checkpointing strategy to
write checkpoints. Lastly, the job is issued and failure hap-
pens, according to the specified parameters. Under the “Job
Status,” attendees observe whether the execution status is
normal, failing, or under recovery.

For example, Figure 3 depicts a single failure scenario,
where a TaskManager is selected and highlighted in red. By
default, the number of iterations, checkpoint interval, and
failed iteration are set to 10, 6, and 8, respectively. This
means that the job runs for at most ten iterations, a single
checkpoint is saved during the 6" iteration, and a single
failure happens during the 8" iteration. By clicking on the
“Run Demo” button, confined recovery is illustrated for a
single failure. The “Job Status” reflects that the iterative
job fails during the 8" iteration and then restarts from the
6" iteration by the live TaskManagers.

3.3 Replica Recovery

Upon clicking on the drop down menu, attendees will see
a UI for “Replica Recovery,” akin® to Figure 3. They can
experience replica recovery for the K-Means algorithm un-
der the single, multiple, or cascading failure scenarios. In
particular, attendees specify the TaskManagers that should
fail to create failure scenarios, as well as two parameters,
i.e., the number of iterations and the failed iteration.

2Note: Due to space limitations, we do not include a figure
for replica recovery. However, it closely resembles Figure 3
with some minor differences.

1992

By default, the failure scenario is a single failure, the num-
ber of iterations is 10, and the failed iteration is 8. This
means the job runs for at most ten iterations, and a single
failure happens during the 8" iteration. Here, no checkpoint
is saved. By clicking on the “Run Demo” button, replica re-
covery for a single failure is illustrated, which reflects that
the job failed during the 8" iteration and restarted from the
8" jteration by the live TaskManagers.

4. ACKNOWLEDGMENTS

This work has been supported through grants by the Ger-
man Ministry for Education and Research as Berlin Big Da-
ta Center BBDC (funding mark 01IS14013A).

S. REFERENCES

[1] C. Boden et al. PEEL: A framework for benchmarking
distributed systems and algorithms. In TPCTC, pages
9-24, 2017.

P. Carbone et al. Apache flink™: Stream and batch
processing in a single engine. IEEE Data Eng. Bull.,
38(4):28-38, 2015.

J. Dean et al. Mapreduce: Simplified data processing
on large clusters. In OSDI, pages 137-150, 2004.

C. Xu et al. Efficient fault-tolerance for iterative graph
processing on distributed dataflow systems. In ICDE,
pages 613-624, 2016.

C. Xu et al. On fault tolerance for distributed iterative
dataflow processing. IEEE Trans. Knowl. Data Eng.,
29(8):1709-1722, 2017.

M. Zaharia et al. Spark: Cluster computing with
working sets. In HotCloud, pages 10:1-6, 2010.

2]

B8l

(4]

5]

(6]

Bulk Partial Solution (ID =
13)

Partial Solution

partialSolution Node

Bulk Iteration (ID = 1)
Bulk teration

Join (ID = 12)

FlatMap (ID = 11)

GroupReduce (ID = 10)

GroupReduce (ID = 9)

Map (ID = 8)
Map at main(PageRank java:116)

Bulk Partil Solution (ID =
14)

ash Parttoncn 0,
Sorton 045¢)

paralelism: 4 Join at main(PageRank java:116 Flathap at main(PageRank java: SUM(1), at main(PageRankjave: | [pamiomon SUM(1), at main(PageRank java:
Node
Data Source (ID = 15) GroupReduce (ID = 14) IParalllism: 4 Iparallelism: 4 Parallelism: 4 (oasc) Parallelism: 4 lparallelism: 4
gell at mai J A Driver Strategy: Merge: IDriver Strategy: FlatMap Driver Strategy: Sorted Combine Driver Strategy: Sorted Group Reduce loiver Suategy: Map
at g Ja
va:318) (org.apache.link.api. | sonon 04SC] ava:107)] Fovars cacheo)|
java.o.CsvinputFormat) -
Parallelism: 4 IDriver Strategy: Sorted Group Reduce
(a) No Checkpointing
Bulk teration (1D = 1)
Bulk Iteration
Map (ID=8)

Map at main(PageRankLateCptja
va142)

Partial Solution nextPartialSolution Node
I Join (ID = 13) FlatMap (ID = 12) GroupReduce (ID = 11) GroupReduce (1D = 10) Map (ID=9) parateisn: 4
Iparatelism: 4 Join at main(PageRankLateCpt, FlatMap at SUM(1), at SUM(1), at Map at main(PageRankLateCptja river Skaiegy: Mop
aval17) main(PageRankLateCp main(Pe in(Pe val17)
tjava:117) tjava:117 oasc) tjava:117?
Data Source (ID = 16) GroupReduce (ID = 15) paaelin: 4 araelisn: 4 B
GroupReduce at rive Srey: Merge parlelin: 4 arallm: 4 paralelism; 4 orver Svtegy:Map Data Sink (ID = 17)
el ageranal [sl Jrver Staegy:Sorted Combine Cooupromarat
— calhost45010/checkpointc
nk.apijava.io.CsvinputFormat) teCptjava112) ckpoint, delimiter:)
laralelsn: 4 faraleism: 4 "
[Driver Strategy: Sorted Group Reduce
(b) Tail Checkpointing
Bulk Iteration (ID = 1)
Bulk leration
Join (1D = 12) FlatMap (ID = 11) GroupReduce (ID = 10) GroupReduce (ID = 9) Map (1D =8)

Bulk Partial Solution (ID =
13

Joinat mm‘n(pa)gepank.;avanw Flatap armaﬁ(;ageﬂanklava: SUMY, atmaPageRankin | [rumancnr SUMCY,at maPageRankve | [— Map at main(PageRank jave:116)
Partial Solution —r Node
parallelism: 4 parallelism: 4 parallelism: 4) paralllis: 4 paralilism: 4
partialSolution Node
Driver Strategy: Merge Driver Strategy: FlatMap Driver Strategy: Sorted Combine. IDriver Strategy: Sorted Group Reduce. Driver Strategy: Map
Parallelism: 4 ’
Data Sink (ID = 16)
Data Source (ID = 15) GroupReduce (ID = 14) ﬁi:ﬁﬁﬁ%‘?ﬁi@i&ﬂ’&%%ﬁlﬁ
g geRank ja tmai ckpoint, delimiter:.)
va:318) (org.apache.fink.api. [sorton (6ASC] ava:107) | -
Java.io.CsvinputFormat) S
Parallelism: 4 IDriver Strategy: Sorted Group Reduce
(¢) Head Checkpointing
Figure 2: Illustrating an Iteration Execution Plan for PageRank.
—
- —
FauLT-ToLERANCE FOR DISTRIBUTED ITERATIVE DATAFLOWS IN ACTION
—
Confined Recovery Demonstration Reset
PageRank v
Single Failure v Number of iterations: 10 Checkpoint interval: 6 Failed iteration: 8 Run Dema
Job Status Cluster Status
[20:18:27,829 INFO org.apache. K. runtme. executiongrapn. ExecutonGrapn -~ Deploying DataSinK (CsvOUtput-ormat (path: nd « [
20:18:35,990 INFO org.apache.flink.runtime.executiongraph. ExecutionGraph - Deploying CHAIN Reduce (SUM(1), at main(Pag Fcl'lgg.s_zo} Northwoods Software
20:18:35,991 INFO org.apache.flink.runtime.executiongraph. ExecutionGraph - Deploying CHAIN Reduce (SUM(1), at main(Pag Not for distribution or production use
20:18:35,990 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph - Deploying CHAIN Reduce (SUM(1), at main(Pag nweads.com
20:18:38,010 INFO org.apache.flink.runtime.jobmanager.iterations.lterationManager - finishing iteration [6] Job Manager
20:18:38,010 INFO org.apache.flink.runtime jobmanager.iterations.IterationManager - signaling that all workers are done in iteration [6] Process:14676
20:18:39,658 INFO org.apache.flink.runtime.jobmanager.iterations.lterationManager - finishing iteration [7] T
20:18:39,658 INFO org.apache.flink.runtime jobmanager.iterations. IterationManager - signaling that all workers are done in iteration [7] T T
20:18:42,544 INFO org.apache.flink.runtime.jobmanager.iterations.IterationManager - finishing iteration [8]
20:18:42,545 INFO org.apache.flink.runtime jobmanager.iterations.IterationManager - signaling that all workers are done in iteration [8] Task Manager Task Manage
20:18:46,452 INFO org.apache.flink.runtime.jobmanager.iterations.IterationManager - finishing iteration [9] Process:15329 Process:148|
20:18:46,452 INFO org.apache.flink.runtime.jobmanager.iterations.lterationManager - signaling that all workers are done in iteration [9]
20:18:51,502 INFO org.apache.flink.runtime. jobmanager.iterations.IterationManager - finishing iteration [10]
20:18:51,502 INFO org.apache.flink.runtime.jobmanager.iterations.IterationManager - maximum number of iterations [10] reached, tern
20-18°51 K02 INFO nrn anache flink rintime inhmananer iteratinns IteratinnMananer - sinnalina that all warkers are tn terminate in itera ™
4 » 4 *

Figure 3: Illustrating Confined Recovery.

1993

