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ABSTRACT
The efficient processing of video streams is a key component
in many emerging Internet of Things (IoT) and edge appli-
cations, such as Virtual and Augmented Reality (V/AR)
and self-driving cars. These applications require real-time
high-throughput video processing. This can be attained via
a collaborative processing model between the edge and the
cloud—called an Edge-Cloud model. To this end, many ap-
proaches were proposed to optimize the latency and band-
width consumption of Edge-Cloud video processing, espe-
cially for Neural Networks (NN)-based methods. In this
demonstration. We investigate the efficiency of these NN
techniques, how they can be combined, and whether com-
bining them leads to better performance. Our demonstra-
tion invites participants to experiment with the various NN
techniques, combine them, and observe how the underlying
NN changes with different techniques and how these changes
affect accuracy, latency and bandwidth consumption.
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1. INTRODUCTION
Many Internet of Things (IoT) applications rely on the ef-

ficient, real-time processing of video streams. This includes
Virtual and Augmented Reality (V/AR), video surveillance,
self-driving cars, and many more. Recent advances in image
processing via Neural Networks are enabling these applica-
tions. A challenge that faces these applications, however, is
the requirement of real-time processing on edge devices with
low computation power. This is especially true for Neural
Network (NN) models that are becoming increasingly com-
plex. This forces system designers to opt for one of two
extremes: Process images in the cloud but suffer from high
wide-area latency and bandwidth costs, or process images in
the edge device and relax the accuracy or real-time require-
ments. A collaborative model between the edge and the
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cloud (an Edge-Cloud model) has the potential of avoiding
the disadvantages of the two extremes.

Prior work proposed various Edge-Cloud techniques for
video processing [3, 4]. We focus on a subset of these NN
techniques that are used for real-time video processing or
that are proposed in a general context but are applicable to
real-time video processing : (1) Splitting: the neural net-
work is partitioned to an edge partition and a cloud parti-
tion [4], (2) Compression: data is compressed in the edge
before being sent to the cloud, and (3) Differential commu-
nication: only send the difference between the current frame
and the previous frame [7, 1]. Each proposed NN technique
improves the processing and communication of Edge-Cloud
video processing. However, it is not clear whether these
NN techniques can be combined to achieve a higher perfor-
mance. It turns out that combining these NN techniques is
a nuanced exercise since some techniques performed tasks
that transformed the data to forms that are unusable by the
other techniques.

In this demonstration, we propose methods to combine
the NN techniques to achieve an overall higher performance.
Specifically, we explore the space of all combinations and
propose a method for each point in this space. Also, we fo-
cus on applying these NN techniques and their combinations
to the collaborative Edge-Cloud model. The combination
of the NN techniques and fitting them to the Edge-Cloud
model results in novel designs that—if done carefully—
outperform the various NN techniques individually.

We designed the demonstration to encourage participants
to evaluate the performance of the different NN techniques
and there combinations. Also, we present an illustration
of the underlying NN architecture with various NN tech-
niques and their combinations. This visualization is aimed
to provide the intuition of the NN techniques and their per-
formance characteristics.

In this proposal, we present the NN techniques and their
combinations (Section 2), the proposed demonstration (Sec-
tion 3) and evaluations using our framework (Section 4).

2. EDGE-CLOUD NEURAL NETWORKS

2.1 System Model
Our System Model consists of edge nodes, which are con-

nected over WAN links to a central cloud node. The edge
node consists of a video camera that is recording videos to
be processed via a pre-trained NN. The edge node is capa-
ble of processing the incoming video frames but has minimal
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(a) Frame A (b) Frame B

(c) Difference image (d) Cropped out difference

Figure 1: Example of differential image transfer

compute capacity and can not rely on special hardware ac-
celerators such as GPUs. Therefore, many techniques for
real-time processing of NN are not applicable.

Because the cloud node has—compared to edge nodes—
unlimited computational resources, the edge nodes may of-
fload the task of processing the NN to the cloud. However,
communication between the edge and the cloud incurs a
large latency of up to 100ms and a high bandwidth cost [7].
Therefore we have to combine different NN optimization
techniques to reduce the amount of transfered data from
the edge to the cloud.

2.2 Neural Networks Techniques
There is a number of techniques to increase the efficiency

of NN inference. We focus on NN techniques that are ap-
plicable to the Edge-Cloud NN model. The following is a
description of these techniques.

(a) Neural Network Splitting. The NN splitting tech-
nique [4] is proposed specifically for Edge-Cloud NN. In this
technique, the NN is divided into an edge part and a cloud
part. This division occurs at a specific layer of the NN. For
example, consider a NN with n layers. A split at the ith

layer results in an edge part that consists of the NN’s layers
1 to i and a cloud part that consists of the NN’s layers i+ 1
to n. Processing the frame is then performed cooperatively
between the edge and cloud nodes. The edge node uses the
edge part of the NN to compute the output of layer i. Then,
the edge node sends the output of layer i to the cloud node
that continues the processing using the cloud part of the NN.
This splitting enables utilizing the compute resources at the
edge which makes the processing at the cloud more efficient.
Also, by judiciously choosing the split layer, it is possible to
optimize the communication bandwidth, processing latency,
and energy consumption.

(b) Differential Communication. In many video pro-
cessing applications, the typical frame-to-frame difference
is a small fraction of the whole frame. Therefore, rather
than sending the whole frame to the cloud, it is possible
to only send the difference of the frame compared to the
previous frame, which leads to savings in communication
bandwidth. This is especially useful for applications that
uses a fixed camera to record videos, since the background
remains mostly unchanged. This concept is also used by a
wide range of video compression algorithms. In this work,
we focus on techniques that can be applied in a frame-to-
frame basis. This will enable a grater flexibility in the image
processing pipeline. Figure 1 shows an example. Frame B
(Figure 1b) is the new frame where we want to extract the
differences to our reference frame, frame A (Figure 1a). We
use the Gaussian Mixture-based Background Segmentation

to generate a difference map [2] between the two frames. Us-
ing this map, we can crop out a small region that represents
the difference relative to the original frame (Figure 1d). The
edge node can communicate the difference rather than the
whole frame, which can save bandwidth. The cloud node
can reconstruct the image using the difference only, because
it has a copy of the original frame.

(c) Compression. In a system where the images are
sent from the edge node to the cloud node, it is possible
to compress the image to reduce the communication band-
width. Compression introduces a computational overhead
for compression and decompression. However, the transmis-
sion of a smaller image representation might lead to overall
better performance. A special case are lossy compression
techniques—where the reconstructed image is not identical
to the original image. This might lead to a higher compres-
sion ratio, but can also influence the prediction accuracy
negatively.

2.3 NN Techniques Combinations
In this section, we investigate the combination of the three

Edge-Cloud NN techniques: splitting, differential communi-
cation, and compression. Some of these combinations are
straight-forward. However, others are more nuanced, es-
pecially the combination of splitting with the other tech-
niques. Splitting, unlike the other techniques, is specific
to NN. Therefore, combining splitting with the other tech-
niques makes the other techniques utilize the specific struc-
ture of the NN, which opens more opportunities to optimize
performance.

Differential Communication and Compression. In
this combination, the edge node extracts the difference be-
tween the raw frames. Then, it compresses the difference
and sends it to the cloud node. The cloud node decom-
presses the difference and reconstructs the image that is then
processed by the NN. It is possible to further optimize this
technique by applying the level of compression selectively
across frames or within the same frame.

Splitting and Compression. This combination, like
splitting, utilizes an edge part and a cloud part of the NN.
However, the main difference is that the output of the ith

layer is compressed before it is sent to the cloud node. The
cloud node decompresses the received information for layer i
before applying it to the cloud part of the NN. Compression
can have two forms: (1) the output of layer i is compressed as
a block of bytes using a compression algorithm, and (2) the
value of each neuron in the layer is compressed. Rather
than sending the full float value (32bit) of a neuron, we may
send a more compact representation in a smaller number
of bits and a lower precision. For our work we combine
both approaches with the lossy floating point compression
library zfp [5]. That allows use to configure the number of
fixed precision bits and compresses the whole layer at once.

Splitting and Differential Communication. This
combination is not as straight-forward as the previous com-
binations. At a high-level, the problem of combining split-
ting and differential communication is about finding a way to
extract the difference of layer i of frame fj to layer i of frame
fj−1, where fj−1 is the frame before fj . There are some chal-
lenges in solving this problem. First, unlike the raw frame
images, a layer in the NN does not necessarily exhibit spatial
properties—an individual neuron’s value depends on input
that potentially span the whole image. (there are exceptions
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to this in some layers of convolutional NNs, but we consider
the general case in this paper.) Therefore, it is not feasi-
ble to extract a set of neurons that represents the spatial
difference between two frames.

We suggest the following heuristic to combine splitting
with differential communication: The heuristic selects a sub-
set of neurons in layer i to represent the difference between
two frames by using a threshold t. Consider the value of
a neuron in frame fj , nfj , and its corresponding value for

frame fj−1, nfj−1. If
∣∣nfj − nfj−1

∣∣ < t, then we do not
send the value of that neuron to the cloud node and the
cloud node reuses the value nfj−1 for nfj . The reason for
needing a threshold rather than only discarding a neuron’s
value if it is identical to the previous frame (t = 0) is that
the neuron values are sensitive to the smallest changes which
typically makes all the neurons values different.

All Techniques. Combining all techniques is similar to
the combination of splitting and differential communication.
To introduce compression, the derived difference of layer i is
compressed at the edge node before it is sent to the cloud.

3. DEMONSTRATION
The main goal of our demonstration is to illustrate the

intricacies involved in using and combining NN techniques.
Specifically, a NN technique might act differently when ap-
plied to different videos. Also, a NN technique needs to be
configured and finding the right configuration is challenging.
Combining NN techniques complicates the issue further. It
is not always clear how to combine various techniques. After
combining the techniques, what remains to be understood
is whether combining techniques would yield an improve-
ment of certain performance metrics while degrading others.
These issues, questions, and challenges are what we attempt
to illustrate in our demonstration.

Figure 2 is a mock-up of our proposed demonstration.
The demonstration invites participants to observe the pro-
cessing of a video using a neural network. The participant
observes the frames that are being processed (section (a)
of the demonstration). Also, the participant has the choice
of configuring the demonstration (section (b) in the demon-
stration). This includes the selection and configuration of
the particular NN techniques whereby the participant can
explore the trade-off between data reduction and accuracy.
We also provide two video samples of the same application—
videos of traffic—that nonetheless affect the processing and
NN techniques differently. The two videos were selected to
demonstrate that the success of a techniques also depends
on the processed video.

Depending on which NN techniques are selected, the par-
ticipant is prompted to enter the parameters to configure the
NN techniques. For example, in Figure 2, both compression
and splitting are selected. Because of this selection, the
participant is also prompted to enter the neuron value size,
which is a parameter corresponding to the use of compres-
sion and splitting. (the neuron value size is the number of
bytes used to represent each neuron’s value in the split layer
when it is sent from the edge node to the cloud node.) Also,
the participant is prompted to enter the split layer, which is
a parameter corresponding to the use of the splitting tech-
nique. (the split layer decides which layers are processed in
the edge node and which layers are processed at the cloud
node.) If differential communication is selected, the par-
ticipant would also be prompted to enter the compression

Figure 2: The interface of the proposed demonstration

level. In our case, the compression level may correspond
to: (1) JPEG compression levels for raw images or (2) The
number of bits to represent neurons for neuron layers.

The performance metrics that are evaluated in this demon-
stration are latency (the time to process the image and apply
the NN technique on the edge), compression ratio (the ra-
tio between the size of the original image to the size of the
compressed image), and accuracy (what percentage of the
images detected by the original NN are detected by the NN
after applying the techniques). Section (c) in the demon-
stration displays the evaluated metrics over time. Through-
out the demonstration, the participant can change the used
techniques and configuration parameters. This allows com-
paring the effect of the various techniques and configuration.
In the figure, for example, the participant turned on com-
pression at around frame 40. Therefore, the compression
ratio increases to around 4 when this change is made.

The last part of the demonstration is an illustration of the
underlying NN after applying the NN techniques (section (d)
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(a) JPEG Image Compression
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(b) Layer Compression
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(c) Layer Diff Compression

Figure 3: Evaluation of the single NN compression techniques

in the demonstration). For example, Figure 2 shows what
would be shown if compression and splitting are chosen as
NN techniques. In this case, the edge NN consists of layers
1 to 6 (6 is chosen as the split layer in (b)) and the cloud NN
consists of the remaining layers. Also, the communication
between the edge and cloud nodes is compressed which is
shown as a comment on the arrow between the two nodes.
The NN illustration changes according to the chosen NN
techniques and configured parameters.

4. EVALUATION
In the course of the demonstration we will guide the par-

ticipant in exploring the various challenges and trade-offs in
using NN techniques and their combinations. To this end,
we prepare a set of evaluations that we invite the participant
to explore and recreate. In this section, we present three sets
of these evaluations to show what we aim to demonstrate to
the participants. Evaluation Setup: For the demonstra-
tion and the evaluation we use the Tiny-YOLO NN Model,
which is a smaller and faster version of the original YOLO2
network [6]. This is mainly due to our target of low power
edge devices, which are not able to compute the original
YOLO2 network efficiently. We use a processor with 2 cores
@ 1.6 Ghz each without any hardware accelerators such as
GPUs.

Image compression: To evaluate the compression of
single frames we use standard JPEG compression, because
it is available on low-end devices with a reasonable perfor-
mance. In Figure 3a, we evaluate the effects of different
compression levels with two different datasets, DS1 and DS2.
For both datasets, we get a higher compression factor with
lower JPEG Levels. For DS1, we get an accuracy over 95%
up to compression level 30 and a very high compression ratio
of nearly 15 at that point. The accuracy of DS2 drops more
rapidly (after compression level 80). The main reason for
this is that DS2 contains images with smaller details that
cannot be recognized with a moderate compression level. In
summary, frame compression can improve the compression
ratio significantly without suffering from a drastic loss of ac-
curacy. However, the benefits of frame compression depend
highly on the dataset.

Differential communication on Images: As we have
discussed in Section 2.3, the extraction of differences be-
tween frames is promising for data reduction. Our experi-
ments on DS1 highlight that we can achieve an average data
reduction ratio of 18 with a latency of 80ms per frame. This

will not lead to any reduction in accuracy because we still
reconstruct the original frame at the cloud node.

Splitting + Compression: For this experiment we com-
press the output of a particular layer. In figure 3b we eval-
uate how the number of fixed precision bits influences the
accuracy of the NN model. We observe that we can reduce
the fixed bits drastically and reach a compression ratio of 5
(Original data is 5 times bigger) with only a small loss of
accuracy.

Splitting + Differential communication: Here, we
combine the differential communication approach with the
lossy layer compression. In figure 3c we show how the toler-
ance factor will influence the accuracy. We notice that from
a tolerance factor t > 0.01 the compression ratio increases
up to a factor of 2. However, this leads also to a reduction
in accuracy. Therefore, this technique is only applicable if a
small improvement on top of compression is desired even if
it leads to a larger loss of accuracy.

5. SUMMARY AND CONCLUSION
We propose a demonstration that highlights the subtleties

of using and combining NN techniques for real-time video
processing. We focus on three techniques: splitting, differen-
tial communication, and compression, and propose methods
to combine them. Our demonstration aims to provide an
intuition about the challenges and trade-offs in combining
NN techniques and the significance of correct configuration.
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