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ABSTRACT
We present a system for summarization and interactive exploration
of high-valued aggregate query answers to make a large set of pos-
sible answers more informative to the user. Our system outputs
a set of clusters on the high-valued query answers showing their
common properties such that the clusters are diverse as much as
possible to avoid repeating information, and cover a certain number
of top original answers as indicated by the user. Further, the system
facilitates interactive exploration of the query answers by helping
the user (i) choose combinations of parameters for clustering, (ii)
inspect the clusters as well as the elements they contain, and (iii)
visualize how changes in parameters affect clustering. We define
optimization problems, study their complexity, explore properties
of the solutions investigating the semi-lattice structure on the clus-
ters, and propose efficient algorithms and optimizations to achieve
these goals. We evaluate our techniques experimentally and dis-
cuss our prototype with a graphical user interface that facilitates
this interactive exploration. A user study is conducted to evaluate
the usability of our approach.
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1. INTRODUCTION
Summarization and diversification of query results have recently

drawn significant attention in databases and other applications such
as keyword search, recommendation systems, and online shopping.
The goal of both result summarization and result diversification is
to make a large set of possible answers more informative to the
user, since the user is likely not to view results beyond a small
number. This brings the need to make the top-k results displayed
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to the user summarized (the results should be grouped and summa-
rized to reveal high-level patterns among answers), relevant (the
results should have high value or score with respect to user’s query
or a database query), diverse (the results should avoid repeating in-
formation), and also providing coverage (the results should cover
top answers from the original non-summarized result set). In this
paper, we present a framework to summarize and explore high val-
ued aggregate query answers to understand their common proper-
ties easily and efficiently while meeting the above competing goals
simultaneously. We illustrate the challenges and our contributions
using the following example:

EXAMPLE 1.1. Suppose an analyst is using the movie ratings
data from the MovieLens website [28] to investigate average rat-
ings of different genres of movies by different groups of users over
different time periods. So the analyst first joins several relations
from this dataset (information about movies, ratings, users, and
their occupations) to one relation R, extracts some additional fea-
tures from the original attributes (age group, decade, half-decade),
and then runs the following SQL aggregate query on R (the join
is omitted for simplicity). In this query, hdec denotes disjoint
five-year windows of half-decades, e.g., 1990 (=1990-94), 1995
(=1995-99), etc.; agegrp denotes age groups of the users in their
teens or 10s (i.e., 10-19), 20s (i.e., 20-29), etc.

SELECT hdec, agegrp, gender, occupation, AVG(rating) AS val
FROM R
GROUP BY hdec, agegrp, gender, occupation
WHERE genres_adventure = 1
HAVING COUNT(*) > 50
ORDER BY val DESC

The top 8 and bottom 8 results from this query are shown in
Figure 1a. To have a quick summary of these 50 result tuples, The
data analyst is interested in seeing the summary in at most four
rows to have an idea of the viewers and time periods with a high
rating for the adventure genre.

One straightforward option is to output the top 4 result tuples from
Figure 1a, but they do not summarize the common properties of the
intended viewers/times periods. In addition, despite having high
scores, they have attribute values that are close to each other (e.g.,
male students in their 20s) leading to repetition of information and
sub-optimal use of the designated space of k = 4 rows. More
importantly, the top k original tuples may give a wrong impres-
sion on the common properties of high-valued tuples even if they
all share those properties. For instance, three out of top four tuples
share the property (20s, M), but it is misleading, since a closer
look at Figure 1a reveals that many tuples with low values (49th,
46th, 44th) share this property too, suggesting that male viewers in
their 20s may or may not give high ratings to the adventure genre.
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Rank hdec agegrp gender occupation val

1 1975 20s M Student 4.24
2 1980 20s M Programmer 4.13
3 1980 10s M Student 3.96
4 1980 20s M Student 3.91
5 1985 20s M Programmer 3.86
6 1980 20s M Engineer 3.83
7 1985 10s M Student 3.77
8 1985 20s M Student 3.76

. . . . . . . . . . . . . . . . . .
43 1995 30s M Marketing 3.02
44 1995 20s M Technician 2.92
45 1995 30s M Entertainment 2.91
46 1995 20s M Executive 2.91
47 1995 30s F Librarian 2.84
48 1995 30s M Student 2.81
49 1995 20s M Writer 2.51
50 1995 20s F Healthcare 1.98

(a) Top-8 and bottom-8 tuples with values as score

hdec agegrp gender occupation avg val

1975 20s M Student 4.24 H
1980 ∗ M ∗ 3.96 H
1985 20s M Programmer 3.86 H
1985 ∗ M Student 3.76 H

(b) Clusters with average score

hdec agegrp gender occupation avg val rank

1975 20s M Student 4.24 H
1975 20s M Student 4.24 1
1980 ∗ M ∗ 3.96 H
1980 20s M Programmer 4.13 2
1980 10s M Student 3.96 3
1980 20s M Student 3.91 4
1980 20s M Engineer 3.83 6
1985 20s M Programmer 3.86 H
1985 20s M Programmer 3.86 5
1985 * M Student 3.76 H
1985 10s M Student 3.77 7
1985 20s M Student 3.76 8

(c) Original result tuples (with ranks) in the clusters
Figure 1: Illustrating our framework for k = 4, L = 8, D = 2. In general, original result tuples outside top-L can belong to the
output clusters, although here we happen to have a solution that covers just the top-L result tuples.

Therefore, we aim to achieve a summarization with the following
desiderata: (i) it should be simple and memorable (e.g., male stu-
dents or (M, Students)), (ii) it should be diverse (e.g., (1975,
20s, M, Student) and (1980, 20s, M, Student) might be
too similar), and (iii) it should be discriminative (e.g., the properties
like (20s, M) covering both high and low valued tuples should be
avoided). Furthermore, it should be achieved at an interactive speed
and displayed using a user-friendly interface.

In recent years, work has been done to diversify a set of
result tuples by selecting a subset of them (discussed further in
Section 2), e.g., diversified top-k [23] takes account of diversity
and relevance while selecting top result tuples; DisC diversity [7]
takes into account similarity with the tuples that have not been
selected, and diversity and relevance in the selected ones. In
contrast, we intend to output summarized information on the result
tuples by displaying the common attribute values in each cluster to
give the user a holistic view of the result tuples with high value.
In this direction, the smart drill-down [18] framework helps the
user explore summarized “interesting” tuples in a database, but it
does not focus on aggregate answers, or helping the user choose
input parameters and understand consecutive solutions, which are
two key features of our framework. As discussed in Section 2
and observed in experiments in our initial exploration, standard
clustering or classification approaches do not give a meaningful
summary of high-valued results as well. In particular, we support
summarization and interactive exploration of aggregate answers in
the following ways each posing its own technical challenges.

(1) Summarizing Aggregate Answers with Relevance, Diversity,
and Coverage. To meet the desiderata of a good summarization,
the basic operation of our framework involves generating a set of
clusters summarizing the common properties or common attribute
values of high-valued answers (Section 3). If all elements in a clus-
ter do not share the same value for an attribute, then the value of
that attribute is replaced with a ‘∗’ 1. The clusters can be expanded
to show the elements contained in them to the user. To compute
the clusters, our framework can take (up to) three parameters as
input: (i) size constraint k denotes the number of rows or clusters
to be displayed (k = 4 in Example 1.1), (ii) coverage parameter

1Our framework and algorithms can be extended to more fine-grained gen-
eralizations of values beyond ∗ (by introducing a concept hierarchy over the
domain) [34].

L, requiring that the top-L tuples in the original ranking must be
covered by the k chosen clusters, and (iii) distance parameter D,
requiring that the summaries should be at least distance D from
each other to avoid repeating similar information.

EXAMPLE 1.2. Suppose we run our framework for the query
in Example 1.1 with parameters k = 4, L = 8, and D = 2, i.e.,
the user would like to see at most 4 clusters, these clusters should
cover top 8 tuples from Figure 1a, and any two clusters should not
have identical values for more than two attributes. Our framework
first displays the four clusters shown in Figure 1b along with the
average scores of result tuples contained in them.

The user may choose to investigate any of these clusters by ex-
panding the cluster on our framework (clicking H). If all four clus-
ters are expanded by the user, the second-layer will reveal all orig-
inal result tuples they cover, as shown in Figure 1c. In this partic-
ular example, no other tuples outside top 8 have been chosen by
our algorithm (which is also the optimal solution), but in general,
the selected clusters may contain other tuples (high-valued but not
necessarily in top L).

The above example illustrates several advantages and features of
our framework in providing a meaningful and holistic summary
of high-valued aggregate query answers. First, the original top 8
result tuples are not lost thanks to the second layer, whereas the
properties that combine multiple top result tuples are clearly high-
lighted in the clusters in the first layer. Second, the chosen clusters
are diverse, each contributing some extra novelty to the answer.
Third, the clustering captures the properties of the top result tuples
that distinguish them from those with low values. For instance,
the cluster for (20s, M) does not appear in the solution, since this
property is prevalent in both high-valued and low-valued tuples as
discussed before. Clearly, this could not be achieved by simply
clustering top L tuples by k clusters. This is ensured by our objec-
tive function that aims to maximize the average value of the tuples
covered by all clusters (instead of maximizing the sum).

To achieve the solution as described above, we make the follow-
ing technical contributions in the paper:

• To ensure that the chosen clusters cover answer tuples with high
values, we formulate an optimization problem that takes k, L,D
as input, and outputs clusters such that the average value of the
tuples covered by these clusters is maximized. We study the
complexity of the above problem (both decision and optimiza-
tion versions) and show NP-hardness results (Section 4).
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Figure 2: Visualization for parameter selection: how results
vary for different k and D (some lines overlap).

• We design efficient heuristics satisfying all constraints using
properties of the semi-lattice structure on the clusters imposed
by the attributes (Section 5).

• We perform extensive experimental evaluation using the Movie-
Lens [28] and TPC-DS benchmark [21] datasets (Section 7).

(2) Interactive Clustering and Parameter Selection. The in-
tended application of our framework is an interactive exploration of
query results where the user may keep updating k, L, orD to under-
stand the key properties of the high-valued aggregate answers. One
challenge in this exploration is to select values of k, L,D while
ensuring interactive speed, since straightforward implementations
of our algorithms would not be fast enough. To support parameter
selection, we provide the user with a holistic view of how the ob-
jective varies with different choices of parameters. This view helps
users identify “flat regions” (uninteresting for parameter changes)
vs. “knee points” (possibly interesting for parameter changes) in
the parameter space. One example is shown in Figure 2, where
given selected values of L = 15 as in Section 6.1, how the aver-
age value of the solutions (y-axis) varies with different k (x-axis)
is shown. This figure illustrates that if k is changed from k = 11
to k = 7, there will be a drop in the overall value. The user can
select different legends for different lines and check the value in
detail by hovering over a point. This visualization also helps the
user validate the choice of parameters, e.g., if a smaller value of k
can give a similar quality result, the user may want to reduce the
value of k to have a more compact solution. This feature not only
helps in guiding the user select parameter values2, it also serves
as a precomputation step to retrieve the actual solutions for differ-
ent combinations of input parameters k, L, and D at an interactive
speed. (Section 6).

• We develop techniques for incremental computation and efficient
storage for solutions for multiple combinations of input param-
eters using an interval tree data structure.

• We implement multiple optimization techniques to further speed
up computation of these solutions. We evaluate the effect of
these optimizations experimentally. Eventually we achieved
30x-1000x speed up from these optimizations, which helped us
achieve our goal of interactive speed.

Roadmap. We discuss the related work in Section 2 and define
some preliminary concepts in Section 3. The above sets of results
are discussed in Sections 4, 5 and 6. The experimental results are
presented in Section 7. A user study is conducted on Section 8. We
conclude in Section 9 with scope of future work. Some details are
deferred to the full version[34] due to space constraints.

2 To further assist in parameter selection, our system also allows visual
comparison of two successive solutions showing how the clusters are redis-
tributed. We formulated an optimization problem to enable clean visualiza-
tion and provided optimal solutions. Due to space constraints, the details
are in the full version [34] and in our demonstration paper in SIGMOD
2018 [35].

2. RELATED WORK
First we discuss three recent papers relevant to our work that

consider result diversification or result summarization: smart drill-
down [18], diversified top-k [23], and DisC diversity[7]. We ex-
plored using or adapting the approaches proposed in these papers
for our problem, but since they focus on different problems, as ex-
pected, the optimization, objective, and the setting studied in [18,
23, 7] do not suffice to meet the goals in our work; There are several
other related work in the literature that we briefly mention below.
Qualitative comparison results and details are discussed in [34].

Smart drill-down [18]: In a recent work, Joglekar et al. [18]
proposed the smart drill-down operator for interactive exploration
and summarizing interesting tuples in a given table. The outputs
show top-k rules (clusters) with don’t-care ∗-values. The goal is to
find an ordered set of rules with maximum score, which is given by
the sum of product of the marginal coverage (elements in a rules
that are not covered by the previous rules) and weight of the rules
(a “goodness” factor, e.g., a rule with fewer ∗ is better as it is more
specific). In [34], we show with examples that this approach is
not suitable for summarizing aggregate query answers, since it will
prefer common attribute values prevalent in many tuples and may
select rules containing both high- and low-valued tuples.

Diversified top-k [23]: Qin et al. [23] formulated the top-k re-
sult diversification problem: given a relation S where each element
has a score and any two elements have a similarity value between
them, output at most k elements such that any two selected ele-
ments are dissimilar (similarity> a threshold τ ), and maximize the
sum of the scores of the selected elements. [23] considers diversifi-
cation, but it does not consider result summarization using ∗-values
(it chooses individual representative elements instead). In addition
to lacking high level properties, this adapted process would possi-
bly lose the holistic picture since some low-valued elements may
be assigned to the chosen representatives from the top elements.

DisC diversity [7]: Drosou and Pitoura [7] proposed DisC di-
versity: given a set of elements S, the goal is to output a subset S′

of smallest size such that all the elements in S are similar to at least
one element in S′ (i.e., have distance at most a given threshold τ ),
whereas no two elements in S′ are similar to each other (distance
is > τ ). Here diversification can be achieved similar to [23]. How-
ever, it ignores the values or relevance of the elements (unlike us or
[23]), and has no bound on the number of elements returned (un-
like us, [23, 18]). Therefore this approach may not be useful when
the user wants to investigate a small set of answers, and it does not
provide a summary of common properties of high valued tuples.

Classification and clustering: Classification and clustering
have been extensively studied in the literature. Various classifi-
cation algorithms like Naive Bayes Classifier [20] and decision
trees [24] are widely used and are easy to implement. A sim-
pler variation of our problem—separating top-L elements from
others—can be cast as a classification problem. However, this for-
mulation would completely ignore values of elements outside top
L, whereas our problem considers all element values and uses the
top-L elements only as a coverage constraint. One could also for-
mulate the problem of clustering the top-L elements and apply the
standard k-means algorithm [14] and its variants (e.g., [15, 33]).
However, such algorithms do not produce clusters with simple and
concise descriptions, and their clustering criteria do not consider
values of elements outside top L. Therefore, it is necessary to find
a new approach other than traditional clustering and classification.

Other work on result diversification, summarization, and ex-
ploration: Diversification of query results has been extensively
studied in the literature for both query answering in databases and
other applications [4, 2, 12, 41, 37, 11, 36, 8, 40, 25, 3, 1, 27, 6,
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32, 23, 7, 10, 39, 31, 38, 26, 17, 16]. These include the MMR
(Maximal Marginal Relevance)-based approaches, the dispersion
problem studied in the algorithm community, diverse skyline, sum-
marization in text and social networks, relational data summariza-
tion and OLAP data cube exploration among others. The MMR-
based and dispersion approaches consider diversification of results,
outputting a small, diverse subset of relevant results, but do not
summarize all relevant results. Others focus on various application
domains and all have problem definitions different from this work.

3. PRELIMINARIES
Let S denote the result relation of some query Q. We assume

that the schema of S consists a set of m grouping attributes,
denoted where Agroupby = {A1, A2, · · · , Am}, as well as a real-
valued score or value attribute, signifying relevance or importance
of each result tuple with respect to Q. A common example is when
S is produced by an aggregation query Q of the following form:

SELECT Agroupby , aggr AS val
FROM R -- base relation or output of a subquery
GROUP BY Agroupby

-- optional HAVING condition
ORDER BY val DESC

Here, R can be a base relation or the output of a complex sub-
query involving multiple tables; aggr can be any SQL aggregate
expression that outputs a real number (involving, e.g., COUNT, SUM,
MAX, MIN, AVG); Example 1.1 is a case where the aggregate is AVG.3

We call the tuples of S original elements, and suppose there are n
of them. Even if the number of grouping attributes m is small, n
might be large due to large domains of the participating attributes.
Therefore, a user is often interested in the top L original elements
(denoted by S∗L) with the highest scores.

Clusters. To display a solution with relevance, diversity, and
coverage, our output is provided in two layers: the top layer dis-
plays a set of clusters that hide the values of some attributes by
replacing them with don’t-care (∗) values, and the second layer
contains the original elements covered by them.

For every original element t in the output S of Q, let val(t)
denote the value or score of t. Other than the value, each t ∈ S
has m attributes A1, · · · , Am with active domains D1, · · · , Dm

respectively. A cluster C on S has the form: C ∈
∏m

i=1 Di ∪ {∗}.
Let C denote the set of all clusters for relation S. We assume
that the m attributes A1, · · · , Am have a predefined order, and
therefore we omit their names to specify a cluster. For instance,
for m = 4 attributes A1, A2, A3, A4, (a1, b1, ∗, ∗) implies that
(A1 = a1) ∧ (A2 = b1), and the values of A3 and A4 are don’t-
care (∗). We denote the value of an attribute Ai of C by C[Ai];
where C[Ai] ∈ Di ∪ {∗}, i ∈ [1,m]. In particular, each element t
in S also qualifies as a cluster, which is called a singleton cluster.

A cluster C covers another cluster C′ if ∀i ∈ [1,m], C [Ai] = ∗
or C [Ai] = C′ [Ai]. Since each element t in S is also a cluster,
each cluster C covers some elements from S. Further, the notion
of coverage naturally extends to a subset of clustersO. For C ∈ C,
cov(C) ⊆ S denotes the elements covered by C, and for O ⊆ C,
cov(O) ⊆ S denotes the elements covered by at least one cluster
in O, i.e., cov(O) = ∪C∈Ocov(C). Figure 3a shows two clusters

3While we primarily work with group-by-having aggregate queries in this
paper, there is no restriction on the form of the SQL queries supported,
other than the requirement that the result relation has a score attribute in
addition to other attributes that can be used for grouping. Our algorithms
and system can work with any SQL query result bearing this structure. They
also apply directly to cases where the scores do not come from SQL queries,
e.g., when they are specified manually by domain experts or computed by
another procedure outside the database system.

A B C D

C1 ∗ ∗ c1 d1
a1 b2 c1 d1
a1 b3 c1 d1
a1 b4 c1 d1
a2 b1 c1 d1

C2 a2 b1 ∗ d1
a2 b1 c1 d1
a2 b1 c4 d1

(a)

(✭,	  ✭)

(a1,	  ✭) (a2,	  ✭) (✭,	  b1) (✭,	  b2)

(a1,	  b1) (a1,	  b2) (a2,	  b1) (a2,	  b2)Level	  0:

Level	  1:

Level	  2:

(b)

Figure 3: (a) Example clusters, and (b) semilattice on clusters.

C1 = (∗, ∗, c1, d1), C2 = (a2, b1, ∗, d1), and the elements they
cover. Note that two clusters may have overlaps in elements they
cover. Here C1, C2 have overlap on the tuple (a2, b1, c1, d1).

Distance function. While the distance between two elements is
straightforward (the number of attributes where their values differ4,
the distance between two clusters has several alternatives due to
the presence of the don’t care (∗) values. We define the distance
between two clusters as the number of attributes where they do
not have the same value from the domain. The distance function
can be shown to be a metric and it exhibits monotonicity property
(discussed in Section 4) that we use in our algorithms.

DEFINITION 3.1. The distance d(t, t′) between two elements
t, t′ is the number of attributes where their values differ, i.e.,
d(t, t′) = |{i ∈ [1,m] : t[Ai] 6= t′[Ai]}|. The distance be-
tween two clusters C,C′ is the number of attributes where either
(i) at least one of the values is ∗, or (ii) the values are different
in C,C′: d(C,C′) = |{i ∈ [1,m] : C[Ai] = ∗, or, C′[Ai] =
∗, or, C[Ai] 6= C′[Ai]}|.

In Figure 3a, the distance between C1 = (∗, ∗, c1, d1) and C2 =
(a2, b1, ∗, d1) is 3 due to the presence of ∗-s in A1, A2, A3. Intu-
itively, the distance between two clusters is the maximum possible
distance between any two elements that these two clusters may con-
tain, and therefore is measured by counting the number of attributes
where they do not agree on a value from the domain. The distance
function can also be explained in terms of similarity measures be-
tween two tuples or clusters: if the distance between two clusters is
≥ D, then the number of common attribute values between them is
≤ m−D where m is the total number of attributes.

4. FRAMEWORK
In this section, we formally define the optimization problem

(Section 4.1), discuss the semilattice structure and properties of the
clusters (Section 4.2), and give the complexity of the optimization
problem (Section 4.3).

4.1 Optimization Problem Definition
Let avg(C) denote the average value of all elements contained in

a cluster C (i.e., avg(C) =
∑

t∈cov(C) val(t)

|cov(C)| ), and avg(O) denote
the average value of the elements covered by a set of clusters O.

DEFINITION 4.1. Given relation S with original tuples and
their values, size constraint k, coverage constraintL, distance con-
straint D, and set C of possible clusters for S, a subset O ⊆ C is
called a feasible solution if all the following conditions hold: (1)
(Size k) The number of clusters in O is at most k, i.e., |O| ≤ k.
(2) (Coverage L) O covers all top-L elements in S, i.e., S∗L ⊆
cov(O). (3) (Distance D) The distance between any two clusters
C1, C2 in O is at least D, i.e., d(C1, C2) ≥ D. (4) (Incompara-
bility) No clusters in O cover any other cluster in O (equivalently,
the clusters should form an antichain in the semilattice discussed

4In this paper we focus on categorical attributes; other distance functions
suitable for numeric attributes is a direction for future work (Section 9).
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in Section 4.2). The objective (called Max-Avg) is to find a feasible
solution O with maximum average value avg(O).

The first three conditions in the above definition correspond to
the input parameters, whereas the last condition eliminates unnec-
essary information from the returned solution. All these three pa-
rameters, k,D, and L, are optional and can have a default value;
e.g., the default value of k can be n, if there is no constraint on
the maximum number of clusters that can be shown. If maintaining
diversity in the answer set is not of interest, then D can be set to
0. Similarly, if coverage is not of interest, L can be set to 0 (to
display a set of clusters with high overall value), or 1 (to cover the
element with the highest value in S), or to k (to cover the original
top-k elements from S). To maintain all the constraints, the chosen
clusters may pick up some redundant elements t /∈ SL∗ that do not
belong to the top-L elements.

The optimization objective, called Max-Avg, intuitively high-
lights the important attribute-value pairs across all tuples with high
values in S, even if they are outside the top-L elements.5 In any
solution, the value of each covered element contributes only once
to the objective function, hence the selected clusters in O do not
get any benefit by covering the elements with high value multiple
times. In fact, the optimal solution when D = 0 and k ≥ L is ob-
tained by selecting top-k original elements. The optimal solution
considers the average value instead of their sum since otherwise,
always the trivial solution (∗, ∗, · · · , ∗) covering all elements and
satisfying all constraints will be chosen.

4.2 Semilattice on Clusters and Properties
A partially ordered set (or, poset) is a binary relation ≤ over a

set of elements that is reflexive (a ≤ a), antisymmetric (a ≤ b, b ≤
a ⇒ a = b), and transitive (a ≤ b, b ≤ c ⇒ a ≤ c). A poset is a
semilattice if it has a join or least upper bound for any non-empty
finite subset. The coverage of elements described in Section 3 nat-
urally induces a semilattice structure on our clusters C, where for
any two clusters C,C′ ∈ C, C ≤ C′ if and only if C′ covers C,
i.e., cov[C] ⊆ cov[C′]. If C ≤ C′, then C′ is called an ancestor
of C in the semilattice, and C is a descendant of C′. Equivalently,
if a cluster Cup covers another cluster Cdown by replacing exactly
one attribute value of Cdown by the don’t care value (∗), then we
draw an edge between them, and put Cup at one level higher than
Cdown in the semilattice (this gives a transitive reduction of the
poset). Level ` of the semilattice is the set of clusters with exactly
` ∗ values. Figure 3b shows the semilattice structure of C that has
two attributes A1 and A2, where the domains are D1 = {a1, a2}
and D2 = {b1, b2}. The distance function described in Section 3
has a nice monotonicity property that we use in devising our algo-
rithms in Section 5 (proof is in [34]):

PROPOSITION 4.2. (Monotonicity) Let O be a set of clusters.
Let λ be the minimum distance between any two clusters in O as
defined in Definition 3.1, i.e. λ = minC,C′∈SC d(C,C′). Let
SC′ = (SC \ {C1}) ∪ {C2}, where a cluster C1 is replaced by
another cluster C2 such that C2 covers C1 (i.e., C2 is an ancestor
of C1 in the semilattice). Let λ

′
be the minimum distance in SC

′
,

i.e., λ
′

= minC,C
′∈SC

′ d(C,C
′
). Then λ

′
≥ λ.

Assuming the semilattice structure in Figure 3b, note that
{(a1, b2), (∗, b1)} satisfies the distance constraint for D = 2. If
we replace (a1, b1) by one of its ancestors (a1, ∗), the new two
clusters {(a1, ∗), (∗, b1)} also satisfies the constraint for D = 2.
5 We also investigated an alternative objective called Min-Size that mini-
mizes the number of redundant elements. However it may miss some inter-
esting global properties covering many high-valued elements in S, and is
less useful for summarization.

4.3 Complexity Analysis
The optimization problem can be solved in polynomial time in

data complexity [30] if the size limit k is a constant. This is because
we can iterate over all possible subsets of the clusters of size at most
k, check if they form a feasible solution, and then return the one
with the maximum average value. However, this does not give us
an efficient algorithm to meet our goal of interactive performance.
For example, if k = 10, the domain size of each attribute is 9, and
the number of attributes is 4, the number of clusters (say N ) can be
104, and the number of subsets will be of the order of Nk = 1040.

When k is variable, the complexity of the problem may arise
due to any of the four factors in Definition 4.1: the size constraint
k, the coverage parameter L, the distance parameter D, and the
incomparability requirement that the output clusters should form
an antichain. Due to multiple constraints, it is not surprising that
in general, even checking if there is a non-trivial feasible solution
is NP-hard. In particular, when k ≤ L, simply the requirement
of covering L original elements by k clusters in a feasible solution
lead to NP-hardness without any other constraints. However, in the
case when k ≥ L (the user is willing to seeL clusters), the decision
and optimization problems become relatively easier.

In the full version [34] we show the following: (1) k ≥ L,
D = 0: Top-k elements give the optimal solution, since adding
any redundant element worsens the Max-Avg objective. (2) k ≥ L,
arbitraryD: A non-trivial feasible solution always exists, since we
can pick arbitrary ancestors of each top-L element from levelD−1
satisfying all the constraints. However, the optimization problems
are NP-hard. (3) k < L, D = 0: Even checking whether a non-
trivial feasible solution exists is NP-hard. (4) k < L, arbitrary D:
The same hardness as above holds.

Although the optimization problem shows similarity with set
cover, for a formal reduction, we need to construct an instance of
our problem by creating a set of tuples and ensure that the ‘sets’ in
this reduction conform to a semi-lattice structure. To achieve this,
we give reductions from the tripartite vertex cover problem that
is known to be NP-hard [19], and construct instances S with only
m = 3 attributes. The NP-hardness proof the optimization prob-
lem for k ≥ L is more involved than the NP-hardness proof for the
decision problem for k < L, since in the former case the coverage
constraint with k ≥ L does not lead to the hardness.

5. ALGORITHMS
Given that the optimization problem for the case k ≥ L, and

even the decision problem for the case k < L, are NP-hard, we de-
sign efficient heuristics that are implemented in our prototype and
are evaluated by experiments later. Not only finding provably op-
timal solutions for our objectives is computationally hard, but de-
signing efficient heuristics for these optimization problems is also
non-trivial. The optimization problem in Definition 4.1 has four or-
thogonal objectives for feasibility: incomparability, size constraint
k, distance constraint D, coverage constraint L. In addition, the
chosen clusters should have high quality in terms of their over-
all average value. In Section 5.1, we discuss the Bottom-Up al-
gorithm that starts with L singleton clusters satisfying the cov-
erage constraint, and merges clusters greedily when they violate
the distance, incomparability, or the size constraints. Then in Sec-
tion 5.2, we discuss an alternative to Bottom-Up that we call the
Fixed-Order algorithm that builds a feasible solution incremen-
tally considering each of the top-L elements one by one. In general,
Bottom-Up gives better quality solution and as discussed in Sec-
tion 6, is amenable to processing of multiple parameter settings as
precomputation, whereas Fixed-Order is more efficient, hence in
Section 5.3 we describe a Hybrid algorithm combining these two.

2200



Algorithm 1 The Bottom-Up algorithm
Input: Size, coverage, and distance constraints k, L,D
1: O = set of L singleton clusters with the top-L elements.
2: /* First phase to enforce distance */
3: whileO has two clusters with distance < D do
4: Let PD be the pairs of clusters inO at distance < D.
5: Perform UpdateSolution(O, PD).
6: end while
7: /* Second phase to enforce size limit k, almost the same as above except

all pairs of clusters are considered. */
8: while |soln| > k do
9: Let Pall be the all pairs of clusters inO.

10: Perform UpdateSolution(O, Pall).
11: end while
12: returnO

13: Procedure UpdateSolution(O, P )
14: Input: current solutionO, a set of pairs P of clusters
15: (C1, C2) = argmax(C1,C2)∈P avg(O ∪ LCA(C1, C2))

16: Perform Merge(O, C1, C2).

5.1 The Bottom-Up Greedy Algorithm
Here we start with L singleton clusters with the top-L elements

as our current solution O, which satisfies the coverage and incom-
parability constraints, but may violate size and distance constraints.
Then we iteratively merge clusters in two phases: the first phase en-
sures that no two clusters inO are within distance D of each other,
the second phase ensures that the number of clusters is k or less.
The following invariants are maintained by the algorithm at all time
steps: (1) (Coverage) Clusters in O cover the top-L answers. (2)
(Incomparability) No cluster in O covers another. (3) (Distance)
The minimum distance among the pairs of clusters in O never de-
creases. During the execution of the algorithm, the only operation
is merging of clusters, therefore, the coverage invariant above is al-
ways maintained. Further, the Merge procedure described below
maintains the incomparability invariant.

The Merge(O, C1, C2) procedure. Given two clusters C1, C2

∈ O, the Merge(O, C1, C2) procedure replaces C1, C2 by a new
cluster Cnew = LCA(C1, C2), their least common ancestor,
and also removes any other cluster in O that is also covered by
Cnew. LCA(C1, C2) is computed simply by replacing by ∗ any
attribute whose values in C1, C2 differ. For instance, the LCA of
(a1, ∗, c1, ∗) and (a1, b2, c2, ∗) is (a1, ∗, ∗, ∗). Further, if another
cluster (a1, b3, ∗, ∗) belongs to O, Merge would also remove this
cluster, since it is covered by (a1, ∗, ∗, ∗).

In addition to maintaining the coverage condition, the merging
process does not add any new violations to the distance condition
inO. This follows from the monotonicity of the distance condition
given in Proposition 4.2. However, due to the merging process,
the value of the solution may decrease, since LCA(C1, C2) covers
all the elements covered by C1, C2 and all other clusters that are
removed from O, and can potentially cover some more.

The bottom-up algorithm is given in Algorithm 1. The
UpdateSolution(O, P ) procedure used in this algorithm takes
the current solutionO and a set of pairs of clusters P to be consid-
ered for merging, and greedily merges a pair. The first and second
phases of Algorithm 1 are very similar, the only difference being
the pairs of clusters P they consider for merging. In the first phase,
only the pairs with distance < D are considered, whereas in the
second phase, all pairs of clusters inO are considered for merging.

We also implemented and evaluated other variants of bottom-up
algorithms: (i) when we start at the clusters at level D− 1 (instead
of individual top-L tuples that satisfy the distance constraint), and
(ii) when we greedily merge pairs C1, C2 with maximum value of
avg(LCA(C1C2)) (instead of maximum average value of the over-

all solution after merging). Both these variants had efficiency and
quality comparable or worse than the basic Bottom-Up algorithm
as observed in our experiments.

5.2 The Fixed-Order Greedy Algorithm
The Fixed-Order algorithm maintains a set of clusters O, and

considers top-L elements in descending order by value. It decides
whether the next element is already covered by an existing cluster
in O or can be added as it is (satisfying D and k constraints); oth-
erwise Fixed-Order merges the element with one of the existing
clusters in greedy fashion. All constraints (k,D, and incomparabil-
ity of clusters) are maintained after each of the top-L is processed,
so at the end the coverage on top-L is satisfied too. Fixed-Order
considers a smaller solution space than Bottom-Up, since it pro-
cesses each top-L element in an online fashion, and therefore may
return a solution with worse value. However, instead of all pairs of
initial clusters (quadratic in number of clusters) it considers each
cluster only once (linear), resulting in better running time than
Bottom-Up. Details and pseudocode for Fixed-Order are shown
in the full version[34].

We also consider two variants of Fixed-Order and evaluate
them later in experiments: i) k-means-Fixed-Order, where we
first run the k-means clustering algorithm [14] (with random seed-
ing) on the top L elements, find the minimum pattern covering all
elements in each of the resulting clusters, and make Fixed-Order
process these k patterns first before moving on to the top L el-
ements (in descending-value order); ii) random-Fixed-Order,
where we first pick k element at random from the top L elements
to process first, before moving on to the remaining top L elements
(still in descending-value order). Both variants introduce some ran-
domness in the results, and k-means-Fixed-Order has consider-
able higher initial processing overhead. However, as we shall see
in Section 7, they do not produce higher-quality results.

5.3 The Hybrid Greedy Algorithm
Bottom-Up tends to produce results with higher quality than

Fixed-Order, and can process multiple k,D values at the same
time as discussed in Section 6, but usually requires more iterations
than Fixed-Order. In order to get a good trade-off, we introduce
the hybrid algorithm with two phases - the Fixed-Order phase
and Bottom-Up phase. For a given k, L, and D, the first phase
for Hybrid is the same as Fixed-Order, but with a larger num-
ber of c × k initial singleton clusters with constant c > 1. After
covering all top-L elements in c× k clusters, Hybrid goes into the
Bottom-Up phase to reduce the number of clusters from c × k to
k using the Merge procedure that can collect redundant elements.
Like Bottom-Up, Hybrid also helps in incremental computation
for different choices of parameters as discussed in the next section.

6. PARAMETER SELECTION
One of the main challenges in a system with multiple input pa-

rameters is choosing the input parameter combination carefully to
help the user explore new interesting scenarios in the answer space.
To help the user choose interesting values of k, L,D, we provide
an overall view of the values of the solutions (average value of all
element covered by the clusters chosen by our algorithm) that at
the same time precomputes the results for certain parameter com-
binations and helps in interactive exploration. In Section 6.1 we
describe the visualization facilitating parameter selection, in Sec-
tion 6.2 we discuss how the precomputation is achieved to plot
these graphs, and in Section 6.3 we discuss a number of optimiza-
tions for interactive performance of our approach.
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6.1 Visual Guide for Parameter Selection
Figure 2 gives an example of visualization showing the overview

of the solutions that is generated for each chosen value of L, and
illustrates the values of the solutions for a range of choices on D
and k. The y-axis shows the average value of the tuples covered
by the chosen clusters by our algorithm (Definition 4.1), the value
of k (in a chosen range) varies along the x-axis, and different lines
correspond to different values of D (also in a chosen range).

With the help of this visualization, the user can avoid selecting
certain uninteresting or redundant parameter combinations. For
example, with the visualization in Figure 2, a user can quickly see
that the bottom-left region (where k = 2, 3) is uninteresting, with
low average values. The user also sees that certain ranges of pa-
rameter settings are not worth exploring as they do not affect the
solution quality or in very predictable ways: e.g., for D = 1, the
range of k > 12 yields almost the same solution quality, while for
k ∈ [2, 9], the quality changes predictably with k. On the other
hand, the “knee points” (e.g., k = 9, 11 for D = 1) suggest good
choices of parameters. The visualization also reveals the trade-off
between different choices of D; e.g., at k = 9, the user can de-
cide between a solution set with a higher value (D = 1) or more
diversity (D = 2). Note that in Figure 2, curves for different D
values may overlap, which suggests ranges of D values with little
impact on solution quality, allowing the user to work on “bundles”
of D values instead of individually. If the user cares about curves
for individual D values, legends on the right are clickable to hide
particular curves to reveal others that overlap.

6.2 Incremental Computation and Storage
To be able to generate plots in Figure 2, one obvious approach

is running an algorithm from Section 5 for all combinations of k
and D given an L value. However, for interactive exploration, this
approach is sub-optimal. The Hybrid algorithm (and Bottom-Up)
exhibits two levels of incremental properties that help in computing
the solutions for a range of k,D values in a batch.

In Hybrid, for a given value of L, the Fixed-Order phase out-
puts a set of initial clusters that can be used for all combinations
of k,D, and therefore, this step can run only once. Remembering
this intermediate solution, the Bottom-Up phase can run for all D
values from the stored status. For each D, it computes results for
all k values (ranging from the maximum to the minimum value)
since in every round of iteration, two clusters are merged to reduce
the number of clusters by one. The procedure for this incremental
computation is shown in Figure 4a. In the following, we discuss
how we materialize and index solutions for efficient retrieval.

Retrieval Data Structure. The computed solutions for dif-
ferent k,D values serve as pre-computed solutions when the user
wants to inspect the solution in detail for a certain choice of
k, L,D. The obvious solution for storage is to record the set of
output clusters for every choice of (k,D). However, we imple-
mented a combined retrieval data structure for storage that is both
space and time efficient based on the following observation in the
execution of Hybrid (and Bottom-Up) algorithm:

PROPOSITION 6.1. (Continuity) Given solution cluster lists
O1,O2, ...,Or where r rounds are executed, for any cluster c ∈
Oa where 1 ≤ a < i, once c is removed from Oi at the end of
round i (because of merging), for all j > i, c /∈ Oj .

In other words, once a cluster is merged and therefore vanishes
from the set of clusters in the solution, it never comes back. Hence,
if OL,D,k denotes the solution for a given combination of L,D, k,
the set of values of k for which a cluster c ∈ OL,D,k forms a con-
tinuous interval. Therefore, instead of storing the set of clusters

(a) Incremental computation structure (b) Interval structure for storing exis-
tence of clusters

Figure 4: Incremental computation and interval structure.

for all values of k and D, given an L value (where the solutions
may have substantial overlap), we use an interval tree[5] SD for
each value of D to store the range of k for which a cluster appears
in OL,D,k storing only the maximum (or starting) and minimum (or
ending) k value for this cluster (see Figure 4b). It reduces the num-
ber of solutions (sets of clusters) to be stored from O(Nk × ND)
(where Nk and ND denote the total number of k and D values un-
der consideration respectively) to O(Nd). Further, the interval tree
data structure supports efficient retrieval in time O(logNk)[5]. .

6.3 Optimizations
A number of additional optimizations are implemented to make

the system efficient and interactive as described below.
Delta judgment. In every iteration (called round) of greedy

cluster merging in the Hybrid (and Bottom-Up) algorithm, clus-
ters are merged such that the average value of the clusters in the
resulting solution is maximized using the UpdateSolution func-
tion (Algorithm 1). Let Oi be the set of clusters at the end of a
round i, Ti = cov(Oi) be the tuples covered byOi, vi = avg(Oi)
be the average value ofOi, and Tc = cov(c) be the tuples covered
by a given cluster c. The naive way of executing UpdateSolution

in round i+ 1 involves comparing the tuple list Tc of a given clus-
ter c (= LCA(C1, C2) as mentioned in Algorithm 1) and the cur-
rent set of covered tuples Ti, finding out new tuples in Tc \ Ti to
obtain Ti ∪ Tc as potential Ti+1, and recalculating the objective
avg(Ti ∪ Tc) based on the new tuples. However, it takes a huge
amount of time doing all the tuple-wise comparison for all possible
clusters that are eligible to be merged in this round. Instead, we
incrementally keep track of the marginal benefit (as sum and count
to compute the average) that a cluster c brings to the new solution
Oi+1 compared to Oi as follows (pseudocode in Algorithm 2).

The basic idea is that the improvement in the total average value
that a cluster c brings to solutionOi is due to the tuples in Tc \Oi,
and that it brings to Oi−1 is due to the tuples in Tc \ Oi−1. The
difference can be computed by keeping track of the new tuples that
appear in Ti \ Ti−1, and comparing them with the tuples in Tc. In
addition, we incrementally store ∆i,c,sum and ∆i,c,count (the sum
of values and the count of tuples in Tc \ Ti, incrementally com-
puted from ∆i−1,c,sum,∆i−1,c,count). Hence the tentative new
average value of the solution Oi+1 if we add c to Oi can be com-
puted as vi+1 =

vi×|Ti|+∆i,c,sum

|Ti|+∆i,c,cnt|
. This optimization evaluates the

UpdateSolution procedure efficiently since the above computa-
tions need comparisons between (i) the list containing Ti \ Ti−1

and (ii) Tc, and Ti \Ti−1 is likely to be much smaller than Ti. This
gives 30x speedup in our experiments.

Cluster generation and mapping to tuples. The semilat-
tice structure on the clusters given an L value is required to run
our algorithms that may contain a number of clusters in a naive
implementation. To reduce this space to contain only the rele-
vant clusters, clusters are first generated by each tuple in top-L,
which ensures that each generated cluster is a possible cluster cov-
ering at least one tuple in top-L. Besides, we need to maintain
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Algorithm 2 The Delta-Judgment Procedure
Input: Marginal score benefit ∆sum, marginal amount benefit ∆cnt,

round indicator i indicating when were ∆ values last updated, current
round j + 1, difference list T(j,j−1) = Tj \ Tj−1

1: /* ∆i−1,c,sum = ∆sum and same for ∆i−1,c,cnt in this case*/
2: vj+1 = new score to be calculated.
3: vj = current score.
4: /* Marginal benefits are far outdated, -1 is default value; i <= j − 1

means ∆i−1,c,sum and ∆i−1,c,cnt cannot be updated directly using
T(j,j−1) */

5: if i = −1 or (j − i ≥ 1) then
6: ∆cnt =

∑
(val(Tj \ Tc))

7: ∆sum = |Tj \ Tc|
8: /* Marginal benefits were updated last round (round j) and can use

T(j,j−1) for comparison */
9: else if i = j then

10: ∆cnt =
∑

(val(T(j,j−1) \ Tc))

11: ∆sum = |T(j,j−1) \ Tc|
12: /* Marginal benefits were updated in the same round */
13: else if i = j + 1 then
14: /* Do nothing. It is up-to-date. */
15: end if
16: vj+1 = (vj × |Oj |+ ∆sum)/(|Oj |+ ∆cnt))
17: /* Update the round indicator */
18: i = j + 1
19: return vj+1

mappings between clusters and the tuples they contain, for which
tuples generate matching expressions for their target clusters and
search through the cluster list (instead of starting with a cluster and
searching for matching tuples). Experiments in Section 7.3 shows
the benefit - 100x− 1000x speedup in running time.

Hash values for fields. The value of an attribute is often found
to be text (or other non-numeric value). While storing information
on the clusters, we maintain hashmaps for each field between actual
values and integer hash values, and store the hash values inside each
cluster (mapped back to the original values in the output). This
optimization reduces the running time of the order of 50x.

7. EXPERIMENTS
We develop an end-to-end prototype with a graphical user inter-

face (GUI) to help users interact with the solutions returned by our
two-layered framework. The prototype is built using Java, Scala,
and HTML/CSS/JavaScript as a web application based on Play
Framework 2.4, and it uses PostgreSQL at the backend (screenshots
of the graphical user interface can be found in the demonstration
paper for our system [35]). In this section we experimentally eval-
uate our algorithms using our prototype by varying different param-
eters (Section 7.1), and then test the precomputation and guidance
performance (Section 7.2). The effects of optimizations are given
in Section 7.3, scalability of our algorithms for a larger dataset is
discussed in Section 7.4.

Datasets. In most of the experiments, we use the MovieLens
100K dataset [29, 28, 13]. We join all the tables in the database
(for movie-ratings, users, their occupation, etc) and materialize the
universal table as RatingTable. Each tuple in this rating table has 33
attributes of three types: (a) binary (e.g., whether or not the movie
is a comedy or action movie), (b) numeric (e.g., age of the user),
and (c) categorical (e.g., occupation of the user). We join the tables
as a precomputation step to avoid any interference while measuring
the running time of our algorithms.

The other dataset we use is TPC-DS benchmark [21] primarily
for evaluating scalability of our algorithms. The table we material-
ized via generator is Store Sales, which contains 23 attributes and
2,880,404 tuples in total. The aggregate queries used for these two
datasets (average rating for MovieLens and average net profit for
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Figure 5: Comparison with brute-force.

TPC-DS) can be found in [34]. All experiments were run on a
64-bit Ubuntu 14.04.4 LTS machine, with Intel Core i7-2600 CPU
(4096 MB RAM, 8-core, 3.40GHz).

7.1 Varying Parameters
Unless mentioned otherwise, the three algorithms from Section 5

are compared in this section: (i) Bottom-Up, (ii) Fixed-Order,
(iii) Hybrid. In the plots showing the values, we also include (iv)
Lower Bound: value of the trivial (feasible) solution (a single clus-
ter with don’t-care ∗ values for all attributes) as a baseline.

Comparison with baselines. We compare our algorithms with
two baselines: the brute-force algorithm considers all possible clus-
ter combinations, and outputs the global optimal; the lower-bound
algorithm simply returns the trivial answer containing one single
cluster with all attributes as “*”s, which is always feasible for any
value of k, L,D. We also consider two variants of Fixed-Order:
random and k-means, discussed in Section 5.2. Figure 5a shows
the running time for L = 5, D = 3 and k = 2, 3, 4 (lower-bound
is omitted because it returns trivial answers). Even with such small
parameter values, the brute-force algorithm is not practical: e.g., at
k = 4, it takes more than 2.5 hours. Figure 5b compares the aver-
age values produced by different algorithms. Since the random and
k-means variants of Fixed-Order are randomized, we report their
average values over 100 runs each. From Figure 5b, we see that the
results of Fixed-Order and its variants are comparable with brute-
force’s, and are much better than the trivial solution. Another ob-
servation is that neither random nor k-means variant improves the
quality of plain Fixed-Order. Further, they introduce more vari-
ance in the result quality (0.033 for random and 0.045 for k-means
in terms of combined standard deviation), and slightly increase the
running time. Therefore, in the rest of the section, we focus on the
plain Fixed-Order algorithm.

Effect of size parameter k. Figure 6a shows the running time
varying k. The running time of Fixed-Order is the best as it
never considers more than k candidate merges per step; in con-
trast, Bottom-Up may consider a quadratic number of candidate
merges per step and it is slower than Fixed-Order as a conse-
quence. Hybrid is in the middle for runtime as expected. Fur-
thermore, D = 3 helps bound the size of C` and hence the cost
of computing the set cover. The running time tends to decrease
with bigger k for both Fixed-Order and Bottom-Up; the reason
is that fewer merges are needed to reach the desired k. However, for
Hybrid, since larger k makes the candidate pool larger and might
bring in more calculation in the second phase (Bottom-Up phase),
the run time for Hybrid tends to get closer to Bottom-Up.

The average value of Fixed-Order is lower than the value of
Bottom-Up or Hybrid as explained in Section 5, although gets
better with larger k in Figure 6b.

Effect of coverage parameter L. Figure 6c shows that running
time of all algorithms increase as the number of elements to be cov-
ered L increases. Since Fixed-Order depends linearly on L, it is
less affected by L, whereas Bottom-Up treats individual elements
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Figure 6: Experimental results varying parameters. The default values of parameters are m = 8, k = 3, L = 40, D = 3.

as clusters and may incur quadratic time w.r.t. L. For Hybrid, with
the restriction of the size of the candidate pool determined by k, the
run time increase is slower than Bottom-Up and is comparable with
Fixed-Order. Note that in Figure 6d, the upper bound decreases
since with L increasing, the average value of the top-L elements
decreases. All three algorithms seem to be close in terms of aver-
age values, but Bottom-Up has the highest value most of the times
and Hybrid usually gets results close or equal to Bottom-Up.

Effect of distance parameter D. In Figure 6e, Fixed-Order
is mostly unaffected by D since the distance value is checked only
once when an element is considered. Hybrid is relatively constant
as well given that when the distance check starts, the number of
unchecked tuples is limited by the candidate pool. For Bottom-Up
as D increases, the run time drops first and then climbs. It may
be caused by the existence of a balance point on number of cal-
culations between distance insurance (phase 1 in Bottom-Up) and
greedy merge (phase 2 in Bottom-Up).

The average value of the output (the value of objective function)
is highest when D = 1 (since singleton clusters are collected for
L = k = 20), then drops with D going up as shown in Figure 6f.

Effect of number of attributes m. Varying the number of
grouping attributes m also illustrates the effect of varying input
data size. Since our algorithms run on the output of an aggregate
query, as m increases, our input data size |S| = n is likely to
increase (for the m values in Figure 6g and 6h, the size of the
input ranges from 140 to 280). When a new query comes, the
system performs an initialization step of constructing clusters and
the semi-lattice structure. This initialization time is shown in Fig-
ure 6g. This step is performed only once per query, varying k and
D does not need another initialization. Our implementation takes
from 10ms when m = 4 to about 1s when m = 10. Note that
this is the number of group-by attributes in the top-k aggregate
query, not in the original dataset. So it is likely to have a small
value ≤ 10. Figure 6h has the running time of the algorithms for
k = L = 20, D = 3 and shows that all the algorithms return
results in real time (in a few ms) after the initialization step.

7.2 Cost and Benefit of Precomputation
The performance evaluation for precomputation is shown by

varying k, L and D separately, and comparing the running time

of Hybrid between precomputation implementation and non-
precomputation (single) implementation.

Effect of size parameter k. In this experiment, L = 1000,
D = 2 and N = 2087 are fixed. Five k values are chosen:
5, 10, 20, 50, 100. The running time result is shown in Figure 7a:
the initialization time hardly changes with k growing since k does
not affect the initialization process. Given that a larger k requires
less operations in Bottom-Up phase to reach the target k, the run-
ning time for the algorithm (Hybrid) has a descending trend.

Effect of coverage parameter L. The fixed parameters are
k = 20, D = 2, and N = 2087. Three L values are selected
for the experiment:L = 200, 500, 1000. The running time results
for single version and precomputation version are presented in Fig-
ures 7c and 7d. Both implementations have rising trend with re-
spect to L and share similar initialization times as expected. Al-
though under the same parameter combinations, algorithm runtime
for single implementation is much lower than precomputation time
in the other implementation (about 1/3 to 1/4), but the retrieval time
for precomputation implementation is extremely short (tens of mil-
liseconds), which can make up for the time in multiple runs.

Effect of total elements N. Here three parameters k, L,D are
fixed as k = 20, L = 500 and D = 2. We varied total input
elements to test the system’s performance with relatively higher
capacity: N = 927, 2087 and 6955. The running time result is
shown in Figures 7e and 7f. The changing trends are similar with
those in Figures 7c and 7d, but a significant increase for the initial-
ization time can be observed with N growing. This is caused by
materializing more possible clusters brought by variety of tuples.

Single run vs. multiple runs. From Figure 7c, 7d, 7e and
7f, the information is enough for comparing precomputation and
non-precomputation versions on both single run and multiple runs
scenario - For a single run, precomputation process is unused, mak-
ing precomputation version the slower and more expensive choice;
For multiple runs with similar setup, the precomputation version
has increasingly more benefits brought by the rapid retrieval pro-
cess taking tens of milliseconds. In order to provide a quantitative
comparison, we provide Figure 7b withN = 6955: if only a single
run is required, the single version of Hybrid is clearly faster and
cheaper than the precomputation version. However, when the third
run finishes, the precomputation version is already faster; When all
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six runs finish, the single version takes about two times in terms of
running time compared with the precomputation version.

Timing for Guidance Visualization. We evaluated the running
time for the generation of guidance visualization under different
queries. The generation times are similar among different number
of attributes - 20-40 milliseconds when the number of attributes is
from 4 to 10 with N = 2087 in MovieLens dataset, meeting the
requirement for interactive performance.

7.3 Benefit of Optimizations
Cluster generation and mapping to tuples. SinceL is the only

factor that affects the initialization time when the input size N is
fixed, in this experiment, L varies among 200, 500 and 1000 while
others are fixed: k = 20, D = 2, N = 2087. The result is pre-
sented in Figure 8a. Only the running time of initialization is drawn
because the optimizations in this section only affect the initializa-
tion time. The optimizations - cluster generation and cluster-tuple
mapping - provide significant performance improvement by cutting
down the running time from > 100s for L = 1000 to 0.5s.

Delta Judgment. The effect by introducing Delta Judgment is
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Figure 9: TPC-DS experimental results varying parameters
and with or without precomputations.
shown in Figure 8b. Given that L is also the most effective variable
to affect the running time, the experimental settings are the same
as the experiment for Figure 8a. However, only the running time of
the algorithm is plotted since Delta Judgment has no effect on the
running time of initialization. The result in Figure 8b shows that the
Delta Judgment successfully improves the algorithm’s efficiency
from 4.6s to 0.15s when L = 1000, which is the slowest case in
the experiment in this section.

7.4 Scalability with a Larger Dataset
In order to evaluate the scalability of our algorithms we perform

an experiment with TPC-DS dataset on Store Sales table. The pa-
rameters are set to k = 20, D = 2 and N = 47361. Coverage
parameter L varies among 500, 1000 and 2000. Both the single
and precomputation version are evaluated using this set of parame-
ters. From the results shown in Figure 9a and Figure 9b, the initial-
ization time is interactive - about 1s for the the largest parameters:
L = 2000 and N = 47361. However, even for the single ver-
sion, the running time of the algorithm increases to more than 1s
compared with 200ms from results in Figures 7e and 7f, and for
the precomputation version it increases to ∼ 2.5s. Although the
running time increases, the total running time (∼ 3.5s) for precom-
putation is still interactive. Note that the size of the answers (N )
output by a query is likely to be much smaller than the size of the
dataset, even for a big dataset.

8. USER STUDY AND SURVEY
We conducted a user study with the following high-level goals:

(1) to compare our approach with an alternative that adapts decision
trees [24] and (2) to evaluate the utility of user-specified parame-
ters in our approach. Specifically, we want to know: (1) whether
our new problem formulation provides any advantage over adapt-
ing existing methods to the same usage scenarios; and (2) whether
allowing user-specified parameters in our problem formulation is
warranted in order to capture the range of different usage scenarios
and/or user preferences. In addition, we informally solicited feed-
back during the demonstration of our system at SIGMOD 2018 [35]
to assess the effectiveness of our interactive features in Sections 6.

8.1 User Study Setup
Dataset and queries. All data are drawn from the MovieLens

RatingTable as described in Section 7. Queries are based on the
same aggregate query template introduced as in Example 1.1, with
an additional WHERE condition and variations in query constants and
group-by attributes across user tasks.

Adapted decision tree. As discussed in Section 2, no exist-
ing method suits our problem setting. After exploring various pos-
sibilities, we decided to adapt the method of decision trees [24]
as it offers the closest match with our application scenarios. The
structure of a decision tree naturally induces summaries of top-L
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tuples in the form of predicates, which are easier for users to inter-
pret than other classifiers. It is also discriminative, as opposed to
simply running clustering algorithms over the top-L tuples while
ignoring low-value tuples. We use the standard implementation
provided by Python’s scikit-learn package [22]; we tune the
height of the decision tree such that the number of “positive” leaf
nodes (wherein top-L tuples are the majority) as close as possible
to, but no greater than, k. Note that the cluster patterns under this
approach can be more complex than ours, as they may involve non-
equality comparisons and negations. This additional complexity
increases discrimination, but makes the patterns more difficult to
interpret and internalize—a hypothesis we shall test with our study.

Tasks. Each study subject is asked to carry out three groups
of tasks (task groups): (i) varying-method, (ii) varying-k, and (iii)
varying-D. The first group is designed to compare our approach
and decision trees. The last two are designed to evaluate the util-
ity of making parameters k and D in our approach specifiable by
users.6 To account for the possible learning effect, we sequence the
task groups differently among study subjects—half go through the
sequence varying-(method, k, D), while the remaining go through
varying- (k, D, method).

Before each task group, we familiarize the subject with the ag-
gregate query result as well as the tasks; Then, we give the subject
a series of questions, organized into three sections in order. Each
question asks the subject to classify a given tuple, whose value is
hidden, into one of three categories: “top” (value among the top
L of all tuples), “high” (value above or equal to the average, but
outside the top L), and “low” (value below average). The three
sections are based on the same “working set” of clusters, but differ
in the information the subject can access:
• Patterns-only, 6 questions: The subject can see the clusters and

their associated patterns, but not the membership within clusters
or the table of all query result tuples. This section is designed to
test how well the cluster patterns help users understand the data.
• Memory-only, 6 questions: The subject cannot access any in-

formation; all questions must be answered from memory. This
section is designed to test the extent to which users can internal-
ize the insights learned from the cluster patterns for later use. We
ensure that these six tuples are distinct from those chosen before.
• Patterns+members, 8 questions: The subject can see the clus-

ters patterns as well as the covered result tuples. This section
is designed to test how our full-fledged cluster UI can help user
explore data. The 8 tuples are chosen and reordered randomly
from the 12 tuples used in the previous two sections.
After these three sections, we present two sets of clusters: one is

the working set, the other is obtained under a different setting (but
for the same aggregate query and L) for comparison. We then ask
the subject to choose a preferred set for the tasks just performed.
For a varying-method task group, the cluster to compare is pro-
duced by decision trees, under the same k setting (D does not ap-
ply to decision trees); For a varying-k task group, the cluster to
compare is produced by our approach under another k, while other
parameters remain the same; For a varying-D task group, the clus-
ter to compare is produced by our approach under another D.

Participants and assignment of tasks. There are 16 partic-
ipants - 14 of them are graduate students at Duke University (12
in computer science and 2 others), while the remaining 2 are Duke
undergraduates. They all have some prior experience working with
tabular data and are capable of handling tasks in our user study.
6We do not evaluate the utility of making L user-specifiable, as it should be
evident that what “top” tuples mean depends on the situation—e.g., a small
L means interest in characterizing really high-valued tuples, while a larger
L means interest in tuples whose values are “good enough.”

Recall that each of the three task groups compares two sets of
clusters. There are 23 = 8 possible assignments in total. We assign
two subjects to each of these 8 possibilities, each goes through one
of the two task group sequences. Finally, we ensure that tuples in
our questions are equally distributed among all subjects.

Metrics. We record the time for each subject to complete each
of the three sections in each of the three task groups. We evalu-
ate the accuracy of answers using the standard accuracy measure
of TP+TN

TP+FP+FN+TN
based on confusion matrices [9], and we de-

fine two variants: T-accuracy focuses on discerning the top tuples
from the rest, where “positive” means being in top L; TH-accuracy
focuses on discerning the top and high tuples from the low ones,
where “positive” means being in either top or high category.

8.2 User Study Results
Table 1 summarizes both the quantitative results (subjects’ per-

formance in terms of time and accuracy for classifying tuples into
categories) and qualitative results (subjects’ preferences between
the clustering outputs compared) of our user study.

Varying-method task group. For this task group, we set L =
50, k = 10, D = 1 for our approach, and L = 50, k = 10 for the
method based on decision trees. For this scenario, tree depth of 7
gives exactly 10 positive leaf nodes.

First, note that among the three sections, memory-only
is the fastest, patterns-only is considerably slower, and pat-
terns+members is the slowest. This observation holds both for our
approach and for decision trees (as well as under each setting of
other task groups). This universal trend can be intuitively explained
by the fact that users tend to spend more time on a question if more
information is presented to them.

As for accuracy, patterns+members has the highest accuracy, and
patterns-only is usually no worse than memory-only. This trend
also makes intuitive sense as users are generally able to achieve
higher accuracy if aided with more information. Across settings,
patterns+members is always nearly perfect, as expected.

Comparing our approach and decision trees in terms of time
spent by study subjects, our approach is consistently faster over the
three sections. The biggest advantage is seen in the patterns-only
section, suggesting that our patterns are much easier to apply. The
advantage is less pronounced in the other two sections. For pat-
terns+members, a possible explanation is that users spend bulk of
the time examining detailed memberships. For memory-only, our
conjecture is that decision tree patterns are so difficult to recall that
our subjects realized quickly that spending more time did not help.

In terms of accuracy, our approach is better than decision trees
for the patterns-only and memory-only sections (recall that pat-
terns+members is always nearly perfect across settings). It is un-
derstandable for decision trees to have lower TH-accuracy, because
they are trained to separate only the top tuples from the rest, while
our approach considers the values of all tuples covered by the pat-
terns. On the other hand, while the T-accuracy for decision trees is
good for patterns-only, it drops significantly for memory-only, be-
cause decision tree patterns are difficult for users to memorize. In
comparison, the accuracy of our approach degrades very little from
patterns-only to memory-only, which is the evidence that users can
internalize insights from our simple patterns quite well.

Finally, when asked which method they prefer, the overwhelm-
ing majority of the subjects (14/16) chose our approach over deci-
sion trees. The key reason cited was the simplicity of our patterns.

Varying-k task group. In this task group, we fix L = 30 and
D = 1, and compare k = 5 vs. k = 10. Note that with the big-
ger k, we expect to have more clusters with more specific patterns,
leading to higher discrimination but more complex summaries.
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Table 1: Summary of results from the user study
Task group Varying-method Varying-k Varying-D

Decision tree Our method k = 5 k = 10 D = 1 D = 3

Patterns-only
Time/question 25.7± 6.6 23.5± 6.5 19.6± 6.6 22.5± 5.9 13.5± 3.1 9.6± 2.9

T-accuracy 0.792± 0.121 0.854± 0.132 0.771± 0.139 0.833± 0.088 0.771± 0.087 0.750± 0.108
TH-accuracy 0.646± 0.075 0.854± 0.075 0.625± 0.121 0.708± 0.121 0.771± 0.087 0.813± 0.098

Memory-only
Time/question 9.6± 3.8 8.3± 2.9 11.1± 4.3 9.8± 4.2 8.4± 2.1 6.6± 3.4

T-accuracy 0.625± 0.150 0.792± 0.121 0.771± 0.139 0.667± 0.125 0.646± 0.116 0.667± 0.108
TH-accuracy 0.625± 0.174 0.792± 0.121 0.667± 0.108 0.625± 0.121 0.771± 0.139 0.875± 0.083

Patterns+members
Time/question 22.9± 4.2 23.7± 2.4 21.0± 6.2 22.5± 4.2 13.5± 1.9 14.3± 3.3

T-accuracy 0.922± 0.165 0.953± 0.061 0.938± 0.088 0.953± 0.061 0.906± 0.104 0.953± 0.061
TH-accuracy 0.750± 0.088 0.844± 0.104 0.938± 0.088 0.97± 0.054 0.844± 0.054 0.922± 0.087

Overall preferred 12.5% 87.5% 43.8% 56.2% 37.5% 62.5%

Table 1 shows the user study results, where times are in seconds,
and accuracies are between 0 and 1; we report average and standard
deviation over all subjects. Better performances (shorter times and
higher accuracies) and stronger preferences are highlighted with
box enclosures, unless the advantage is too small. From Table 1,
we see that the bigger k leads to more time spent as long as pat-
terns are accessible to the subjects, i.e., for patterns-only and pat-
terns+members. However, for memory-only, the bigger k actually
results in less time spent; one conjecture is that complex summaries
are so difficult to recall from memory that some subjects simply
stopped trying and resorted to guessing. This observation is con-
sistent with the low accuracies seen under the bigger k for memory-
only, further discussed below.

In terms of accuracy, favor turns from the smaller k to the bigger
k for patterns-only and patterns+members, pointing to a clear trade-
off between time and accuracy. On the other hand, for memory-
only, the trend is reversed: accuracies under the bigger k drop dra-
matically and become lower than under the smaller k, because the
subjects had trouble recalling the summaries from their memory. In
comparison, under the smaller k, accuracies for memory-only are
at least as good as those for patterns-only.

Finally, when asked whether they prefer the smaller or bigger
k, a slight majority of the subjects preferred the bigger, but still a
significant fraction (7/16) preferred the smaller. There is no clear
winner here, unlike the case for the varying-method task group.

Varying-D tasks. We fix L = 10 and k = 7, and compare
D = 1 vs. D = 3. D = 1 represents a looser constraint, and
in this case leads to detailed summaries and higher discriminative
power; the trade-off, of course, is that patterns appear less diverse.

As we can see from Table 1, the bigger D leads to faster an-
swer speed and higher accuracy in most cases, with just two excep-
tions: the smaller D is more accurate in terms of T-accuracy for
patterns-only, and it is faster for patterns+members. Both can be
explained by the fact that, here some clusters produced by the big-
gerD happen to have more general patterns and cover more tuples.
Without access to cluster membership, T-accuracy would suffer be-
cause these clusters may cover some high-valued (but necessarily
top-valued) tuples. With access to cluster membership, T-accuracy
would not be a problem, but more tuples take longer to examine.

Although the performance results appear to favor the bigger D
(looser constraint), preferences are divided. A majority of the sub-
jects do prefer the bigger D, but still a sizable number of them
(6/16) prefer the smallerD, which produces more diverse patterns.

Learning effect. We assess the possible learning effect by
comparing the quantitative result within one experimental sequence
(varying-method first, then varying-k and varying-D), and compare
with the results in Table 1. The differences are minor, and the rela-
tive ordering of approaches by performance largely stays the same,
so the conclusions drawn above still stand. Because of space con-
straints, details are shown in our full paper [34].

8.3 Informal User Survey Results
To measure the effectiveness of the interactive feature described

in Sections 6, we asked attendees who visited our demo booth at
SIGMOD 2018 to fill out an informal survey. We received 18 re-
sponses, and the results are summarized below:

Did you find the Yes, very Yes Not that Not
visualizations helpful? much much at all

For parameter selection 4 13 1 0

The vast majority of the responses are positive. Some construc-
tive criticisms were offered too. One pointed out that the visu-
alization for guiding interactive parameter selection still requires
extensive explanation before users can understand and benefit from
it. Another pointed out that instead of showing all choices of k and
D in this visualization, it might be possible to use the data behind
this visualization to narrow down the choices further.

8.4 Summary and Discussion
The high-level findings are: (1) our approach is more suitable to

the designed tasks than the decision trees, thanks to the simplicity
of our patterns by design; (2) while more specific and detailed clus-
ters can offer better accuracy, this advantage dissipates when users
no longer see the cluster patterns directly, because they are much
less memorable; (3) parameters k and D affect the complexity of
our clustering results and present various trade-offs (e.g., accuracy
vs. efficiency), so users have different preferences.

It is also worth noting that while we did not explicitly compare
with the approach of simply showing the top L tuples with no sum-
marization at all, it be seen as an extreme case where k = L and
D = 1. Hence, the general observation we made when compar-
ing parameter settings applies here too: showing the top L tuples
alone would provide the most detailed information, but that would
be very difficult to use and memorize.

9. CONCLUSIONS
In this paper, we presented a framework for summarizing and

exploring high-valued query answers, considering factors such as
relevance, diversity, and coverage. We studied optimization prob-
lems for these tasks, developed efficient algorithms, evaluated the
approach using real and benchmark datasets, and showed that our
implementation is capable of interactive exploration in real time.
We also conducted a user study to demonstrate the utility of our
approach. There are several directions for future work. While we
mainly focused on categorical attributes, for numeric attributes one
can consider other distance functions (e.g., Lp norms) and descrip-
tion of clusters (e.g., ranges). One can also consider objective func-
tions other than average and see how our algorithms can be adapted
to other objectives. Other sophisticated visualizations to better help
the users are also worth exploring.
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