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ABSTRACT

Given a relational database and training examples for a tar-
get relation, relational learning algorithms learn a Datalog
program that defines the target relation in terms of the ex-
isting relations in the database. We demonstrate CastorX, a
relational learning system that performs relational learning
over heterogeneous databases. The user specifies match-
ing attributes between (heterogeneous) databases through
matching dependencies. Because the content in these at-
tributes may not match exactly, CastorX uses similarity
operators to find matching values in these attributes. As
the learning process may become expensive, CastorX imple-
ments sampling techniques that allow it to learn efficiently
and output accurate definitions.
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1. INTRODUCTION

Users often would like to use machine learning methods
to discover interesting and novel relations over relational
databases [2]. For instance, consider the IMDb database
(imdb.com), which contains information about movies, for
which schema fragments are shown in Table 1. Given this
database, a user may want to find the definition for the new
relation highGrossing(title), which indicates that the movie
with title title is high grossing. Given a relational database
and training examples for a new target relation, relational
machine learning (relational learning) algorithms attempt
to learn (approximate) relational definitions of the target
relation in terms of existing relations in the database [2].
Definitions are usually restricted to Datalog programs. For
instance, the user who wants to learn a definition for the new
target relation highGrossing using the IMDDb database may
provide a set of high grossing movies as positive examples
and a set of low grossing movies as negative examples to
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Table 1: Schema fragments for the IMDDb database.
movies(id,title,year) mov2countries(id,name)
mov2genres(id,name)  mov2releasedates(id,month,year)

Table 2: Schema fragments for Box Office Mojo.
mov2totalGross(title,gross)
highBudgetMovies(title)

a relational learning algorithm. Given the IMDb database
and these examples, the algorithm may learn the following
definition:

highGrossing(z) < movies(y, z, z), mov2genres(y, ‘comedy’),
mov2releasedates(y, ‘ June’, u)

which indicates that high grossing movies are often released
in June and their genre is comedy. Since relational learning
algorithms leverage the structure of the database directly to
learn new relations and their results are interpretable, they
have been widely used in database management, analytics,
and machine learning applications, such as query learning
and information extraction [2].

The information in a domain is usually spread across sev-
eral databases. For example, IMDb does not contain the in-
formation about the budget or total grossing of the movies.
However, this information is available in another database
called Box Office Mojo (BOM) (bozofficemojo.com), for which
schema fragments are shown in Table 2. Using this infor-
mation may help the user learn a more accurate definition
for the highGrossing relation, as high grossing movies may
have high budgets. Currently, users have to first (manually)
integrate the databases, and then learn over the integrated
database. It is well-established that integrating databases is
an extremely difficult, time-consuming, and labor-intensive
process. For instance, the titles of the same movie in IMDb
and BOM have different formats and representations and
there is no simple rule to match titles of the same movie
in these two databases. Further, integrating two or more
databases may result in numerous integrated instances [1].
This is because when unifying the values that refer to the
same real-world entity, we may have multiple choices. It is
not clear which is the correct integrated instance to use in
order to learn an accurate definition.

More importantly, the user does not always need to inte-
grate databases to learn a definition for a target relation [4].
For instance, consider a user who wants to learn the def-
inition of a target relation collaborators(dirl, dir2), which
indicates that directors whose names are dir! and dir2 have
co-directed a movie. This user does not need to use the in-



formation in the BOM database and can learn an effective
definition by using only the data in the IMDb database.

We demonstrate CastorX, a relational learning system
that learns over multiple heterogeneous databases. Instead
of integrating databases as a preprocessing step, we follow a
different approach. Users can guide CastorX on how to join
and match tuples in different databases using a set of declar-
ative constraints called matching dependencies (MDs) [3].
MDs provide information about the attributes across mul-
tiple databases that can meaningfully join but their values
may not match exactly. For example, there is an MD be-
tween the title attribute in relation mov2totalGross in BOM
and the title attribute in relation mowies in IMDb. These
constraints help CastorX find the join paths across multi-
ple databases. Then, CastorX leverages these constraints
and efficiently performs exact and similarity joins within
the same database and across databases to learn an effec-
tive definition for the target relation. It is time-consuming
to perform similarity joins between two large relations as a
tuple from one relation usually matches far too many tuples
from the other one [8]. CastorX uses efficient (stratified)
sampling methods to learn effective definitions over multi-
ple large databases efficiently. CastorX presents the final
definitions to the user as if the learning has been performed
over an integrated database. To our knowledge, there are no
other systems that perform integration and relational learn-
ing simultaneously.

Our demonstration will allow the VLDB audience to per-
form relational learning over heterogeneous databases using
CastorX. We will guide the user in the process of provid-
ing matching dependencies between attributes in different
databases, creating training examples, and running CastorX
to learn a definition for the target relation.

2. BACKGROUND

An atom is a formula in the form of R(u1, ..., un), where
R is a relation symbol. Each attribute in an atom is set
to either a variable or a constant, i.e., value. Variable and
constants are also called terms. A ground atom is an atom
that only contains constants. A literal is an atom, or the
negation of an atom. A Horn clause (clause for short) is a
finite set of literals that contains exactly one positive literal.
A ground clause is a clause that only contains ground atoms.
Horn clauses are also called Datalog rules (without negation)
or conjunctive queries. A Horn definition is a set of Horn
clauses with the same positive literal, i.e., Datalog program
or union of conjunctive queries.

3. SYSTEM OVERVIEW

3.1 Relational Learning

Relational learning algorithms learn first-order logic def-
initions from an input relational database and training ex-
amples. Training examples E are usually tuples of a single
target relation, and express positive (E) or negative (E_)
examples. The learned definition is called the hypothesis,
which is usually restricted to Horn definitions. The hypoth-
esis space is the set of all possible Horn definitions that the
algorithm can explore. Clause C' covers an example e if
INC k= e, where |= is the entailment operator, i.e., if I and
C are true, then e is true. Definition H covers an example
e if any of the clauses in H covers e.
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Algorithm 1: Castor’s cover-set algorithm.

Input : Database instance I, examples F
Output: Horn definition H

1 H={}

2 U= E+

3 while U is not empty do

4 C = LearnClause(I,U, E_)

5 if C satisfies minimum criterion then
6 H=HUuUC

7 U=U—-{ecUJHANI [=¢}

8 return H

Table 3: Example database.
movies(m1,Superbad,2007) movies(m2,Zoolander,2001)
mov2countries(m1,USA) mov2countries(m2,USA)
mov2genres(ml,comedy) mov2genres(m2,comedy)
mov2releasedates(m1,August,2007)
mov2releasedates(m2,September,2001)

CastorX follows a covering approach, depicted in Algo-
rithm 1. It constructs one clause at a time using the Learn-
Clause function. If the clause satisfies the minimum crite-
rion, CastorX adds the clause to the learned definition and
discards the positive examples covered by the clause. It
stops when all positive examples are covered by the learned
definition. CastorX’s LearnClause function follows a bottom-
up method. It has two steps. 1) Build the most specific
clause in the hypothesis space that covers a given positive
example, called a bottom-clause. 2) Generalize the bottom-
clause to cover as most positive and as fewest negative ex-
amples as possible.

3.2 Bottom-clause Construction

A bottom-clause C. associated with an example e is the
most specific clause in the hypothesis space that covers e.
Let I be the input database instance. To compute the
bottom-clause associated with an example e, CastorX main-
tains a hash table M that contains all known constants and
a tuple set I. that contains tuples related to e. First, Cas-
torX adds the constants in e to M. Then, the algorithm
selects all tuples in I that contain at least one constant in
M and adds them to I.. For each new tuple, it extracts
new constants and adds them to M. The algorithm repeats
this process for a fixed number of iterations d. After d iter-
ations, CastorX creates the bottom-clause. First, CastorX
maps each constant in M to a new variable. Then, it cre-
ates the head of the clause by creating a literal for e and
replacing the constants in e with their assigned variables ac-
cording to M. Then, for each tuple t € I., CastorX creates
a literal and adds it to the body of the clause, replacing each
constant in ¢ with its assigned variable according to M.

EXAMPLE 3.1. Given example highGrossing(Superbad), us-
ing the database in Table 3, CastorX creates the following
bottom-clause:

highGrossing(x) < movies(y, z, z), mov2genres(y, ‘comedy’),

mov2countries(y,  USA’), mov2releasedates(y, ‘ August’,u).

3.2.1 Learning over Heterogeneous Databases

We extend the bottom-clause construction algorithm to
perform similarity joins over heterogeneous databases. It
would be expensive to find all potential similarity joins.



Therefore, the user must specify, through matching depen-
dencies, which attributes can be joined using similarity join.
Let the domain of attribute A be denoted as dom(A). Two
attributes A and B are comparable if dom(A) = dom(B).
Given two pairs of pairwise comparable attribute lists X;, X2
and Y7, Y2 from relations R and Ro, respectively, a match-
ing dependency (MD) [3] is a sentence of the form

R1[X1] =; R2[X2] = R1[Y1] = Ra[Y2],

where ~; is a similarity operator. CastorX uses a restricted
set of matching dependencies that make the following as-
sumptions: 1) attribute lists X1, X2, Y1 and, Y2 consist of a
single attribute, 2) X; = Y7 and X» = Y2, and 3) R1[Yi] =
R3[Y2] means that R;[Y1] and Rz[Y2] can be joined using
similarity operator ~;. For instance, given the schemas in
Tables 1 and 2, the MD

movies|[title] ~; mov2totalGross|title] —
mouvies|[title] = mov2totalGross|title],

indicates that if the values in attributes movies/title] and
mov2totalGrosstitle] are similar, then they can be joined
using similarity operator =;.

Assume there is a matching dependency R1[A] ~; R2[A] —
R[A] = R3[A], and that the tuple set I. created in bottom-
clause construction contains a tuple 1 for Ry with ¢1[A4] = a.
Instead of searching R for all tuples that contain constant a
in attribute R2[A], we perform a similarity search, according
to the similarity operator ~;. CastorX uses efficient simi-
larity search operators [8]. The similarity search operation
outputs a set W of similar values to a in R2[A]. We cre-
ate a literal for each tuple in Ro containing a value b € W
and add it to the bottom-clause. Because t1[A] = a and
t2[A] = b are similar but different values, they are assigned
different variables. Therefore, to indicate that ¢; and ¢ can
join through a similarity operator, we also add the similar-
ity literal sim;(z,y) to the bottom-clause, where z and y
are the variables assigned to values a and b, respectively.
The bottom-clause that contains the literal sim;(z,y) is a
compact representation of two bottom-clauses: one where all
occurrences of variable x are replaced by y, and another one
where all occurrences of variable y are replaced by z.

3.2.2  Sampling in Bottom-clause Construction

Rationale for sampling: The tuple set I. created in
bottom-clause construction may be large if e is related to
many tuples in I. Thus, bottom-clause C. would be very
large, making the learning process time-consuming. This
problem is exacerbated when using similarity operators to
find relevant tuples, as many entities have similar names.
Therefore, CastorX samples from the tuples in I. to obtain
a subset I € I., and creates bottom-clauses from the tuples
in I7. A bottom-clause containing similarity literals that is
created by sampling the heterogeneous databases is actu-
ally a compact representation of all bottom-clauses created
by sampling over all integrated instances. Therefore, we
can safely sample and create a bottom-clause over heteroge-
neous data. Current algorithms [7] do not use any reliable
sampling operator, and they simply pick tuples arbitrarily.
CastorX implements the following sampling techniques.

Random sampling: We sample I. such that the sam-
ple tuple set IS is a random sample of I.. Olken [6] pro-
posed techniques for doing random sampling over relational
databases. We integrate these techniques into the bottom-
clause construction algorithm.

Stratified sampling: We introduce the notion of strati-
fied sampling [5] to bottom-clause construction. The sample
tuple set I must contain at least one occurrence of every
possible join path in I. This condition guarantees that the
relational learning algorithm will be able to explore a wide
variety of definitions. This technique allows CastorX to be
efficient and output accurate definitions.

3.3 Generalization

After creating the bottom-clause C. for example e, Cas-
torX generalizes C. iteratively. CastorX randomly picks a
subset E{ C E of positive examples to generalize C.. For
each example e’ in EY, CastorX generates a candidate clause
(', which is more general than C. and covers ¢’. To do so, it
simply drops literals in the body of C. that do not cover €’.
CastorX then selects the highest scoring candidate clauses
and iterates until the clauses cannot be improved.

EXAMPLE 3.2. Constder the bottom-clause Co in Ezam-
ple 8.1 and positive evample € = highGrossing(Zoolander).
To generalize Ce to cover €', CastorX drops the literal
mov2releasedates(y, ‘August’,u) because the movie Zoolan-
der was not released in August.

3.3.1 Approximate Clause Evaluation

To select the highest scoring candidate clauses, CastorX
computes the number of positive and negative examples cov-
ered by the clauses. These tests dominate the time for
learning. One approach to evaluate a clause is to trans-
form the clause into a SQL query and evaluate it over the
input database I. However, the SQL query will involve
long joins, making the evaluation prohibitively expensive
on large clauses. Instead, CastorX uses an approach called
f-subsumption. Clause C 0-subsumes C’ iff there is some
substitution 0 such that C8 C C’'. CH C C’ means that the
result of applying substitution 6 to clause C is a subset of
clause C’. To evaluate whether a clause C covers an exam-
ple e, we first build a ground bottom-clause C. for e, and
then check whether C §-subsumes C..

To improve the efficiency of evaluation, we can approx-
imately evaluate clauses by using the sampling techniques
introduced in Section 3.2.2 to build ground bottom-clauses.
The learning algorithm involves many (thousands) coverage
tests. Because CastorX reuses ground bottom-clauses, it can
run efficiently, even over large databases.

3.3.2 Applying Chase

If the definition learned by CastorX contains similarity lit-
erals after generalization, we apply the Chase to the learned
definition to obtain a definition that can be interpreted and
holds over the integrated database, i.e., as if the definition
has been learned over the integrated and clean database [1].
Generally speaking, for each similarity literal in a clause,
the Chase algorithm applies an MD whose left-hand side
matches the attributes used in the similarity literal and gen-
erates a new clause. The algorithm iteratively applies MDs
to the created clause until no similarity literal is left in the
clause. This algorithm is guaranteed to terminate [1].

EXAMPLE 3.3. Assume that CastorX learns the following
clause for the target relation highGrossing over IMDb and
BOM databases.

highGrossing(x) < movies(y, t, z), mov2genres(y, ‘comedy’),
highBudgetMovies(x), sim(z,t).
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Table 4: Results of learning over the HIV and
IMDb+BOM databases. Sample size is denoted by k.
‘No sampling’ indicates that the full ground bottom-

clause was used for clause evaluation.
Sampling in Sampling in Time
bottom-clause clause Precision | Recall | (min)
construction evaluation
HIV

Naive (k=10) 0.55 0.93 3.08
Naive (k=10) Naive (k=20) 0.77 0.86 5.05
No sampling 0.84 0.87 27.99
Random (k=10) 0.55 0.90 13.25
Random (k=10) | Random (k=20) 0.75 0.83 28.84
No sampling 0.79 0.81 | 12.57
Stratif. (k=10) 0.54 095 | 6.15
Stratif. (k=10) Stratif. (k=20) 0.83 0.89 9.92
No sampling 0.84 0.90 24.97

IMDb + Box Office Mojo
Naive (k=10) [ 086 [ 0.8 [ 59.9

Stratified (k=10) [ 095 [ 0.8 | 9%

Given MD highGrossing|[title] =~ movies[title] —
highGrossing|title] = movies[title], CastorX unifies vari-
ables t and x© and generates the following clause:

highGrossing(z) < movies(y, z, z), mov2genres(y, ‘comedy’),
highBudgetMovies(x).

3.4 Experiments

We use the HIV database, which contains information
about chemical compounds. We learn the target relation
antiHIV (comp), which indicates that comp has anti-HIV ac-
tivity. The database contains 7.8M tuples, 2K positive, and
4K negative examples. Table 3.4 (top) shows the results
for learning over the HIV database with different sampling
techniques using 10-fold cross validation. We refer to the
method of arbitrarily picking samples as naive sampling.

We use the JMDB database (jmdb.de), which contains
information from IMDb, and the Box Office Mojo (BOM)
database, to learn a definition for the target relation high-
Grossing(title). The JMDB and BOM databases contain
9M and 100K tuples, respectively. We use the top 1K gross-
ing movies in BOM as positive examples, and the lowest
2K grossing movies in BOM as negative examples. Because
training data is created from the BOM database, we cre-
ate the MD highGrossing[title] ~ JMDB.movies[title] —
highGrossing|title] = JMDB.movies]title] to allow CastorX
to access information in JMDB, where ~ represents a max-
imum edit distance of 10. Table 3.4 (bottom) shows the
results using 5-fold cross validation. In both experiments,
stratified sampling delivers the best trade-off between pre-
cision, recall, and running time.

4. DEMONSTRATION PROPOSAL

We will demonstrate CastorX by guiding the audience
through the process of learning over heterogeneous databases.
Figure 1 shows CastorX’s user interface. The process con-
sists of the following steps: 1) specify the databases to
learn from, 2) specify matching attributes between (hetero-
geneous) databases through matching dependencies, 3) cre-
ate or specify training examples for a target relation, and 4)
run the learning algorithm. In order to create an interactive
demonstration, we will use subsets of the movie databases.

Create MDs: CastorX shows all relations in the avail-
able databases, e.g., JMDB and BOM. To create the MD,
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CastorX

|

I Scenarios

1 Databases 2 Matching Dependencies 3  Training Examples
© o Name:
JVDB Attribute 1 Alibyt 2 # ahributes:
IMDb, BOM. °

Box Office Mojo
IMDb.

Attribute 1
3388405
3458722
2477118

Attribute 2
"$936,662,225"
"$132,384,315"
"$32,391,374"

=

Score

MovieLens

Learned definition

Accuracy 0.95

Precision 1.00

jmdbTotalGross(x, y) «—

movies(x, u, v), movies2totalGross(u, y). Recal

0.90

Fi-score 0.95

Running time 12 seconds

Figure 1: CastorX’s user interface.

the user browses through the relations and selects the two
attributes that will appear in the MD, and the maximum
edit distance between values in these attributes.

Run learning algorithm: The audience will be able
to run the learning algorithm with the provided input, and
examine CastorX’s output. CastorX will show the learned
definition and accuracy measurements.

Predefined scenarios: Because this process may take
more than a few minutes, we will have predefined scenarios.
A predefined scenario consists of a set of databases, a set of
MDs over the databases, and a set of training examples for
some target relation. We will show scenarios for perform-
ing novel concept discovery, e.g., learning the highGross-
ing(movie) relation, as well as query learning, e.g., learning
the jmdbTotalGross(jmdbld, totalGross) relation indicating
that movie with id jmdbId has a total grossing totalGross.
The user will be able to edit these scenarios, e.g., remove an
MD, and see how this change affects CastorX’s output.
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