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ABSTRACT

Data completeness is becoming a significant roadblock in data qual-
ity. Existing research in this area currently handles the certainty of
a query by ignoring the incomplete part and approximating missing
attributes on partially complete tuples, but leaves open the question
of how the missing data affect the quality of the results. This is
particularly challenging when entire tuples are absent, which can
affect query certainty in ways that are not immediately obvious.
To aid this, we propose CYADB, a database that “covers your ask”
by assessing the quality of a query answer when data are missing.
CYADB is a human-in-the-loop system, in which the data owner uti-
lizes his or her domain knowledge of data to specify aspects of the
missing data, such as where it might be missing (“where”), how
many data points are missing (“how many”), and how large the
missing data points could be in comparison to the provided data
(“how big”). Using this, CYADB calculates the query’s missing sen-
sitivity, the maximal size of the effect that the missing data could
have on the given query. Additionally, CYADB provides concrete
examples of missing data that match the missing sensitivity to help
the user interactively refine the provided domain knowledge.
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1. INTRODUCTION
In recent years, both the number of data sources and the volume

of data contained in those sources have increased significantly. This
deluge of data enables data scientists to achieve insightful analyt-
ics, but the diversity of the data poses difficulties in assessing and
improving data quality. One of the most important challenges in
this domain is how to handle missing data, the situation in which
expected data is not present in the database. This data could be
missing for many reasons, such as the failure of a data cleaning or
integration component in extracting correct results, a failure at the
data source in production or transmission, or the non-observation
of data at collection time.
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It is not surprising that missing data have a substantial effect on
the conclusions derived from the data. To combat this, research has
converged on two approaches of extracting information from par-
tially incomplete data. The first approach is to extract knowledge
that is true regardless of the missing data, usually denoted as “cer-
tain answers” [10, 8]. Certain answers can be completed efficiently
and are guaranteed to be accurate. However, these answers ignore
missing data. Thus, certain answers do not always reflect the entire
truth. The second approach is to mitigate the effect of missing data
by imputing the missing tuples/attributes [4], reasoning about the
distribution of the result by probabilistic database techniques [7] or
by statistical inference methods that directly estimate the ground
truth [11]. When the missing data match the underlying assump-
tions (i.e. missing at random or MAR), these methods effectively
estimate the expectation, or “averaged result” of the query. How-
ever, the estimation could be biased when the data are missing not
at random (MNAR).

In this paper, we propose our research prototype that aims at
estimating the effects of missing data. Compared with previous re-
search efforts, we focus on a more general situation in which some
set of tuples are missing entirely. This stands in contrast to the
NULL-value problem, in which some tuples are missing parts of
their attributes’ values, but tuples not in the database are not con-
sidered. When tuples are completely missing, traditionally there is
no way to trace what the missing tuples’ values could be, and thus
it is impossible to estimate the missing tuples’ impact on the query
result. We aim to address this issue.

We demonstrate CYADB, a database system that always “Cov-
ers Your Ask”. We propose missing sensitivity to measure how a
particular query reacts to missing data. To estimate the degree of
missing data’s effect on the query result, we build a human-in-the-
loop solution, CYADB. In CYADB, we ask a data owner to specify
domain knowledge concerning the missing data. More specifically,
we ask them where the data might be missing (“where”), how many
data points are missing (“how many”), and how larger the missing
data points could be in comparison to the given data (“how big”).
This is useful, because we believe data owners/users often have do-
main knowledge of invariants and semantics about the underlying
universe the data represents that they intend to model [2, 3]. For
example, archived data could be curated, and up-to-date data could
be missing (“where” the missing data are), each Facebook user
may have no more than 5000 friends [5] (“how many” the miss-
ing data are) and Paypal only supports transactions up to $10,000
(“how big” the missing data are). In response to their query, a data
owner receives both the missing sensitivity of the query and a con-
crete example of potential missing data that is both legitimate (i.e.
satisfies the data owner specifications) and tight (i.e. matches the
best/worst query result given by missing sensitivity) from CYADB.
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The data owner inspects the example, and may either reject it by
realizing the example is not realistic, then specifying additional do-
main knowledge to rectify it, or accept it as potential query uncer-
tainty. CYADB is interactive and iterative: the data owner, driven
by the examples provided by CYADB, continuously refines his or
her knowledge specifications of missing data until the missing data
example conforms to this knowledge. For future work, we envision
that our system might suggest to the user a similar query that is
less sensitive to missing data, and might also recommend regions
of data where filling in missing data would be most valuable.

2. BACKGROUND
The problem of missing tuples/attributes in a relational database

has been studied for several decades. Besides a rich literature on
query semantics, one of the most well-studied problems in this area
is the certain answer problem [10, 8]. Certain answers are those
that are invariant under interpretations of NULL values. In other
words, certain answers prioritize soundness over completeness. It
is efficient to compute certain answers for positive queries such as
the select-project-join-group-by-aggregation (SPJGA) queries with-
out inequality predicates. Razniewski et al. [13] and Lang et al. [9]
have also proposed systems that reason about the completeness of
tuples and tables in relational database systems. Similar to certain
answers, they focus on the complete answers and ignore the uncer-
tain answers associated with the missing data.

Another way of mitigating the effect of missing data is to replace
absent values via a statistical or predictive model based on present
values in the tuple and other tuples. Such procedures are called im-

putation [4]. Not surprisingly, the effectiveness of imputation relies
on the accuracy of the statistical model. This raises a paradox for
imputation: when the imputation is inaccurate, the query result is
impaired; when the imputation is accurate, which means the infor-
mation of missing values can be perfectly predicted by other values,
the missing values provides no additional information, and thus the
tuples with missing attributes can be safely discarded. Moreover,
imputation works only on partially complete tuples. When an en-
tire tuple is missing, imputation cannot predict the missing tuple
because there is no input for prediction.

When the data comes from multiple data sources, Chung et al. [6]
estimate the impact of unknown data such as the number of un-
observed entities by inspecting the overlap between data sources.
Intuitively, significant overlaps between data sources indicate that
most of the entities have been observed at least once and the unob-
served entities are rare. Otherwise, when a substantial portion of
entities have been observed exactly once by multiple data sources,
we estimate unobserved entities are common. The proposed esti-
mators predict the number of entities on crowd-sourcing datasets.
However, the estimators rely on multiple data sources, and only
deliver unbiased estimations when the entities are observed with
probabilities that conform to a multimodal distribution.

When the probability or distribution of missing data is known a

priori, we can deal with missing data directly by utilizing a prob-
abilistic database to compute queries with uncertain answers [7].
However, several drawbacks limit this method’s application. First,
the exact probability of missing data is usually hard to estimate.
Second, the domain of missing data could be infinite and even un-
countable, such as when the missing value is a real number. There-
fore, it is impossible to represent each possible interpretation as an
uncertain tuple. Third, answering uncertain queries in a probabilis-
tic database can be slow.

The concept of local sensitivity [12] has also been applied to
related problems in differential privacy (DP). DP aims to release
datasets such that it is impossible to infer whether an individual

(tuple) is in the dataset. A common implementation of DP is to
aggregate data and add noise that is neither so small that it compro-
mises the DP guarantee, nor so large that it compromises the utility
of data). Local sensitivity contributes to this by measuring the mag-
nitude of the changes in query responses to an insertion or deletion
of one tuple. Missing sensitivity is different from local sensitiv-
ity, however, for several reasons. First, missing sensitivity focuses
on how the query responds to k insertions, while local sensitivity
focuses on how the query responds to one insertion or deletion.
Second, missing sensitivity aims to provide exact bounds, while
DP implementations often focus on lower bounds of local sensitiv-
ity. Third, missing sensitivity allows the data owner to specify the
knowledge of missing data, while local sensitivity does not. Fourth,
missing sensitivity also provides a concrete example that matches
the sensitivity bound to help the data owner refine the knowledge,
while local sensitivity does not.

To indicate the completeness of tuples in a certain time period,
punctuations [14] have also been utilized. Using these, the data
owner is able to express that the missing tuples will not appear
in the sub-domain covered by the punctuations. CYADB accepts
punctuations specified by the data owner, and is able to calculate
missing sensitivity that conforms to the punctuations.

3. CYADB
In this section, we introduce CYADB by starting with the prob-

lem definition and then describing how our system interactively in-
duces the user to express his or her domain knowledge about miss-
ing data. We illustrate CYADB’s core functionalities with examples
in the next section.

3.1 Problem Definition
We focus on problems where every tuple is either completely

stored in the database or is completely missing. Without additional
information, the missing tuples could appear anywhere in any rela-
tion and their attributes may have any valid values. Therefore, the
potential answers for any query, for example SELECT SUM(A)

FROM T, could be arbitrarily large, even if only 1 tuple is missing.
This is not helpful for the user and not representative of the real
world, which the data is representing. Therefore, in our system, the
data owner expresses their domain knowledge about the missing tu-
ples on, informally speaking, “where” the tuples are, “how many”
are missing, and “how big” they are. Assume a relation R has k

attributes R1, R2, . . . , Rk, and the domain for Ri is Di. We intro-
duce the syntax of three types of domain knowledge as follows.

Punctuation describes the sub-domains of the attribute that are
considered complete. In other words, punctuations claim region(s)
of a relation in which missing tuples will not appear. The data
owner may specify one or more punctuations for each relation ta-
ble. Punctuation is denoted by (R,Ri, P ) where R is a relation,
Ri is one attribute (column) of R, and P ∈ Di is a sub-domain of
attribute Ri. For example, (S, time,≤ 10:00am) indicates that in
table S, tuples whose time attribute is no later than 10:00am have
already been stored in the database. In other words, only those
tuples whose time attributes are greater than 10:00am could be
missing.

Punctuations could be given by data sources or come from user
decisions. For the former case, a common scenario is when the
data source periodically reports heartbeat information to declare
its liveness. Once the data collector acknowledges the heartbeats,
it knows that data that are emitted before a certain time are com-
plete. When punctuations come from user decisions, in practice the
data owners often declare that the late data has next to zero value,
because outdated data does not help in making business decisions.
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Thus, the owners may choose to reject late data, in a process named
watermarking [1]. Alternatively, the user could use this process by
verifying manually that no data is missing through an off-line audit
process (i.e. all employees are listed).

Cardinality constraints describe the distribution of missing data:
namely, how many tuples, present or absent, may share a given key.
These are represented by (R,Ri, C) where R is a relation, Ri is
one attribute (column) of R, and C is a positive integer. It is an
extended form of primary keys, as a primary key is the special case
of this when C = 1. Cardinality constraints are inspired by ac-

cess schema [5], which add cardinality information to functional
dependency.

Cardinality constraints may come from data constraints (i.e. pri-
mary keys), system limitations, or user beliefs. An application may
pose limitations on a data distribution, such as, “each Facebook
user is allowed to have at most 5000 friends.” Thus, in the table
Friends=(friend1, friend2), we can express (Friends,

friend1, 5000) with a similar cardinality constraint for attribute
friend2. As another example, the user could also input the con-
straint (Course, student id, 1000) to indicate that each student can
register at most 1000 courses in college.

Magnitude constraints specify another property of missing data,
the range of missing attributes. Without magnitude constraints,
the missing values could be arbitrarily large or small, based on
the maximal or minimal value of domain (e.g. 231 − 1 for type
int). However, such extreme cases may not accurately reflect
the possible values that missing tuples may take. Data owners
may specify magnitude constraints that constrain the domain of
missing values. Magnitude constraints are defined by the syntax
(R,Ri, P,Rj , C), where R is a relation, Ri, Rj are two attributes
of R, P ∈ Di is a sub-domain of attribute Ri, and C is a sub-
domain in domain Dj . It specifies tuples in R whose Ri values
in P cannot have Rj values that are outside of C. For example,
(employee, role,CEO, salary,≤ 1,000,000) specifies that the em-
ployee(s) whose role is CEO cannot have a salary greater than 1
million.

Missing sensitivity: With domain knowledge about missing data,
we analyze how queries react to missing data in a quantitative ap-
proach named missing sensitivity. An intuitive explanation of miss-
ing sensitivity is as follows: assume there are k tuples missing.
Missing sensitivity measures the maximum potential impact of miss-
ing tuples on the query result, assuming these missing tuples con-
form to the user’s specifications. We abstract the query as a func-
tion q(D) on dataset D. Missing sensitivity is defined as

sen(D,S, k) = max
|M|≤k

q(D ∪M)− q(D)

where D represents the dataset, S represents the owner specifica-
tions including punctuations, cardinality constraints, and magni-
tude constraints, and M represents a possible missing data farg-
ment with no more than k tuples that conform to S.

As the first step in our research, we focus on three categories of
queries whose results can be quantified in meaningful ways. For
select-project-join (SPJ) queries that emit enumerative tuples, we
quantify the result by its cardinality; for queries with a single ag-
gregation (without group by clause), the result itself is a quanti-
fied value; for aggregation queries with a group by clause, we con-
sider each group by bucket individually. Thus, for non-aggregation
queries, CYADB tracks the number of tuples that missing data could
change; for aggregation queries, CYADB reports a range of values.

Although CYADB takes the number of missing tuples k as an
input, k could be specified by the data owner as an estimation or
a pessimistic bound. Moreover, without a user specified k, CYADB

enumerates possible values of k and illustrate the trend of missing
sensitivity as k increases, as shown in Section 4.

3.2 Data Owner Interaction
Although the data owner can specify constraints regarding miss-

ing data, it is not easy for him / her to provide all potentially mean-
ingful information without a concrete example of what could “go
wrong” for a given query. To facilitate the exploration of possible
worlds of missing data with the missing sensitivity, we provide an
example to the user, which is both legitimate (by conforming to the
domain knowledge), and tight (by achieving the extreme query re-
sults that are estimated by missing sensitivity). We illustrate the UI
interface for this in Section 4. The data owner may then supplement
the given specifications if he /she deem the example is not realistic
in order to remove this example from the potential worlds of miss-
ing data. After the user specifies more domain knowledge, CYADB

updates the missing sensitivity and provides a refreshed example to
the data owner. Alternatively, the user may accept the query result
if he /she deem the effect of missing data (measured by missing
sensitivity) to be small enough.

3.3 System Architecture
Our system has two parts: a front-end for interaction with the

data owner, and a back-end for core functionality. We introduce the
front end interface in the Section 4 and discuss the major compo-
nents in this section. We integrate CYADB with a relational database
management system (RDBMS) to provide rich query functionality
and other standard functionality. In the current version, we choose
PostgreSQL 10 as the RDBMS that supports our system.

CYADB’s back-end has three major components. The first is the
domain knowledge manager which parses, validates, and stores the
user’s domain knowledge. For validation we pull relation names,
column names, and column type information from RDBMS’s cat-
alog manager. Once the domain knowledge is validated, we store
it in main memory, since its size is small relative to the data. The
second component is the auxiliary data structure manager, which
manages two types of auxiliary structures. The first is those that
are directly related to the domain knowledge. For example, for car-
dinality constraint (R,Ri, C), we manage a histogram of table R

on attribute Ri to record which attributes have values that have al-
ready hit the upper bound of cardinality constraint C. The second is
related to the data. We do not directly manage the data. Instead, we
delegate the management to the RDBMS, and query the RDBMS
when necessary. We cache the results in memory. The third com-
ponent is the core component which computes missing sensitivity
and the legitimate and tight examples.

4. DEMONSTRATION EXAMPLE
In our demonstration session, the audience acts as the data owner.

He/she owns an incomplete data and has a query. We demon-
strate CYADB as a human-in-the-loop system: CYADB answers the
query (by delegating query evaluation to a relational database), and
provides missing sensitivity and an example of potential missing
data; the audience specifies more information based on the domain
knowledge or if he/she believes the example is not realistic.

We will demonstrate CYADB with two benchmarks, the TPC-H
(analytical data) benchmark, and the Yahoo! Benchmark (stream
data). In this section, we illustrate the workflow of CYADB by an
example modified from the TPC-H schema. Two tables, ORDER
and LINEITEM, represent the orders and the line items (parts)
from the orders. Each order has one or more line items. Other
columns are self-explanatory. Our query looks at the sum of order
prices for orders that have at least one significantly delayed item
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Figure 1: A screenshot of CYADB. Zone 1: visualization of data;

zone 2: the domain knowledge specified by the user; zone 3:

query; zone 4: missing sensitivity (y-axis) vs. the number of

missing tuples (x-axis); zone 5: a tight and legitimate example

(i.e. ship date is at least one month later than order date). The cor-
responding SQL query (shown in the top right in demo Figure 1)
is:

SELECT SUM(ORDER.PRICE)

FROM ORDER

WHERE EXISTS (SELECT * FROM LINEITEM

WHERE ORDER.OKEY = LINEITEM.OKEY

AND ORDER.O_DATE + 1 MONTH <= LINEITEM.SHIPDATE)

The data of two tables are shown in Figure 2(a) and 2(b). Two
tables are visualized in the demo (top left part in Figure 1). The
y-axis represents each order, and the x-axis represents the time.
Each tuple in table ORDER is drawn as red dots, and tuples in table
LINEITEM are drawn as blue dots. Prices of orders are illustrated
by red dots’ sizes. The result of the SQL query is 0 as no data
satisfy the predicates.

OKEY O DATE PRICE

1 Sept 3 102.12
2 Oct 30 30.09
3 Nov 15 3.00

(a) Table Order

OKEY PKEY SHIPDATE

1 1 Oct 1
1 3 Oct 12
2 12 Nov 4
2 9 Oct 31

(b) Table Lineitem

Figure 2: Example Data

CYADB illustrates the progressive effect of missing data as the
number of missing tuple increases. We draw this trend with the
number of missing tuples as the x-axis and the missing sensitivity
as the y-axis, as shown in Figure 1’s right center part. Throughout
this example, we discuss the case that two tuples are missing. At the
beginning, the data owner does not specify any domain knowledge,
and so the missing sensitivity is close to infinity. This is because
we can construct the following example: one tuple in table ORDER
with an arbitrarily large PRICE, and one tuple in table LINEITEM
that is significantly delayed.

After CYADB provides this example to the data owner, he/she re-
alizes that table ORDER has been manually curated by a trusted em-
ployee, and is up to date. However, certain orders’ line items may
be corrupted and missing. Thus, missing tuples will not appear in
this table. This domain knowledge is specified as a punctuation in
table ORDER that covers the whole domain of the table. We visual-
ize punctuation in the data visualization zone (top left in Figure 1)
as a red box that covers the whole data region.

After this punctuation, our system CYADB updates the missing
sensitivity as 33.09, and shows an example that will increase the
result to 33.09 if the missing data are those shown in Figure 3(a).
The example is illustrated in the right bottom of the demo (Fig-
ure 1). The example shows that although orders 2 and 3 have no
current significantly delayed shipment, it is possible that such in-
formation exists in the real world, but is missing in the database. If
this assumption is true, the answer of the query could be the sum
of the PRICE of these two orders (30.09 and 3.00).

OKEY PKEY SHIPDATE

2 1 Dec 31
3 2 Dec 31

(a) First CYADB Example

OKEY PKEY SHIPDATE

2 1 Dec 3

(b) Second CYADB Example

Figure 3: Example by CYADB

The data owner receives the example in Figure 3(a) and realizes
that this is impossible because the current date is December 3rd,
and ship dates cannot exceed the current date. After this, the user
specifies another punctuation on table LINEITEM to forbid miss-
ing tuples in which SHIPDATE is later than the current date. After
this update, CYADB refreshes the missing sensitivity to be 30.09,
which matches the example shown in Figure 3(b). The data owner
agrees that this example is possible as it does not against his/her
domain knowledge.
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