
Dhalion in Action: Automatic Management of
Streaming Applications

Ashvin Agrawal
Microsoft

USA
ashvin.agrawal@microsoft.com

Avrilia Floratou
Microsoft

USA
avflor@microsoft.com

ABSTRACT
In a world where organizations are being inundated with
data from various sources, analyzing data and gaining ac-
tionable insights in real-time has become a key service differ-
entiator. Over the last few years, several stream processing
frameworks have been developed to address the need for
large-scale, real-time analytics. A crucial challenge in these
environments is the complexity of configuring, managing
and deploying long-running streaming applications. Opera-
tors must carefully tune these systems to balance competing
objectives such as resource utilization and performance. At
the same time, they must also account for external shocks
such as unexpected load variations and service degradations.

In this demonstration, we show how operators can main-
tain healthy streaming applications without manual inter-
vention while still meeting their performance objectives. We
use Dhalion, an open-source library that sits on top of the
streaming application, observes its behavior and automati-
cally takes actions to keep the application in a healthy state.
In particular, through various Dhalion policies that are con-
figured by the attendees, we demonstrate how a streaming
application can meet its performance objective by automati-
cally configuring the amount of resources needed at the vari-
ous application stages. We also demonstrate Dhalion’s mod-
ularity and extensibility that greatly simplifies the process of
developing new policies which address different application
requirements.

PVLDB Reference Format:
Ashvin Agrawal and Avrilia Floratou. Dhalion in Action: Auto-
matic Management of Streaming Applications. PVLDB, 11 (12):
2050-2053, 2018.
DOI: https://doi.org/10.14778/3229863.3236257

1. INTRODUCTION
In recent years, there has been an explosion of real-

time analytics needs and a plethora of streaming systems
have been developed to support such applications (Apache
Storm [10], Spark Streaming [12], Twitter’s Heron [9], etc).

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3236257

These systems can be deployed at large scale and can recover
from hardware and software failures. Despite the advances
in the design of these systems, a crucial challenge for the op-
erators remain the complexity of configuring and managing
the streaming applications. This process is typically manual
and time consuming as it often requires balancing conflicting
objectives such as various performance requirements and re-
source utilization while also considering external shocks such
as unexpected load variations.

In our prior work [7], we presented Dhalion, an open-
source library [3] that sits on top of the streaming applica-
tion and provides self-regulating capabilities to it. Dhalion
closely monitors the streaming application, collects various
metrics and identifies problems that might affect the health
of the application. For example, by correlating various appli-
cation metrics, Dhalion identifies slow processes, data skew
or under-provisioned components and automatically takes
corrective action. Dhalion is flexible enough to incorporate
various policies depending on the user requirements and ob-
jectives.

In this work, we use Dhalion to demonstrate how opera-
tors can automatically manage their streaming applications
while meeting their performance goals. We employ various
Dhalion policies which target different application scenarios
and user requirements to highlight Dhalion’s adaptive be-
havior. The attendees will be able to configure the Dhalion
policies and observe the impact of their choices on the perfor-
mance and resource utilization of the underlying streaming
application. They will also be able to observe which param-
eters affect Dhalion’s reaction time. Our demonstration is
based on top of the Heron streaming engine [9]. Heron is an
open-source, highly scalable streaming engine that has been
developed and deployed in Twitter.

In this work, we make the following contributions:

1. Motivated by real challenges that users face when de-
ploying streaming applications, we demonstrate Dhalion,
a library that monitors the streaming application and
automatically takes corrective action to resolve potential
issues.

2. We show how operators and solution architects can use
Dhalion to automatically tune their streaming applica-
tions to meet a specific throughput requirement. Through
an interactive interface, we allow the attendees to spec-
ify their own performance objectives and observe how
Dhalion reacts to their input.

3. We demonstrate how operators can maintain their appli-
cation in a healthy state even in the presence of input

2050



Spout Splitter 
Bolt

Counter 
Bolt

Round Robin
Hash 

Partitioning

Figure 1: Heron topology with three
stages

load variations. In particular, we develop three different
auto-scaling policies that range from conservative to ag-
gressive. The policies detect performance bottlenecks and
dynamically provision the resources of various stages of
the application. The three policies can result in different
reaction times and resource utilization. The attendees
will be able to vary the input load and observe the im-
pact of their choices on the three policies as well as the
application’s performance.

In Sections 2 and 3, we provide a brief overview of Heron
and Dhalion respectively. We then describe in detail our
demonstration setup and scenarios in Section 4.

2. HERON BACKGROUND
Before describing Dhalion, we present a brief overview of

Heron and its rate control mechanisms. This information
is useful to better understand our demonstration scenarios.
An extensive description of Heron can be found in [8, 9].

Heron users deploy topologies which are essentially di-
rected graphs of spouts and bolts. The spouts are sources of
input data such as streams of tweets, whereas the bolts rep-
resent computations on the streams they receive from spouts
or other bolts. Spouts often read data from queues, such as
Kafka [2] or Distributed Log [4] and generate a stream of tu-
ples, which is in turn consumed by a network of bolts that
perform the actual computations on the stream. Figure 1
shows an example word count topology with three stages.
The spouts distribute incoming sentences to the splitter
bolts in a round robin fashion. The splitter bolts split the
sentences into words that are subsequently forwarded to the
counter bolts using hash partitioning. Finally, the counter
bolts count the number of times each word was encountered.

Each spout/bolt is represented by a set of Heron

Instances that independently and in parallel, execute the
user code that corresponds to this spout/bolt. The Stream

Manager is a critical component of the system as it manages
the routing of tuples among Heron instances.

An important aspect of Heron is its rate control mecha-
nism. Rate control is crucial in topologies where different
components can execute at different speeds or where the pro-
cessing speed of the components can vary over time. This
can happen due to various reasons such as limited number
of Heron instances in one or more topology stages (limited
parallelism), data skew or because of slow machines. Heron
dynamically adjusts the rate at which data flows through the
topology using a backpressure mechanism. As an example,
consider a topology in which the downstream stages are slow
due to one of the reasons mentioned previously. If the up-
stream topology stages do not reduce the rate at which they
emit data, tuples will be accumulated in long queues and
as a result the system might start dropping tuples. Heron’s
backpressure mechanism slows down the upstream stages so
that such situations are avoided.

3. DHALION OVERVIEW
In this section, we provide a brief overview of Dhalion’s

main components and discuss its integration with the Heron
streaming engine. The interested reader can find more in-
formation about Dhalion and its architecture in [7].

Dhalion’s main goal is to keep the streaming application
in a healthy state by detecting problems within the stream-
ing application and automatically take corrective action to
resolve the issues. Dhalion’s architecture is inspired by com-
mon medical procedures. In particular, Dhalion first iden-
tifies symptoms that can potentially denote that a problem
exists in the streaming application. After collecting all the
symptoms, Dhalion attempts to find the root cause of the
symptoms and produce a diagnosis. Finally, based on the
diagnosis, Dhalion can automatically take the appropriate
action to resolve the issues.

The above steps are executed through a Dhalion policy
that is continuously executed while the streaming applica-
tion is running. The phases of the Dhalion policy are de-
scribed in Figure 2. As shown in the figure, Dhalion ex-
ecutes policies that consist of three parts. First, Dhalion
collects metrics from the underlying streaming application
and tries to identify symptoms that denote that the ap-
plication might not be in a healthy state. The symptom
detection is performed by various detectors. Each detector
is a self-contained module that implements specific APIs
and generates a specific set of symptoms. For example,
in the context of Heron, the backpressure detector gener-
ates a symptom that denotes which instance in the topol-
ogy generates backpressure. After the symptoms are gener-
ated, they are processed by the diagnosers. Each diagnoser
is responsible for finding correlations among symptoms and
evaluate if a specific diagnosis is valid. For example, the
under-provisioning diagnoser evaluates whether the cause
of the observed symptoms is resource under-provisioning at
a particular stage in the topology, or the slow instance di-
agnoser evaluates whether one or more instances are slower
than their peers in the same stage. At the last phase, a re-
solver is executed which is responsible for taking an action
to bring the topology back to a healthy state. For example,
if the topology is under-provisioned, the scale up resolver
can automatically add more resources to the stage that is
the bottleneck.

Note, that the detectors, diagnosers and resolvers imple-
ment well-specified Dhalion APIs which makes it easier to
compose new policies. Additionally, since they are self-
contained modules, they can be combined and re-used in
different Dhalion policies which greatly simplifies the task
of generating new policies. As we discuss in the following
section, we will demonstrate various Dhalion policies that
re-use some of these modules.

4. DEMONSTRATION OVERVIEW
The goal of the demonstration is to help the attendees

understand how Dhalion can be used to maintain a healthy
streaming application. Additionally, we intend to demon-
strate Dhalion’s flexibility in incorporating new policies as
well as its modularity and extensibility. To this end, we
deploy Dhalion on top of Heron and apply various Dhalion
policies whose behavior is tailored to specific user needs such
as meeting an service-level objective (SLO) or keeping the
application in a steady state while input load variations oc-

2051



Metrics

Symptom 
Detector 1

Symptom 
Detector 2

Symptom 
Detector 3

Symptom 
Detector N

...
.

Diagnoser 1

Diagnoser 2

Diagnoser M

...
.

Resolver
Invocation

Diagnosis 2

Symptom 1

Symptom 2

Symptom 3

Symptom N

Symptom Detection Diagnosis Generation Resolution

Resolver 1

Resolver 2

Resolver M

...
.

Resolver 
Selection

Figure 2: Dhalion Policy

cur. Additionally, we demonstrate the Dhalion abstractions
and highlight its modularity.

4.1 Setup Details
Hardware and Software Configuration. We deploy

Dhalion on top of Apache Heron (incubating) version 0.17.4
[1]. We use Hadoop Yarn [11] version 2.7.3 on Microsoft
HDInsight [6] on top of Azure Instances of type D4. Each D4
instance has one 8-core Intel Xeon E5-2673CPU@2.40GHz
and 28GB of RAM and runs Ubuntu version 16.04.2.

Visualization Tools. To visualize the impact of Dhalion
policies on the underlying Heron application, we employ the
Heron UI and Graphite [5]. Figures 3 and 4 show the two
user interfaces. The Heron UI shows information about the
topology graph, the topology deployment and some impor-
tant system metrics. Graphite shows the variation of various
topology metrics as the Dhalion policies adjust the topology
to bring it back to a healthy and stable state. Note that the
graphs produced by Graphite are continuously updated as
Dhalion operates on the topology and thus attendees can
gradually observe the behavior of the application.

Workload. Our workload consists of a topology that
finds the top trending twitter hash tags. The topology
reads incoming tweets, extracts the hash tags, and counts
the number of times each hash tag has been used in a sliding
time window. The hash tags are ranked based on their fre-
quency and the top-k hash tags are emitted. This topology
consists of four stages.

4.2 Demonstration Scenarios
Our demonstration scenarios place the attendee in the

shoes of a solution architect/operator who is responsible for
deploying streaming applications with specific performance
requirements and for monitoring the application while it is
active. This process is typically manual and involves ex-
tensive tuning before deploying the application in produc-
tion, and close monitoring and manual intervention when
problems arise while the application is online. Through this
demonstration, the attendees will configure Dhalion to auto-
matically keep their applications in a healthy state without
manual intervention and they will be able to observe the

impact of their choices on the streaming application using
our visualization tools.

4.2.1 Tuning for meeting SLOs
Often solution architects find themselves in a precarious

ask; to configure and deploy a topology that meets a re-
quired throughput SLO without having a detailed perfor-
mance profile of the various topology components. Tuning
the topology for a particular SLO is a tedious and time-
consuming task as the user needs to manually investigate
the performance profile of the application through a trial
and error procedure. Our discussion with users of stream-
ing frameworks (including Heron) suggest that this manual
tuning process can even take hours.

During the demonstration, the attendees will be able to
observe the performance of a Dhalion policy that takes as in-
put a throughput SLO requirement and automatically tunes
the topology gradually until the SLO is met. In particular,
the attendees will be able to configure the throughput SLO
of the topology as well as the initial resources allocated to
it. Through our visualization tools, the attendees will ob-
serve Dhalion gradually configuring the number of Heron
Instances and their associated resources at each stage of the
topology until the required SLO is met. By varying the ini-
tial resources allocated to the topology and the SLO value,
the attendees can also observe the time needed for Dhalion
to reconfigure the topology to meet the SLO.

4.2.2 Maintaining a healthy topology
The previous demonstration scenario focused on automat-

ing the tuning process for the solution architect. In this sce-
nario, we focus on maintaining the health of an application
after it is tuned and deployed. Since streaming applications
are typically long-running applications that might be active
for weeks or even months, they are often faced with various
external shocks that can threaten their stability. For exam-
ple, it is common for Twitters tweet processing applications
to experience loads that are several times higher than nor-
mal when users react to natural disasters. Since these load
variations are typically unpredictable, operators are forced
to either over-provision resources for these applications to

2052



Figure 3: Heron user interface Figure 4: Graphite visualization

avoid SLO violations or to closely monitor the application
and manually add more resources as needed.

In this scenario, the attendees can experience how Dhalion
can automatically react to input load variations and adjust
the allocated resources so that the topology remains in a
steady state where no backpressure is observed. To demon-
strate the flexibility of Dhalion, we have created three auto-
scaling policies ranging from conservative to aggressive. The
first policy, namely the reactive scaling policy treats the ex-
istence of backpressure as an indication that one or more
stages in the topology are under-provisioned and adds more
resources by automatically increasing the number of Heron
instances in the stage that exhibits backpressure. This pol-
icy is described in detail in [7]. As discussed in [7], this
policy is quite conservative since it waits for backpressure
to appear before taking any action and it only scales one
topology stage at a time (the stage that exhibits backpres-
sure). For this reason, in this demo we present two other
autoscaling policies that improve on the one published in [7].

The proactive scaling policy does not wait for backpressure
to appear before adding more resources to a topology stage.
In this policy, Dhalion observes the rate at which the size of
the input queue of each Heron instance increases. If in any
stage the queue sizes are not constant but keep increasing
over time, Dhalion determines that the Heron instances of
this stage cannot keep up with the input load and character-
izes this stage as under-provisioned. Note that this policy
does not wait for backpressure to appear but acts much ear-
lier. Finally, the rapid scaling policy is the most aggressive
one as it does not only scale up the resources of the stage
that is the bottleneck but also adds more resources to the
downstream stages as well. This is because frequently after
scaling up the resources of a stage, the downstream stage
gradually becomes the bottleneck as it is not able to handle
the increased input load. Thus, it is common to eventually
execute multiple scaling operations each one targeting a dif-
ferent stage. The rapid scaling policy scales the downstream
stages at once, thus reducing the time needed to bring the
topology back to a healthy state.

It is worth noting that each policy can result in different
reaction time and resource utilization. The attendees will

be able to adjust the input load of the topology and ob-
serve how the three Dhalion policies react to their changes.
We plan to visualize the three policies side-by-side, so that
the attendees can compare and contrast them and evalu-
ate their advantages and limitations. Additionally, we plan
to demonstrate Dhalion’s modularity and extensibility by
showing that although the three policies behave differently,
they have common building blocks (detectors, diagnosers
and resolvers).

5. REFERENCES
[1] Apache Heron (incubating). http:

//incubator.apache.org/projects/heron.html.

[2] Apache Kafka. http://kafka.apache.org/.

[3] Dhalion Repository.
https://github.com/Microsoft/Dhalion.

[4] Distributed Log.
http://distributedlog.incubator.apache.org/.

[5] Graphite. http://graphiteapp.org/.

[6] Microsoft HDInsight. https://azure.microsoft.com/
en-us/services/hdinsight/.

[7] A. Floratou, A. Agrawal, B. Graham, S. Rao, and
K. Ramasamy. Dhalion: Self-regulating Stream
Processing in Heron. PVLDB, 10(12):1825–1836, 2017.

[8] M. Fu et al. Twitter Heron: Towards Extensible
Streaming Engines. In ICDE. IEEE, 2017.

[9] S. Kulkarni et al. Twitter Heron: Stream Processing
at Scale. In ACM SIGMOD ’15, pages 239–250, 2015.

[10] A. Toshniwal et al. Storm@Twitter. In 2014 ACM
SIGMOD, pages 147–156.

[11] V. K. Vavilapalli et al. Apache Hadoop YARN: Yet
Another Resource Negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC
’13, pages 5:1–5:16, New York, NY, USA, 2013. ACM.

[12] M. Zaharia et al. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 423–438, New
York, NY, USA, 2013. ACM.

2053


