Stylus: A Strongly-Typed Store for Serving
Massive RDF Data

Liang Hef; Bin Shao*, Yatao Lif, Huanhuan Xia,
Yanghua Xiao®, Enhong Chent, Liang Jeff Chen?
fUniversity of Science and Technology of China, Hefei, China
#Microsoft Research Asia, Beijing, China
hshl0O5@mail.ustc.edu.cn, {binshao, yatli, lexiy@microsoft.com
shawyh@fudan.edu.cn, cheneh@ustc.edu.cn, jeche@microsoft.com

ABSTRACT

RDF is one of the most commonly used knowledge represen-
tation forms. Many highly influential knowledge bases, such
as Freebase and PubChemRDF, are in RDF format. An
RDF data set is usually represented as a collection of sub-
ject-predicate-object triples. Despite the flexibility of RDF
triples, it is challenging to serve SPARQL queries on RDF
data efficiently by directly managing triples due to the fol-
lowing two reasons. First, heavy joins on a large number of
triples are needed for query processing, resulting in a large
number of data scans and large redundant intermediate re-
sults; Second, weakly-typed triple representation provides
suboptimal random access — typically with logarithmic com-
plexity. This data access challenge, unfortunately, cannot
be easily met by a better query optimizer as large graph
processing is extremely I/O-intensive. In this paper, we
argue that strongly-typed graph representation is the key
to high-performance RDF query processing. We propose
Stylus — a strongly-typed store for serving massive RDF
data. Stylus exploits a strongly-typed storage scheme to
boost the performance of RDF query processing. The stor-
age scheme is essentially a materialized join view on entities,
it thus can eliminate a large number of unnecessary joins
on triples. Moreover, it is equipped with a compact rep-
resentation for intermediate results and an efficient graph-
decomposition based query planner. Experimental results
on both synthetic and real-life RDF data sets confirm that
the proposed approach can dramatically boost the perfor-
mance of SPARQL query processing.

PVLDB Reference Format:
Liang He, Bin Shao, Yatao Li, Huanhuan Xia, Yanghua Xiao,
Enhong Chen, Liang Jeff Chen. Stylus: A Strongly-Typed Store
for Serving Massive RDF Data. PVLDB, 11(2): 203 - 216, 2017.
DOI: 10.14778/3149193.3149200

*This work was done in Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.

Proceedings of the VLDB Endowment, Vol. 11, No. 2

Copyright 2017 VLDB Endowment 2150-8097/17/10... $ 10.00.

DOI: 10.14778/3149193.3149200

203

¢Fudan University, Shanghai, China

1. INTRODUCTION

As a W3C recommendation, Resource Description Frame-
work (RDF) is a data model widely used for representing
knowledge. An RDF data set is a collection of triples —
(subject, predicate, object), where subject and object are
entities or concepts and predicate is the relationship con-
necting them. Besides, inference rules are used to repre-
sent implicit triples when being applied to these explicit
ones [20, 14]. The de facto language for querying RDF data
is SPARQL [43], which generally does subgraph matching
on an RDF knowledge graph.

Due to the simplicity and flexibility of RDF, a large num-
ber of RDF knowledge repositories are emerging for manag-
ing the knowledge from many fields, such as bioinformatics,
business intelligence, and social networks [26, 33]. They en-
able machines to leverage the rich structured knowledge to
better understand texts or provide intelligent services. More
and more applications are powered by such RDF knowl-
edge bases, including search engine, question answering [53],
named entity linking [27, 56], query understanding [32], doc-
ument representation [51], relation search, recommendation,
and query expansion [21].

The size of the available knowledge built by human ex-
perts or extracted from large text corpora reaches an un-
precedented scale. For example, Freebase [10] and DBpe-
dia [9] have 1.9 billion and 3 billion triples respectively.
Bio2RDF even has more than 10 billion triples. These knowl-
edge bases, along with other open data sets, are further in-
terlinked with each other, yielding tens of billions of facts [34].

The prevalence of RDF knowledge bases leads to many
efforts on creating efficient systems for storing and query-
ing large RDF data sets. There are many ways to organize
RDF triples. The most straightforward way is to map the
triples into a three-column table or its variants [28, 16, §].
To reduce the storage redundancy for repeated subjects, a
common practice is to define a generic data type, which can
hold a collection of predicate-object pairs for an entity [55].
The storage schemes based on generic data types are gen-
erally weakly-typed — the triples and predicate-object pairs
have to be generic enough to hold arbitrary entities.

Despite the success of existing RDF management systems,
there is still large room for improvement. In this paper,
we propose leveraging a strongly-typed storage scheme to
serve graph queries for large RDF datasets. RDF entities are
modeled by strongly-typed records. Each of them is stored
as one physical record according to a pre-defined schema,

which maps predicates to field names and objects to field
values. The entity types defined by the pre-defined schema
are essentially UDTs (user-defined types). Compared with
weakly-typed schemes, the strongly-typed scheme has a few
advantages. Two major ones are given as follows.

Less storage and access overhead. Under a weakly-typed
storage scheme, the entity properties are usually stored as
key-value pairs. The key of a property may be repeated
many times. This may incur a large storage overhead. For
a strongly-typed record, entities are managed with a pre-
defined schema, which eliminates the need of using repeated
predicates as property keys. Moreover, to access the value of
a property under a weakly-typed scheme requires a global
index lookup or a sequential scan on the entity property
data, whose costs are proportional to the size of the entity.
In comparison, with the aid of the pre-defined schema, this
cost can be dramatically reduced.

RDF data sets contain not only triples, but also infer-
ence rules for them, for instance pdf, RDFSPlus, RDFS
Full, OWL DL, and even user-defined rule sets [45]. A
large number of implicit triples are represented by apply-
ing these rules to the original triples, making RDF data
different from static directed labeled graphs. For demon-
stration, an example RDF data set is presented in Figure 1.
Those implicit triples can be derived by pre-processing in
advance (forward-chaining), or by on-the-fly reasoning dur-
ing query processing (backward-chaining), or a hybrid of
both. The forward-chaining approach requires additional
storage space for storing those derived triples. On the other
hand, additional query processing cost will be incurred in the
backward-chaining approach: typically, a query will be re-
formulated into multiple queries according to the rule sets [15,
20]. For example, given a query ‘SELECT ?x WHERE { ?x
niece Maria . }’, the system will issue a set of additional
queries, such as ‘SELECT ?x WHERE { ?x marriedTo ?y . ?y
niece Maria . }’, besides the original one. In both cases,
the overhead of storage and data access becomes an impor-
tant factor to consider when realizing reasoning for real-life
applications.

Less joins during query processing. Heavy joins are com-
monly required to process a large query. This incurs a large
number of data or index scans and produces large interme-
diate results. Many efforts have been devoted to optimizing
joins: systems such as RDF-3X [39] and Hexastore [48] build
extensive indexes on all permutations of RDF elements for
fast data accessing; systems such as SW-Store [2, 1] leverage
a vertical partitioning approach and a column store to boost
the join performance; BitMat [7] uses bit representation to
reduce the join cost; TriAD [25], RDF-3X [39], gStore [57],
and Trinity.RDF [55] use approaches such as graph sum-
marization, sideways information passing, and graph explo-
ration to do early pruning. Approaches such as cardinality
estimations [38] are proposed to reduce the costs via join re-
ordering [23]. Much has been done to reduce the join costs
under a weakly-typed storage scheme, where index scans and
multiple joins are needed to match the common predicates
for two given entities. Here we argue that a strongly-typed
storage scheme can greatly boost the query processing per-
formance by reducing the number of joins dramatically. We
use an example to illustrate the idea.

Suppose we are to answer the query ‘SELECT ?x WHERE
{?x marriedTo ?sl. ?x govern 7s2. 7?x starln ?s3. 7?x liveln
? s4.}’. The query includes four triple patterns against the

204

Female
N

s =

Jackie Kennedy
Lovels

on the Air

Fiction

marriedTo

. W o~
John F.Kennedy | . riedTo niece isA
Politician
o TP) SR niece ------
(7" Maria Shriver genre
starin 9~ H california
/ H
isA ! The
. IN?ln govern marriedTo Terminator,
Ronald :
Reagan \ locatedin govern
\
govern starin
/
’ ~ liveln
marriedTo
il marriedTo . Schwarzenegger direct
\ p ‘e’ livein Leonardo
. Location() DiCaprio
Romantic
; genre
isA starin)
Nancy Davis 7 liveln starin direct
Oa’ - Cameron
oK Kate Winslet Thame
?x marriedTo ?y => ?y marriedTo ?x P e
?a liveln ?x => ?x isA Location ! !
2x govern ?b => x isA Politician | O Resource |
2x govern 2y => ?x liveln ?y | —p—> Explicit tiple |
?x marriedTo ?a AND ?a niece ?y => ?x niece %y |
P | =-p- Implicit triple |
Rules -------—----l = —e——————

Figure 1: A Toy RDF Data Set

RDF data set shown in Figure 1. For a weakly-typed storage
scheme, four steps are needed to get the final results: the
first step is to scan the index of a selected predicate to ini-
tialize the candidates, followed by three steps to prune the
candidates via joins. The join order may be optimized by
cardinality estimation techniques. However, the size of the
intermediate results produced and processed during query
processing is still large. For this toy example, a typical query
plan results in one index scan of 3 elements, and three merge
joins of (3,3), (2,3), (1,3) elements. For a strongly-typed
scheme, the process can be simplified into two steps. 1)
select the entity types that contain all the four predicates
appeared in the query; 2) return the instances of these en-
tity types as final results. The process involves only entity
type filtering and data access (loading the resulting entities).

Contributions. The contributions of this work are sum-

marized as follows.

1. A strongly-typed RDF store named Stylus for querying
RDF data in real time is proposed. The proposed RDF
store leverages a highly optimized storage scheme for
compact data storage and efficient data access. Mean-
while, an efficient query planner and a specially de-
signed data structure are proposed for SPARQL query
processing.

. Extensive experiments are conducted to verify the scal-
ability and efficiency of the proposed system. The ex-
perimental results show that a good storage scheme
can boost the system performance by several orders of
magnitude.

Paper Organization. This paper is organized as follows.

The overall system design is described in Section 2. Section 3

presents the design of the strongly-typed storage scheme.

SPARQL query processing on top of the proposed storage

scheme is elaborated in Section 4. Section 5 and 6 present

experimental results and related work respectively. Section

7 concludes.

2. SYSTEM OVERVIEW

In this section, we will introduce the overall system archi-
tecture of Stylus, which is a strongly-typed RDF store on
top of a distributed in-memory infrastructure.

Stylus is built on top of a distributed in-memory key-value
store that 1) supports in-place data access to the selected
parts of a data record, instead of serializing or deserializing
the whole KV pair; 2) supports message passing between
distributed servers. An efficient distributed in-memory key-
value store is an essential part of Stylus. On the one hand,
efficient parallel processing of large graphs requires an effi-
cient storage infrastructure that supports fast random data
access of the graph data [35] and the main memory (RAM)
is still the most viable approach to fast random access. On
the other hand, the ever growing size of knowledge requires
scalable solutions and distributed systems built using com-
modity servers are usually more economical and easier to
maintain compared with scale-up approaches. Particularly,
we build our RDF store on top of Microsoft Trinity Graph
Engine [46, 42], which well meet the requirements discussed
above.

Stylus compacts the storage by replacing RDF' literals,
which are used for values such as strings, numbers, and
dates [41], by their integer ids. Stylus keeps a literal-to-id
mapping table that translates literals of a SPARQL query
into ids during query processing and maps the ids back to
literals before returning results.

Most importantly, Stylus always models an RDF data set
as a strongly-typed directed graph. Each node in the graph
represents a unique entity using a record with several data
fields. A graph node corresponds to either an subject or an
object of the RDF data set. The storage scheme adopted by
Stylus is given as follows: Given an RDF data set, Stylus will
scan the data, extract metadata, and build a data schema
for the data set. The generated schema contains all the
strongly-typed data types needed for describing the data
set. Stylus then stores each entity in a single record for fast
data access according to the data schema. The details of
the storage scheme will be elaborated in Section 3.

i
'

E c> Processor

I

Parallel Inplace Access

Coordinator

Stylus Server

Intermediate Result

X

Stylus Server Stylus Server

Figure 2: Overview of Stylus Architecture

Stylus is a distributed SPARQL engine on top of a strongly-
typed storage scheme. The architecture of Stylus is shown
in Figure 2. The whole RDF graph is partitioned over a
cluster of the servers using random hashing. Each server
has duplicated graph schema, but the data partitions are
disjoint. A user submits a query to the query coordinator.
The coordinator generates a query plan based on prepared
statistics and indexes and distributes the query plan to all
servers. Then, each server executes the query plan and send
back the partial query results to the coordinator. On receiv-
ing all partial results, the coordinator aggregates them and
return the final result to the user.

205

3. DATA MODELING

In this section, we elaborate the storage scheme of Stylus.
The storage scheme is built on top of a key-value store. In
what follows, a key-value pair is represented in the form of
(key, (value)). To make it easier to look up the subjects of
a given object, Stylus maintains a reverse triple (o, p", s) for
every subject-predicate-object triple (s, p, o), where pT is the
reverse predicate for predicate p.

3.1 A Strongly-Typed Storage Scheme for RDF

Real-life RDF data sets usually contain surprisingly a
small number of distinct predicate combinations for their
entities, even for the data sets that have a huge number of
unique triples. For example, there are only 615 distinct com-
binations for more than 845 million triples in UniProt [38].
Moreover, it usually only needs a small number of predicate
combinations to represent the majority of the entities, typi-
cally more than 90%. These observations have been reported
for many real-life data sets, such as Yago, LibraryThings,
Barton, BTC and UniProt [38].

Based on these observations, we know entities of the same
category tend to share a schema “template”. This motivate
us to design a mechanism to extract such “templates” and
use these “templates” as strongly-typed containers to repre-
sent and store knowledge graph entities. Stylus uses a data
structure called xXUDT to represent such “templates” — com-
binations of predicates. At the storage layer, each knowledge
graph entity corresponds to such a combination. An xUDT
consists of an identifier and a list of predicates:

(tld7 <p1ap27 s apf>)>

where tid is the xUDT’s identifier and (p1,p2, ...
ordered predicate list.

Using xUDT, each knowledge graph entity is expressed
as:

,pt) is an

(id, (tid, offsets, obj_vals)),

where id is the identifier of an entity subject, and the tuple
value represents the predicate-object pairs, as illustrated by
Figure 3. In the value tuple, tid is the identifier of an xUDT;
obj_vals represents all the object values as consecutive inte-
gers; offsets is a list of integers specifying the offsets of the
object values for the predicates of the current entity.

T

1
|
|
1
1
|
|
|
|
1
|
|
1
|
|

AREERE s <5
[REE[E[E) eeleleleleleleleleeleieeeas

Key

Value

Figure 3: xUDT Ilustration

This data structure can provide extremely good data re-
trieval performance when in-place data access is supported.
The field offsets is designed to easily handle single-valued
properties, multiple-valued properties, and even properties
without an associated value. Stylus introduces a special aux-
iliary predicate that has no associated object, whose usage

will be elaborated later. The field obj_vals is the concate-
nation of several lists, each storing object values associated
with a predicate. Specifically, the object values in the range
[offsets;_q, offsets;) of obj_vals correspond to the i-th pred-
icate p; (i > 0). Specially, the first predicate corresponds
to the range [0, offsets,). Therefore, we can represent the
triples with p; (¢ > 0) as:

{(s, pi, obj_vals,) | offsets,_; < k < offsets;}.

Then, we have

1) offsets;_, < offsets; — 1 for multi-valued properties;

2) offsets,_, = offsets; — 1 for single-valued properties;
3) offsets;,_; = offsets; for auxiliary properties without ob-
jects.

001 UsA o tid | predicates - tid - ids i
1002 UK 1 |[starIn, marriedTo, govern, liveln] 1 [6006]
1003 California 2 [direct’, starIn", genre] 2 |[3013,3015]
6004 | John F. Kennedy 3 [locatedIn”, govern', liveln'] 3 [1001]
6005 | Ronald Reagan a [starn, liveln] 4 |[6007, 6008]
6006 gger
6007 | Leonardo DiCaprio XUDTs XUDT indexes
6008 Kate Winslet

6009 Cameron

7010 Nancy Davis i~ id - i-tid-i - offsets - obj_vals

7011 | Maria Shriver 1001] 3 | [1,3,6] | [1003, 6004, 6005, 6004, 6006, 6007]
7012 | Jackie Kennedy 6006 | 1 |[1,2,3,4] [3013, 7011, 1003, 1001]

3013 | The Terminator 6007 | 4 | [1,2] [3015, 1001]

3014 | Love s on the Air 6008 | 4 1,2] [3015, 1002]

3015 Titanic 3013 | 2 | [1,2,3] [6009, 6006, 9017]

3016 i 3015 | 2 | [1,3,4] (6009, 6007, 6008, 9016]

9017 Fiction

Encoding Map Strongly-Typed Storage Layout

Figure 4: Illustration of Stylus Storage Scheme

Figure 4 illustrates the storage scheme for the explicit
triples shown in Figure 1. For the record 3015, we know its
xUDT predicates are [direct, starInT, genre] from its tid 2
and the corresponding offsets value is [1, 3,4], meaning the
object values for these three predicates in obj_vals lie in the
ranges [0,1), [1,3), and [3,4) correspondingly. Specifically,
{6009} for direct™, {6007,6008} for starinT, and {9016} for
genre. The total storage cost is greatly reduced in this way.
On the one hand, each xUDT record only needs to be kept
once for all its instances. On the other hand, unlike the
triple representation, predicates need not to be duplicated
in entities’ records.

xUDTs can be directly derived from the predicate combi-
nations of a given set of entities. Stylus has a mechanism to
limit the number of xUDTs when there are too many com-
binations. In this case, Stylus only keep the top-K most
frequent predicates in xXUDTs and use key-value pairs in the
form of (id, (po-list)) to represents the remaining subject-
predicate-object triples, where the key is the identifier of this
entity and each element in (po-list) is a predicate-object pair.

3.2 Indexing and Storage Optimization

The records for xUDTs (denoted as T') are generally small
in size and frequently used, which are cached and indexed
on each server for fast access. In doing so we can efficiently
access the content of an entity when its identifier is given.

Stylus stores a triple and its reverse triple within a single
record so that the properties and property values associated
with an entity can be easily retrieved. For fast data access,
Stylus also builds the following indexes on each server: 1)
An index that maps a predicate to the xUDTs containing

206

the given predicate. 2) An index I(¢) for retrieving the en-
tities with the xUDT ¢. With the index, we can enumerate
the subjects and objects associated with a predicate. For
example, to access {s| (s,p,0)} for p, we can translate this
query to U,, I(t); while {o| (s,p, 0)} for p can be answered
by Upre, I(t); and we can use pc, I(t) to retrieve all the
entities with all the predicates in P = {p1,...,pn}.

Encoding xUDT. Stylus uses 64-bit integers as the record
ids. To enable fast type discovery for entities, Stylus uses
several bits of the 64-bit ids as their xUDT flag. For exam-
ple, masking higher 16 bits permits 65,536 flags and more
than 10'* different IDs for each flag. Typically, each xUDT
corresponds to one flag. When there are too many entities
for a specific xUDT, that xUDT can associate with multiple
flags.

Combining Low-Selectivity POs. While we aggregate the
predicates in xUDTSs, there are still lots of predicate-object
pairs with low-selectivity, such as, ‘?x nationality USA’, ‘?x
gender Female’, and ‘?x isA Person’. In this case, Stylus
treats them as a single auziliary predicate without object
values: i.e. ‘nationalityUSA’, ‘genderFemale’; and ‘isAPerson’.
In this way, the costs of a lot of heavy joins can be greatly
reduced.

3.3 Basic Data Access Operators

Assume P is a set of predicates {p1,p2,...,pn}, t is an
xUDT, and s is an entity id. We provide the following data
access operators for the SPARQL query processing module,
which will be elaborated in Section 4:

- GetUDTs(P): Gets the xUDTs which are supersets of P;

- LoadEntities(¢): Loads the instances of ¢ from the indexes;

- GetObjects(s, p): Gets the objects associated with s and p;

- GetPreds(s): Gets the predicates associated with s;

- GetProps(s): Gets the predicate-object pairs associated with s.

The total number of xUDTs is small and Stylus has in-
dexed the mapping between predicates and xUDTs, the op-
erator GetUDTs(P) can be executed very fast. LoadEnti-
ties(t) loads all the entities associated with ¢ from the pre-
built I(¢) index. Given s and p, GetObjects(s,p) retrieves
all the objects that are associated with them. When p is
not specified, all the obj_vals associated with s will be re-
turned. The subjects associated p and o can be retrieved
by GetObjects(o,p™). In the case that the entity’s predi-
cates are unknown in advance, GetPreds(s) can list all the
associated predicates. This operator is implemented by first
checking the xXUDT of s, and then listing all the predicates of
this xUDT. In this case, one may explore the RDF graph by
calling GetPreds(s) and GetObjects(s, p) iteratively. Particu-
larly, GetProps(s) operator is built on these two operators to
derive all the predicate-object pairs {(p,0)} associated with
s. In summary, these operators are able to represent all the
SPARQL triple patterns as listed in Table 1.

3.4 Runtime Data Update

Our storage scheme is update-friendly for the RDF data
sets that may be updated constantly, such as knowledge base
population, knowledge validation, and the Construct queries
in SPARQL. These data updates will be handled by updat-
ing the data of xUDTs and their instances without violating
the design of our storage scheme. Since the xUDTs them-
selves are stored as key-value pairs in memory, it supports
flexible updates during runtime.

Table 1: Translating SPARQL Triple Patterns. S and P are
the sets of all the subjects and predicates in the data set.

[Patterns | Translated Operations
8, p, 0 true if o € GetObjects(s, p), otherwise false
s,p, 70 GetObjects(s, p)
s,7p,0 {p | p € GetPreds(s) A o € GetObjects(s, p)}
?s,p,0 GetObjects(o, pT)
s, 7p, 70 {(p,0) | p € GetPreds(s) A o € GetObjects(s,p)}
?s,p, 70 {(s,0)| s € SAp € GetPreds(s) A o € GetObjects(s, p)}
?s,7p, 0 {(s,p) | p € P A s € GetObjects(o,pT)}
?s,7p, 70 {(s,p,0) | s € SA(p,o) € GetProps(s)

In Stylus, an entity is updated as follows: 1) when a new
entity is added, its predicate combination is checked against
the existing xUDTs. If it perfectly matches one of them, this
entity’s data will be kept according to this xUDT. While
no matched xUDT found, a new xUDT is created and this
entity is stored according to the new xUDT; 2) when an
existing entity is updated (some triples of it are added or
deleted), its new predicate combination is checked following
the same procedure as that of adding a new entity. This
procedure can be efficiently conducted by manipulating at
most 2k in-memory key-value pairs, where k is the number
of the entities to update; 3) when the number of xUDTs
exceeds a maximum limit, the remaining entities that are not
processed will be kept in the generic form of (id, (po-list)).
Notice that we still need to prepare/remove reverse triples
for the new/deleted triples as we do for data loading.

Stylus monitors these combinations’ counts and periodi-
cally swaps the xUDTs whose instance counts are less than
those of the combinations stored with the generic form,
along with their instances’ storage layout transformed.

4. QUERY PROCESSING

We classify the subqueries of SPARQL queries into to two
classes according to whether they will be matched against
the preprocessed data (including indexes) or applied to the
intermediate results. For the former one, we provide an
optimized query planner to access the data for our storage
scheme; For the latter, set operations will be performed to
achieve final results. If there is no special description, we
refer SPARQL queries to the first part, namely, those con-
sisted of Basic Graph Patterns and Filters on them.

We represent a SPARQL query by a query graph G. Nodes
in G denote the subjects and objects appeared in the query.
Directed edges in G denote predicates. With G defined, the
problem of SPARQL query processing can be transformed
into the problem of subgraph matching: we first decompose
G into an ordered sequence of disjoint star-shaped patterns:
qo,---,qn—1. Such a decomposition needs to cover all the
nodes and edges of G, which resembles a typical vertex cover
problem, as illustrated in Figure 7. Then, we find matches
for go and get the matches for ¢; (1 < i < n—1) by exploring
the graph or looking up the xUDT indexes. At the end,
the query coordinator collects the partial results, aggregates
them and generates the final results.

4.1 xUDT for Query Processing

xUDTs are small in size and can be processed very fast,
Stylus makes extensive use of xUDTs for query processing.
Firstly, xUDTs can be directly used to answer certain
queries. Many SPARQL queries are specified with con-
straints on predicates only. Such queries are prevalent in

207

various applications and benchmarks, for instance, ‘?x pl
70l. 7?x p2 702’, where 70l and 702 are only used to make
sure the existence of the predicates pl and p2. In such cases,
the joins can be eliminated completely by checking the cor-
responding xUDTs. For this query, it can be transformed
into |J,c LoadEntities(t), where T' = GetUDTs(p1, p2).

Secondly, xUDTs can be used to simplify queries and re-
duce the number of joins. For instance, with the help of
xUDTs, the query ‘SELECT ?x ?y WHERE { ?x pl ?ol. ?x
p2 702. ?x p3 ?7y. ?y p4 ?03. ?y p5 ?04.}’ can be simplified to
‘SELECT ?x ?y WHERE { ?x p3 ?y. } ’ with the constraints
that the xUDT of ?x is in GetUDTs(p1, p2, p3) and that of
?y is in GetUDTs(p3T, p4, p5).

Thirdly, xUDTs can also be used to prune intermediate
results during query processing. For example, assume the
variable ?x is constrained by three triple patterns whose
predicates are pl, p2, p3, then the xUDT of ?x’s must be
in GetUDTs(pl, p2, p3). Since xUDTs are encoded in the
entity IDs, the entities that do not satisfy the constraints
can be pruned immediately.

4.2 Twig Matching

Query Graph

1 P2 P

GIo)oRG

xTwig Answers

PP

Pa

Figure 5: xTwig Examples

A Twig is a tree of height two. A Twig is a star-shaped
query unit. We use ¢ = (r, P, L) to denote a Twig, where
r is the root node, P = {p1,...,pn} are the edge labels
(predicates), and L = {l1,...,l,} is the nodes those edges
pointing to. We use r(q), P(q), L(q) to represent these ele-
ments in ¢ respectively. In addition, V' (g) denotes for all the
variables in q.

The variables are not bound to any entities or predicates
before query processing. The variables will be eventually
bound to concrete entities/predicates. The matched entities
or predicates for a given variable are called its bindings.

Stylus uses an extended Twig structure xTwig to post-
pone doing the Cartesian products during whenever possi-
ble. The matching results of xTwig can be represented as:

Wq = {<T7 {b7}> 5 <llv Bl> PR <lm7 Bm> PR <pn7 ln, Dn>}

where B; = GetObjects(b,,p;) for i € [1,m] while D; =
GetProps(b,) for ¢ € (m,n]. The flattened representation of
wq can be written as {by} X B1 X ... X By X D1 ... X Dy,
as illustrated by Figure 5 and Figure 6. Intuitively, this
structure saves a lot of storage space: suppose n = 3 and

Query with Variable
Predicates

[

L&

P1 P2 ?ps

Di(ls)

Figure 6: xTwig Example for Variable Predicates

|B;| = 10 where all the predicates are specified, then the
flattened representation has 10% records, including 4 x 10°
elements, while the matching result of the xTwig contains
only 61 elements.

During the query planning phase, we can infer the can-
didate xUDTs for each variable node in the query graph.
These candidates can be either chosen as starting nodes or
applied as filters to prune the intermediate results. The pro-
cedure of matching xTwigs is listed in Algorithm 1. Queries
with variable predicates as well as specific predicates are
matched by calling GetProps and GetObjects against the
xUDT records. Before an answer to the query is derived,
filters are applied to the bindings if there is any attached to
the predicates or objects. A special case where a variable
node appears in multiple leaves is also handled here, for ex-
ample, bindings of 7o are filtered by each other for the triple
patterns {?s pl 70 . 7s p2 ?0}.

Algorithm 1 Match xTwig for ¢ = (r, P, L)

1: procedure MATCHXTWIG(q)

2: if B(r(q)) = @ then

3: T, < GetUDTs(P)

4: B(r(q)) + U,er, LoadEntities(t)

5: Wq O

6: for b, € B(r(q)) do

7 for p; € P do

8: if p; is variable then

9: D; <« GetProps(b,.)

10: else

11: B; < GetObjects(b,-, p;)

12: Apply the filter to each B; and each D; if any
13: wy {(r, {bs}) , {1, B1) s (Pns bny D)}
14: Wy + Wy U {wg}

15: return W,

4.3 Multiple Twigs Pruning

During query processing, the results of an earlier exe-
cuted g can be used to filter the results of a later executed
q’. This procedure involves at least two sets of xTwigs.
We denote W,, = {wq.} (z = 1,2) as such two sets of
xTwigs. The binding of each Twig is in the form of By, =
{(z, By.(z)) |z € V(g:)}, and By, (x) = {bq. (x)} represents
for the bindings of = in ¢,. Notice that, the bindings of
p; and [; for the same D, are separated. Let the shared
variables of the two Twigs be V = V(q1) N V(g2) = {v}.
The join results of wg, and wgq, are not empty if and only
if By, (v) N By, (v) # O for all v € V. We can leverage this
rule to prune the elements of xTwigs in order to reduce the
intermediate results. The elements can be removed safely in
the following two cases: 1) if b(v) € By, (v) and b(v) is not
in any Bg,(v), we can remove b(v) from Bg, (v), and vice
versa; 2) if any By, (v) in w,, is empty after pruning, wg,
can be removed from Wy, totally, and vice versa.

208

This strategy can also be used to prune the intermedi-
ate results of multiple Twigs. For each variable node in
x € V(G), we maintain a candidate set for it during the
query execution procedure. At the beginning of the query
processing, the candidate set for each variable is set to be
U, LoadEntities(t), where t € GetUDTs(P.) and P, is the
predicates associated with z in G. As the process goes on,
we will use them to explore and prune the intermediate re-
sults of a later Twig. The candidate set itself will be up-
dated according to the new results. Specifically, suppose
the candidate set of x in step i is F(z), while the i + 1
step produces B*T!(x) which is the union of all z’s bind-
ings in xTwigs in this step. Then we can update the set
according to F'*(z) = F'(z) N B (z). F'*'(x) is used
to prune the results of step ¢ + 1. Moreover, the values in
AF'(z) = Fi(z) — F**'(z) are removed from the previous
xTwigs following the same pruning strategy as that for two
xTwig sets.

4.4 Distributed Query Execution

In a distributed environment, the xTwig result for a query
q is generated on the server where the candidate for r(q)
is placed. Then Stylus executes ¢ in parallel on different
servers. The overall procedure is listed as Algorithm 2. Once
each server finishes processing g, the bindings of each vari-
able in V(q) are synchronized among the servers for further
processing. Each xTwig is pruned according to the new can-
didate sets, and the remaining xTwigs are still kept on the
same server. After all the ¢’s in @) are matched, the cluster
will prepare the partial results for joins on each server. Let
Mj.,; be the set of remote xTwig results that the k-th server
need to access for ¢;. Typically, My ; is determined by the
local results of ¢1,...,¢,—1 and the remote results of g;. If
they have the same bindings for a shared variable, the re-
mote results will be retrieved from other servers by message
passing. In a worse case, all remote W, sets need to be
loaded. By this means, the derived Rj’s are disjoint, that
is, Rk N Ry = @ for k # k' so that no duplicated results are
generated. The explanation is as follows. Since My 1 = O,
we have Ry (¢q1) = Wi(q1), which means the matched results
on each server for g; are the local results that will be joined
with those of other subqueries. Since the RDF data set is
disjointly partitioned in the cluster, we know the local re-
sults are disjoint, i.e., Wi(q1) N Wi/ (q1) = O for k £ k'. As
a result, Rj’s are disjoint because the corresponding result
of ¢1 from each server is different from one another. As soon
as the k-th server has prepared all the required xTwig re-
sults, the local joins will be performed to derive the partial
results Rj. After all the partial results are generated, the
coordinator collects them and generates the final results.

Algorithm 2 Distributed Query Execution

1: procedure EXECUTE_QUERY(G, Q, K) > K is the cluster size
Initialize B(x) for all x € V(G)
for q € Q, parallel do
Wy < Matcn xTwic(q) with F(r(q))
Pruning W, with F(x) for all z € V(q)
Sync and update all F(z) by message passing
for each server k € [1..K], parallel do
for ¢; € Q,1# 1 do
Ry (q:i) = My,i UW,,
Ry = Ri(q1) M Ry (q2) - - - ™ Ri(qn)
Aggregate all results by R = UkE[L.K] Ry,

> on each server

> message passing

4.5 Cost Estimation

This subsection introduces how we estimate the costs of
the query plans.

For each xUDT ¢, we denote the instance count of xUDT
t in the data sets as N(t). For each predicate p € ¢, we also
count the distinct object values associated with an instance
of t and p as:

N(plt) = Hol (s,p,0),s € I(t)}].

For a variable predicate, its cardinality is estimated as the
sum of the possible predicates.

For a query g = (r, P, L) without constraint, the cardinal-
ity of its root r is calculated as

N(rla) = Y N(t) = N(P(q))
teT,
where T, = GetUDTs(P(q)). Notice that this number is
accurate if there is no instance of the generic xXUDT. And
the cardinality of leaf [; in ¢ is estimated by:

N(lilg) = > N(pilt).

teT,

Meanwhile, the selectivity of predicate p; in ¢ is defined as
the ratio of the leaf node cardinality in ¢ to that of the root
r, formally as:

_ N(ilg)
N(rlg)’

Furthermore, we can estimate the cardinality of the node x
in V(G) as its minimum cardinality value in all the xTwigs
which take it as either root or a leaf. When taken as a leaf],
its new cardinality is estimated by the ratio of %((f}’)) that is
likely to remain after pruning. Formally, it can be written
as:

S(pilq)

N(FPy)
N(pT)
where ¢” is the query rooted at z, ¢ can be any query or-

dered before ¢" which takes x as a leaf through predicate p,
and P, represents the predicates associated with x in G.

NG@IQ) = min {(N(rld'). Nizld)- 5 5)

4.6 Query Optimization

As discussed above, given a query G, Stylus always de-
composes it into a set of subqueries ¢; (Twigs). The root
nodes of these subqueries form an ordered node list R. Dif-
ferent ways of decomposition may incur very different query
processing costs. In Stylus, for each variable node r; € R,
we mark it and collect the labels of unmarked edges as P;
and their end nodes other than r; as L;. Then we add
qi = (ri, Pi, L;) to the query list Q to be executed. Notice
that r; may appear as objects in these edges, i.e., (z,p,r;).
In this case, we replace them with (r;, pT, z) and add p" and
z to P; and L; respectively. The procedure is presented as
DECOMPOSE procedure of Algorithm 3.

Thus, how to determine the order of R for query decom-
position remains an important issue. For this purpose, we
propose a Twig based query planning strategy. We take
the root cardinalities of the Twigs as heuristics to derive a
better query plan. The overall process is presented as pro-
cedure ORDER_SELECTION of Algorithm 3 and the statistics
and metrics have been introduced in the previous subsec-
tion. There are two main loops in this algorithm. The first

209

loop initializes each node’s candidate set cardinality of their
associated predicates in the query graph. After that, two dif-
ferent strategies are applied according the size of the query.
When the nodes of the query are small in size, all permu-
tations of these query nodes are estimated by exhaustedly
enumeration to select the node order with least cost; Oth-
erwise, each node of the query graph is set up as the first
node in one iteration, a greedy strategy by picking the most
selective remaining nodes is then applied to find the final or-
der with minimum estimated cost. At the beginning of each
iteration in this loop, we save the cardinalities prepared by
the first loop. For each picked node r, we add r’s cardinality
to the total cost. Suppose ¢ is the xTwig which covers all
the edges of r except those the other ends are visited, we up-
date the cardinality of each ¢’s leaf according to the smaller
value of the original cardinality and the one estimated by
r and q. The iteration is done when all the query nodes
are visited. Then, the cardinalities are restored for the next
iteration. This loop ends up with all the nodes are visited,
we pick the node order with least cost as the final order of
query processing.

Decomposition 1

?é:} é: [
a3 213

- A ______
Decomposition 2
pe s

S I QP
AN N W ¢
78 &0
qs’ 95
Figure 7: Query Decomposition

P
Query Graph

-0

P P2 2P

9’

4.7 Answering General SPARQL Queries

Stylus supports general queries in the SPARQL 1.0 stan-
dard. While the important SPARQL component named
BGP (i.e. conjunctive queries) with Filter on it is discussed
above, we will discuss how the other main components of
this standard are handled in Stylus as follows.

Three major query types, namely Select, Ask, and Con-
struct, are supported by Stylus: 1) Select queries are han-
dled as graph matching; 2) Construct queries are processed
as runtime data updates; 3) Ask queries are answered by
matching their patterns against the RDF data. Operators
on BGPs, such as Union and Minus, are handled as set op-
erations on the flattened results of xTwigs. When a triple
pattern in a Twig query is specified as Optional, we process
it as normal one but will not prune the answer if the bind-
ing for this pattern is empty (denoted as NULL). When the
whole Twig query is marked as Optional, it can be handled
in the same way but allows the entire xTwig answer to be
empty.

As for SPARQL 1.1, we are working on the support of it.
Currently, Stylus does not fully support the new features
introduced by SPARQL 1.1 such as property paths yet.

Stylus has a hybrid strategy for combining the forward
and backward chaining approaches to rule-based RDF rea-
soning/entailment. The rules are divided into two cate-
gories, i.e. forward and backward, when loaded to Stylus.

Table 2: Query Execution Time in Milliseconds on the WatDiv Data Sets. The data of RDF-3X, TripleBit, and gStore, as well
as the tables of PostgreSQL, are placed on RAMDisk. Spark SQL tables are cached in memory in advance. DB2RDF, and
DB2RDF, are DB2RDF with backends PostgreSQL and Spark SQL. A represents timeout of 15 minutes and X represents
execution error. Query categories: linear queries (L), star queries (S), snowflake-shaped queries (F), and complex queries
(C). Generally, Stylus delivers better performance for most of the queries (51 out of 60 queries) and it is the only system that

can answer all the queries for WatDiv-1000M.

[amit:ms] WatDiv-10M (10 million triples)

" C1 C2 C3 F1 F2 F3 Fa F5 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7
Stylus 1 5 01 [03[05 | 06 [07 06 | 05 [05 | 04 [05 | 0.6 | 04 1 2 [06 [0.7 | 03 0.4
RDF-3X 31 387 32 12 21 23 28 25 14 12 11 7 9 27 15 12 10 11 9 10
TripleBit VAN VAN paN 37 23 49 63 63 28 16 6 12 37 45 17 49 0.4 14 10 8
gStore 70 156 313 20 23 50 21 44 32 30 25 33 60 14 40 48 26 13 12 11

DBZRDFP (103) 2.2 4.0 3.1 1.3 1.4 1.5 X 1.3 1.0 1.0 0.9 1.5 1.3 1.0 1.0 2.7 1.2 1.1 1.0 1.2
DB2RDF (103) 31 96 63 32 20 18 X 40 6 25 4 55 29 10 23 288 23 21 11 11
it: WatDiv-100M (100 million triples)

[unit:ms] C1 Cz C3 Fi F2 F3 F4 F5 L1 L2 [L3 o L5 S1 52 53 54 S5 S6 S7
Stylus 273 78 15 2 5 | 117 7 08 | 04 2 | 0.2 3 2 | 03 9 23 5 3 2 0.1
RDF-3X 174 576 167 23 50 | 146 | 115 121 55 20 17 10 20 39 43 37 15 21 15 10
TripleBit AN AN AN 39 102 155 121 66 30 31 11 55 55 21 60 312 14 23 26 0.01
gStore 488 1032 2589 13 139 386 75 127 101 120 88 152 312 29 229 251 79 35 45 30

DBZRDFPI (103) 54 131 218 11 6 2 X 1.0 1.0 5 0.9 6 3 0.6 3 52 4 2 0.7 0.5

DBQRDsz (103) 9 12 34 1.0 1.4 1.1 X 0.8 0.6 0.6 0.5 1.9 1.3 0.5 0.8 11 3 1.0 0.5 0.5

DB2RDF 5 (103) 123 260 328 518 A 125 X 374 52 39 38 A A 171 235 A 65 840 169 167
it: WatDiv-1000M (1 billion triples)

[unit:ms] C1 [sF] C3 Fi F2 F3 ¥4 F5 L1 L2 [L3 T2 L5 S1 52 53 54 S5 56 S7
Stylus 2270 1178 199 22 50 59 84 1.4 0.8 772 0.6 80 16 0.1 143 312 91 31 19 4
RDF-3X 1696 AN 739 61 378 816 681 1155 368 70 15 18 95 27 266 190 63 66 T4 9
TripleBit A A A 133 964 76 174 25 16 223 14 206 81 10 7029 7157 107 95 45 0.01

Table 3: The Counts of Triple Patterns (#TPs) and Planned Twigs on WatDiv
[[C1I]C2[C3[F1L[F2[F3[F4][F5[L1 [L2[L3[L4[L5][S1][S2]S3[S4]S5]S6]S7]
#TPs 8 10 6 6 8 6 9 6 3 3 2 2 3 9 4 4 4 4 3 3
#Twigs of WatDiv-10M 3 5 1 3 3 3 3 3 3 3 2 2 3 2 3 2 3 2 2 2
#Twigs of WatDiv-100M 3 4 1 4 3 4 4 3 3 3 2 2 3 2 3 2 3 3 2 2
#Twigs of WatDiv-1000M 3 4 1 3 3 3 3 3 3 3 2 2 3 2 3 2 2 3 2 2

The overall reasoning procedure of Stylus is given as follows:
1) After the data loaded, the forward rules for material-
ization are applied to the original triples, and the derived
triples are stored in the same way Stylus stores the nor-
mal ones. An efficient in-memory materialization method
is proposed on top of a vertical partitioning storage scheme
in Inferray [45], which is realized in Stylus by mapping the
so table for predicate p into {s,0|s € LoadEntities(t) A o €
GetObjects(s)} for all ¢ € GetUDTs(p), and os table into
that of all ¢ € GetUDTs(p") accordingly. Meanwhile, the
materialization process highly relies on the joins on sub-
jects/objects of two triples, which could also benefit from
our storage scheme design as discussed earlier. 2) When a
query is processed by Stylus, the query is reformulated into
multiple sub-queries according to the backward rules, and
these derived queries are executed sequentially to obtain the
final result (for smarter query reformulation methods, please
refer to [15, 14]).

5. EXPERIMENTAL EVALUATION

Since Stylus is designed to serve massive real-life RDF
data sets, we want to answer the following additional ques-
tions: 1) Flexibility. How fast Stylus and the other sys-
tems process different types of queries? 2) Scalability.
How large are the data sets that Stylus can scale to? What is
the system speedup with regard to the number of machines
in a distributed setting? 3) Real-life Performance. What
is the performance of Stylus compared with other systems
on real-life data?

5.1 Setup

We choose four representative RDF stores belonging to
different categories from the perspective of storage schemes

210

— weakly-typed, strongly-typed, RDBMS based, and non-
RDBMS based for comparison. These systems are publicly
available and acknowledged to be fast for query processing
recently. Specifically, we compare Stylus with RDF-3X [39],
TripleBit [54], gStore [22, 57], and the DB2RDF [17, 12] with
two different backends on Docker — PostgreSQL (denoted
as DB2RDF,) and Spark SQL (denoted as DB2RDF,). In
addition, we compare Stylus with Trinity. RDF [55] which is
built on the same infrastructure to examine the performance
improvement gained by the system design of Stylus.

Stylus is implemented in C# on top of Microsoft Graph
Engine and open-sourced on GitHub [44]. In the exper-
iments, we set the maximum number limit of xUDTs to
50,000. For the single-machine experiments on Windows,
we set up a machine with 96 GB DDR3 RAM and two 2.67
GHz Intel(R) Xeon(R) X5650 CPUs, each of which has 12
threads, and one 15000-RPM SATA local disk. The op-
erating system is 64-bit Windows Server 2008 R2 Enter-
prise. The Linux-based systems RDF-3X, TripleBit, gStore,
DB2RDF,, and DB2RDF; are deployed on machines run-
ning 64-bit Ubuntu 14.04 LTS with the same hardware speci-
fications. Since both Stylus and Trinity. RDF are built on top
of an in-memory graph engine, we use RAMDisk as the stor-
age for RDF-3X, TripleBit, and gStore for a fair comparison.
For DB2RDF,, PostgreSQL does not support in-memory
tables, we set up a RAMDisk folder as its database direc-
tory. For DB2RDF, tables are cached in memory for query
processing in advance. A 5-machine cluster is used for the
distributed experiments, each machine has the same specs
as the machine used in the single-machine experiments. To
measure the query execution time, we excluded the time for
database connection, literal/ID mapping, query parsing and
planning for all the systems.

Algorithm 3 Query Planning (G)

1: procedure DeEcoMPOSE(G)

2: R «+ ORDER-SELECTION(G)

3: for » € R do

4: E(r) < r’s unmarked edges in E(G)
5: Replace all edges of (z,p,r) by (r,pT,z) for r
6: P «+ predicates in E(r)

7. L < target node labels in E

8: q+« (r,P,L)

9: Q+Qu{g}

10: return Q

11:

12: procedure ORDER_SELECTION(G)

13: for r € G do

14: P, + r’s associated predicates

15: N(r) < Xieceunts(p,y V()

16: Cmin & MAX, Rppin < @

17: if [V(G)| less than a threshold then

18: for R € permutations of V(G) do

19: C+0,V«0O

20: Backup N(+)

21: for » € R do

22: V«—Vu{r},C«+ C+N(r)

23: q < the T'wig covers all the edges of r
24: for I; € L(q) — V do

25: N(l;) min{ N(L;), N(r) - S(pilq) }
26: Restore N(+)

27: if C < Cpnin then

28: Cmin + C, Rmin < R

29: else

30: for each rg € V(G) do

31: C « N(r0), R« {ro}

32: Backup N(+)

33: while |R| < V(G) do

34: r < argmin, N(r) s.t. r € V(G) — R
35: R+ RU{r},C « C+ N(r)

36: q < the T'wig covers all the edges of r
37: for l; € L(qg) — R do

38: N(l;) <~ min { N(l;), N(r) - S(pilq) }
39: Restore N(+)

40: if C < Cpmin then

41: Cmin < C,Rmin < R

42: return R,,;n

5.2 Data Sets

We use a real-life data set Yago2s [52] and two RDF
benchmarks, namely LUBM [24] and WatDiv [4] in the ex-
periments. The reasons are as follows: 1) WatDiv is pro-
posed for benchmarking RDF management systems across
a wide spectrum of SPARQL queries, including linear, star,
snowflake-shaped, and very complex ones. Real-life appli-
cations are diverse at structures [18, 4]. It is hard to con-
sistently achieve the same level of good performance for all
these queries if the storage scheme is workload-oblivious [5].
2) Yago2s is a large real-life data set [18]. It consists of facts
extracted from Wikipedia and integrated with WordNet and
GeoNames. 3) LUBM is a RDF benchmark widely used for
comparing the performance of RDF stores [12, 7, 54, 55, 25].
A nice feature of this benchmark is that the data metrics are
kept linear to the data scales.

The LUBM data sets of different sizes are generated by
the LUBM data generator v1.7. The WatDiv data sets of
the same sizes are obtained from the WatDiv website [47].
The statistics of these data sets are listed in Table 4.

For LUBM data sets, we choose the same 7 queries (Q1-
QT) as given in [7] and prepare an auxiliary predicate for
each predicate-object pair which takes rdf:type as predicate
due to their low selectivity. For the WatDiv data sets, we
generate 20 queries for both data sets according to the query
templates of the following four categories: linear queries (L),

211

Table 4: Statistics of the Data Sets

[Data Sets [#Triples | #S/O [#P |
WatDiv-10M 10,916,457 1,052,571
WatDiv-100M 108,997,714 | 10,250,947 | 86
WatDiv-1000M | 1,092,155,948 | 97,390,412

Yago2s 173,033,130 43,509,579 | 100
LUBM-40 5,475,475 1,309,072
LUBM-80 11,067,027 2,644,415
LUBM-160 22,016,066 5,259,588 | .
LUBM-320 43,939,328 | 10,494,125
LUBM-640 88,099,158 | 21,037,012

LUBM-10240 | 1,410,024,788 | 336,711,191
Table 5: Load Time (minutes)

R WatDiv [
[unit:min] [TOM [-100M [-T000M | Yago2s

Stylus 3 39 981 92
RDF-3X 3 36 467 73
TripleBit 2 35 485 47
gStore 3 59 | Aborted 1551
DB2RDF, 95 985 | Aborted | Aborted
DB2RDF, 32 728 | Aborted 1083

Table 6: Storage Overhead (GB)

. ‘ WatDiv [
[unit:GB] | —yoxr T -700M | -To00M | Y280%
Raw Data 1.4 14.5 148.0 24.7

Stylus 0.9 2.9 24.0 5.3
RDF-3X 0.5 5.1 60.4 9.2
TripleBit 0.2 2.3 25.0 5.7
gStore 0.7 6.7 - 27.6
DB2RDF, 14.0 138.0 — -
DB2RDF ¢ 3.4 34.1 — 60.1

Table 7: Storage Overhead (GB) of Stylus for LUBM

[LUBM- [unit:GBJ | 40 | 80 | 160 | 320 | 640 | 10240 |
Raw Data 09 [18] 35 141 | 227.9
Stylus 08 | 1.1 | 1.5 44 | 419

star queries (S), snowflake-shaped queries (F), and complex
queries (C). WatDiv query templates (C1-C3, F1-F5, L1-L5,
S1-S7) are obtained from the WatDiv benchmark website.
There are no existing queries available for Yago2s, we de-
signed 12 queries of different structures for the experiments.
All the queries used in our experiments can be found in the
code repository of Stylus. Especially, since the predicates
may be unknown in real-life scenarios, two queries with vari-
able predicates are included, one of which contains joins on
the variable predicates.

Loading. All data sets are loaded into the systems using
their own data loaders, the load times taken by the Wat-
Div and Yago2s data sets are listed in Table 5. Stylus relies
on paired triples which are grouped (no need to sort) by
the first column (subjects and reversed objects) for loading.
The load times taken by Stylus for loading WatDiv-10M,
WatDiv-100M, and Yago2s are close to those of RDF-3X
and TripleBit. And it is able to load WatDiv-1000M within
a reasonable time compared to that of TripleBit. All these
systems are able to load WatDiv-10M and WatDiv-100M.
DB2RDF,, and DB2RDF take much longer time for all the
data loading. Compared with DB2RDF,, DB2RDF,, takes
more time to build indexes and is faster to answer queries as
we will see later. For Yago2s, gStore spends longer time for
data loading, DB2RDF, failed to load it while DB2RDF

Table 8: Query Execution Time in Milliseconds on Yago2s.
RAMDisk, while the tables of DB2RDF; are cached in advance. Queries Y11 and Y12 have variable predicates and Y11
requires joins on the variable predicates. A represents for timeout of 15 minutes and X represents execution error. Stylus

is the winner of 9 out of 12 queries and is able to complete Y11 and Y12 within a second.

The data of RDF-3X, TripleBit, and gStore are placed on

[[umitms] [YI[Y2 Y3 [YA Y5 Y6 Y7 [Y8 [YO[YO YII| YiZ]
Stylus 25 71 12] 75 | 55 | 1454 | 0.07 | 0.3 6 17 152 935
RDF-3X 82 | 98 | 54| 86| 29 | 2264 7 8 | 16 | 10 | 54322 | 43334
TripleBit 66 | 12 8| 177 | 61 | 3471 | 03| 11 | 207 | 345 x x
gStore 47 | 307 | 348 | 114 | 283 | 3431 4| 16 | 188 | 168 | 1642 | 6081

DB2RDF, (10%) | A | A | 266 | 625 | 339 | 608 18 | 40 | 184 | 218 x X

Table 9: The Counts of Triple Patterns (#TPs) and Planned Twigs on Yago2s

\ [Y1] Y2 [Y3 [Y4 Y5] Y6 | Y7 | Y8 | Y9 | Y10 | Yi1 | YI2 |

#TPs
5 7 6 2 4

#Twigs

8‘10‘6‘5‘6

5 1 2 3 3 2 5
4

1 2 2 2 2 2

finished the loading after about 16 hours. RDF-3X takes al-
most the same time to load WatDiv-1000M as TripleBit,
while gStore fails to load this data set. DB2RDF, and
DB2RDF; aborted the data loading for WatDiv-1000M af-
ter a few days. Thus gStore, DB2RDF,, and DB2RDF
are excluded from the experimental evaluation on WatDiv-
1000M.

5.3 Evaluation

We have conducted a set of experiments to answer the
three questions raised at the beginning of this section.

Flexibility. To answer the first question, the performance
of all the systems on three WatDiv data sets is compared in
Table 2. Since the data tables of DB2RDF, for WatDiv-
100M data set are too large to fit into the main mem-
ory, we run each query twice (denoted as DB2RDF); and
DB2RDF,, respectively) consecutively to make the queries
are warm-cached.

Generally, RDF-3X is very stable at answering a wide
range of queries on WatDiv-10M and WatDiv-100M, and
outperforms the other three systems for query C1 on WatDiv-
100M. The performance (response time) of TripleBit is close
to that of RDF-3X but with a larger variance: Compared
to RDF-3X, the performance of some queries of TripleBit
is better, for instance, query L3 for WatDiv-10M. It even
achieves the best performance for query S4 on WatDiv-10M.
Meanwhile queries such as F2, L4, and S3 for WatDiv-100M
take much longer time to finish. It even fails to answer
queries C1-C3 for the three WatDiv data sets within 15
minutes. In contrast, gStore is able to answer all these three
queries although it generally takes slightly longer time to an-
swer other queries. Compared to RDF-3X and TripleBit, it
has the best performance for queries C2, F4, S1 on WatDiv-
10M, and queries F1, F4 on WatDiv-100M. DB2RDF,, and
DB2RDF, complete these queries in seconds for WatDiv-
10M and WatDiv-100M. As we pointed out earlier, DB2RDF,,
takes more time to load data, but has much better query pro-
cessing performance than DB2RDF,. Both RDF-3X and
TripleBit leverage their compact representations for query
processing, their execution procedures use joins for process-
ing triple patterns. The DB2RDF systems take the advan-
tages of mature database techniques, however, their repre-
sentations are neither compact (for fast I/O operations) nor
strongly-typed (for fine-grained data access), thus take rel-
atively a long time to answer the queries.

In comparison, Stylus is built on a compact and strongly-
typed storage scheme. It outperforms the other state-of-the-
art systems for 51 out of 60 queries, many of which are orders
of magnitude faster. In terms of flexibility, Stylus is able
to serve the WatDiv-1000M data set and handle complex
queries C1-C3 efficiently compared to TripleBit (3 timeouts)
and RDF-3X (1 timeout), which can also load the data set.

Scalability. We conducted a set of experiments to verify
the scalability of Stylus. Five LUBM data sets are chosen
for this purpose.

The query execution times of Stylus on LUBM data sets of
different sizes are compared in Table 13. The results of Q3-
Q6 are almost the same. As we can see, for these selective
queries (Q4-Q6), the performance of Stylus is very stable no
matter how large the data sets are. For Q1l, Q2 and Q7,
Stylus can complete the queries within a reasonable time;
the response times are basically linear to the data sizes.

We also examined the speed-up for each LUBM query by
varying the number of servers from 2 to 8 as shown in Fig-
ure 8. As we can see, the performance of Stylus is stable
for selective queries Q3-Q6 even the network communica-
tion costs are included. For Q1 and Q2, the response times
decrease dramatically with respect to the number of ma-
chines. This confirms that Stylus can efficiently utilize the
parallelism of a distributed system. As for Q7, the size of
the final result is very large, where aggregating those results
from the servers dominates the response time.

Real-life Performance. To evaluate the real-life perfor-
mance, the query execution times of these systems are com-
pared in Table 8. Consistent with our previous observation,
the execution times of RDF-3X and TripleBit are close ex-
cept that TripleBit has a larger variance. Specifically, RDF-
3X outperforms the other three systems for Y5, Y10, while
TripleBit performs very good for Y2 and Y3.

Compared to RDF-3X and TripleBit, the execution times
of gStore are close to that of TripleBit, but worse for Y2-
Y10 compared to RDF-3X. And it gets the best performance
compared to RDF-3X and TripleBit for Y1. In addition,
gStore is able to answer the two queries with variable pred-
icates (Y11 and Y12) within a few seconds where RDF-3X
spends tens of seconds to respond and TripleBit even fails
to process. DB2RDF; takes much longer time to answer
these queries compared the other systems and fails to an-
swer Y11 and Y12. In this experiment, Stylus delivers good
performance for nearly all the queries, outperforms RDF-3X,

212

TripleBit, gStore, and DB2RDF for 9 out of 12 queries. For
some of the queries, specifically, Y2, Y7-Y9, Y11, and Y12,
Stylus is orders of magnitude faster.

5.4 Discussion

In this subsection, we discuss the factors that contribute
to the overall performance of Stylus.

Compact Storage and Fast Data Access. We measured
the sizes of the storage space of the systems used in our
experiments for different data sets. For Stylus, the xUDT
meta records are also included the storage overhead. The
results are listed in Table 6 and 7. As we can see, the
storages of Stylus are more compact than those of gStore,
DB2RDF,, and DB2RDF;. Compared with the other two
systems that heavily rely on customized compressions, Sty-
lus can still keep a quite compact storage for these data sets
due to its strongly-typed storage scheme.

Fast data access is a key performance factor, as illustrated
by the response times of L1-L5 queries for WatDiv data sets
and Y3, Y7-Y8 for Yago2s. Due to the query decomposition
strategy of Stylus, these queries are all decomposed into sin-
gle leaf Twigs. In these cases, Stylus matches triple patterns
in the same way as other systems, therefore the performance
gaps mainly come from data access.

The effort of fast data access was also illustrated in the
comparison with Trinity. RDF by the results shown in Ta-
ble 10 for the single-machine experiments and Table 12 for
the distributed experiments. Note that those results on
LUBM-10240 are all conducted on the distributed cluster
with the same configuration. Given the same underlying
infrastructure, Stylus outperforms Trinity. RDF for Q4-Q6
which are all selective queries. The big performance gap
mainly comes from the storage scheme because Stylus and
Trinity. RDF has the same underlying infrastructure — Trin-
ity. Note for Q1 and Q7, Stylus outperforms Trinity. RDF on
LUBM-160, but performs worse on LUBM-10240, however
this is not caused by data access and we will discuss this
later.

Less Joins. In the experiments, we counted the number of
joins for each query by ‘#TPs’ and ‘#Twigs’ as shown in
Table 3, 9, and 11, where ‘#TPs’ represents the number
of triple patterns (for the compared systems) and ‘#Twigs’
represents those of decomposed Twigs (for Stylus). Typ-
ically, the join numbers are n — 1, where n is #TPs or
#Twigs. An obvious observation is that the more joins
in the queries, the longer time these systems take to com-
plete the queries. As we can see, Twigs are much less than
triple patterns for most queries, meaning there are usually
less joins in Stylus. The Twig counts of some queries are
even reduced to 1, indicating that joins are completely elim-
inated (query C3 for WatDiv). For Q3 on the LUBM data
sets, Stylus detected an empty xTwig result during execu-
tion and completed the query immediately without further
joins by leveraging the strongly-typed storage scheme.

Further Improvement. Trinity. RDF performs better than
Stylus for Q1 and Q7 on LUBM-10240. This is because the
Twig based planner cannot give an optimal query execu-
tion plan under some special circumstances, for instance, a
query with a triangle structure (say a, b, c), where the best
plan is to match ‘a — b,b — ¢,¢ — a’ in order. However,
Stylus will always decompose it into two Twigs in this case,
which may lead to a suboptimal plan, such as those of Q1

213

and Q7. When the data size is small, Stylus is able to com-
plete the query very fast if the data access cost dominates
the overall cost. However, the triple based planner might
become better when the data sets become larger. To solve
this problem, Stylus needs a more sophisticated planner to
better decompose queries. This is our ongoing work.

6. RELATED WORK

According to their storage schemes of RDF stores, we clas-
sify existing RDF stores into two categories: weakly-typed
and strongly-typed. Under a weakly-typed storage scheme,
entities are stored either as a collection of triples or by an
entity-based generic type holding a collection of predicate-
object pairs; while under a strongly-typed one, entities are
modeled and stored via the user-defined types (UDTs).

6.1 Weakly-Typed Schemes

Weakly-typed schemes are widely adopted due to its sim-
plicity. Here we discuss three representative weakly-typed
schemes: triple table, weakly-typed graph, and DB2RDF.

Triple tables, such as 3store [28], Oracle [16], and Red-
land [8], store RDF data in a large table in relational databases
using a three-column schema (subject, predicate, object).
An entity is separated into s records where s is the triple
count of this entity. To speed up data retrieval in triple ta-
bles, indexes are usually built on all possible combinations
of (subject, property, object) [48, 30, 19, 39, 50].

Due to the graph nature of RDF data, graph-based stor-
age schemes [55, 57, 11, 31, 36, 6] are proposed to model
and store RDF data. The performance of graph operations
is improved thanks to the graph-structured layout. In Trin-
ity RDF [55], nested key-value pairs are used within entities’
records to maintain the predicate-object values, the same as
a generic type scheme thus is weakly-typed.

The storage model proposed in [12] leverages an optimized
generic type scheme. An entity’s collection of predicate-

Table 10: Query Execution Time (ms) on LUBM-160

[[unitms] [QI] Q2] Q3] Q4] Q5[Q6] Q7]

Stylus 213 | 25 1 0.04 | 0.05 | 0.04 | 0.6 | 536

Trinity.RDF | 281 132 110 5 4 9 | 630
Table 11: The Counts of Triple Patterns (#TPs) and

Planned Twigs on LUBM-160

[[QI]Q2]Q3[Q4] Q5[Q6 [Q7]
’#TPS 6‘2‘6‘5‘2‘4‘6‘
2 1| 2] 1] 1] 2] 2

#Twigs
Table 12: Query Execution Time (ms) on LUBM-10240

‘ [unit:ms] ‘ Q1 ‘ Q2 ‘ Q3 ‘ Q4 ‘ Q5 ‘ Q6 ‘ Q7 ‘
Stylus 20976 | 4440 7 2 2 5 | 31764
Trinity.RDF 12648 6018 8735 5 4 9 31214

Table 13: Query Execution Time (ms) of Stylus on LUBM

[funitms] T Q1] Q2] Q3] Q4] Q5] Q6 [Q7]
LUBM-40 38 3 0.02 0.05 0.03 0.6 174
LUBM-80 92 6 0.03 0.04 0.03 0.3 278
LUBM-160 213 25 0.04 0.05 0.04 0.6 536
LUBM-320 464 54 0.03 0.05 0.07 | 0.4 912
LUBM-640 1368 111 0.03 0.04 0.03 0.5 1763

w
Ul

w
o

N
Ul

N
o

Response Time (seconds)

XX Q2 '

L3 a-A Q7 °

1.0

Ko,

05p
X, X

0.0l 2 ° ’
#Servers

8

6

A
IS

=
o N

Response Time (milliseconds)

N B~ OO

#Servers

Figure 8: Parallel Speed-up on LUBM-10240

object pairs are stored in one big table with a fixed number
of columns. The first column is set for the subject and
others for the associated predicate-object pairs. Predicate-
object pairs are assigned to the columns according to the
hash values on the predicates. If hash collisions happen
among the predicates within an entity, multiple records are
leverage to store the data of this entity. This model speeds
up the query processing by the hash mechanism. It proves
more efficient than traditional RDBMS based RDF stores,
especially those built on a triple table storage scheme [12].

6.2 Strongly-Typed Schemes

The idea of defining entity types using grouped predi-
cates has already been adopted in the RDBMS based mod-
els. However, they failed to deliver high performance due
to the following reasons. First, the multi-valued properties
are hard to arrange in relational tables as faced by prop-
erty table based methods. In this case, an individual table
is necessary for storing them, but multi-valued properties
spreading all over the data sets reduce this model back to
a big triple table approach; second, real-life entities may be
of multiple types. A common practice is to span the en-
tity’s data across several records. However, additional joins
are inevitable for aggregating entity segments in this case.
The more records those entities are partitioned, the more
joins are needed for aggregation; third, a fixed schema ag-
nostic of the data set is likely to produce lots of NULLs for
the absent properties of entities. It is very costly to store
those unnecessary NULLSs, especially for a large number of
predicates.

According to the number of types with which a predi-
cate can be associated, strongly-typed storage schemes are
further classified into partitioned schemes and overlapped

214

schemes. In a partitioned scheme, including property ta-
ble, wide table, and vertical partitioning scheme, each pred-
icate is associated to one user defined types; while in an
overlapped scheme, predicates can be associated to more
than one types.

Property table schemes and techniques [13, 3, 49, 29] are
proposed to address the query performance issues in triple
table schemes. In a property table, predicates are parti-
tioned into disjoint clusters, each of which corresponds to a
table, but it is usually not strictly strongly-typed in prac-
tice. An extreme case of property table schemes is a very
wide table which has only one UDT. The UDT contains all
the predicates and each of them corresponds to a column in
the wide table. Bit based solutions, such as BitMat [7] and
RDFCube [37], are proposed for compact representation.

Vertical partitioning [1, 2] is another extreme case of prop-
erty table schemes. For each predicate, a table with two
columns is created to store the subject-object pairs. In this
way, multi-valued properties can be well handled by split-
ting them to multiple rows in a table and NULL values are
eliminated. However, an entity with multiple predicates will
be distributed in multiple tables. Queries on this kind of en-
tities have to aggregate data from multiple tables and thus
have the performance issue in practice.

Although partitioned schemes are strongly-typed, their
types are defined by partitioning the predicates into one
or more disjoint clusters. In contrast, overlapped schemes
group predicates and define types around the entities in a
data set. For instance, in [38], predicates that are shared
among multiple entities are grouped together into a Char-
acteristic Set (CS) to form a type, which may overlap with
another on the same predicates. In this way, an entity will
have less chance of being divided into multiple tables than in
partitioned schemes. While CSs have been used for efficient
join ordering [23], a CS-based scheme based on relational
tables has been exploited for reducing joins on subjects [40]
during RDF query processing. However, multi-valued prop-
erties are still not handled gracefully. Our proposed xUDT's
go further than these methods, a tailored storage scheme is
proposed for fast data access and less joins.

7. CONCLUSION

In this paper, we proposed a high-performance RDF store
called Stylus for serving SPARQL queries on massive RDF
data in nearly real time. Stylus adopts a strongly-typed stor-
age scheme for modeling and storing RDF entities in a very
compact manner. The carefully designed storage scheme
and a highly optimized SPARQL query processor enable
Stylus to serve a wide range of SPARQL queries efficiently.
Extensive experiments have been conducted to evaluate the
proposed system. The experimental results show that Sty-
lus is not only efficient for answering SPARQL queries but
also scalable for handling very large RDF data sets.

8. ACKNOWLEDGEMENT

This work was partially supported by grants from the Na-
tional Science Foundation for Distinguished Young Schol-
ars of China (Grant No. 61325010), the National Natural
Science Foundation of China (Grant No. U1605251), and
the National Key Foundation for Exploring Scientific In-
strument of China (Grant No. 61727809).

il

2

3

4

[5

(6]

[7

8

9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data
management using vertical partitioning. PVLDB,
1(1):411-422, 2007.

D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Sw-store: A vertically partitioned
dbms for semantic web data management. The VLDB
Journal, 18(2):385-406, Apr. 2009.

S. Alexaki, V. Christophides, G. Karvounarakis,

D. Plexousakis, and K. Tolle. The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description
Bases. In International Semantic Web Conference,
2001.

G. Alug, O. Hartig, M. T. Ozsu, and K. Daudjee.
Diversified stress testing of RDF data management
systems. In International Semantic Web Conference,
pages 197-212. Springer, 2014.

G. Alug, M. T. Ozsu, and K. Daudjee. Workload
matters: Why RDF databases need a new design.
PVLDB, 7(10):837-840, 2014.

R. Angles and C. Gutiérrez. Querying RDF data from
a graph database perspective. In ESWC, 2005.

M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler.
Matrix ”Bit” loaded: a scalable lightweight join query
processor for RDF data. In WIWW, 2010.

D. J. Beckett. The design and implementation of the
redland RDF application framework. In World Wide
Web Conference Series, 2001.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,

C. Becker, R. Cyganiak, and S. Hellmann. DBpedia-a
crystallization point for the web of data. Web
Semantics: science, services and agents on the world
wide web, 7(3):154-165, 2009.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1247-1250.
ACM, 2008.

V. Bonstrom, A. Hinze, and H. Schweppe. Storing
RDF as a graph. In Web Congress, 2003. Proceedings.
First Latin American. IEEE, 2003.

M. A. Bornea, J. Dolby, A. Kementsietsidis,

K. Srinivas, P. Dantressangle, O. Udrea, and

B. Bhattacharjee. Building an efficient RDF store over
a relational database. In SIGMOD, 2013.

J. Broekstra, A. Kampman, and F. V. Harmelen.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. 2002.

D. Bursztyn, F. Goasdoué, and 1. Manolescu.
Optimizing reformulation-based query answering in
RDF. In EDBT: 18th International Conference on
Extending Database Technology, 2015.

D. Bursztyn, F. Goasdoué, and I. Manolescu.
Reformulation-based query answering in RDF:
alternatives and performance. PVLDB,
8(12):1888-1891, 2015.

E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient SQL-based RDF querying scheme. PVLDB,
1(1):1216-1227, 2005.

215

(17]

(18]

(19]

20]

(21]

22]
23]

(24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

(33]

34]
(35]

https://github.com/Quetzal-RDF/quetzal,
2017-06-17.

S. Duan, A. Kementsietsidis, K. Srinivas, and

O. Udrea. Apples and oranges: a comparison of RDF
benchmarks and real RDF datasets. In Proceedings of
the 2011 ACM SIGMOD International Conference on
Management of data, pages 145-156. ACM, 2011.

O. Erling and 1. Mikhailov. Virtuoso: RDF support in
a native RDBMS. Springer, 2010.

F. Goasdoué, K. Karanasos, J. Leblay, and

I. Manolescu. View selection in semantic web
databases. PVLDB, 5(2):97-108, 2011.

S. Gottipati and J. Jiang. Linking entities to a
knowledge base with query expansion. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 804-813. Association for
Computational Linguistics, 2011.
https://github.com/Caesaril/gStore, 2017-07-31.
A. Gubichev and T. Neumann. Exploiting the query
structure for efficient join ordering in SPARQL
queries. In EDBT, volume 14, pages 439-450, 2014.
Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Web Semantics:
Science, Services and Agents on the World Wide Web,
3(2), 2005.

S. Gurajada, S. Seufert, I. Miliaraki, and

M. Theobald. TriAD: a distributed shared-nothing
RDF engine based on asynchronous message passing.
In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data,
pages 289-300. ACM, 2014.

M. Hammoud, D. A. Rabbou, R. Nouri, S.-M.-R.
Beheshti, and S. Sakr. DREAM: distributed RDF
engine with adaptive query planner and minimal
communication. PVLDB, 8(6):654-665, 2015.

X. Han, L. Sun, and J. Zhao. Collective entity linking
in web text: a graph-based method. In Proceedings of
the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 765-774. ACM, 2011.

S. Harris and N. Gibbins. 3store: Efficient Bulk RDF
Storage. In PSSS, 2003.

S. Harris, N. Lamb, and N. Shadbolt. 4store: The
design and implementation of a clustered RDF store.
In 5th International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS2009), 2009.

A. Harth and S. Decker. Optimized Index Structures
for Querying RDF from the Web. In Latin American
Web Congress, 2005.

J. Hayes and C. Gutierrez. Bipartite graphs as
intermediate model for RDF. In ISWC, 2004.

J. Hu, G. Wang, F. Lochovsky, J.-t. Sun, and Z. Chen.
Understanding user’s query intent with Wikipedia. In
Proceedings of the 18th international conference on
World wide web, pages 471-480. ACM, 2009.

J. Kim, H. Shin, W.-S. Han, S. Hong, and H. Chafi.
Taming subgraph isomorphism for RDF query
processing. PVLDB, 8(11):1238-1249, 2015.
http://lod-cloud.net/.

A. Lumsdaine, D. Gregor, B. Hendrickson, and

J. Berry. Challenges in parallel graph processing.
Parallel Processing Letters, 17(01), 2007.

[36] A. Matono, T. Amagasa, M. Yoshikawa, and
S. Uemura. A path-based relational RDF database. In
Proceedings of the 16th Australasian database
conference-Volume 39. Australian Computer Society,
Inc., 2005.
A. Matono, S. M. Pahlevi, and 1. Kojima. RDFCube:
A P2P-Based Three-Dimensional Index for Structural
Joins on Distributed Triple Stores. 2006.
T. Neumann and G. Moerkotte. Characteristic sets:
Accurate cardinality estimation for RDF queries with
multiple joins. In 2011 IEEE 27th International
Conference on Data Engineering, pages 984-994.
IEEE, 2011.
T. Neumann and G. Weikum. RDF-3X: A RISC-style
engine for RDF. PVLDB, 1(1):647-659, 2008.
M.-D. Pham. Self-organizing structured RDF in
MonetDB. In Data Engineering Workshops (ICDEW),
2013 IEEFE 29th International Conference on, pages
310-313. IEEE, 2013.
https://www.w3.org/TR/rdf11-concepts/
#section-Graph-Literal.
B. Shao, H. Wang, and Y. Li. Trinity: a distributed
graph engine on a memory cloud. In SIGMOD 13,
pages 505-516, New York, NY, USA. ACM.
[43] https://www.w3.org/TR/rdf-sparql-query/.
[44] https://github.com/SoulSight/Stylus.
[45] J. Subercaze, C. Gravier, J. Chevalier, and
F. Laforest. Inferray: fast in-memory RDF inference.
PVLDB, 9(6):468-479, 2016.
[46] https://github.com/Microsoft/GraphEngine.
[47] http://dsg.uwaterloo.ca/watdiv/.
[48] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
PVLDB, 1(1):1008-1019, 2008.

37]

(38]

(39]

(40]

(41]

42]

216

[49] K. Wilkinson, C. Sayers, H. A. Kuno, and

D. Reynolds. Efficient RDF Storage and Retrieval in
Jena2. In International Semantic Web Conference,
2003.

D. Wood, P. Gearon, and T. Adams. Kowari: A
platform for semantic web storage and analysis. In
XTech 2005 Conference, 2005.

R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun.
Representation learning of knowledge graphs with
entity descriptions. 2016.
http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/
yago-naga/yago/, 2017.

P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou.
Answering questions with complex semantic
constraints on open knowledge bases. In Proceedings
of the 24th ACM International on Conference on
Information and Knowledge Management, pages
1301-1310. ACM, 2015.

P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
TripleBit: A fast and compact system for large scale
RDF data. PVLDB, 6(7):517-528, 2013.

K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
distributed graph engine for web scale RDF data.
PVLDB, 6(4):265-276, 2013.

Z. Zheng, F. Li, M. Huang, and X. Zhu. Learning to

link entities with knowledge base. In Human Language
Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for
Computational Linguistics, pages 483-491. Association
for Computational Linguistics, 2010.

L. Zou, J. Mo, L. Chen, M. T. Ozsu, and D. Zhao.
gStore: Answering SPARQL queries via subgraph
matching. PVLDB, 4(8):482-493, 2011.

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

