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ABSTRACT
Many datasets have a temporal dimension and contain a wealth of
historical information. When using such data to make decisions,
we often want to examine not only the current snapshot of the
data but also its history. For example, given a result object of a
snapshot query, we can ask for its “durability,” or intuitively, how
long (or how often) it was valid in the past. This paper considers
durable top-k queries, which look for objects whose values were
among the top k for at least some fraction of the times during a
given interval—e.g., stocks that were among the top 20 most heav-
ily traded for at least 80% of the trading days during the last quarter
of 2017. We present a comprehensive suite of techniques for solv-
ing this problem, ranging from exact algorithms where k is fixed in
advance, to approximate methods that work for any k and are able
to exploit workload and data characteristics to improve accuracy
while capping index cost. We show that our methods vastly outper-
form baseline and previous methods using both real and synthetic
datasets.
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1. INTRODUCTION
Many domains naturally produce temporal data. Making deci-

sion with such data involves considering not only the current snap-
shot of the data, but also its history. We consider the problem of
finding “durable” objects from temporal data. Intuitively, while
a snapshot query returns objects satisfying the query condition in
the current snapshot, a durability query returns objects that satisfy
the query condition with some consistency over time. Durability
queries can vary in complexity. As a simple example, in an en-
vironmental monitoring setting, a scientist may want to know lo-
cations where pollutant levels have consistently remained above a
threshold considered dangerous. As a more complex example, in a
stock market, an investor may be interested in stocks whose price-
to-earning ratios had been among the lowest 10 in the tech industry
over 80% of the time over the past year.
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In this paper, we tackle τ -durable top-k queries, which general-
ize the last example above and have also been considered in [19].
Given a database of objects with time-varying attributes, assume
that we can rank these objects for every time instant. Intuitively, a
τ -durable top-k query returns, given a query interval I , objects that
rank among the top k for at least τ fraction of the time instants in
I . In our last example above, τ = 0.8 and k = 10. We give a more
formal problem statement below.

Problem Definition. Consider a discrete time domain of inter-
est T = {1, 2, . . . ,m} and a set of objects labeled 1, 2, . . . , n,
where each object i has a time-varying value given by function
vi : T → R. Let D = {vi | 1 ≤ i ≤ n} denote this time
series database.

Given time t ∈ T and object i, let ranki(t) denote the rank of i
among all objects according to their values at time t; i.e., ranki(t) =
1 +

∑
1≤j≤n 1[vj(t) > vi(t)].

Given a non-empty interval [a, b) ⊂ T,1 we define durki ([a, b)),
the durability of object i over [a, b) (with respect to a top-k query),
as the fraction of time during [a, b) when object i ranks k or above;
i.e., durki ([a, b)) = (

∑
t∈[a,b) 1[ranki(t) ≤ k])/(b− a).

Given D, a non-empty interval I ⊆ T, and a durability thresh-
old τ ∈ [0, 1], a durable top-k query, denoted DurTopk(I, τ), re-
turns the set of objects whose durability during I is at least τ , i.e.,
DurTopk(I, τ) = {i ∈ [1, n] | durki (I) ≥ τ}.

Contributions. We present a comprehensive suite of techniques
for answering durable top-k queries. First, even in the simpler case
when the query parameter k is fixed and known in advance, appli-
cation of standard techniques would lead to query complexity linear
in either the number of objects, or the total number of times objects
entering or leaving the top k during the query interval. We develop
a novel method based on a geometric reduction to 3d halfspace
reporting [1], with query complexity only linear in the number of
objects in the result, which can be substantially less than how many
times they enter or leave the top k during the query interval.

When k is not known in advance, supporting efficient queries
becomes more challenging. A straightforward solution is to ex-
tend the fixed-k solution and build an index for each possible k,
but doing so is impractical when there are many possible k val-
ues. Instead, we consider two approaches for computing approx-
imate answers: sampling-based and index-based approximation.
The sampling-based approach randomly samples time instants in

1By abuse of notation, we use [a, b) to represent all integers in interval
[a, b): i.e., [a, b) = {a, a + 1, . . . , b − 1}, where 1 ≤ a < b ≤ m + 1.
We will use this notation throughout the paper without further explanation
if the context is clear.
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the query interval, and approximates the answer with the set of ob-
jects that are durable over the sampled time instants (instead of the
full query interval). It provides a good trade-off between query
time (number of samples drawn) and result quality. The index-
based approach selects useful information to index in advance—
much like a synopsis [4]—from which queries with any k can be
answered approximately. We frame the problem of selecting what
to index as an optimization problem whose objective is to minimize
expected error over a query workload, and explore alternative solu-
tion strategies with different search spaces. This approach is able
to achieve high-quality approximate answers with fast query time
and low index space.

2. RELATED WORK
Lee et al. [11] considered the problem of computing consistent

top-k queries over time, which are essentially a special case of τ -
durable top-k queries with τ = 1. The basic idea of their solution is
to go through the query interval and verify membership of objects
in the top k for very time instant. This process can be further sped
up by precomputing the rank of each object at every time instant
and storing this information in a compressed format. However, for
long query intervals, this approach is still inefficient as its running
time is linear in the length of the query interval (as measured by the
number of time instants).

Wang et al. [19] extends the problem to the general case of τ ≤
1. One key observation is that in practice, between two consecutive
time instants, the set of top k objects is likely to change little. Their
approach, called TES, precomputes and indexes changes to top-k
memberships over time (and only at times when actual changes oc-
cur). Given a query interval, TES first retrieves the top k objects at
the start of the interval. Next, using its index, TES finds the next
time instant when the top-k set differs from the current, and updates
the set of candidate objects and how long they have been in the top
k so far; those with no chance of meeting the durability threshold
(even assuming they are among the top k during the entire remain-
ing interval to be processed) can be pruned. The process continues
until we reach the end of the query interval. The time complexity of
TES is linear in the total number of times objects entering or leav-
ing the top k during the query interval, which can still be as high as
k times the length of the query interval for complex temporal data.

Durable top-k queries also arise in informational retrieval [13].
Given a set of versioned documents (web pages whose contents
change over time), a set of query keywords Q and a time interval
I , the problem is to find documents that are consistently—more
than τ fraction of the time over over I—among the most relevant
to Q. The focus of [13] is how to merge multiple per-keyword
rankings over time efficiently into a ranking for Q, based on the
rank aggregation algorithm by Fagin et al. [6]. The problem in our
setting does not have this dimension of Q, so we are able to devise
more efficient indexes and algorithms. Finally, approximation has
not been addressed by any previous work above [11, 13, 19].

Returning τ -durable top-k objects is related to ranking temporal
objects based on their durability score during the query window,
which leads to another line of related work on ranking temporal
data. Li et al. [12] first considered instant top-k queries, which
ranks temporal objects based on a snapshot score for a given time
instant. Then, Jestes et al. [10] studied a more general and ro-
bust ranking operation on temporal data based on aggregation—for
each temporal object, an aggregate score (based on average or sum,
for example) is first computed from the object’s time-varying value
over the query interval, and then the objects are ranked according
to these scores. Note that their problem is markedly different from

ours: in our problem setting, we cannot directly compute the dura-
bility score of an object without examining all other objects’ values
over the query interval. Nonetheless, given a fixed k, we could pre-
compute a time-varying quantity hk

i (t) = 1[ranki(t) ≤ k] for each
object i and treat the results as input to the problem in [10], with
durability defined using the sum of hk

i (t) over time. Indeed, one of
the baseline methods we consider in Section 3 for the simple case
of fixed k, based on precomputed prefix sums [8], uses essentially
the same idea as the exact algorithm in [10]. The case of variable k
we consider requires very different approaches. While approxima-
tion was also considered in [10], they focus on approximating each
object’s time-varying value with selected “breakpoints” in time. In
contrast, because we cannot afford to index hk

i (t) for all possible k
values, we focus on how to select k’s to index in Section 4.2, which
is orthogonal to the approach in [10].

3. DURABLE TOP-KKK WITH FIXED KKK
This section considers the simpler case of durable top-k queries

where the query parameter k is fixed and known in advance; only
the query interval I is variable. Practically, this problem is less
interesting than the case where k is variable and known only at
query time. Nonetheless, we study this problem because its solu-
tions can be used as a building block in solving the variable k case.
We shall quickly go over two baseline methods based on standard
techniques, and then present in more detail a novel method based
on a geometric reduction. All these methods are exact.

Before presenting these methods, we introduce some notation.
For each object i, we define the time-varying indicator function
hk
i (t) = 1[ranki(t) ≤ k] for t ∈ T; its value at time t is 1 when

object i is among the top k at time t, or 0 otherwise. The durability
of object i over query interval I is simply the sum of this function
over t ∈ I , divided by the length of I . According to this function,
we can define for each object i a partitioning of T into a list Iki of
maximal intervals, such that:
• For each J ∈ Iki , hk

i (t) remains constant (either 1 or 0) for
all t ∈ J . We call J a 1-interval if this constant is 1, or
0-interval otherwise.
• For each pair of consecutive intervals J and J ′ in Iki , hk

i (t) 6=
hk
i (t
′) for all t ∈ J and t′ ∈ J ′. In other words, 1-intervals

and 0-intervals alternate in Iki , and each of them is maximal.
Intuitively, |Iki |, the number of intervals in Iki , measures the “com-
plexity” of hk

i (t) and is basically (one plus) the number of times
that object i enters or leaves the top k. Give k, we write |Ik| =∑n
i=1|I

k
i | for the overall complexity of top-k membership over

time, or roughly, the total number of times that objects enter or
leave the top k over time. Given time interval I , we write |Ik[I]| =∑n
i=1

∑
J∈Iki

1[J ∩ I 6= ∅] for the complexity of top-k member-
ship over I .

Note that given k, computing Iki (equivalently, hk
i (t)) for all ob-

jects takes only O(mn) (i.e., linear) time, assuming that data is
clustered by time such that the values of all objects at any time in-
stant can be efficiently retrieved—even if they may not be sorted
by value, a linear-time (top-k) selection algorithm can compute the
membership of each object in the top k [3, 16]. If data is not clus-
tered by time, we simply sort first. All methods below require com-
puting hk

i (t) and/or Iki for all objects for index construction.

3.1 Baseline Methods
Prefix Sums. A simple method for finding the τ -durable top-k
objects would be to compute the durability of each object over the
query interval and check if it is at least τ . Instead of computing
the durability an object i naively by summing hk

i (t) over the query
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Figure 1: Example hk
i (t) (left) and Hk

i (t) (right).

interval instant by instant, a standard method is to precompute and
index the prefix sums [8] for hk

i (t), defined as follows: Hk
i (1) = 0

and Hk
i (t) =

∑
1≤t′<t h

k
i (t). Then, we can compute the dura-

bility of object i over interval [a, b) using the prefix sums at the
interval endpoints; i.e., durki ([a, b)) = (Hk

i (b) −Hk
i (a))/(b − a).

The prefix-sum functionHk
i (t) is piecewise-linear, as illustrated in

Figure 1, where each piece corresponds to a 1-interval (if the slope
is 1) or 0-interval (if the slope is 0). Thus, we need to store and in-
dex only the breakpoints in a standard search tree (such as B+tree),
which takes O(|Iki |) space and supports Hk

i (t) lookups (and hence
durability computation over any interval) in O(log|Iki |) time, inde-
pendent of the length of the query interval. The same idea was used
in [10], as discussed in Section 2.

In practice, unless |Iki | is large, it is feasible to simply store
Hk
i (t) either as a sparse array of time-count pairs sorted by time, or

as a dense array of counts (where the array index implicitly encodes
the time), whichever uses less space. Doing so does not change
the asymptotic space or time complexity, but often results in more
compact storage.

Overall, given k, precomputing and indexing Hk
i for all objects

only takes time linear in the size of the database, and requires
O(|Ik|) index storage. With this method, although testing whether
an object τ -durable is very efficient, we must still check every ob-
ject, so the running time of a durable top-k query is still linear in
n, the total number of objects.

Interval Index. In practice, when k � n, many objects may
never enter the top k at any point during the query interval; the
method above could waste significant time checking these objects.
To avoid such unnecessary work, we can apply another standard
technique: storing the 1-intervals for all objects in standard inter-
val index (such as interval tree) that supports efficient reporting of
intervals overlapping a query interval (logarithmic in the number
of indexed intervals and linear in the number of result intervals).
Given a query interval I , we use the index to find all 1-intervals that
overlap with I , and simply go through these 1-intervals to compute
durabilities for objects associated with these intervals (those not en-
tirely contained in I require special, but straightforward, handling).
Any object with 0 durability in I will never come up for processing.

Overall, given k, precomputing and indexing 1-intervals for all
objects takes time linear in the size of the database, and requires
O(|Ik|) index storage. The running time of a durable top-k query
over interval I is logarithmic in |Ik| but linear in |Ik[I]| (or the
number of times objects enter and leave top k during I).

3.2 Reduction to 3d Halfspace Reporting
The two baseline methods each have their own weakness. In

practice, durable top-k queries tend to be selective—after all, they
intend to find special objects. However, the method of prefix sums
examines every object (and hence runs in time linear in n), while
the method of interval index examines all 1-intervals during the
query interval (and hence runs in time linear in |Ik[I]|). These
methods can end up examining substantially more objects beyond

Figure 2: A geometric representation of cntki (x, y).

those in the actual result, as will shall see from experiments in Sec-
tion 5.1. Ideally, we would like an algorithm whose running time
is linear only in the number of actual result objects. In this section,
we present a novel reduction of durable top-k queries (for a fixed
k) to 3d halfspace reporting queries. Using the halfspace reporting
data structure proposed in [1], we can answer a durable top-k query
in time polylogarithmic in |Ik| plus the number of result objects.

The 3d halfspace reporting problem asks to preprocess a set of
points in R3 in a data structure such that all points lying in a query
halfspace can be reported efficiently. Using the well-known point-
plane duality transform [5], an equivalent formulation of the prob-
lem is to store a set of planes in R3 such that all planes below/above
a query point can be reported efficiently.

Consider object i. Let cntki (x, y) be the number of times that ob-
ject i ranks within the top k during [x, y). We show that cntki (x, y)
can be represented by a bivariate piecewise-linear function, with
the domain of each piece being a rectangle of the form [a, b) ×
[a′, b′) ⊆ T2,2 where both [a, b) and [a′, b′) are intervals in Iki and
[a, b) precedes or is the same as [a′, b′); see Figure 2. There are a
total of N = |Iki |(|Iki |+ 1)/2 pieces. Note that:
• If [a, b) is a 1-interval, then cntki is linear in x with x-slope

of −1. Intuitively, when x lies in a 1-interval, cntki (x+ 1, y)
will be one less than cntki (x, y), for losing the contribution
of 1 from time instant x. On the other hand, if [a, b) is a
0-interval, then cntki does not change with x.
• If [a′, b′) is a 1-interval, then cntki is linear in y with y-slope

of 1. Intuitively, when y lies in a 1-interval, cntki (x, y + 1)
will be one more than cntki (x, y), for gaining the contribution
of 1 from time instant y. On the other hand, if [a′, b′) is a
0-interval, then cntki does not change with y.

Therefore, based on their domains, the linear functions can be clas-
sified into four types (0, 0), (0, 1), (−1, 0), and (−1, 1) below
(here c = cntki (a, a′)):

[a′, b′) is 0-interval [a′, b′) is 1-interval
[a, b) is 0-interval Type (0, 0): Type (0, 1):

c c + (y − a′)
[a, b) is 1-interval Type (−1, 0): Type (−1, 1):

c − (x − a) c − (x − a) + (y − a′)

Geometrically, as Figure 2 shows, cntki (x, y) consists of O(|Iki |2)
rectangular pieces classified into the four types above. Now, imag-
ine that in this 3d space, we put together all such pieces for all
n objects in our database. Note that DurTopk([x, y), τ) = {i ∈
[1, n] | cntki (x, y) ≥ τ · (y − x)}. From a geometric perspective, a
DurTopk([x, y), τ) query is specified by a point p = (x, y, τ(y−x))
in 3d, and should return precisely those pieces laying above or con-
taining p—each such piece corresponds to a result object. With the
index structure and algorithm in [2], we can support this query in
O(N polylogN) space andO(polylogN+|A|) time, whereN =∑n
i=1|I

k
i |(|Iki |+1)/2, and |A| denotes the number of result objects.

Note that O(polylogN) = O(polylog|Ik|2) = O(polylog|Ik|).
2Here, instead of interpreting [a, b) and [a′, b′) as sets of consecutive inte-
gers as before, we treat them as continuous intervals, and [a, b) × [a′, b′)
would technically be a rectangle in R2.
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A Practical R-tree Implementation. As practical alternative
to the theoretically optimal data structure from [2], we can index all
pieces of cntki (x, y) from all objects in a single 3d R-tree. However,
an obvious shortcoming of this approach is that many such pieces—
namely, those of types (0, 1), (−1, 0), and (−1, 1))—are not axis-
aligned, so they have rather large and loose bounding boxes that
lead to poor query performance.

Taking advantage of the observation that the pieces of cntki (x, y)
have only four distinct orientations, we propose a simple yet effec-
tive alternative that avoids the problem of non-axis-aligned pieces
altogether. We use four 3d R-trees, one to index each type of
cntki (x, y) pieces for all objects. Within each R-tree, all pieces share
the same orientation and have boundaries parallel to each other’s,
making them efficient to index as a group (more details below).
Then, a DurTopk([x, y), τ) query can be decomposed into four 3d
intersection queries, one for each of the R-trees.

In particular, for the R-tree indexing all Type-(0, 0) pieces, each
piece is an axis-aligned rectangle [a, b) × [a′, b′) × [c, c], lying
parallel to the xy-plane and vertically positioned at c. To answer
(the part of) DurTopk([x, y), τ) in this R-tree, we simply need to find
all rectangles stabbed by an upward vertical ray originating from
(x, y, τ(y − x)).

For an R-trees indexing pieces of a type other than (0, 0), al-
though the pieces are not axis-aligned to begin with, we can ap-
ply a shear transformation to the 3d coordinate space such that
these pieces become axis-aligned and the query ray remains ver-
tical. Hence, indexing and querying these sheared objects becomes
exactly the same problem as in the R-tree for Type-(0, 0) pieces.
For example, consider the following shear transformation for Type-
(0, 1) pieces, which takes a point (x, y, z) to1 0 0

0 1 0
0 −1 1

xy
z

 = (x, y, z − y).

Under this shear transformation, a Type-(0, 1) piece would become
an axis-aligned rectangle [a, b)× [a′, b′)× [c− a′, c− a′], paral-
lel to the xy-plane and vertically positioned at c − a′. The query
ray would originate from (x, y, τ(y − x)− y) and remain upward
vertical. Figure 3 illustrates this transformation. Shear transforma-
tions for other types can be similarly defined. We summarize them
below:

Type (0, 1) Type (−1, 0) Type (−1, 1)

Shear matrix

1 0 0
0 1 0
0 −1 1

 1 0 0
0 1 0
1 0 1

 1 0 0
0 1 0
1 −1 1


In sum, with four R-trees, we can process a DurTopk([x, y), τ)

query as four 3d queries intersecting a vertical query ray with ver-
tically elevated axis-parallel rectangles. The total space complex-
ity is O(N), lower than the theoretically optimal structure. While
this approach no longer offers the same theoretical guarantee on
the query time, it uses only a simple, standard data structure, and
is very efficient in practice, as we shall see from the experimental
evaluation in Section 5.1.

4. DURABLE TOP-KKK WITH VARIABLE KKK
The problem when k is variable and known only at the query

time is more interesting and challenging than the case of fixed k.
Naively, one could support variable k by creating an index for each
possible value of k, using one of the methods from Section 3. How-
ever, doing so is infeasible when there exist many possibilities for
k. As discussed in Section 2, TES, the best existing solution, in-
dexes all top-k membership changes over time, and runs in time
linear to the number of such changes during the query interval. For
data with complex characteristics, TES requires a large index and
still has high query complexity. In practice, users may be fine ap-
proximate answers to durable top-k queries. For example, it may
be acceptable if we return a few durable top-55 objects when users
ask for durable top-50 objects. Hence, in this section, we study ap-
proaches that allow us answer DurTopk(I, τ) queries with variable k
approximately and efficiently, with much lower space requirement.

Our methods come in two flavors: sampling-based and index-
based. The sampling-based approach is simple: we simply sample
time instants in the query interval I randomly, and use the durabil-
ities of objects over the sampled time instants as an approximation
to their durabilities over I . The index-based approach aims at pro-
viding approximate answers efficiently using a small (and tunable)
amount of index space—preferably small enough that we can af-
ford to keep the entire index in memory even for large datasets. To
this end, this approach intelligently chooses the most useful infor-
mation to index, based on query workload and data characteristics.
We note that given k and an object i, hk

i may not be all that dif-
ferent from hk+1

i (i.e., how object i enters or leaves top k is likely
similar to how it enters or leaves top k + 1); hence, remembering
hk
i may provide a good enough approximation to hk+1

i . Further-
more, not all k’s are queried with equal likelihood, and for some
k’s and i’s, hk

i has low complexity, and may in fact simply remains
0 throughout T. The index-based approach uses these observations
to guide its selection of what to index under a space budget. The
remainder this section describes the two above approaches, with
more emphasis on the index-based one.

4.1 Sampling-Based Method
Given query interval I , the sampling-based method chooses a

set of time instants IR randomly from I . With a slight abuse of
notation, let durki (IR) = (

∑
t∈IR

1[ranki(t) ≤ k])/|IR|. For each
t ∈ IR, this method computes the top k objects at time t, and keeps
a running count of how many times each object has been seen so far.
After examining all IR, the method returns the objects appearing at
least τ |IR| times, i.e., those with durki (IR) ≥ τ , as an approximate
answer to DurTopK(I, τ). With a sufficient number of sampled time
instants, we can ensure that durki (I) and durki (IR) are close with high
probability, as the following lemma shows (because of space limits,
see the extended version of this paper [7] for all proofs):

LEMMA 1. For the given parameters ε, δ ∈ (0, 1), let IR be a
set of randomly sampled time instants from I of size 1

2(ετ)2
ln( 2k

δτ
).

Then for any object i, |durki (I) − durki (IR)| ≤ ετ , with probability
at least 1− δ.

The lemma guarantees that with sufficient samples, this method
with return any object with durki (I) ≥ (1 + ε)τ with probability at
least 1−δ; moreover, it will not return any object durki (I) < (1−ε)τ
with probability less than δ.

The running time of this method is linear in the number of sam-
ples. However, note from Lemma 1 that this number depends only
on k, ετ and δ, and not on the length of the query interval. Thus,
this method shines particularly for large query intervals, compared
with a naive exact method that has to examine every time instant
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in the query interval. This approach works well if data is already
clustered by time, and ordered for each time instant (e.g., data on
Billboard 200 music charts would be naturally organized this way).
Otherwise, this approach would require either sorting objects at
sampled time instants during query evaluation (which is slower) or
pre-sorting objects and remembering their ordering for every time
instant (which takes more space).

4.2 Index-Based Approach
We now discuss an alternative approach that indexes a small

amount of data in order to answer durable top-k queries with vari-
able k approximately. Let K denotes the possible values of k that
can appear in a query, which in the worst case can be on the order of
n, the number of objects. Indexing Hk

i (the prefix sums for hk
i ) for

each object i and each k ∈ K would be infeasible. Instead, given a
storage budget, we would like to choose a subset of possible (i, k)
pairs and only index them instead.

In more detail, for each object i, we index Hk
i only for a subset

Ki ⊆ K. As discussed in Section 3.1, by storing the prefix sums
Hk
i (which takes |Iki | space), we can compute durki (I) quickly us-

ing simply two fast index lookups (which takes log|Iki | time). But
what happens when the query specifies a k value not in Ki? In this
case, we find some “substitute” k′ ∈ Ki where hk′

i “best approx-
imates” hk

i (we will later clarify what that means precisely later).
Then, instead of checking durki (I) ≥ τ , we would check whether
durk
′
i (I) ≥ τ to decide whether to return object i.
We introduce some additional notation before going further. Let

M ⊆ [1, n] × K (where Ki = {k | (i, k) ∈ M}) specify what
(i, k) pairs to index. Note that we could chooseKi = ∅ for some i;
in that case, we effectively “forget” object i altogether—we would
pay no indexing cost for i and it would not be returned by any query.
Let map : [1, n]×K→ K∪{⊥} specify the mapping function that
directs queries to appropriate indexed entries. Of course, if (i, k) ∈
M , then map(i, k) = k; otherwise, map(i, k) returns some k′ ∈ Ki

as a “substitute.” If Ki = ∅, we let map(i, k) = ⊥, I⊥i = ∅, and
dur⊥i (I) = 0. The approximate answer to DurTopk(I, τ) is given by
the following:

Ak(I, τ) = {i ∈ [1, n] | durk
′
i (I) ≥ τ where k′ = map(i, k)}.

We consider three different methods that follow this index-based
approach. They differ in their strategy for selecting M and con-
sequently their choice of map, as illustrated in Figure 4. Here, the
candidate (i, k) pairs to be indexed are shown as square cells, and
the selected ones are colored black. The simplest, data-oblivious
method chooses the same set of k values to index across all ob-
jects, regardless of data distribution; given k, it simply maps k to
the closest indexed k (for example, k = 4 is mapped to 2 because
4 is closer to 2 than to 7). The other two methods are data-driven in
that they select their cells intelligently, based on data distribution—
how much space each cell takes to index and how well it approxi-
mates nearby cells in the same row. Between these two data-driven

methods, the simpler column-wise method limits its choices of M
to columns, and its map function returns the same substitute k′ for
a given k consistently across all objects, like the data-oblivious
method.3 Unlike the data-oblivious method, however, its choices
of M and map seek to minimize errors on the given dataset (for ex-
ample, k = 4 may be mapped to 7 instead of 2 because it may turn
out that overall H7

i approximates H4
i better than H2

i does across
i’s). The more sophisticated cell-wise method is free to select in-
dividual cells to index (as opposed to just columns), and its map
function is “individualized” for each object (for example, given the
same k = 4, it returns 2 for the first object, 1 for the second object,
6 for the third, etc.).

Regardless of the method for choosingM (and map), durable top-
k query processing with our index-based approach is fast and has
very low memory requirement. We defer the discussion of how to
compute map till later when discussing each method in detail; as-
suming we have found the “substitute” k′ = map(i, k), to compute
durk
′
i (I), we simply need two lookups inHk′

i , which can be done in
O(log|Ik′i |) time with a small, constant amount of working mem-
ory. Overall, the complexity is loosely bounded by O(n? log|T|),
where n? ≤ n is the number of indexed objects, which is no more
than the number of objects that have ever entered top max(K).
As we will see later, including the cost of computing map does
not change the complexity for data-oblivious indexing and column-
wise indexing, but adds O(n? log|K|) for cell-wise indexing.

In terms of index space, as mentioned at the beginning of Sec-
tion 4, our index-based approach allows the storage budget to be
set as an optimization constraint. Our experiments in Section 5
show that even for large datasets (e.g., n = 1M and m = 5k,
with billions of data points), to deliver fast, high-quality approx-
imate answers, we only need a small index (e.g., a couple of GB
in size) that can easily fit in main memory. If needed, our index
structure also generalizes to the external-memory setting: the pre-
fix sums and map can be implemented as B+trees; the logarithmic
terms in the complexity analysis above would simply be replaced
with B+tree lookup bounds.

4.2.1 Data-Oblivious Indexing
The data-oblivious method is straightforward. Let K denote

the set of k values being indexed. We simply define map(i, k) =
arg mink′∈K |k − k′|. By indexing the k values in K in an or-
dered search tree or array, we can look up map(i, k) for any given
k in O(log|K|) time; the space is negligible. The overall index
space, consumed mostly by prefix sums, is

∑
k∈K

∑n
i=1|I

k
i | =∑

k∈K |I
k|. We choose K such that this space does not exceed the

budget allowed.
The choice of K depends on how much we know about the dis-

tribution of k in our query workload. One may choose to index
the most popular k values used in queries, a geometric sequence of
k values (reflecting the assumption that smaller k’s are more fre-
quently queries), or simply evenly spaced k values (reflecting the
assumption that all k ∈ K are queried equally frequently), up to
the budget allowed. We shall not dwell on the choice of K further
here, as Section 4.2.2 below will approach this problem in a more
principled manner.

4.2.2 Data-Driven Indexing
Before describing the two data-driven methods, we first show

how to formulate the problem of choosing what to index as an
optimization problem. Suppose that we know the distribution Q

(multivariate in k, I , and τ ) describing the query workload. For
3Although both methods index columns, for a chosen k, cells in the column
corresponding to objects that never enter top k during T are not indexed.
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simplicity, let us assume that Q is discrete (generalization to con-
tinuous τ is straightforward). Let K = supp(QK) be the support
of the marginal distribution of the query rank parameter k; in other
words, k will only be drawn from K. Similarly, let I = supp(QI) ⊆
{[a, b) ∈ T×T | a ≤ b} be the support of the marginal distribution
of the query interval parameter I . Recall thatM ⊆ [1, n]×K spec-
ifies the (i, k) pairs to index, andAk(I, τ) denotes the approximate
query answer computing using M and map(i, k). Let ω(M) denote
the cost of indexing M (e.g., in terms of storage cost). Given the
database D, query workload Q, and a cost budget B, our goal is to

maximize
M,map

n−E
[
Ak(I, τ)	 DurTopk(I, τ)

]
(1)

subject to ω(M) ≤ B. (2)

Here,Ak(I, τ)	DurTopk(I, τ) denotes the error in the approximate
answer Ak(I, τ) relative to the true answer DurTopk(I, τ), and we
minimize its expectation over Q. Note that our objective function
is non-negative, since n would be the worst-case error.

The choice of the error metric 	 depends on the application.
To make our discussion more concrete, here we consider the case
where it computes the size of the symmetric difference between
Ak(I, τ) and DurTopk(I, τ), i.e., the number of false positives and
false negatives. We show how to assess this error efficiently.

Assessing Errors. Let us first break down the error (size of
the symmetric difference) Ak(I, τ)	 DurTopk(I, τ) by contribution
from individual objects. Given k, I , τ , suppose map(i, k) = k′. Let
δi(k, k

′; I, τ) be an indicator function denoting object i’s contri-
bution to error. Consider the two durabilities durki (I) and durk

′
i (I)

computed with k and k′, respectively. The key observation is that
object i contributes to the error only if the query threshold τ falls
between these two durabilities. More precisely:

δi(k, k
′; I, τ) =

{
1, if τ ∈ Γi(k, k

′; I)

0, otherwise

where Γi(k, k
′; I) = [min{τ1, τ2},max{τ1, τ2}],

and τ1 = durki (I), τ2 = durk
′
i (I).

Intuitively, Γi(k, k
′; I) defined above establishes the “unsafe range”

of τ for which error could arise: if τ is no less (or strictly greater)
than both τ1 and τ2, then object i does not contribute to the error.

Therefore, given k and assuming map(i, k) = k′, we can com-
pute di(k, k′), object i’s expected error contribution over Q (con-
ditioned on k) as

di(k, k
′) = E

[
δi(k, k

′; I, τ) | k
]

= P
[
τ ∈ Γi(k, k

′; I) | k
]

=
∑
I∈I

∑
τ∈Γi(k,k′;I)

p(τ, I | k).

Computing di(k, k′) for all possible (k, k′) pairs seems daunt-
ing. However, if we assume that the distribution of k in Q is inde-
pendent from I and τ , we can embed K on a line and compute di
as simple line distance, as shown by the lemma below.

LEMMA 2. Assume that k is independent from I and τ in Q.
Let Di(k) = P[τ ≤ durki (I)]. Then Di(k) is non-decreasing in k,
and di(k, k′) = |Di(k′)−Di(k)|.
The lemma above implies that, we could simply precompute and
store Di(k) for all k ∈ K, which would allow us to compute
di(k, k

′) efficiently for any (k, k′) pair.
Computation of Di(k)’s, which is only needed at the index con-

struction time, proceeds as follows. We first sort the entire dataset
by time and value to produce the top max(K) objects with their

ranks at each time instant. We then sort by object and time to ob-
tain the sequence of rank changes over time for each object. After
sorting, we can process each object i in turn. For each k ∈ K,
we scan object i’s sequence of rank changes sequentially to com-
pute the prefix sums Hk

i , which we store in memory using O(|Iki |)
space. Di(k) involves summing over all possible I and τ val-
ues. With the prefix sums in memory, we can compute durki (I)
efficiently given any I; the same durki (I) then allows us to evaluate
predicate τ ≤ durki (I) for any possible τ value. Thus, the remain-
ing expensive factor in computingDi(k) is enumerating possible I
values. Fortunately, there is no need to compute Di(k)’s precisely,
because after all, we are simply using them to estimate error for the
optimization problem. In practice, we use a Monte Carlo approach,
sampling I from I to obtain approximate Di(k) values. Our exper-
iments in Section 5 show that even with very low sampling rates,
the approximate Di(k) values still lead to index choices that have
high-quality answers.

Finally, returning to the maximization objective in (1), we have

n−E
[
Ak(I, τ)	 DurTopk(I, τ)

]
= n−

∑
k∈K

(
p(k)

n∑
i=1

di(k,map(i, k))

)
. (3)

4.2.2.1 Column-wise Indexing.
The column-wise method makes several simplifying assumptions

to make the optimization problem easier to solve. First, we restrict
ourselves to selecting columns of cells from [1, n] × K; i.e., we
pick only K ⊆ K for all objects and M = [1, n] × K. Second,
we restrict map to return the same substitute for a given k across all
objects; hence, we would write map(k) instead of map(i, k). Third,
we let ω(M) = |K|, and we specify the budget B in terms of the
number of different k values we choose to index (as opposed to a
more accurate measure of index space).

Under these assumptions, we define d(k, k′) =
∑n
i=1 di(k, k

′)
as the expected overall error in answer if we substitute k′ for k.
Naturally, we define map(k) = arg mink′∈K d(k, k′); i.e., we map
k to the substitute indexed inK that minimizes the expected overall
error. Now, the optimization problem becomes to

maximize
K

n−
∑
k∈K

(
p(k) min

k′∈K
d(k, k′)

)
(4)

subject to |K| ≤ B. (5)

Lemma 2, which applies to di(k, k′) on an individual object ba-
sis, can be readily extended to d(k, k′), as the following shows.

LEMMA 3. Assume that k is independent from I and τ in Q.
Let D(k) =

∑n
i=1 Di(k). Then D(k) is non-decreasing in k, and

d(k, k′) = |D(k′)−D(k)|.

Thus, we can embed K on a line and compute d as simple line dis-
tance. By indexing the selected k values in K in an ordered search
tree or array, we can look up map(k) for any given k in O(log|K|)
time; the space is negligible.

This observation also implies that the optimization problem in
(4)–(5) for the column-wise method in has optimal substructure, as
the following lemma shows.
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1 2 3 4 5 6 7 8 9

Figure 5: Partitioning of K by a chosen subsetK. Each k? ∈ K is
shown as a circled point, and the interval of K that k? is enclosed
by { and }.

LEMMA 4. Assume that k is independent from I and τ in Q.
Let OPT([k1, k2], b) denote the optimal solution4 for (4)–(5) with
K = [k1, k2] and B = b. Then,

OPT
(
[k1, k2], b

)
= max
k1<k≤k2

{
OPT

(
[k1, k − 1], b− 1

)
+ OPT

(
[k, k2], 1

)}
The above lemma immediately leads to a dynamic programming

solution to the optimization problem for the column-wise method,
with time complexityO(k3

max), where kmax = max(K). Note that
we incur this cost only at the index construction time. The memory
requirement for dynamic programming is the size of a 3d table for
storing optimal substructures, which is O(k3

max) in our case. In
practice, kmax is usually not large compared with n, so we can per-
form dynamic programming in memory. If this 3d table is too large
for memory, we can store the 3d table of optimal substructures as
sequence of 2d tables organized along the dimension of budget (b).
By Lemma 4, it is not hard to see that our dynamic programming
procedure sequentially steps through b, so at any point during exe-
cution, we only need three 2d tables (for b, b−1, and 1) in memory,
reducing the memory requirement to O(k2

max).
Despite the simplicity of the solution, the column-wise method

suffers from a rather restrictive space of possible solutions. First,
map is not specialized for each object; even though it minimizes
overall error subject to this restriction, the substitute k it produces
may not be the best choice of every object. Second, indexing all
entries in one single column may already take a lot of space; there-
fore, under tight storage constraints, the column-wise method may
be forced to pick a few columns to index, hurting accuracy.

4.2.2.2 Cell-wise Indexing.
We now consider the more sophisticated cell-wise method, which

can select any individual cells to index (as opposed to just columns)
and customize its map function for each object. Specifically, we
choose a set M of (i, k) pairs to index from [1, n]× K. Let Ki =
{k | (i, k) ∈ M}. We define map(i, k) = arg mink′∈Ki

di(k, k
′),

i.e., to minimize the expected error by substituting k with k′ for ob-
ject i. By indexing the selected k values in Ki in an ordered search
tree or array, we can look up map(i, k) for any k inO(log|Ki|) time.
Finally, we define the index storage cost asω(M) =

∑
(i,k)∈M |I

k
i |,

since storing the prefix sums for entry (i, k) takes |Iki | space (index
storage for supporting map is negligible in comparison). The opti-
mization problem now becomes to

maximize
M

n−
n∑
i

(∑
k∈K

p(k) min
k′∈Ki

di(k, k
′)

)
(6)

subject to ω(M) =
∑

(i,k)∈M

|Iki | ≤ B. (7)

We show the NP-hardness of this optimization problem by re-
duction from the well-known knapsack problem.

LEMMA 5. The optimization problem in (6)–(7) for the cell-
wise method is NP-hard.
4For simplicity of presentation we assume that there are no ties for the op-
timal solution here, but generalization to the case of ties is straightforward.

Algorithm 1: Two-phase greedy algorithm.
Input : Objective function G to maximize, additive cost function ω,

budget B, and candidate set U = [1, n]× K
Output: A subset M? ⊆ U with ω(M?) ≤ B

1 S1 ← ∅; max1 ← 0;
2 foreach M ⊆ U where |M | = 1 or |M | = 2 do
3 if ω(M) ≤ B then continue;
4 if G(M) > max1 then
5 max1 ← G(M);
6 S1 ←M ;

7 S2 ← ∅; max2 ← 0;
8 foreach M ⊆ U where |M | = 3 do
9 if ω(M) > B then continue;

10 S ←M , I ← U \ S;
11 while I 6= ∅ do

12 θ ← max
θ∈I

G(S ∪ {θ})− G(S)
ω({θ})

;

13 if ω(S ∪ {θ}) ≤ B then S ← S ∪ {θ};
14 I ← I \ {θ};
15 if G(S) > max2 then
16 max2 ← G(S);
17 S2 ← S;

18 if G(S1) ≥ G(S2) then return S1;
19 else return S2;

Although the problem is NP-hard, the following lemma shows
that its objective function is monotone and submodular [15].

LEMMA 6. The following function,

G(M) = n−
n∑
i

(∑
k∈K

p(k) min
k′∈Ki

di(k, k
′)

)
(8)

(recall Ki = {k | (i, k) ∈ M}) is a monotone and submodular
set function; i.e., for all M1 ⊆M2 ⊆ [1, n]×K and θ = (i, k) ∈
([1, n]×K) \M2, we have:

G(M1) ≤ G(M2), and (9)
G(M1 ∪ {θ})− G(M1) ≥ G(M2 ∪ {θ})− G(M2). (10)

It was shown in [14] that a simple greedy algorithm provides a
(1 − 1/e)-approximation for maximizing a monotone submodu-
lar set function with cardinality constraint. Sviridenko et al. further
showed in [17] that a modification of the greedy algorithm for solv-
ing the problem in [14] can also produce a (1−1/e)-approximation
for maximizing a monotone submodular set function with knapsack
constraint. The modified greedy algorithm, shown as Algorithm 1,
works as follows. In the first phase, we enumerates all feasible sub-
sets of size up to two, and remember the subset S1 that maximizes
G. In the second phase, we start with each feasible subset of size
three, and try to grow it greedily and repeatedly by adding a new
element at a time, which gives the largest improvement over G per
unit cost. We remember the best subset found in the second phase
as S2. Finally, we return the better solution between S1 and S2.

THEOREM 1. Let M opt be the optimal solution to the cell-wise
selection problem, and M greedy be the solution returned by Algo-
rithm 1. We have

G(M greedy) ≥ (1− 1

e
) · G(M opt).

In practice, enumerating all feasible subsets of size up to 3 can be
expensive, so we use a simplified greedy algorithm that starts with
singleton subsets and tries to grow them. It turns out that the sim-
plified greedy algorithm still makes good choices that lead to high
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Table 1: Real and synthetic datasets
used in experiments.

n m
Dataset (# objects) (# time instants)

Stock 3537 2500
Billboard 7460 1721

Temp 6756 9999
Syn/SynX 1K–10M 1K–5K

…

Top-20

Top-1
Top-2
Top-3

SYN

W
indow

 size d

Figure 6: Generating SynX
from Syn. Here, an object
is boosted twice (at different
times): once to top 20 and
once to top 1.

query accuracy, as experiments in Section 5 shows. We also opti-
mize the procedure for finding the next greedy choice at each step
using similar techniques in [20]. We maintain a priority queue of
all candidate (i, k) pairs, where k ∈ K and i is any object that has
ever entered the top max(K). Although the memory requirement
in the worst case can be O(n|K|), in practice only a small fraction
of all objects ever enter the top max(K). For example, our experi-
ments in Section 5 reveal that even for large datasets (e.g., n = 1M,
m = 5k, with billions of data points and max(K) = 10k), the
entire cell-wise optimization algorithm runs comfortably in main
memory. Finally, note that we run this algorithm only at the index
construction time.

5. EXPERIMENTS
In this section, we comprehensively evaluate the performance of

all our methods. Section 5.1 compares the efficiency of various ex-
act algorithms when k is fixed. For general durable top-k queries
when k is variable, Section 5.2 compares various methods in terms
of answer quality, query efficiency, and index space. For meth-
ods that require elaborate preprocessing and optimization for index
construction, we also evaluate the efficiency of index construction.

Unless otherwise noted, all algorithms were implemented in C++,
and all experiments were performed on a Linux machine with two
Intel Xeon E5-2640 v4 2.4GHz processor with 256GB of memory.

We use both real and synthetic datasets, as summarized in Ta-
ble 1 and described in detail below.

Stock contains daily transaction volumes of 3537 stocks in the
United States from 2000 to 2009, collected by Wharton Research
Data Services.5 We treat each stock as a temporal object, and there
are 2500 time instants.

Billboard, obtained from the BILLBOARD 200 website,6 lists
weekly top-200 songs for the past 30 years. However, we are more
interested in the ranking of artists as opposed to songs, as most
songs remain popular only for a short duration. Thus, for our ex-
periments, we treat artists as temporal objects, and we define the
ranking of an artist in a week as the ranking of his or her top hit for
that week. The result dataset has 7460 objects (artists) and 1721
time instants (weeks with rankings).

Temp, from the MesoWest project [9], contains temperature read-
ings from weather stations across the United States over the past 20
years. For our experiments, we selected stations with sufficiently
complete readings over time. The result dataset has 6756 objects
(stations) and 9999 time instants (with temperature readings for all
stations).

Syn refers to synthetic datasets with different sizes and distri-
butions that we generate for in-depth comparison of various meth-
ods. Each time series is generated by an autoregressive model [18],
specifically, AR(1). The model is defined by X(t) = c+ φX(t−
5https://wrds-web.wharton.upenn.edu/wrds/
6http://www.billboard.com/charts/billboard-200

1) + ε(t), where ε(t) is an error term randomly chosen from a nor-
mal distribution with mean 0 and standard deviation σ, and c and φ
are additional parameters. The mean value of the series is c

1−φ and
the variance is σ2

1−φ2 . Tuning σ, c, and φ allows us to experiment
with different data characteristics. For our experiments, we use
φ = 0.6 by default. To simulate real-life situations, we divide n ob-
jects into three groups: elite (20% of all objects), mediocre (60%),
and poor (20%). Time series for objects from different groups are
parameterized with different c values: for an elite object, we draw
c fromN (90, 102), normal distribution with mean 90 and standard
deviation 10; for a mediocre object, c ∼ N (50, 102); for poor,
c ∼ N (10, 102). We vary σ (in ε(t)) from 1 to 20 for different
experiments; a larger σ leads to more volatility in the time series
and more rank changes.

SynX is a variant of Syn that allows us to control the top rank
changes and their durability more directly. We start with Syn with
σ = 20 above, and establish 20 additional target values in the top
range of the value domain, as shown in Figure 6. A window size
parameter d controls the durability of top objects and complexity
of the dataset. For each one of the 20 target values, say, v, we
break the time line into |T|/d intervals of length d each; we vary
d between 10 and 100 in our experiments. For each such interval,
we randomly pick an object, and add a constant offset to its values
during this interval such that the resulting average of these values
becomes v—in other words, we temporarily boost the object’s rank
for the given interval. When picking objects to boost, we make sure
that any object can be boosted at most once for any time instant.

5.1 Fixed-kkk Setting
We compare five methods for answering durable top-k queries

when k is fixed and known in advance: PREFIX, PREFIX-O, IN-
TERVAL, RTREE, and TES. PREFIX and INTERVAL are the
two baseline methods based on prefix sums and interval index,
respectively, presented in Section 3.1. PREFIX-O is a variant of
PREFIX with the simple optimization of not indexing an object if
it is never in top k (which is also used by our index-based approach
for the variable-k setting). RTREE is the practical R-tree imple-
mentation of our method based on reduction to 3d halfspace report-
ing, discussed in Section 3.2. TES is the state-of-the-art method
from [19]. Note that TES is designed to handle variable k (up to a
maximum); as k is known in this case, for a fair comparison, we op-
timize TES by storing rank change information only for the given k,
resulting in a much simpler structure. Since all four algorithms are
exact, we focus on query efficiency. We present the results of our
experiments on one large synthetic dataset; additional experiments
can be found in the full version [7]. Here, we use Syn with one
million objects, five thousand time instants, and σ = 10. Results
reported in Figure 7 are obtained by averaging over 1000 random
durable top-k queries with randomly drawn query intervals.

Figure 7a compares the methods in terms of “pruning” power, or
more precisely, how many objects they examine to answer a query
(note the logarithmic scale). We set the query durability thresh-
old τ = 0.2 and try scenarios with k fixed at different values.
PREFIX always needs to examine all objects. The simple opti-
mization of PREFIX-O is surprisingly effective, and reduces the
number of objects indexed and examined by one to two orders of
magnitude. INTERVAL and TES have the same pruning power,
as both examine objects that ever enter the top k during the query
interval. Their advantage over PREFIX-O is consistent although
not dramatic. Finally, RTREE reduces the number of objects con-
sidered by another one to two orders of magnitude compared with
PREFIX-O/INTERVAL/TES, or up to nearly 5 orders of magnitude
compared with PREFIX. Saving is bigger when k is smaller.
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Figure 7: Comparing query efficiency for methods for the fixed-k
setting. Dataset is Syn, with n = 1M, m = 5K, and σ = 10.

In terms of query time, however, the comparison is more nu-
anced. Figures 7b and 7c compare the query execution times of
PREFIX, PREFIX-O, INTERVAL, TES, and RTREE, for two dif-
ferent settings of k, as we increase the durability threshold τ to
make the queries more selective. First, in Figure 7b, where k =
100 is relatively small, we see that PREFIX-O and RTREE are the
fastest. PREFIX-O is the fastest when queries are less selective
(i.e., lower τ ), but as queries become more selective, RTREE be-
comes faster and eventually overtakes PREFIX-O. TES is better
than INTERVAL, though both pale in comparison to RTREE and
PREFIX-O, and do not benefit from selective queries as RTREE
does. The basic version of PREFIX is the slowest here. On the
other hand, in Figure 7c, where k = 5000 is relatively large, we see
that PREFIX-O becomes the clear winner among all methods—its
performance is unaffected by the change in k. PREFIX’s perfor-
mance is also unchanged. However, the other methods take a hit
in performance, because a larger k generally reduces opportunities
for pruning (as seen in Figure 7a), so the computational overhead
of pruning and more complex index structures make them less at-
tractive, though they still examine fewer objects than PREFIX.

Overall, we conclude that PREFIX-O offers solid, competitive
performance in practice, beating the theoretically more interesting
RTREE except when queries are extremely selective. Because of its
performance and simplicity, we also use PREFIX-O for our approx-
imate index-based approach for handling the variable-k setting.
Note that in contrast to RTREE, the pruning power of PREFIX-
O heavily depends on data characteristics: for example, if every
object appears in top-k at some time, no objects will be pruned, re-
sulting in performance similar to PREFIX. However, we also note
that the use of PREFIX-O by our index-based approach offers addi-
tional protection from such boundary cases, because approximation
still allows us to ignore some objects that rarely ranked high, with-
out significantly affecting accuracy.

5.2 Variable-kkk setting
In this section, we continue to evaluate approximate methods

for τ -durable top-k queries with variable k. Section 4 proposed
two approaches for computing approximate answers: sample-based
and index-based. Section 5.2.1 first evaluates the alternative meth-
ods for the index-based approach in terms of space and accuracy.
Then, Section 5.2.2 compares the best index-based method against

the sample-based approach as well as baseline and state-of-the-art
approaches that produce exact answers. Finally, Section 5.2.3 eval-
uates the index construction costs of our index-based methods.

We use the standard F1 score (harmonic mean of precision and
recall) to measure the quality of approximate answers. The maxi-
mum possible F1 is 1, achieved when both precision and recall are
perfect. Since answer quality varies across query parameter set-
tings, we experiment with various query workloads wherein query
parameters are drawn from different distributions. Unless other-
wise noted, we let τ = 1 − x/100, where ln(x) is drawn from
N (3, 0.52) and x is truncated to [0, 100]. We typically draw k
from normal or log-normal distributions, discretized and truncated
to appropriate ranges. Here, heavier-tailed log-normal distributions
capture scenarios where users likely query with high τ and small k,
but they may still try larger k or lower τ more often than a normal
distribution would suggest. We typically draw the endpoints of I
uniformly at random, sometimes with interval length restricted to
appropriate ranges. Additional details will be given with the exper-
iments. When constructing the indexes, our index-based methods
have the knowledge of the workload distribution, but not the ac-
tual queries used in the experiments. Unless otherwise noted, for
each experimental setting, we generate 1000 random queries from
the workload and report both average and standard deviation for F1

score and running time.

5.2.1 Approximate Index-Based Methods
Here we compare the three index-based methods we proposed

in Section 4.2: data-oblivious indexing (DOS), column-wise in-
dexing (COL), and cell-wise indexing (CEL). Note that all these
methods allow the index size to be adjusted, which affects their ap-
proximation quality. In the following experiments, for DOS, we
generate 8 geometric sequences, with ratios 1.2, 1.4, 1.6, 1.8, 2.0,
3.0, 4.0, and 5.0. Each sequence defines a subset of columns to
index in K; e.g., ratio of 2.0 would index k = 1, 2, 4, 8, . . ., up
to the maximum k possible. A larger ratio implies fewer columns
and hence a smaller index. For each these 8 DOS index config-
urations, we produce a corresponding COL index with the same
number of columns (which does not guarantee the same index size,
as different columns may require different amounts of index space).
Finally, we use 16 actual index sizes (in terms of the number of in-
tervals indexed)—obtained from the 8 DOS configurations and the
8 COL configurations—as constraints to produce 16 CEL configu-
rations for comparison. Figures 8 and 9 compare the three index-
based methods across four datasets, Stock, Billboard, Temp, and
Syn, in terms of the quality of their approximate query answers.
Results in these two figures differ in the distribution of k in the
query workload—k follows a log-normal distribution in Figure 8,
but a normal distribution in Figure 9; the endpoints of I are drawn
uniformly at random from the time domain. As seen in both figures,
CEL consistently produces answers with the highest-quality ap-
proximate answers. Even at the lowest space setting, CEL achieves
F1 scores of no less than 0.9 across datasets and query workloads.
COL also offers reasonably good quality, but not as good as CEL.
COL is also not as frugal as CEL or DOS in terms of space: when
using the same number of columns as DOS, COL tends to consume
more space.7 DOS has unacceptably low F1 scores at low space
settings, but given more index space, F1 scores improve, as with
other two methods. In terms of the standard deviation in F1 scores,
DOS is also the worst among the three methods; CEL again is the

7This behavior also explains why in Figure 8d, COL does seemingly worse
than DOS: given the same number of columns to index, COL in fact does
offer higher accuracy than DOS, but it also chooses columns that require
more space, hence pushing its curve to the right of that of DOS.
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Figure 8: Quality of approximate answers by various index-based methods; ln(k) ∼ N (3, 0.52) and K = [1, 500]; uniform I .
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Figure 9: Quality of approximate answers by various index-based methods; k ∼ N (50, 152) and K = [1, 500]; uniform I .
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Figure 10: Quality of approximate answers by CEL vs. COL on SynX with n = 1K, m = 1K, σ = 20; ln(k) ∼ N (3, 0.52) and
K = [1, 500]; uniform I .

best, consistently delivering high accuracy with very little variation
among individual queries. Finally, between Figures 8 and 9, we see
that the accuracy under DOS and COL is more sensitive to the dis-
tribution of k in the query workload than under CEL. For DOS and
COL, log-normal distribution used in Figure 8 is “harder” than the
normal distribution used in Figure 9, because the latter distribution
is concentrated around fewer choices of k (99.7% of the density
would be within ±3σ of the mean), hence making it easier to pick
columns to index.8 In contrast, CEL offers consistently excellent
accuracy in both figures, because it has more degrees of freedom in
its choices to adapt to different query distributions.

Next, we perform experiments to evaluate how well the three
methods handle data with increasing complexity (in terms of rank
changes over time). We use SynX with σ = 20 and vary d, where a
smaller d leads to more frequent rank ranges. Figure 10 shows the
results when k in the query workload follows a log-normal distribu-
tion (as in Figure 8); the results for normal distribution are similar
and can be found in [7]. We focus on comparing just COL and CEL
here because DOS is clearly inferior. In Figure 10, we see that, as
d decreases and rank change complexity increases, the advantage
of CEL over COL widens significantly. As complexity grows, it
becomes exceedingly difficult (or simply impossible) for COL to
find a set of columns and a single mapping function that work for

8An exception to this observation is that DOS has more trouble at low space
settings under the normal distribution than the log-normal. The reason is
that in these experiments, we hard-coded the sequences of k for DOS to
index, independent of the distribution of k in the query workload; some of
these sequences happen to miss the high-density region of the distribution.

all objects—not only doe F1 scores drop, but the variance in F1

scores over individual queries also increases. In contrast, CEL sees
only very little degradation in F1 score as complexity grows, and
the variance remains low. For example, when d = 10, at the lowest
space setting, CEL’s F1 score is 0.94, with a standard deviation of
0.02, compared with COL’s F1 score of 0.71 and standard devia-
tion of 0.12. We have also experimented with instances of Syn with
varying σ (with higher σ leading to more volatile rank changes),
and drew similar conclusions; see [7] for details.

To conclude this section, CEL is the best among our index-based
methods. It provides higher and more consistent accuracy across
individual queries and on a wide range of datasets, and its ad-
vantages over DOS and COL become even more significant un-
der lower space settings and for data with more complex charac-
teristics. Another practical advantage of CEL is that it provides a
smoother control over the space-accuracy trade-off than DOS and
COL. DOS and COL allow the number of columns to be tuned, but
some columns require more space than others to index, resulting
in coarser and less predictable control over space. Moreover, DOS
does not guarantee that more columns will lead to higher accuracy.
In contrast, the smoother space-accuracy trade-off offered by CEL
makes it easier to apply in practice.

5.2.2 CEL vs. Other Approaches
In this section, we compare CEL, our best approximate index-

based method, with other approaches for answering durable top-k
queries in the variable-k setting: NAI, SAM, and TES. NAI is a
baseline exact solution, which precomputes and stores the top-kmax
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Figure 11: Query execution times for various durable top-k solu-
tions. Syn, n = 1M, m = 5K, σ = 10.
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Figure 12: Index space for various durable top-k solutions. Syn,
n = 1M, m = 5K, σ = 10; uniform I (relevant to only CEL).

membership at every time instant, where kmax = max(K) is the
maximum k that can be queried. To answer a query, NAI sequen-
tially scans all top-k memberships in the query interval, and ag-
gregates them to compute durability for each object it encounters.
SAM is the approximate, sampling-based approach introduced in
Section 4.1; it materializes exactly the same information as NAI.
TES is our implementation of the state-of-the-art exact solution
from [19]. Since its query performance depends on the actual data
structures used, we take care to discount any possible dependency
when taking measurements for TES.9 As a result, TES query ex-
ecution times reported here are only a lower bound; actual times
will be higher. Moreover, although TES is intended as an external-
memory solution, all indexes fit in memory in our experiments, so
for a fair comparison, we implement TES using internal-memory
data structures and ensure that all its data is memory-resident. For
these experiments, we implemented all approaches in Python.

Note that NAI and TES are exact, while CEL and SAM are
approximate. For a fair comparison, for CEL, we choose its in-
dex space budget such that CEL achieves an F1 score of at least
0.97; for SAM, we target a similarly high accuracy guarantee with
δ = 0.05 and ε = 0.1 (Lemma 1), using about 2000 samples (ex-
act number also depends on the τ parameter in queries). We use a
large synthetic dataset Syn with five billion data points, and com-
pare query efficiencies for different query workloads.

Figure 11a shows how the length of the query interval I influ-
ences query execution times of various approaches. Here, we draw
I’s starting point randomly, and make their lengths span 20%, 40%,
or 60% of the entire time domain. We draw k fromN (5500, 1002),
truncated to [5000, 6000]. For NAI and TES, their execution times
generally increase with the query interval length. SAM’s times re-
main roughly the same, because the number of random samples
needed is a function of the desired error bound, independent of the
query interval length. Still, CEL is the fastest by a wide margin,
and its times are also independent of the query interval length.

9TES uses a non-trivial data structure for reporting all rank changes within
k during the query interval, and we do not have access to its original im-
plementation. Hence, for the execution times of TES we report in these
experiments, we simply exclude the time spent using our implementation
of this data structure altogether; of course, time spent by TES processing
the reported changes is still included.

Figure 11b shows how k influences the comparison of query exe-
cution times. Here, we always draw I uniformly at random, but we
change the distribution of k: we start fromN (500, 1002) truncated
to [0, 1000], and then shift this distribution to the right in each set-
ting, stopping finally at the range [9000, 10000]. We do not report
query execution times for SAM, because for small query intervals
(say, those with length less than 1000), random sampling is not ap-
plicable. From Figure 11b, we see that NAI and TES times grow
roughly linearly with k; both also exhibit large standard deviations
(shown as error bars), as their performance heavily depends on the
query interval length. In comparison, CEL’s times are consistently
low (a small fraction of a second) and largely unaffected by the
query parameters.

Next, we compare the index space used by the various approaches
in Figure 12, as measured by the amounts of space consumed by
Python data structures. The query workloads are the same as those
in Figure 11b. Note that the space consumption of NAI/SAM (re-
call that they use the same data structure) and TES depend on the
maximum k they support. Hence, for each workload setting, we
report two space measurements: the higher one, shown as the red
segment on top of the bar, covers the entire range of k in the work-
load; the lower one covers only the lower half of the range (mean-
ing that half of the queries cannot be answered). For example, when
k ∼ N (500, 1002) truncated to [0, 1000], we report the space con-
sumed by NAI/SAM and TES for kmax = 1000 and kmax = 500.
CEL does not have such an issue, as it does not assume a hard limit
on k. From Figure 12, we see that overall, larger k’s lead to larger
index space for all approaches (although CEL can operate under a
specified space budget, recall that achieving the same high accu-
racy requires more index space for larger k’s). NAI and SAM use
the least amount of space, which is not surprising as these methods
rely less on preprocessing. TES consumes the most space (about
13GB for K = [9000, 10000]), which may not be acceptable as an
internal-memory solution. TES’s high space consumption can be
explained by its approach of indexing all object rank changes over
time; if data exhibit somewhat complex characteristics, indexing
individual rank changes would carry a lot of overhead compared
with the more compact representation of NAI/SAM. In compari-
son, CEL uses only 2.3GB on the highest k setting, which makes
it more practical to store the index in memory. We further note
that our Python-based implementation is not particularly memory-
efficient. Thanks to CEL’s simple data structures, a C++ imple-
mentation would reduce the memory footprint by about a factor
of 2 (e.g., from 2.3GB to 1.18GB), where we can store each time
instant or prefix sum with exactly 4 bytes, incurring far lower over-
head than Python’s implementation of lists of integers.

To further demonstrate scalability of CEL, we test it on an even
larger version of Syn with 50 billion data points (n = 10M, m =
5K, and σ = 10). In the query workload, I is uniform and K =
[5000, 6000]. Under this setting, CEL only needs 3.6GB of index
space to deliver F1 scores of at least 0.97, with mean query execu-
tion time of 0.53 seconds (and a 0.03 standard deviation).

To summarize, CEL is both much faster and more space-efficient
than TES. Even for large datasets with billions of data points, CEL
only needs a couple of GB of memory to deliver fast, highly accu-
rate results. While NAI and SAM require less space, their query
execution times are not competitive.

5.2.3 Index Construction
The two data-driven index-based methods, COL and CEL, per-

form elaborate preprocessing and optimization during their index
construction step. In this section, we evaluate the performance
of index construction for these two methods and demonstrate their
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Figure 13: CEL index quality as a function of optimization time
spent on assessing expected error using Monte Carlo simulations
during optimization; same query workload as Figure 8.
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Figure 14: Optimization time as a function of budget. Syn, n =
1M, m = 5K, σ = 10, K = [9K, 10K]

feasibility on large temporal datasets. Recall that in order for these
methods to select what to index, they need to 1) estimate expected
error over the query workload, and 2) search for the optimal in-
dex that minimize this error under a space constraint. Both tasks
can be expensive. We now take a closer look at these tasks before
examining the end-to-end index construction cost.

As discussed in Section 4.2, one of the ideas we use to speed up
the task of error estimation is Monte Carlo simulation, which sam-
ples from the query interval distribution to estimate the expected
error. To evaluate the effectiveness of this strategy, we vary the
number of samples drawn by the Monte Carlo simulation, which
translates into varying index construction times; intuitively, more
samples and longer running times produce more accurate estimates,
which can potentially lead to higher index quality. Figure 13 shows
how index quality is affected by the time spent on assessing errors
(controlled by the number of Monte Carlo samples) during opti-
mization. We show results for CEL on Temp and Syn (with five
billion data points); results on other datasets and for COL are simi-
lar. The query workload is the same as in Figure 8. We measure the
index quality by the observed F1 scores on 1000 random queries
generated from the workload. For a fair comparison across set-
tings, we always give the optimization procedure the same space
budget (used by the longest time settings in Figure 13 to produce
a sufficiently high F1 score). Under settings with shorter times,
less accurate error estimates can potentially make the optimization
procedure pick suboptimal indexes under the same space budget.
As shown in Figure 13, however, even when at fairly low sampling
rates—which translate to under 1.67 minutes spent on assessing
errors for Temp or under 40 minutes for the much bigger Syn—we
are able to deliver CEL indexes with qualities comparable to those
obtained under the longest time settings. In other words, the Monte
Carlo approach is quite effective in taming the cost of assessing
errors while ensuring the resulting index quality.

Next, we examine the costs of the optimization algorithms: dy-
namic programming for COL (Section 4.2.2.1) and greedy for CEL
(Section 4.2.2.2). Figure 14 plots the optimization times of COL
and CEL (excluding time spent on computing error metrics) as
functions of budget. The budget is in terms of the number of in-

Table 2: End-to-end CEL index construction times on various
datasets.

Stock Billboard Temp Syn Syn
m × n = 5 billion m × n = 50 billion

6.05 minutes 38.56 minutes 1.97 hours 8.33 hours 16.3 hours

dexed columns for COL, and in terms of the number of indexed
cells for CEL. The underlying dataset is Syn (n = 1M, m = 5K,
σ = 10). We further stress-test index construction by enlarging the
range of parameter k, drawing it from N (9500, 1002), discretized
and truncated to [9000, 10000]. Compared with the experiments on
real datasets, the increases in the size of Syn and effective k value
range together give a multiplicative boost in the search space for
CEL’s greedy selection algorithm, resulting in a much more chal-
lenging optimization problem. The other query workload settings
are again the same as those for Figure 8. As we can see in Fig-
ure 14, generally speaking, bigger space budgets result in longer
optimization times, and CEL optimization is more expensive than
COL optimization. At a moderate budget settings for CEL, shown
as the third data point in Figure 14(b), the resulting indexes already
have F1 scores of no less than 0.97, and require about 3.5 hours of
optimization time, which is practically feasible since it only hap-
pens during index construction.

Finally, Table 2 lists the end-to-end CEL index construction times
for all our real datasets and two large synthetic datasets. For Stock,
Billboard and Temp, we use the same query workload as in Fig-
ure 8. For Syn with 5 billion data points (n = 1M, m = 5K,
σ = 10), we use the query workload as in Figure 14. For Syn
with 50 billion data points (n = 10M, m = 5K, σ = 10), we
use the same query workload as the one used for this dataset in
Section 5.2.2. As shown in Figure 2, for real datasets, index con-
struction can be completed within a couple of hours. For the first
Syn dataset, we can construct the index within 9 hours. For the
second Syn dataset that is 10 times bigger, we can construct the
index under 17 hours. Even for such large datasets, index construc-
tion time is acceptable considering that it is a one-time cost. For
all datasets, the constructed CEL index provides an F1 score of no
less than 0.97.

6. CONCLUSION
In this paper, we have studied the problem of finding durable

top-k objects in large temporal datasets. We first considered the
case when k is fixed and known in advance, and proposed a novel
solution based on a geometric reduction to the 3d halfspace report-
ing problem. We then studied in depth the general case where k
is variable and known only at query time. We proposed a suite of
approximate methods for this case, including both sampling- and
index-based approaches, and considered the optimization problem
of selecting what to index. As demonstrated by experiments with
real and synthetic data, our best approximate method, cell-wise in-
dexing, achieves high-quality approximate answers with fast query
time and low index space on large temporal datasets.
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