
QuestPro: Queries in SPARQL Through Provenance

Efrat Abramovitz
Tel Aviv University

abramovitz2@mail.tau.ac.il

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Amir Gilad
Tel Aviv University

amirgilad@mail.tau.ac.il

ABSTRACT
We propose to demonstrate QuestPro, a prototype interac-
tive system aimed at allowing non-expert users to specify
SPARQL queries. Notably, QuestPro makes an extensive
use of provenance in deriving the SPARQL queries, in two
ways. First, we ask users to provide example output nodes
along with explanations that are then treated as the prove-
nance of the underlying query, guiding the system’s search
for a fitting query. We have designed an intuitive inter-
face through which users can gradually build their expla-
nations while understanding the connections between the
different objects. The system then generates a set of candi-
date queries and uses provenance to explain each candidate,
prompting user feedback to choose between them. We will
demonstrate the usability of QuestPro using an ontology of
academic publications, engaging the audience in the interac-
tive process while explaining the under-the-hood model and
algorithms.

PVLDB Reference Format:
Efrat Abramovitz, Daniel Deutch, Amir Gilad. QuestPro: Queries
in SPARQL Through Provenance. PVLDB, 11 (12): 1994-1997,
2018.
DOI: https://doi.org/10.14778/3229863.3236243

1. INTRODUCTION
Assisting non-expert users in the formulation of database

queries has been a goal of multiple lines of work. A promi-
nent approach in this respect is query-by-example (e.g., [3,
2]) which entails a user specifying examples of output that
she would like to get from the query, and a system trying
to automatically infer the intended query from these exam-
ples. Using this approach was shown to be useful when the
full output of the query is available or when users are able
to provide a large number of representative examples. But
coming up with such a set of examples is non-trivial, and un-
less this is the case, the system may be unable to distinguish
the true intention of the user from other qualifying queries.
As an example, consider an ontology of authors and papers,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236243

and a query asking for all authors with Erdős number 2.
Examples for the query output, i.e. example authors, will
likely be un-indicative of the actual intended query, since
the authors may share many other characteristics such as
field of study and alma mater.

We propose to demonstrate a novel framework [1], that
uses provenance [5, 7, 6] for the inference of SPARQL queries.
The high-level idea is to leverage provenance information in
two ways: reducing the search space to several candidate
queries, and assisting users in choosing amongst them 1.

Users first input examples of nodes they expect in the
output of their intended query, and further formulate expla-
nations for these results. The explanations are formulated
through our interface, showing the ontology as a graph and
allowing users to gradually build their explanations in an
intuitive way. Users start from the node they chose as an
output example and then choose which adjacent nodes and
edges to include in its explanation, expanding the explana-
tion graph in each step. Thus, each explanation is, in fact,
a provenance graph with a special node marked as the out-
put. Continuing our example, the provenance of an example
author with respect to the intended query will be one of her
co-authorship paths to Erdős of length 2.

The system then compiles the output examples and ex-
planations into formal SPARQL provenance and infers can-
didate queries (which may include union and disequalities).
We look for queries who have a mapping to each of the prove-
nance graphs that does not only yield the output node, but
also gives the same exact provenance specified by the user.
However, this desideratum is not sufficient as there are still
many queries that fit this description, and they can also
be very general. To further focus our search on relevant
queries we attempt to find ones with a minimum number
of variables. Intuitively there is a correlation between the
number of variables in the query and the “tightness” of its
fit to the given examples. Since finding a candidate query
with minimum variables is NP-hard, our algorithm infers
and ranks k candidate queries according to the number of
unions and the number of variables they include, preferring
queries which have a low number of both. This procedure
clearly focuses the search for a query, but we still have to
choose the intended query from multiple candidates. In our
example, another candidate query may be one that uses a
constant for the name of the third author in the chain if this
name was the same in all given examples.

1Large parts of our technical description are taken from our
full paper [1], where further details may be found.

1994

Figure 1: System Architecture

To this end, we also employ provenance in a second man-
ner. After choosing the k candidate queries that fit the de-
scription of the user, we utilize provenance to allow unexpe-
rienced users to differentiate between the candidate queries,
and choose a single one. In our example case, showing not
only an example result in the difference between the query
results (i.e. an author with Erdős number 2 through a dif-
ferent “middle” author), but rather the provenance of such a
result, i.e., the chain going through the other middle author,
will allow users to distinguish between the queries.

We will demonstrate QuestPro using the SP2B database
(a DBLP-based ontology) and allow participants to pose
examples of outputs and formulate explanations for them
through an intuitive GUI (see Figure 2a). The system will
then compute k candidate queries for users to choose from.
Users will be presented with examples of results and their
explanations to assist them in focusing on a single query.
The explanations again will be shown in graph form, visu-
alizing the connection between the different objects in the
ontology (see Figure 2b). Once the users have chosen the
query, it will be evaluated on the ontology and the results
returned to them. In the demonstration, we will show that
(1) non-expert users are able to formulate explanations for
output examples through our GUI and graphic representa-
tion of the ontology, (2) the system is able to infer reasonable
queries from just a few output examples and their explana-
tions, and (3) users can provide meaningful feedback and
distinguish between queries based on the differentiating re-
sults and explanations.

Related Work. There is a large body of literature on learn-
ing queries from examples, in different variants, specifically
in the context of data exploration (e.g., [8, 3]), and SPARQL
[2]. The fundamental difference between our work and previ-
ous work in this area is the assumed input. Our short demo
paper [4] presented a system for relational databases that
allows for the inference of a single CQ as opposed to several
candidate UCQs with disequalities. Furthermore, the sys-
tem in [4] is not interactive, while here, due to the inference
of several queries, interactive user feedback is crucial. In
addition, multiple lines of work have proposed provenance
models for SPARQL (e.g., [9, 5]). We have focused on learn-
ing queries from explanations based on graph provenance for
SPARQL queries rather than the relational model.

2. MODEL AND SYSTEM DESCRIPTION
We next explain and exemplify each component of QuestPro

(the architecture is depicted in Figure 1) starting with our
model for provenance and queries.

2.1 Model
First we define the provenance model and the formal no-

tion of a query that is consistent with a given provenance

(a) Explanation Screen (b) Feedback Screen

Figure 2: Interface Screens

information. We focus on a simple class of SPARQL queries,
namely basic graph patterns with a single output node and
union thereof, possibly with disequalities.

?p2?p1 ?p3

?a2

w
b

w
b

?a3

w
b w

b

?a1

w
b

Erdős

w
b

Figure 3: Q1

Example 2.1. Q1, Q3, Q4 in Figures 3, 5a, 5b are exam-
ples of a simple queries while Q2 = Union({Q3, Q4}) is not
as it is a union of simple queries. Some nodes are variables,
notated by ? (e.g., the nodes ?a1, ?p1), and the green node
denotes the output.

For such queries there is an intuitive notion of provenance
for a given result node n: the ontology subgraph that is
the image of some homomorphism from the query to the
ontology graph, which yields n.

Example 2.2. Consider the query Q1 depicted in Figure
3 and the ontology subgraph E2 depicted in Figure 4b. Q1

matches E2 since we can define a mapping µ between the ver-
texes that respects the edges by µ(?p1) = µ(?p2) = µ(?p3) =
paper4, µ(?a1) = µ(?a2) = µ(?a3) = Dave, µ(Erdős) =
Erdős. The output of Q1(E2) is the value Dave while the
provenance is exactly the graph E2.

A query is consistent with a set of examples and their
provenance information if evaluating the query yields each
of the examples with provenance that is isomorphic to the
given one.

1995

paper2paper1 paper3

Bob

w
bw

b

Carol

w
b w

b

Alice

w
b

Erdős

w
b

(a) E1

paper4

Dave

w
b

Erdős

w
b

(b) E2

paper2paper5 paper3

Bob

w
bw

b

Carol

w
b w

b

Felix

w
b

Erdős

w
b

(c) E3

paper8

Harry

w
b

Erdős

w
b

(d) E4

Figure 4: Explanations

paper2?p1 paper3

Bob

w
bw

b

Carol

w
b w

b

?a1

w
b

Erdős

w
b

(a) Q3

?p4

?a4

w
b

Erdős

w
b

(b) Q4

Figure 5: Q2 is the Union of Q3, Q4

Example 2.3. Consider the four explanations E1, E2,
E3, E4 presented in Figure 4, and their output nodes Alice,
Dave, Felix, and Harry. Further consider Q1 depicted in
Figure 3. There is a match µ between Q1 and E2 producing
Dave whose provenance is exactly E2 (detailed in Example
2.2). In a similar manner, there is a match between Q1 and
E1, E3, E4, thus Q1 is consistent with the four explanations.

2.2 Formulating Explanations
We begin our search for the desired query by using the

widespread method of allowing users to provide output ex-
amples for the query they would like to run (e.g., [3, 2]),
using auto-complete. We then provide a tool that visu-
alizes the ontology as an interactive graph (the “ontology
visualizer”component in Figure 1), allowing users to formu-
late explanations for their output examples (see Figure 2a).
As ontologies can be large in size, and may overwhelm the
users, we show only the surroundings of each output exam-
ple, gradually revealing only the necessary parts.

Example 2.4. Consider a user searching for all authors
who have an Erdős number 3. The user gives the authors
Alice and Dave as examples and now goes on to formulate
the reason she chose these examples. For Dave, the sys-
tem starts by showing the user all nodes adjacent to Dave
in the ontology and she recognizes the paper paper4 written
by Erdős, so she chooses this object, revealing the neighbor-
ing objects of paper4 which include Erdős. So, she chooses
Erdős, resulting in the explanation E2 depicted in Figure 4b.

2.3 Query By Provenance
The output objects along with their explanations (com-

piled by the system to formal SPARQL provenance) are in-
putted to this component which transforms them into k can-
didate queries. The algorithms we employ here are detailed
in [1] and are based on a greedy heuristic for finding consis-
tent queries with the minimum variables (as this problem is
NP-hard). We first describe the algorithm for inferring sim-
ple queries and then for inferring unions of simple queries.

Simple Queries. Intuitively, given two explanations E1 and
E2, at each step, the algorithm decides which two edges from
E1 and E2 are most “similar”, and groups them together. To
find which edges to pair, we use a dynamic gain function that
is recomputed each time a pair is chosen. The function gets

a pair of edges and computes a weighted average considering
the number of identical constants in their sources/targets,
the number of times they have been paired before with other
edges, and the number of times their sources/targets have
been paired before. Once all edges are paired, our algorithm
builds a query by constructing an edge for each of the pairs.
We call this process merging.

Example 2.5. Reconsider the two explanations E1, E2 in
Figures 4a, 4b. The pair of edges (paper3,Erdős) and (paper4,
Erdős), has the highest gain since the two edges have the
common target Erdős, so this pair is the first to be chosen.
Now the gain function is recomputed so the pair (paper3, Carol)
and (paper4, Dave) has the highest gain (since the sources
(paper3, paper4) were paired together in the previous step),
so the algorithm adds this pair. Continuing on this computa-
tion will result in the set of pairs such that all edges in E1 to
the edge (paper4, Dave) except for the edge (paper3,Erdős)
paired with the edge (paper4,Erdős). The algorithm assem-
bles the query Q1 depicted in Figure 3 from the set of pairs.

In the general case, the input may include more than 2
explanations. In this case, we run the algorithm on each
pair of explanations and greedily choose to merge the pair
of explanations yielding the maximal gain. We repeat this
procedure while there are still explanations to merge, merg-
ing not only explanations with other explanations but also
explanations with intermediate queries.

Unions of Simple Queries. Now allowing unions, we aim
to find a query Q that fits the description given by the
user and minimizes a cost function balancing the number
of variables and the number of queries in the union: f(Q) =
w1 ·

∑
q∈Q |vars(q)| + w2 · |Q| (the weights w1, w2 ∈ R can

be set as we wish).

Example 2.6. Consider the example Ex = {E1, E2}, where
E1, E2 are given in Figures 4a, 4b. Also consider the queries
Q = Union({E1, E2}) (i.e. a query with only constants
whose projected nodes are the green nodes in the explana-
tions) and Q1 depicted in Figure 3. Computing the cost
function f gives us f(Q) = w1 · (0 + 0) +w2 · 2 and f(Q1) =
w1 · 6 + w2 · 1.

Our basic algorithm returns a single query by starting
from a query which is simply a union of all the explana-
tions given, and merging the two queries/explanations whose
merging cost is the smallest, using the algorithm for simple
queries. We continue this process as long as there is a merge
that decreases the cost function.

We now adapt the algorithm to output k queries. in the
first iteration, the procedure chooses the top-k best explana-
tion pairs which yield the simple queries with minimal cost.
The output of the procedure is now a list of top-k simple
queries, thus outputting k different sets. In every subse-
quent iteration, the procedure tries to generalize the best

1996

pair from every set, ending up with k2 sets, and choosing
the top-k sets that minimize the cost function.

Example 2.7. Reconsider as input the four explanations
in Figure 4 and the weights w1 = 1, w2 = 7 and demonstrate
the resulting top-3 queries. After merging in each step the
two explanations that most decrease the cost function, we get
the top-3 queries Q1, Q2, and Union({Q4, E1, E3}) seen in
Figures 3, 5 and 4.

2.4 Feedback
We first explain how to add disequalities to a query while

maintaining its consistency and then detail how these dise-
qualities assist users to zoom in on a query.

Disequalities. For each of the top ranked queries returned
by our algorithm, we may add disequalities between every
pair of variables that are mapped to nodes of the same type
(this is an additional information in the ontology) but with
different values in all explanations

Example 2.8. Reconsider the four explanations E1, E2,
E3, E4 depicted in Figure 4, and the consistent query Q1

in Figure 3. Consider the variables ?a1, ?a2. when Q1 is
matched with E2, both variables were assigned to a single
constant, so we may not add a disequality. This is the case
for all pairs of nodes, and thus Q1 will also include au-
thors with Erdős number 1, 2. In contrast, recall query Q2 =
Union({Q3, Q4}) depicted in Figure 5. Here, the disequal-
ities ?a1 6= Bob, ?a1 6= Carol, ?a1 6= Erdős, ?p1 6= paper2,
?p1 6= paper3, and ?a4 6= Erdős are possible.

Feedback. To choose a single query out of the candidates,
QuestPro provides a feedback stage. We start with a collec-
tion of k candidate queries, disqualifying one of them at each
step. In each iteration, two random candidates are selected
Q1, Q2 and the query Qdiff = Qall 6=

1 − Qno 6=
2 is evaluated

and its provenance according to Q1 is stored (Qall 6= is Q1

with all possible disequalities that maintain its consistency
and Qno 6=

2 is Q2 without disequalities). This process pro-
duces results that appears in Q1 and not in Q2 along with
the provenance or explanation according to Q1. We then ask
the user whether a result from this set is relevant, also show-
ing the explanation for this result in graph form according
to Q1 (see Figure 2b). We always prefer results that were
in the original input given by the user, as we assume this
part of the database is better understood. If the user stated
she is interested in the result, we discard Q2. Otherwise, we
discard Q1.

Example 2.9. Consider the top-3 queries in Example 2.7
as input, i.e., Q = {Q1, Q2, Union({Q4, E1, E3})}. We be-
gin by evaluating Qdiff = Q1−Union({Q4, E1, E3}), where
Q1 contains all possible disequalities and Union({Q4, E1, E3})
contains none. One of the results of Qdiff is the author
George whose Erdős number is 3, but through an authorship
path that does not include Bob and Carol, so we bind this
value to Q1 and evaluate this query resulting in the prove-
nance for George (similar to the explanations in Figures 4a,
4c) stating that its Erdős number is 3. When this result is
shown to the user, she responds “yes”, i.e. this is a desirable
result and explanation, so the query Union({Q4, E1, E3}) is
discarded. The procedure is performed again with Qdiff =
Q1 −Q2 to choose a single query pattern.

Once we have focused on a query pattern, we can use
a slight augmentation of the feedback algorithm, but this
time for choosing the right disequalities. We use different
“versions” of the chosen query, where each version has a
different combination of disequalities.

3. DEMONSTRATION SCENARIO
We will demonstrate that QuestPro allows non-expert users

to formulate explanations, infer several candidate queries,
and provides a useful feedback mechanism for users to se-
lect the intended query amongst the candidates. The system
will be demonstrated with respect to the SP2B ontology (an
ontology containing information about authors, conferences,
and papers), through examples such as those presented in
this short paper. The demonstration will interactively en-
gage the audience, demonstrating the different facets of the
system. For the first part of the demonstration we will use a
set of pre-defined output examples and explanations of vary-
ing complexity levels. We will first show the audience how
to formulate explanations through the ontology visualizer
(Fig. 2a), then we will show all candidate queries that have
been generated by the system and finally, we will demon-
strate the feedback stage where the system depicts both a
result and its explanation in an intuitive graph form so that
users can understand how this result came to be and whether
the explanation fits their intentions (Fig. 2b). We will also
show results of a different query without the explanation,
to demonstrate the importance of attaching explanations to
the results for validation and understandability. We will
then allow participants to come up with their own original
output examples, formulate explanations for them, and use
the system to infer a query. We will continue by showing
participants the raw provenance representation, explaining
the translation from intuitive graph explanations and high-
lighting the manner in which QuestPro computes queries
from these provenance and output examples. Last, we will
show how the provenance-aware evaluation of queries is per-
formed efficiently, to allow for interactivity.

Acknowledgments. This research was partially supported by
the Israeli Science Foundation (ISF, grant No. 1636/13), and by
ICRC - The Blavatnik Interdisciplinary Cyber Research Center.
The contribution of Amir Gilad is part of a Ph.D. thesis research
conducted at Tel Aviv University.

4. REFERENCES
[1] E. Abramovitz, D. Deutch, and A. Gilad. Interactive

inference of sparql queries using provenance. In ICDE, 2018.

[2] M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse
engineering SPARQL queries. In WWW, 2016.

[3] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, 2014.

[4] D. Deutch and A. Gilad. Qplain: Query by explanation
(demo). In ICDE, 2016.

[5] F. Geerts, T. Unger, G. Karvounarakis, I. Fundulaki, and
V. Christophides. Algebraic structures for capturing the
provenance of SPARQL queries. J. ACM, 63(1), 2016.

[6] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[7] H. Halpin and J. Cheney. Dynamic provenance for SPARQL
updates. In ISWC, 2014.

[8] T. Sellam and M. L. Kersten. Meet charles, big data query
advisor. CIDR, 2013.

[9] Y. Theoharis, I. Fundulaki, G. Karvounarakis, and
V. Christophides. On provenance of queries on semantic web
data. IEEE Internet Computing, 15(1), 2011.

1997

