
Tooling Framework for Instantiating Natural Language
Querying System

Manasa Jammi, Jaydeep Sen, Ashish Mittal, Sagar Verma1, Vardaan Pahuja2, Rema
Ananthanarayanan, Pranay Lohia, Hima Karanam, Diptikalyan Saha, Karthik

Sankaranarayanan
{manjammi,jaydesen,arakeshk,pralohia,arema,hkaranam,diptsaha,kartsank}@in.ibm.com,

sagar15056@iiitd.ac.in, vardaanpahuja@gmail.com
IBM Research AI, IIIT Delhi1, University of Montreal2

ABSTRACT
Recent times have seen a growing demand for natural lan-
guage querying (NLQ) interfaces to retrieve information from
the structured data sources such as knowledge bases. Us-
ing this interface, business users can directly interact with
a database without the knowledge of the query language
or the data schema. Our earlier work describes a natural
language query engine called ATHENA which has several
shortcoming around ease of use and compatibility with data
stores, formats and flows. In this demonstration paper, we
present a tooling framework to address these challenges so
that one can instantiate an NLQ system with utmost ease.
Our framework makes it easy and practically applicable to
all NLIDB scenarios involving different sources of structured
data, file formats, and ontologies to enable natural language
querying on top of them with minimal human configura-
tion. We present the tool design and the solution to the
challenges towards building such a system and demonstrate
its applicability in the medical domain.

PVLDB Reference Format:
Manasa Jammi, Jaydeep Sen, Ashish Mittal, Sagar Verma, Var-
daan Pahuja, Rema Ananthanarayanan, Pranay Lohia, Hima Karanam,
Diptikalyan Saha, Karthik Sankaranarayanan. Tooling Frame-
work for Instantiating Natural Language Querying System. PVLDB,
11 (12): 2014-2017, 2018.
DOI: https://doi.org/10.14778/3229863.3236248

1. INTRODUCTION
Despite decades of research in building Natural Language

Interface to Database (NLIDB) systems ([11],[9]), such sys-
tems are found to be brittle primarily since they aim to
achieve 3 lofty goals: (i) they seek to obviate the need for
users to learn query languages such as SQL and instead use
natural language such as English which is inherently am-
biguous, (ii) they look to enable users to query the data
without necessarily knowing the exact schema, and (iii) they
seek to automatically connect to structured data sources in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236248

any format or backend datastore and enable querying with
little to no human intervention. Significant progress has
been made in recent years towards the first 2 goals with
work such as ATHENA [11] which introduces an ontology-
driven approach that can simultaneously ground the seman-
tic meaning of terms in the natural language query (NLQ)
and provide a layer of abstraction between the logical schema
and physical schema of a relational datastore. However, sig-
nificant amount of work is still necessary to achieve the 3rd
goal and make these techniques practically applicable to all
NLIDB scenarios involving different sources of structured
data, file formats, backend databases, and ontologies. In this
paper, we seek to address these challenges towards the 3rd
goal and propose a system that can seamlessly connect to
any structured datastore and enable natural language query-
ing with minimal human configuration.

In industry settings, structured data could be naturally
available from a wide variety of sources - various file for-
mats (such as CSV, HTML or PDF), or data that is already
part of an existing structured data stores (such as a rela-
tional database, an RDF database, or a Graph database).
These are cases where a user would be interested in query-
ing in natural language any of these existing data sources.
On the other hand, users looking to create and maintain
structured data based on industry standards would employ
an industry-specific domain ontology as a starting point (for
example, FIBO for Finance, or UMLS for Healthcare), and
then seek to populate data corresponding to these ontolo-
gies. The proposed framework seeks to enable both sets of
users to seamlessly query their data: (a) users who bring
their data which could be from various file formats or struc-
tured backends (i.e. the data-first approach), or (b) users
who begin with their ontology of interest and then populate
the data accordingly (i.e. the ontology-first approach).

To support both approaches and enable users to directly
access their data in natural language across all these scenar-
ios, there are several steps requiring heavy human interven-
tion. Our framework seeks to automate these steps to a large
extent by addressing specific problems such as inferring the
domain ontology given the structured data, semi-automatic
enhancement of vocabulary terms beyond those present in
the data, automatically configuring the NLQ pipeline based
on query workloads.There have been works which transform
a relational database schema to an OWL file [6]. However, a
unified framework such as the one proposed in this paper is
not present. Further, this framework also extends access to
multiple structured backends such as RDF store and Graph

2014



Figure 1: ATHENA and our proposed framework Architec-
ture – Blocks above the dotted line are part of the proposed
framework

store, by automatically translating from the intermediate
query language (OQL) from ATHENA to respective struc-
tured query languages specific to these backend stores such
as SPARQL and Gremlin. Below we summarize the contri-
butions in this paper:
• We demonstrate a framework to instantiate an NLQ en-

gine for any data that a user might bring.
• We present solutions for automatic inferring of ontology

and the domain vocabulary from the input data.
• We showcase the various flows (data-first and ontology-

first flows) that are supported by the proposed framework,
and present the corresponding challenges solved in the
process.

2. SYSTEM
In this section, we first discuss the background on ATHENA,

a state-of-the-art NLIDB system, point out the challenges
in building end-to-end data-first or ontology-first flows over
multiple datastores on top of ATHENA, and subsequently
discuss their solutions.

2.1 Background
We now present a brief review on ATHENA [11]. It needs

four inputs, in addition to data, viz., the ontology or the
domain schema, the domain vocabulary, the ontology to
database mapping, and the configuration. Ontology is con-
stituted of three main ontology elements, Concepts(C), Prop-
erties(P), and a set of Relations(R) (R⊆ C X C).

In addition to the ontology, ATHENA needs the domain
vocabulary, which consists of Synonyms, and the Transla-
tion Index (TI). Each ontology element can have multiple
synonyms which map the NLQ token to an ontology ele-
ment. For example, the phone number of a person can have
multiple synonyms such as contact, mobile, etc. The Trans-
lation Index maps every data value in table fields to its cor-
responding ontology element. For example, Algorithms can
map to the Property CourseName of the Concept Courses.

In addition, there are different Configurations such as key,
default time, and default group by properties that are needed
in order to successfully translate the NLQs.

ATHENA also requires a ontology to datastore mapping.
This maps concepts to tables, properties to fields, and rela-
tions to foreign key - primary key relations, which is used
in the target backend query generation. ATHENA follows a
two phased approach - the NLQ is first translated into an in-
termediate query language called Ontology Query Language
(OQL) query [11], and in the second phase, this OQL query

is translated to SQL using SQL translator. Such architec-
ture enables us to support multiple backends.

2.2 Challenges
We now discuss the challenges necessary to address to

achieve the aforementioned goals of the proposed framework.
• Multiple flows. ATHENA requires ontology as input

which may not be readily available to the user. Instead,
the user may want to start with their own structured data
(either in raw files or in an existing data store). There-
fore, the tool needs to address both the data-first flow and
ontology-first flow and cater to these scenarios.
• Multiple data sources. The user can have the data in

different raw data file formats, or in various backed data
stores. The challenge here is to support all such data
input formats and translating OQL queries to different
target query languages.
• Ontology derivation from different data stores. In

the data first flow, the ontology needs to be inferred from
the existing data store. Specifically, the concepts, its
properties and their types, different types of relations such
as functional or inheritance, and ARITY of relations need
to be inferred.
• Domain vocabulary enhancement. ATHENA tries

to map the tokens to the ontology elements or data val-
ues, which requires synonyms for the same. Users will
typically provide a few or no synonyms. The challenge
is to therefore derive a comprehensive set of synonyms to
achieve robust mapping.
• Configuration inference. ATHENA needs to have var-

ious configurations specified. Automatically identifying
these configurations from the data is a challenging task,
which requires semantic understanding of the data model.
As these configurations are specific to ATHENA, we do
not discuss their inference in this paper.
• Visualization of the results. ATHENA fetches the re-

sult from the data store as a set of raw tuples. However,
the system’s user experience can greatly benefit if the re-
sults are automatically visualized in the form of the most
appropriate graph or a chart.
• Incremental update in the ontology/data. After in-

stantiating the entire system for the first time, an user
might populate additional data in the data store, or up-
load another data file to the proposed framework, or change
the synonyms during the lifetime of the system. The
framework would need to handle such cases seamlessly.
Our framework essentially solves the above problems by

extending ATHENA architecture by including components
(above the dotted line) as shown in Figure 1.

2.3 Solutions
Handling Multiple Flows and Different Data Sources.
In the data first flow, our framework supports a raw data file
upload (Excel, CSV, HTML, PDF), as well as a pointer to
an existing data store (RDBMS, Graph Data Store, RDF,
Document stores like Solr). When a user supplies a raw
data file, either they specify a backend datastore type, or an
appropriate data store is automatically inferred. A backend
database is then created, and the data is populated in that
data store.

In case of an Excel file, our framework creates a relational
database, where each sheet is converted to a table, and each

2015



column in the sheet to the field in the table. The sheet
name is taken as the table name. The framework informs
the user that the first row of the sheet should contain the
column names, otherwise a parse error is produced. The
data type of each of these columns are identified by analyz-
ing the data values. The presence of null values and noisy
data often makes this task very challenging. We compute
the distribution of the data for each column for non-null
values and pick the most frequent datatype. If the data is
in the form of PDFs, we use [2] to extract the tables from
it. We extract tables from HTML using the HTML parser
JSoup [8]. User can also have data in an existing data store
like RDBMS, RDF, or graph stores.

Once the raw data is stored in a backend data store, an
ontology is created from it (discussed later). To support ex-
ecuting queries to different data stores, we have developed
OQL to backend data store translators e.g. OQL-SPARQL
for an RDF store and OQL-Gremlin for a Graph store, OQL-
UQL (Watson Discovery Service document store query lan-
guage) [4].

The proposed tool also provides another flow where the
user can upload an existing domain ontology, an optional
associated vocabulary, and existing data. Our framework
infers the schema from the existing data and maps it to
the pre-enriched ontology using the element names or the
associated vocabulary. For example, the framework will map
a concept in the pre-enriched ontology called Compensation
to an Excel sheet named Salary Statement having related
columns. It informs user on what part of the data could not
be mapped to the ontology. This flow enables a user to use
any of the publicly available domain ontologies and map it
to some existing data.
Ontology Derivation from Multiple Data Stores. We

define a two-phase approach for extracting ontology from
data stored in different stores. In the first phase, an inter-
mediate data representation (UDR) is inferred for each store,
subsequently various information of the ontology is inferred
from the intermediate format. The advantage of this ap-
proach is that the core logic of inferencing ontology from dif-
ferent constraints present in the data is separated out from
how these constraints are derived from the data. For exam-
ple, an inheritance relationship between two concepts, can
be inferred based on that key constraint of a property and
subset relationship between two properties - a logic which
is independent of the format of the data. To the best of
our knowledge, such a two phase approach for determining
ontology from various forms of data stored in different data-
stores is novel.

Unified Data Representation (UDR) The main con-
structs of the UDR are the Classes, the Features of each
class, and the Instances of the class. A Class (Ci) is
an abstraction for a table or a concept, and its Features,
{F 1

i , F
2
i , . . .} are the properties or fields of the class. We

also define I(Ci), which is a set of instances of each class Ci,
containing the actual data value. The Features have var-
ious constraints which are used in the ontology inference.
Some of these constraints are – (1)isMarkedasID which is
set to true if this is a marked as an identifying feature in
the data (for example, the column is marked as a primary
key in the database schema), (2) isUnique which is com-
puted to true if there is no duplicate values except null,
(3)isAutoIncremented which is set to true if the instances of
the Feature have contiguous values (applies to only numeric

typed Features), (4)countOfUniqueValues which returns the
number of unique values in the instances of the Feature.
The constraints are computed by analyzing the instances.
Existing relationship constraints (not inferred) is captured
by rel(F j

i , F
l
k).

Owing to the fact that RDBMS has a well-defined schema,
the mapping from RDBMS to UDR is simple. All the tables
are mapped to Classes and the corresponding columns to
Features of those classes. In JSON, the conversion is done
recursively where every key with value of a JSON object
is mapped to a class. Every key whose value is a literal
becomes the feature of the class. The containment hierarchy
in JSON cretes the rel constraint.
• All the classes in the UDR are mapped to concepts in the

ontology. We will be using them interchangeably.
• Relation Inference: Ontology supports three types of re-

lations - functional, isA, and union.
– Identifying Functional Relations: Whenever I(F j

i ) ⊂
I(F l

k)∧¬isAutoIncremented(F j
i ) a functional relation

is asserted between the two corresponding concepts of
CiandCk. Special check for spurious functional key due
to auto-incremented values are also considered.

– Inferring isA relation: If a foreign key of a table is also
it’s primary key i.e. I(F j

i ) ⊂ I(F l
k) and (isUnique(F j

i )∨
isMarkedAsId(F j

i )) ∧ ¬isAutoIncremented(F j
i ) then

Ci is inferred as an ISA child of the target class Cj .
– Inferring Union: Union is considered a special case of

ISA relations. When multiple child classes referring
to the same parent class are mutually exclusive and
exhaustive, a union is asserted.

– Inferring arity of functional relations: For inferring m:n
relations, we find classes with exactly two features, and
both acting as references to different classes in the UDR.
If such a case occurs, the two classes which are being
referred are mapped in a m:n relation and the concept
corresponding to the join class is removed from the on-
tology. We identify the relations where the values in
the participating features are unique and mark it as
1:1, and the rest as 1:n.

• Properties: All features except the ones identified for
functional relations map to the data properties of the
corresponding concept. The datatype of the properties
are also fetched from the UDR. The ontology is stored in
OWL2 format.

Domain Vocabulary Enhancement. This consists of
two parts – automatic synonym generation and TI variation
generation. For the automatic synonym generation, we use
different publicly available APIs such as Wordnet [10] and
PPDB [1] to generate aliases for all the ontology elements.
In case of synonym generation for phrases, we employ an
existing technique described in [7]. ATHENA describes au-
tomatic synonym generation for certain types of data values
like company names and person names. We automatically
extend that to add abbreviated or expanded form. For ex-
ample, the query might contain ”Corporation” and the TI
might have an instance called ”Corp”. In such cases, aliases
for ”Corp” are added which can match the required token.
Visualization of the Results. The proposed framework
is also integrated with a visualization engine [5] which takes
the result set data and automatically generates a chart which
most appropriately represents the data. In order to do this,
this technique employs automatic feature identification by
looking at the OQL constructs.

2016



Incremental Update in the Ontology/Data. When-
ever edits are made to the ontology, the entire pipeline is
re-run and all the participating modules are intimated of the
change. We take care of data insertions by using database
triggers which initiates the refreshing of the pipeline. When
more data is added, the TI is also refreshed accordingly.

3. TOOL INTERACTION

(A) (B)

Figure 2: (A)Domain Ontology, (B) Vocabulary

In this section present a demo scenario from Healthcare
domain. Final demonstration will also include scenarios
from Finance and Retail.
Demo Scenario 1: Excel Sheet Data Input. Consider
the scenario where a pharmacist has an Excel file which has
three sheets, which describes the warning for a set of drugs
sent out by different authorities.
• Drug (Drug Id, Drug Name, Drug Cost)
• Authority (Auth Id, Auth Name)
• BlackBox Warning (Auth Id, Drug Id, BBWarning)

The pharmacist uploads his data to our tool, which is
stored in the tool’s File system. Next, a relational database
is created for the project in the tool’s data base, where the
data is populated. Next, (1) the ontology is inferred from
the database, (2) the domain vocabulary is enriched,(3) and
the TI is populated. The ontology, synonyms, and configu-
rations are shown in Figure 2 (A) and Figure 2 (B).

Say the pharmacist tries a query “How expensive is the
medicine Paracetamol?” In this query, the tool identifies
“expensive” as a synonym for “cost”, and “medicine” for
“drug” (due to automatic vocabulary enhancement). It maps
the non contiguous phrase “expensive is the medicine” to
Drug Cost. However, it does not identify Paracetamol and
returns a failure response with the following comments- “I
could not understand Paracetamol”. The reason for this
is that the Excel sheet contains no data value entry called
“Paracetamol”. The actual data in the sheet is “N-(4 - hy-
droxyphenyl) ethanamide, N-(4 - hydroxyphenyl) acetamide”
which is the IUPAC name for Paracetamol. The tool was
not able to automatically populate synonyms for the same
because it is very specific to the medical domain, and is
not part of the general English dictionary. The pharma-
cist can then add a synonym for the same using our tool.
When the user adds a synonym, the domain vocabulary is
refreshed and on the re-run of the query, Paracetamol will
now match the entity Drug Name of the concept Drug. The
next query that the pharmacist tries is “Show me the costli-
est medicine per type”. Here, the proposed tool takes the
stemmed form of “costliest” - cost, and “medicine” to map it
to Drug Cost. It also identifies that costliest is a superlative
and adds a MAX operator to the query. “Type” is mapped

to Drug Type, and because there is a “per” in the query, it
identifies it as a group by query to produce the SQL “SE-
LECT MAX(d.DRUGCOST) FROM DRUG d GROUP BY
d.DRUGTYPE”. The result is then fed to the visualization
engine which produces the chart as shown in Figure 3.

Figure 3: Result Visualiza-
tion

Demo Scenario 2: On-
tology First flow. A
user can also upload an
ontology file first and can
make edits to the ontol-
ogy using the tool’s UI.

The tool creates an
empty database from the
ontology by mapping con-
cepts to tables, properties
to fields, relations to PK-
FK.

The rest of the flow
is similar to the previous
flow. The demo of the

tool is available at [3].

4. CONCLUSION
In this paper, we presented a framework which enables

easy instantiation of an existing Ontology based NLIDB
framework called ATHENA. In addition to ontology flow
present in ATHENA, it supports data-first flow where user
can input data in various formats. Our framework also han-
dles multiple data stores and automatically creates essential
inputs like synonyms and configurations. We demonstrated
its practical applicability in the medical domain.

5. REFERENCES
[1] Ppdb: The paraphrase database.

http://www.cis.upenn.edu/~ccb/ppdb/.

[2] Tabula: Extract tables from pdfs.
http://tabula.technology/.

[3] Tool demo. https://youtu.be/9NqdpYdfhhw.

[4] Watson discovery service.
https://www.ibm.com/watson/services/discovery/.

[5] R. Ananthanarayanan, P. K. Lohia, and S. Bedathur.
Datavizard: Recommending visual presentations for
structured data. arXiv:1711.04971, 2017.

[6] P. Chujai, N. Kerdprasop, and K. Kerdprasop. On
transforming the er model to ontology using protégé
owl tool. International Journal of Computer Theory
and Engineering, 6(6):484, 2014.

[7] N. G. et al. Addressing Practical Challenges for
Natural Language Querying in SAP-ERP Platform.

[8] J. Hedley. Jsoup html parser, 2009.

[9] F. Li and H. V. Jagadish. Nalir: An interactive
natural language interface for querying relational
databases. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data,
pages 709–712. ACM, 2014.

[10] G. A. Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995.

[11] D. Saha, A. Floratou, K. Sankaranarayanan,

U. Minhas, A. R. Mittal, and F. Özcan. Athena: An
ontology-driven system for natural language querying
over relational data stores. PVLDB, 9(12):1209–1220,
2016.

2017


