
Open Data Integration

Renée J. Miller
Northeastern University
miller@northeastern.edu

ABSTRACT
Open data plays a major role in supporting both governmental and
organizational transparency. Many organizations are adopting Open
Data Principles promising to make their open data complete, pri-
mary, and timely. These properties make this data tremendously
valuable to data scientists. However, scientists generally do not
have a priori knowledge about what data is available (its schema or
content). Nevertheless, they want to be able to use open data and
integrate it with other public or private data they are studying. Tra-
ditionally, data integration is done using a framework called query
discovery where the main task is to discover a query (or transforma-
tion) that translates data from one form into another. The goal is to
find the right operators to join, nest, group, link, and twist data into
a desired form. We introduce a new paradigm for thinking about in-
tegration where the focus is on data discovery, but highly efficient
internet-scale discovery that is driven by data analysis needs. We
describe a research agenda and recent progress in developing scal-
able data-analysis or query-aware data discovery algorithms that
provide high recall and accuracy over massive data repositories.

PVLDB Reference Format:
Renée J. Miller. Open Data Integration. PVLDB, 11 (12):2130-2139, 2018.
DOI: https://doi.org/10.14778/3229863.3240491

1. INTRODUCTION
In data science, it is increasingly the case that the main challenge

is not in integrating known data, rather it is in finding the right data
to solve a given data science problem. This is in stark contrast to the
data integration challenges faced in the 1990’s. At that time, one of
the biggest complaints of academic database researchers was that
it was hard to get data on which to test integration solutions. Real,
complex, relational data was precious, expensive, and guarded. Re-
searchers needed lawyers, time and money to get access to such
data and could not share it even for research purposes. It was in
this environment that many of the early influential data integration
results were developed. The impact on research was clear. If data is
so precious, then it is of paramount importance that the integration
be correct. And once data was integrated, research provided robust
efficient DBMS for querying integrated data efficiently.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 11, No. 12
Copyright 2018 VLDB Endowment 2150-8097/18/8.
DOI: https://doi.org/10.14778/3229863.3240491

The landscape has obviously changed. Data used to be the count-
able plural of datum. Today, data is a mass (uncountable) noun
like dust, and data surrounds us like dust, even lovely structured
data. Data is so cheap and easy to obtain that it is no longer im-
portant to always get the integration right and integrations are not
static things. Data integration research has embraced and prospered
by using approximation and machine learning. But generally not
opaque learning. In data integration, the solutions that have had
impact are those that can be explained to a human. Indeed, ex-
plaining integration [73] and keeping humans in the loop during
integration [48] are two very active and important areas of research.

In this paper, we look past the dust to consider future data inte-
gration needs. The focus is on data science and analysis. Data sci-
ence is often done over massive repositories, sometimes called data
lakes, with large numbers of different datasets. The datasets may
have little or no schema, for example, they may be CSV (comma-
separated-value) files [64] or JSON files [17] (or in other common
semi-structured formats). The repository itself is often very dy-
namic. Even private, enterprise repositories, with rich schemas,
may be growing too fast for data scientists to keep up. So to do
data science over these evolving, growing repositories, a data sci-
entist needs scalable data discovery systems.

1.1 Data Science Examples
To illustrate data discovery and some of the data science require-

ments for data discovery, consider the following two examples.

Example 1: A data scientist is interested in building a model that
predicts the CO2 emission caused by the usage of a certain types
of fuel in and around London. She has access to a dataset (Table 1)
that contains the green house gas emission indicators of different
fuels and sectors of various London boroughs over several years.
However, she finds that the attributes (features) she has collected
are not sufficient to predict the CO2 emission. However, the data
scientist intuits that the properties of locations is a key factor in
green house gas emission indicators. Thus, she is interested in find-
ing tables that contain such properties. Note that finding properties
for only a few Boroughs does not help her, nor the properties for
Boroughs outside of London. Similarly, finding properties that can-
not be aligned with and assigned to a Borough does not help her.
She has a very specific problem. She needs tables that join with
her table on the Borough attribute and that contain all (or at the
very least most) of the attribute values she has. Ideally, her search
would be at interactive speeds even if her query table is not in the
data lake and if the search cannot make use of precomputed inclu-
sion or foreign key dependencies. She needs a search engine that
will quickly return joinable tables. As an example, such a search
engine may return Table 2 that contains new information for each
Borough and can be joined with Table 1. After doing the join, the

2130

Table 1: Greenhouse Gas Emission in London.

Borough Data Year Fuel ktCO2 Sector . . .
Barnet 2015 Electricity 240.99 Domestic
Brent 2013 Gas 164.44 Transport
Camden 2014 Coal 134.90 Transport
City of London 2015 Railways diesel 10.52 Domestic

Table 2: London Borough Profiles - Joinable Table with Query in Table 1.

Area name Population Estimate Average age Female employment rate Unemployment rate . . .
City of London 8800 43.2 - -
Camden 242500 36.4 66.1 4
Barnet 389600 37.3 62.9 8.5
Enfield 333000 36.3 66 3.8

Table 3: Greenhouse Gas Emission of Washington State - Unionable Table with Query in Table 1.

County Year Commodity Type Total Emissions (MT CO2e) Source . . .

Benton 2015 Gasoline 64413 ConAgra Foods. . .
Kittitas 2015 Fuel oil (1, 2. . . 12838 Central Wash. . .

Grays Harbor 2015 Aviation fuels 1170393 Sierra Pacific. . .
Skagit 2015 liquefied petroleum 59516 Linde Gas. . .

data scientist can do the interesting part of her work, testing if any
of the new attributes, alone or in combination, with old attributes
can be used to build a better model. 2

As a second example, consider the need to find unionable tables.

Example 2: Having succeeded at her first task, the data scientist is
emboldened and wants to extend her results beyond London. She
is ambitious and wants to see if there is sufficient data available
to analyze global trends of CO2 emission, for as many years as
she can find. Her dataset currently only contains green house gas
emission indicators for areas in a small region. To have a com-
prehensive analysis, she needs to build a list of various geograph-
ical locations and their emission indicators. This involves finding
tables (like Table 3) that contain (new) tuples with attributes that
can be meaningfully aligned with attributes of Table 1 – union-
able tables. Suppose her data lake is contains open government
data. A keyword search for “greenhouse gas emission” in open
data portals or standard search engines returns an overwhelming
number of tables or pages that need to be manually examined to
understand if the information can be meaningfully unioned. Even
more damaging, the tables returned omit many important tables be-
cause they are tagged differently (“John Doe’s Study of Greater
Washington”) or not tagged at all. While organizations may value
Open Data Principles that stress the value of metadata, the person
in charge of disseminating a dataset may not share these values or
have sufficient incentives for ensuring high quality metadata. And
the words “greenhouse”, “gas”, and “emission” do not appear in
the tables themselves (attribute names or data). And even when
tables have meaningful schemas, schema and entity-based search
approaches [15, 49, 75] designed to identify entities in a table (in
this case parts of London), and find other tables containing the same
type of entities (locations), are likely to find a large amount of in-
formation on locations that is unrelated to the data science question
at hand.

An automated solution for more effectively finding unionable ta-
bles (especially one with high recall even over schema-less data)
would make this a much less laborious task for the data scien-
tist. What this data scientist needs is a scalable, high performance

search engine for finding unionable tables. Notice that the defini-
tion of what is unionable is not immediately obvious. The search
engine must be able to recognize other attributes, in other tables
that contain Years (this does not seem too hard), Geographic
Regions (not just Boroughs, the engine needs to be able to gen-
eralize this concept even if the attribute is not named), and Fuels
(even if they are described using related, but very different terms
not mentioned in any available ontology). 2

1.2 Data Integration for Data Science
In this paper, we introduce a new paradigm for thinking about

data integration over massive, growing data repositories that fo-
cuses on data exploration and discovery. Integration is driven by
data analysis needs and hence data discovery is done to facilitate
this analysis. Data analysis requires discovery of data that joins,
unions, or aggregates with existing data in a precise way – a para-
digm we call query-driven data discovery. Importantly, the input
to the discovery algorithms are relational tables and optionally a
query operator. This means that solutions must be able to handle
small and large query tables (even tables with millions of tuples)
and effectively search over repositories containing tables of vastly
different size. And for data science, the goal will be high accuracy
in the search, especially high recall in finding results, even when
there are few tables that satisfy the query. We will not assume all
tables are entity-attribute tables containing an identifiable subject
attribute containing entity names and will not use keyword-search
to narrow the scope of a search to a managable set before joining
or unioning them – techniques that have proven to be very valuable
in finding related tables in Web or HTML data [45, 63, 75].

Our work has been motivated by a study of open data and the
characteristics of open data. We want to understand what data man-
agement techniques are needed to make open data accessible to data
scientists. We also are motivated by a goal of making data integra-
tion more open to large, growing repositories of data so that data
scientists can more easily find and use this data.

We begin by (briefly) placing this work into historical perspec-
tive (Section 2). The goal is not a comprehensive survey of data

2131

integration research, rather we discuss a (biased) selection of some
high impact results and some of the general trends. We then discuss
how data repositories are being created and some important char-
acteristics of these lakes (Section 3). Next, we present new results
on finding joinable tables (Section 4) and finding unionable tables
(Section 5). The paper concludes with some open problems and
research challenges.

2. A BRIEF HISTORY
We briefly review some of the major innovations in data integra-

tion over that last few decades. An important theme is that the way
data integration has been studied and the solutions developed are
largely driven by human concerns, that is, the way people produce
and consume data.

2.1 1980’s Data Federation
In the 1980’s and 1990’s, a major theme in data integration was

data federation or mediation [33]. As the name suggests, data fed-
eration refers to the uniting or integration of smaller databases into
a single centralized unit (often represented by a global or mediated
schema). Because of the centralized control, the federation has de-
sign autonomy and can create a global schema that best represents
the data from the smaller independent data states. Hence, the scien-
tific tools used to study federation included data design principles
where the goal is to find the best design for the global schema [6]
and to understand the semantics of data transformations [12, 53]
and schemas [56]. Concepts like information capacity [35] were
used to understand when a (global) schema represents the same in-
formation as another [55].

In keeping with the federation notion, query processing and op-
timization is coordinated by a centralized unit which understands
the capabilities of each independent state or system. Innovations
in this area came in the way source capabilities are modeled [46]
and in how queries are executed and optimized over heterogeneous
DBMS, in systems such as Garlic [26]. This work and these sys-
tems reflected the general zeitgeist in which data was precious, peo-
ple put time into designing and maintaining it, and there is tremen-
dous value in creating clean integrated schemas and systems to ef-
ficiently query and use this valuable data.

Open data was already being studied in this period, including
biological data (both private and public data), with systems that
permitted querying over data in different formats [11].

2.2 2000’s Data Exchange
The Web made data sharing easier. It also changed how we

thought about data integration. To share data, it is not necessary
to have any centralized or federated control. Rather, automous sys-
tems or peers can share data. Data integration then becomes the
task of fitting data received from a source peer that has been de-
signed independently into the design chosen by a receiving peer,
the target [54]. This observation led to the development of data
exchange [23, 24]. In data exchange, a source schema and target
schema are given along with an instance of the source database and
a schema mapping representing the relationship between the source
and target schemas. The problem is to create a target database that
conforms to the target schema and mapping, and that best models
the source data. Although easy to state, data exchange has led to
a surprisingly rich literature studying how database instances (data
exchange solutions) relate to each other and how schema mappings
can be composed or inverted. Data exchange remains a vibrant and
influential research area [42].

Before data exchange can be done, one must design or discover
a schema mapping. The Clio system pioneered the creation and use

of schema mappings, declarative representations of the relation-
ship between two schemas, and introduced a paradigm for map-
ping creation based on query discovery [22, 54]. Initially, this
was done using inference over relational constraints. Spicy++ [51]
and other systems [52] have generalize schema-mapping and data-
exchange systems to a larger class of applications. Mapping dis-
covery is facilitated by the discovery of inclusion dependencies
within a database [69] or the use query logs to suggest how ta-
bles may be combined [21]. Finding joinable tables is an important
first step in query discovery. However, in the context of data ex-
change it is made easier by having prescribed databases with known
schemas. Other approaches learn mappings using data and meta-
data (schema) evidence [70] or using probabilistic inference over
data and meta-data evidence that may be incomplete or inconsis-
tent [41]. This has been complemented by important work on learn-
ing mappings from examples (see ten Cate et al. [68] for a survey
of these approaches) and many human-in-the-loop guided mapping
refinement approaches.

Notably the initial mapping language for Clio has been greatly
enhanced by others including generalization to represent entity res-
olution or linking and other complex transformations [34]. Simi-
lar declarative mapping languages have largely replaced the older
(brittle) procedural extract-transform-load scripts for (centralized)
data warehouses. Data exchange can be seen as a self-centered
way of managing integration. Everyone has full freedom over their
data and full responsibility for doing their integration – integrating
other people’s data into their own organization. A benefit was quick
industry adoption (Clio was commercialized by IBM within three
years of the first research result), but we are now seeing that data
exchange is insufficient for data lakes.

Of course this is not a survey of data integration and there were
many other advancements beyond mapping and data exchange dur-
ing this time – tremendous advancements in entity-resolution and
data linking to name just two areas [16]. And the importance of un-
structured and semi-structured information was further recognized
with the development of dataspaces [25] and with work on inferring
structure and semantics from data [28, 40]. Researchers observed
that the quality of data can often be improved by aligning it with
other, higher quality data sources [10, 13, 31]. And this era saw the
creation of important collections of structured web datasets, some
public and some private [14, 44]

2.3 2020’s Query-Driven Data Discovery
In data federation and data exchange, the data to be integrated

is known and a central problem is either to design (or discover) a
good global schema or to design (or discover) a good mapping be-
tween schemas. Once this is done, there are interesting systems and
algorithmic challenges in efficiently answering queries over, or ex-
changing data between, these structures. In data science, however,
it is increasingly the case that the main challenge is not in integrat-
ing known data, rather it is in finding the right data to solve a given
data science problem.

3. EXAMPLE DATA LAKES
Data science is often done over repositories with massive num-

bers of different datasets, repositories that we will call data lakes.
In this section, we take a look at some of the applications and so-
cietal trends that are driving the creation of data lakes and consider
the characteristics of some of the lakes being created.

2132

3.1 Open Data
Open data is “structured data that is machine-readable, freely

shared, used and built on without restrictions.”1 Perhaps one of
the most valuable data lakes being created today is by govern-
ments through Open Data Initiatives like the U.S. data.gov or
Canada’s open.canada.ca. What makes these initiative inter-
esting from a data science perspective is that many governments
(federal, provincial, and municipal) are adopting Open Data Princi-
ples [67]. These principles state that open data should be complete,
primary (including the original data and metadata on how it was
collected), timely, and permanent (with appropriate version control
over time). Even when imperfectly achieved, these principles make
this data valuable and sometimes irreplaceable for data scientists.
And when achieved, this data is data on which we can do exquisite
data science by taking into account data collection methodologies
and bias. And it is not just governments who are embracing these
principles. Public and private organizations alike are using these
principles when transparency is in their own business interest.

We have been using and curating open data for over a decade.
Our efforts include LinkedCT, a project under which we curated
the NIH International Clinical Trial Data and published it as linked
open data [5, 29, 30]. And we have also been watching and track-
ing open government data more broadly. Based on our observa-
tions, at least 28 countries around the world are publishing sub-
stantial amounts of open data. On data.gov, the U.S. federal
government’s open data portal, the number of indexed data files
grew by 400% in the year before March 2017. Reacting to the in-
creasing availability of open data, data scientists have made it an
important data source: according to a 2017 Data Scientist Report
by CrowdFlower, 41% of data scientists say they are using publicly
available datasets [18].

We have collected a repository of open data [58]. Our lake con-
tains data collected from three federal governments and is a crawl
of 215,393 CSV tables from U.S., U.K., and Canadian open data
portals as of March 2017. This is by no means all government open
data, rather it is a collection of easily crawled data (obtained us-
ing a commonly supported API). Some basic statistics on this data,
which we call Open Data in the remainder of this paper, are shown
in Table 4. Notice that while the number of tables in our crawl is
modest in size, the number of attributes is still large. The average
number of attributes per table is 16 with a large variance, some ta-
bles have many hundreds of attributes. The average attribute size is
465, but among string attributes (arguably the most used in joins)
the average attribute size is 1,540.

Table 4: Characteristics of three data lakes

#Attrs MaxSize AvgSize #UniqVals

Open Data 3,367,520 22,075,531 465 609,020,645
WebTable 252,766,759 17,033 10 193,071,505
Enterprise 2,032 859,765 4,011 3,902,604

3.2 Mass Collaboration
Mass collaboration is often associated with wiki projects, but of

course has been applied to structured data creation in projects like
DBPedia, WikiData, and others. Community members contribute
data and data is also harvested, using information extracted from
community created resources. To this end, WebTables [44] can also
be thought of as a data lake created through mass collaboration.

1Canada’s open data portal: https://open.canada.ca 07/15/2018

WebTables is a collection of millions of structured tables extracted
from the largest mass collaboration project, the Web.

While different in nature and content from open government
data, mass collaboration repositories also have great value to data
scientists. In our studies, we have used a 50M table snapshot of
English WebTables as a representative of a mass collaboration data
lake [44]. Table 4 contains some basic statistics on WebTables.
Notice that while more massive in number than our crawl of open
data, individual WebTables are on average smaller (both in number
of attributes, with an average of five attributes per table, and in the
size of those attributes, with an average of ten values per attribute)
than open data.

3.3 The Modern Enterprise
Many modern enterprises have significant investment in massive

data warehouses. As one example, the MIT warehouse has 2,400
tables [19]. Statistics on a subset of 167 of these table are given
in Table 4. Notice that although this is a small subset it already
shows interesting trends. Tables have on average slightly fewer
attributes (twelve), but are even larger than open data. And the
vocabulary of even this small subset is already very large (though
perhaps expectedly not as large and heterogeneous as our open data
crawl or WebTables).

While one could argue that a standard warehouse like this is not
a data lake, increasingly warehouses are reaching the scale that to
a data scientist, even one familiar with portions of the warehouse,
they can look like a data lake. And furthermore, warehouses are in-
creasingly being used in concert with internal enterprise data lakes.
These lakes include data that has been purchased or harvested op-
portunistically for one project but is saved strategically for reuse in
others. And in many cases, we have surpassed the limits of being
able to maintain complete and consistent meta-data or join graphs
over these repositories.

Enterprises are recognizing the challenge of finding even local
enterprise data. IBM’s LabBook provides a collaborative data anal-
ysis platform over an enterprise data lake [38]. They automati-
cally collect and organize extensive metadata about data, queries,
visualizations, and users. They use this to provide query and data
recommendations. Similarly, Goods [27] also organizes enterprise
data sets using query logs and metadata, and exposes these through
faceted search on the metadata of data sets. Skluma is a system
for organizing large amounts of data (organized in different file
types) which extracts “deeply embedded” metadata, latent topics,
relationships between data, and contextual metadata derived from
related files [8]. Skluma has been used to organize a large climate
data collection with over a half-million files. Skluma uses statistical
learning to allow data to be discovered by its content and by discov-
ered topics, something that is especially important for headerless-
files which also appear in open data. Important open issues remain
on how to maintain all this metadata as lakes evolve. Our work
on query-aware search complements these meta-data focused ap-
proaches for organizing data.

4. FINDING JOINABLE TABLES
Given a query table Tq(A1, A2, . . .) with join attribute Aj , a

joinable table is a relation T (B1, B2, . . .) such that T has at least
one attribute Bi that is equi-joinable with Aj . To be more precise,
the values in the two attributes must have significant overlap. As
illustrated in Example 1, a search engine for joinable tables is a
valuable tool for data scientists.

2133

4.1 Past approaches
One approach to data discovery (including joinable table discov-

ery) would be to create a global schema [6]. Federated data inte-
gration works well when individual data sources come with high
quality schemas, the number of data sources is tractable, and the
entire collection of data sources remains reasonably static (though
incremental approaches have been studied). The landscape we have
described is significantly different. In many instances, such as open
data or in some cases data from the Web, tables do not have any
schema information or lack meaningful attribute names. At Internet
scale, the number of tables can easily reach millions or more. Fi-
nally, open data publishing platforms (including the common APIs
used to publish open data) allow continuous addition of new data
sources over time. For data lakes, deriving and maintaining a global
schema is quite impossible.

Other data integration approaches such as Clio [22] and Data
Civilizer [19] maintain a set of known join paths which are declared
or mined from the database. The join paths require knowledge of
the database schema such as foreign key constraints of the underly-
ing tables. Using the join paths, one can find joinable tables. And
at the cost of additional pre-computation, one can maintain a join
graph with tables that are approximately or mostly joinable. How-
ever, managing pre-computed join-paths is also intractable for an
open platform at Internet scale. In addition, we believe that it is
highly desirable to support ad hoc discovery of joinable tables with
interactive response times. This allows for joinable table-search
even when the query table is not in the repository.

Of course joinable table search can be formulated as a classic set
similarity search problem which is well studied in information re-
trieval. In this formulation, attributes are sets and containment (the
normalized version of set overlap) is used as the similarity func-
tion. While numerous, the solutions for this problem have focused
on relatively small sets such as keywords and emails (albeit con-
taining a very large number of sets) [9, 20, 47, 71, 72, 74]. Can-
nonical datasets used in the evaluations of these approaches (in-
cluding ENRON email, DBLP, and an AOL dataset) have average
set sizes ranging from 3 to a little over 100 and maximum set sizes
in the low thousands [50]. In developing LSH Ensemble (which
we present next), we experimented with these solutions and found
they could not provide interactive search over the data lakes we are
considering. This was due both to the much larger set sizes (espe-
cially in open data), but also to the very large dictionaries in data
lakes (number of unique values) that make inverted indices built
over data lakes massive and unwieldy.

The Mannheim Search Join, and earlier approaches for table ex-
tension [15, 75] on WebTables, assume tables are entity-attribute ta-
bles with a subject attribute containing pseudo keys for entitites [45].
Tables are retrieved using attribute names or using subject values.
These approaches do not use containment and generally are also
evaluated over small query tables (less than 10,000 values).

4.2 LSH Ensemble
We have studied the joinable table search problem as a problem

of domain search [77], where we treat each attribute of a table as a
domain. Thus, finding joinable tables for a query table Tq and join
attribute Aj becomes finding tables with an attribute similar to Aj .
We introduced a distributed index structure, LSH Ensemble, which
efficiently indexes all the domains of the tables in a data lake, and
supports fast domain search queries.

Our algorithm has the following characteristics that make it par-
ticularly suitable for join-driven data discovery.

• Scalability: our system is designed to handle Internet scale

1 10 100 1000 1e4 1e+05 1e+06 1e+07
Set Size

0.0001

0.001

0.01

0.1

1

10

100

Fr
ac

tio
n

of
 S

et
s

Figure 1: Set size distribution of string attributes from Open Data

1 10 100 1000 10000
Set Size

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

Fr
ac

tio
n

of
 S

et
s

Figure 2: Set size distribution of string attributes from WebTables

data lakes. Using data sketch techniques, we are able to
achieve very compact index sizes per table, so we have a
small query footprint. Our implementation can handle join-
able table search for over 260 million tables with three sec-
ond query response time on a cluster of five machines (each
with 64 CPUs).

• Open world assumption: the index structure is highly dis-
tributed, and can accommodate efficient incremental re-in-
dexing for newly added data sets. We also do no have any
assumption on a fixed vocabulary (or dictionary) for the data
values. So, the data lake can grow over time, and our index
can scale gracefully.

• Robust for skewed distribution: at Internet scale, the power-
law emerges over domain (attribute) sizes (see Figure 1 for
the cardinality distribution of string attributes in Open Data
and Figure 2 for string attributes in WebTables). This means
that the cardinality of the data sets will vary by orders of
magnitudes. Our index uses a provably optimal binning strat-
egy to handle all data sets, small or large, with equal effi-
ciency.

• Containment: contrary to traditional set similarity approaches
which use Jaccard similarity (which is commonly used with
LSH [2]), our algorithm uses the containment score as a mea-
sure of relevance. Using the containment score, joining the

2134

query table with a found table will yield the largest number
of facts or tuples. This is an important property that is not
true of Jaccard similarity.

4.2.1 Containment with MinHash
Consider a query table Tq , a candidate table T , and the equi-

join using Tq ./A=B T and A and B being attributes of Tq and
T respectively. Our objective is to preserve as many facts in Tq as
possible in the join result. This means that we wantB to contain as
many values fromA as possible. Hence, we define the relevance of
B to be measured by the containment score. To keep the notation
simple, we use A (and B) for both the attributes and for the set of
values contained in the attribute.

containment(A,B) =
|A ∩B|
|A|

A closely related relevance measure is the Jaccard similarity.

jaccard(A,B) =
|A ∩B|
|A ∪B|

Jaccard has been a popular choice in measuring the relevance
of sets. Unfortunately, it is not appropriate for data discovery on
real data lakes because it favors tables with small domains, and
unfairly rejects tables with large domains [1]. That said, the Jaccard
similarity measure has a highly desirable property that it can be
computed very efficiently for very large numbers of domains using
locality sensitive hashing (LSH) [2] and MinHash [36].

Consider the following relationship between the containment score
and Jaccard similarity.

jaccard(A,B) =
containment(A,B)

|B|
|A| + 1− containment(A,B)

Using this, we are able to translate a containment threshold based
query to a Jaccard threshold based query. This lets us use a Min-
Hash LSH index structure to index the domains of the data lake.
Note however, that we do not know a priori the size of B (a can-
didate answer domain). In order to map a containment threshold
to a Jaccard threshold, we need a conservative upper bound u on
the domain size of B. We showed that the error of this estimate
u− |B| creates additional false positives in the LSH index lookup.
Thus, the less accurate the estimation of |B| the worse the index
performance will be. Coupled with the power law in the domain
sizes of data lakes, the naive LSH will be ineffective as an indexing
structure [77].

4.2.2 Coping with Skewed Distributions
We proposed to divide the data lake into partitions and distribute

each partition across a cluster of machines to overcome the skewed
distribution of domain sizes. The distributed collection of LSH in-
dexes that cover a partitioned data set is what we call LSH Ensem-
ble [77]. We created a cost model that describes the performance of
LSH Ensemble for an arbitrary partitioning. Using the cost model,
we formulated the problem of data partitioning for LSH Ensemble
as an optimization problem. We showed that for any power law
distribution, an optimal partitioning can be obtained. A surpris-
ing outcome of our analysis is that a simple geometric partitioning
scheme is near-optimal for power-law distributions:

ui+1 − li+1 ' α · (ui − li)

where [li, ui] is the range of domain sizes for partition i, and
i = 0, 1, 2, . . .

Our experimental evaluation shows that the performance of LSH
Ensemble is not very sensitive to the choice of α, and the empirical
value of α = 2 works well for both the Open Data (Figure 1) and
for WebTables (Figure 2) which follow different power law distri-
butions of their domain cardinalities. Since the size of the query
affects the transformation from containment to Jaccard similarity
and the query size is only determined at run time, we use LSH For-
est [7] to dynamically tune the LSH index for different query sizes
at run time.

The simplicity of the partitioning scheme is particularly attrac-
tive in the context of data discovery. Given that we need to han-
dle large numbers of attributes, we cannot afford to perform overly
elaborate data processing. The geometric partitioning only requires
a single pass and the partitioning can be updated incrementally
when new data sets are added. Our implementation of LSH En-
semble can handle joinable table search for over a couple hundred
million tables and we have used it to build a demonstration of open
data search that provides an interactive and engaging user experi-
ence for data scientists [78].

5. FINDING UNIONABLE TABLES
Given a query table Tq(A1, A2, . . . , An) with n attributes, a

unionable table is a table T (B1, B2, . . . , Bk) such that T has at
least one attributeBi that is unionable with some attributeAj from
the query table. To understand table unionability, we must first un-
derstand attribute unionability. Given attribute Aj and its domain
(set of values), and attribute Bi and its domain, we want to under-
stand the likelihood that there exists a third domain D from which
both Aj and Bi are sampled. Then, we must define a search prob-
lem that deals equitably with tables that union over all n attributes
with those that union over a subset of attributes.

As illustrated in Example 2, a search engine for unionable tables
is a valuable tool for researchers to discover more data to expand
their data analysis.

5.1 Past Approaches
An approach to finding unionable tables is through schema match-

ing, where the problem is to match the attributes of two or more
tables (or schemas) [32, 57, 60, 65]. Two tables that match on i
attributes can presumably be unioned on those attributes. Matching
is done largely heuristically using similarity functions over schema
(attribute names) and sometimes values (for example, using a set
similarity measure) or value distributions [39]. These approaches
have generally not been evaluated for accuracy as to how well they
find tables whose attribute values are really drawn from the same
domain (and indeed most were not explicitly designed for this ap-
plication). Although scalable schema matching and ontology align-
ment have been studied extensively, for table union search, match-
ing would need to be studied as a search problem – find the best
matches for a given query table.

As an example of matching applied to table union, Das Sarma
et al. [63] define two HTML tables as entity-complements if they
contain information about related sets of entities. They rely on the
signals mined from high coverage private ontologies curated from
massive quantities of Web data as well as publicly available on-
tologies (such as YAGO [66]) to determine if tables have subject
attributes about related sets of entities. They determine if the non-
subject attributes provide similar properties of entities by finding
instance-based and schema-based matchings between non-subject
attributes. The strength of entity-complement search is tied to the
ontology coverage. However, due to the breadth of tables in data
lakes, including open data, ontology-based techniques, especially

2135

using open ontologies, are not always reliable and the assumption
that a subject attribute can be identified does not always hold.

Lehmberg and Bizer [43] have built upon the work by Ling et
al. [49] on stitching tables with similar schemas and created union
tables of stitched tables by means of a set of schema-based and
instance-based matching techniques. These techniques are designed
for WebTables and rely on schema information, which in some data
lakes might not be available for many tables, leading to low recall.

To find related tables to keyword queries, Octopus performs Web
document-style search on the content and context of WebTables [15].
These tables are then clustered into groups of unionable tables by
means of syntactic measures on attribute values. If two tables do
not match on keywords, even though unionable, they will not be
found, and this can lead to low recall. Pimplikar and Sarawagi
present a search engine that finds tables similar to a query table
that is represented by a set of keywords each describing a column
of the query [59]. This is the closest work to union table search, but
uses a keyword search similarity score to find unionable attributes.
In contrast, we present an approach below that is not motivated by
keyword search but rather by relational table union. The input to
table union search is a full relational table and we use this to find
other tables in the data lake that can be meaningfully unioned with
the query table

5.2 Table Union Search
Before defining table union search, we define precisely what it

means for attributes to be unionable.

5.2.1 Attribute Unionability
We introduce the problem of attribute unionability [58] as the

likelihood that two attributes contain values that are drawn from the
same domain. We define three types of domains for attributes and
three statistical tests: set-unionability for domains containing val-
ues (this test can be applied to any attribute), sem-unionability for
domains containing some values that represent entities belonging to
classes in an ontology (e.g., the Borough attribute in Table 1), and
NL-unionability for attributes containing natural-language (e.g., the
CommodityType attribute in Table 3). Our goal is to have an ef-
fective way of evaluating the hypothesis that two attributes come
from the same domain. The first two tests use the overlap in values
or entities (respectively), but not heuristically using thresholding.
Rather, since the size of the set overlap follows a hypergeometric
distribution, we are able to compute the likelihood of two attributes
being drawn from the same domain (either a set domain or an onto-
logic domain). This is given by the Cumulative Distribution Func-
tion of the hypergeometric distribution of their overlap. Suppose
we have a domain D and we want to know how likely it is that
A and B are drawn from this domain. Assume |A ∩ B| = t is
the actual intersection size. The set-unionability Uset(A,B) is the
following sum of probabilities of having an intersection size of s
conditioned on the sizes of A, B, and D.

Uset(A,B) =
∑

0≤s≤t

p(s
∣∣∣ |A|, |B|, |D|) (1)

Of course, the domain D is hypothetical and we do not know its
size. We instead approximate |D| as the size of the disjoint union
of A and B. The sem-unionability Usem of A and B is defined in
a similar way using the size of the overlap of the ontology classes
to which the entities (represented by values in an attribute) belong.

Not all values represent entities, but they may still have strong
semantic proximity. We model this semantic closeness using NL-
unionability. Each value v in an attribute can be represented by

its word embedding (a multi-dimensional vector ~v) [37]. An at-
tribute can be modeled with a multivariate normal distribution on
the word embedding vectors of its values centered around µA (the
topic vector of the attribute) with some covariance matrix ΣA. We
then define two attributes to be NL-unionable if they are likely sam-
pled from the same distribution (which would be a distribution that
represents their common domain). This can be computed using the
distance between the topic vectors of attributes (that is, the esti-
mated mean of the set of embedding vectors). Following a similar
development as for Uset and Usem but using a different test statis-
tic appropriate for these topic vectors, we defined a third notion of
unionability, Unl [58].

Of course, users will not be able to chose a priori which measure
to use. Using the maximum of the three scores (or any function over
the scores) is not meaningful as the measures are incomparable.
Hence, we provide a measure called ensemble unionability which
automatically selects, based on the statistics in the data lake, the
unionability measure that is the best to use with a pair of attributes.

5.2.2 Table Unionability
As motivated above, we need a way of equitably comparing ta-

bles that union on different numbers of attributes and determining
the best attributes to use for the union. Note that pairs of tables
may have some highly unionable attributes and others with much
lower values. How do we determine which to use? Obviously, an
a priori threshold is an unappealing solution. To solve this prob-
lem, we make use of alignments, meaning one-to-one mappings
between subsets of the attributes of two tables. The table union-
ability of two tables with respect to an alignment is then simply the
product of the ensemble attribute unionability of the attributes in
the alignment. To compare table unionability over alignments of
different sizes, we again use statistics of all unionability scores in
the repository, a technique we call distribution-aware. Intuitively,
the goodness of an alignment is the likelihood of the alignment
being the most unionable of the alignments of a specific size in a
repository.

5.2.3 Table Union Search
The mathematics is all well and good, but for data discovery,

we need to make it scale. Our system for table union search uses
several system innovations to achieve scalability. First, to compute
unionability scores efficiently (at query time), we developed LSH-
based indexes that permit us to efficiently retrieve an approximate
set of candidate unionable attributes. Different indices are required
to approximate different unionability measures. Second, for both
ensemble-unionability and table-unionability, we require statistics
about pair-wise unionability scores over the entire data lake. Obvi-
ously, this is too expensive to compute let alone maintain. Instead,
we empirically showed that we can quite accurately estimate these
statistics efficiently using the data sketches in our LSH indexes.
Our empirical evaluation shows that our union search is much more
accurate (in precision and recall) than previous approaches based
on keyword search and matching [15, 43] making it better for the
data science applications we are targeting. We attribute this to us-
ing full relational tables as the query, not just keywords. Moreover,
our NL-unionability leverages word embeddings to uncover union-
ability when attributes have very little value and ontology overlap.
The pruning power of NL-unionability makes our approach orders
of magnitude faster than our implementation of Octopus [15] (note
the original system is not open source).

We have publicly shared an Open Data Table Union Benchmark
that we created for evaluating accuracy [58] and hope it will be
used for further advances in table union search.

2136

6. CONCLUSION AND FUTURE WORK
Our work began with a study of integration over open data. In

the process, the techniques we developed were necessarily open to
the integration of new data (both new data sets and new unseen
values). Our goal is to provide the principles and systems to al-
low data scientists to effectively find and integrate open data and
to make private data repositories more open in that new data can
easily be added and integrated. The methodology we are using is
based on providing open software or by contributing to well-know
software ecosystems.

We are using open data in part so we can share not only our
systems, but our empirical data and results. We are also develop-
ing shared benchmarks (with gold standard answers) so that others
can reproduce our results and compare their systems to ours on the
same data. This is something that has been done for evaluating
matching systems (for example, with the T2D Gold Standard [61]),
but our community needs to do more data preparation, curation, and
sharing of data for the purpose of enhancing empirical comparisons
of our research proposals [62], In data exchange, the metadata gen-
erator iBench [3] has been widely used to create rigorous empirical
evaluations of data exchange systems. It is important in data dis-
covery, that we continue as a community to invest in creating and
sharing evaluation tools and benchmark datasets [4].

In the short term, there are many avenues for expansion. Extend-
ing joinable table search to multiple attributes and to non-equijoins
is an interesting direction. To what extent could an entity-resolution
strategy be integrated into search to produce an algorithm that mea-
sures containment based on resolved values and produces a joined
result based on aligning resolved values? Or, could an auto-join
approach [76], which learns how to transform values for the join,
be incorporated into a joinable table data discovery system? And
of course, in the spirit of using the whole table as input, finding
joinable tables that have new attributes (which contain new infor-
mation in comparison to the other attributes in the query table) is an
interesting problem. Extending unionable table search to numbers
(quantities) is also a very interesting open problem. And schema
inference over data lakes remains a important challenge.

The focus of this work has been on data discovery as that is an
important and necessary first step in enabling data integration over
evolving data lakes. But we should not throw away the past. The
lessons learned from data exchange and schema mapping discovery
through query-discovery should still inform the future. Ultimately,
our goal should be full query-discovery over data lakes.

Acknowledgments
I would like to give a special thank you to Fatemeh Nargesian
and Ken Q. Pu for their help and insights on this paper, and to
Erkang Zhu for his help and the statistics. Many of these ideas
were also influenced by collaborations with: Periklis Andritsos,
Bahar Ghadiri Bashardoost, Christina Christodoulakis, and Car-
olina Simoes Gomes. I would also like to thank Laura Haas, Lucian
Popa, and Wang-Chiew Tan for very helpful comments on a draft
of this paper. A final thank you to Dong Deng for providing statis-
tics on the MIT warehouse. NSERC funded this work along with
the Northeastern College of Computer and Information Science.

7. REFERENCES
[1] P. Agrawal, A. Arasu, and R. Kaushik. On indexing

error-tolerant set containment. In ACM SIGMOD, pages
927–938, 2010.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Commun.
ACM, 51(1):117–122, 2008.

[3] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. The
iBench integration metadata generator. PVLDB,
9(3):108–119, 2015.

[4] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti,
and D. Santoro. Benchmarking data curation systems. IEEE
Data Eng. Bull., 39(2):47–62, 2016.

[5] B. G. Bashardoost, C. Christodoulakis, S. H. Yeganeh, R. J.
Miller, K. Lyons, and O. Hassanzadeh. VizCurator: A visual
tool for curating open data. In WWW, pages 195–198, 2015.

[6] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4):323–364, 1986.

[7] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: Self-tuning
indexes for similarity search. In WWW, pages 651–660,
2005.

[8] P. Beckman, T. J. Skluzacek, K. Chard, and I. T. Foster.
Skluma: A statistical learning pipeline for taming unkempt
data repositories. In Scientific and Statistical Database
Management, pages 41:1–41:4, 2017.

[9] A. Behm, C. Li, and M. J. Carey. Answering approximate
string queries on large data sets using external memory. In
IEEE ICDE, pages 888–899, 2011.

[10] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[11] P. Buneman, S. B. Davidson, K. Hart, G. C. Overton, and
L. Wong. A data transformation system for biological data
sources. In VLDB, pages 158–169, 1995.

[12] P. Buneman, S. B. Davidson, and A. Kosky. Semantics of
database transformations. In Semantics in Databases, pages
55–91, 1995.

[13] D. Burdick, M. A. Hernández, H. Ho, G. Koutrika,
R. Krishnamurthy, L. Popa, I. Stanoi, S. Vaithyanathan, and
S. R. Das. Extracting, linking and integrating data from
public sources: A financial case study. IEEE Data Eng. Bull.,
34(3):60–67, 2011.

[14] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: Exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

[15] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. PVLDB, 2(1):1090–1101,
2009.

[16] P. Christen. Data Matching - Concepts and Techniques for
Record Linkage, Entity Resolution, and Duplicate Detection.
Data-Centric Systems and Applications. Springer, 2012.

[17] D. Crockford. The application/json media type for javascript
object notation (JSON). Request for Comment, 4627:1–10,
2006.

[18] CrowdFlower. 2017 Data Scientist Report.
http://visit.crowdflower.com/rs/416-ZBE-
142/images/CrowdFlower DataScienceReport 2016.pdf,
Date accessed: July 15, 2019.

[19] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas, S. Madden,
M. Ouzzani, and N. Tang. The data civilizer system. In
CIDR, 2017.

[20] D. Deng, G. Li, J. Feng, and W. Li. Top-k string similarity
search with edit-distance constraints. In IEEE ICDE, pages
925–936, 2013.

2137

[21] H. Elmeleegy, A. K. Elmagarmid, and J. Lee. Leveraging
query logs for schema mapping generation in U-MAP. In
ACM SIGMOD, pages 121–132, 2011.

[22] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema mapping creation
and data exchange. In Conceptual Modeling: Foundations
and Applications - Essays in Honor of John Mylopoulos,
pages 198–236, 2009.

[23] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. In ICDT, pages
207–224, 2003.

[24] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theoretical
Computer Science, 336(1):89–124, 2005.

[25] M. J. Franklin, A. Y. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information
management. SIGMOD Record, 34(4):27–33, 2005.

[26] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang.
Optimizing queries across diverse data sources. In VLDB,
pages 276–285, 1997.

[27] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis,
S. Roy, and S. E. Whang. Goods: Organizing google’s
datasets. In ACM SIGMOD, pages 795–806, 2016.

[28] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller,
and M. Wang. A framework for semantic link discovery over
relational data. In CIKM, pages 1027–1036, 2009.

[29] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller,
and M. Wang. LinkedCT: A linked data space for clinical
trials. CoRR, abs/0908.0567, 2009.

[30] O. Hassanzadeh and R. J. Miller. Automatic curation of
clinical trials data in LinkedCT. In ISWC, pages 270–278,
2015.

[31] O. Hassanzadeh, K. Q. Pu, S. H. Yeganeh, R. J. Miller,
L. Popa, M. A. Hernández, and H. Ho. Discovering linkage
points over web data. PVLDB, 6(6):444–456, 2013.

[32] B. He and K. C. Chang. Statistical schema matching across
web query interfaces. In ACM SIGMOD, pages 217–228,
2003.

[33] D. Heimbigner and D. McLeod. A federated architecture for
information management. ACM Trans. Inf. Syst.,
3(3):253–278, 1985.

[34] M. A. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa,
and R. Wisnesky. HIL: a high-level scripting language for
entity integration. In EDBT, pages 549–560, 2013.

[35] R. Hull. Relative information capacity of simple relational
database schemata. SIAM J. Comput., 15(3):856–886, 1986.

[36] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In ACM
STOC, pages 604–613, 1998.

[37] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of
tricks for efficient text classification. ACL, 2017.

[38] E. Kandogan, M. Roth, P. M. Schwarz, J. Hui, I. G.
Terrizzano, C. Christodoulakis, and R. J. Miller. Labbook:
Metadata-driven social collaborative data analysis. In IEEE
Big Data, pages 431–440, 2015.

[39] J. Kang and J. F. Naughton. On schema matching with
opaque column names and data values. In ACM SIGMOD,
pages 205–216, 2003.

[40] G. Kasneci, M. Ramanath, F. M. Suchanek, and G. Weikum.
The YAGO-NAGA approach to knowledge discovery.
SIGMOD Record, 37(4):41–47, 2008.

[41] A. Kimmig, A. Memory, R. J. Miller, and L. Getoor. A
collective, probabilistic approach to schema mapping. In
IEEE ICDE, pages 921–932, 2017.

[42] P. G. Kolaitis. Reflections on schema mappings, data
exchange, and metadata management. In ACM PODS, pages
107–109, 2018.

[43] O. Lehmberg and C. Bizer. Stitching web tables for
improving matching quality. PVLDB, 10(11):1502–1513,
2017.

[44] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A large
public corpus of web tables containing time and context
metadata. In WWW, pages 75–76, 2016.

[45] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim,
and C. Bizer. The mannheim search join engine. J. of Web
Semantics, 35:159–166, 2015.

[46] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB, pages 251–262, 1996.

[47] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In IEEE ICDE,
pages 257–266, 2008.

[48] G. Li. Human-in-the-loop data integration. PVLDB,
10(12):2006–2017, 2017.

[49] X. Ling, A. Y. Halevy, F. Wu, and C. Yu. Synthesizing union
tables from the web. In IJCAI, pages 2677–2683, 2013.

[50] W. Mann, N. Augsten, and P. Bouros. An empirical
evaluation of set similarity join techniques. PVLDB,
9(9):636–647, 2016.

[51] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an OpenSource Tool for
Second-Generation Schema Mapping and Data Exchange.
PVLDB, 4(12):1438–1441, 2011.

[52] G. Mecca and P. Papotti. Schema mapping and data
exchange tools: Time for the golden age. it - Information
Technology, 54(3):105–113, 2012.

[53] R. J. Miller. Using schematically heterogeneous structures.
In ACM SIGMOD, pages 189–200, 1998.

[54] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema
mapping as query discovery. In VLDB, pages 77–88, 2000.

[55] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use
of information capacity in schema integration and
translation. In VLDB, pages 120–133, 1993.

[56] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema
equivalence in heterogeneous systems: bridging theory and
practice. Inf. Syst., 19(1):3–31, 1994.

[57] A. Nandi and P. A. Bernstein. HAMSTER: using search
clicklogs for schema and taxonomy matching. PVLDB,
2(1):181–192, 2009.

[58] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union
search on open data. PVLDB, 11(7):813–825, 2018.

[59] R. Pimplikar and S. Sarawagi. Answering table queries on
the web using column keywords. PVLDB, 5(10):908–919,
2012.

[60] E. Rahm. Towards large-scale schema and ontology
matching. In Schema Matching and Mapping, pages 3–27.
2011.

[61] D. Ritze, O. Lehmberg, and C. Bizer. Matching HTML tables
to dbpedia. In Web Intelligence, pages 10:1–10:6, 2015.

2138

[62] S. W. Sadiq, T. Dasu, X. L. Dong, J. Freire, I. F. Ilyas,
S. Link, R. J. Miller, F. Naumann, X. Zhou, and
D. Srivastava. Data quality: The role of empiricism.
SIGMOD Record, 46(4):35–43, 2017.

[63] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In ACM
SIGMOD, pages 817–828, 2012.

[64] Y. Shafranovich. Common format and MIME type for
comma-separated values (CSV) files. Request for Comment,
4180:1–8, 2005.

[65] W. Su, J. Wang, and F. H. Lochovsky. Holistic schema
matching for web query interfaces. In EDBT, pages 77–94,
2006.

[66] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[67] J. Tauberer. Open Government Data (The Book).
https://opengovdata.io/, 2014. Second Edition. Date
accessed: July 15, 2018.

[68] B. ten Cate, P. G. Kolaitis, and W. C. Tan. Schema mappings
and data examples. In EDBT, pages 777–780, 2013.

[69] F. Tschirschnitz, T. Papenbrock, and F. Naumann. Detecting
inclusion dependencies on very many tables. ACM Trans.
Database Syst., 42(3):18:1–18:29, 2017.

[70] O. Udrea, L. Getoor, and R. J. Miller. Leveraging data and
structure in ontology integration. In ACM SIGMOD, pages
449–460, 2007.

[71] J. Wang, G. Li, D. Deng, Y. Zhang, and J. Feng. Two birds
with one stone: An efficient hierarchical framework for top-k
and threshold-based string similarity search. In ICDE, pages
519–530, 2015.

[72] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In
ACM SIGMOD, pages 85–96, 2012.

[73] X. Wang, L. M. Haas, and A. Meliou. Explaining data
integration. IEEE Data Eng. Bull., 41(2):47–58, 2018.

[74] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity
joins. In IEEE ICDE, pages 916–927, 2009.

[75] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: Entity augmentation and attribute discovery by
holistic matching with web tables. In SIGMOD, pages
97–108, 2012.

[76] E. Zhu, Y. He, and S. Chaudhuri. Auto-join: Joining tables
by leveraging transformations. PVLDB, 10(10):1034–1045,
2017.

[77] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH
ensemble: Internet-scale domain search. PVLDB,
9(12):1185–1196, 2016.

[78] E. Zhu, K. Q. Pu, F. Nargesian, and R. J. Miller. Interactive
navigation of open data linkages. PVLDB,
10(12):1837–1840, 2017.

2139

