
Efficient Structural Graph Clustering: An Index-Based
Approach

Dong Wen\, Lu Qin\, Ying Zhang\, Lijun Chang§, and Xuemin Lin‡,
\Centre for Artificial Intelligence, University of Technology Sydney, Australia

§The University of Sydney, Australia
‡The University of New South Wales, Australia

\dong.wen@student.uts.edu.au; {lu.qin, ying.zhang}@uts.edu.au;
§lijun.chang@sydney.edu.au; ‡lxue@cse.unsw.edu.au;

ABSTRACT
Graph clustering is a fundamental problem widely experienced across
many industries. The structural graph clustering (SCAN) method
obtains not only clusters but also hubs and outliers. However, the
clustering results closely depend on two sensitive parameters, ε and
µ, while the optimal parameter setting depends on different graph
properties and various user requirements. Moreover, all existing
SCAN solutions need to scan at least the whole graph, even if only
a small number of vertices belong to clusters. In this paper we pro-
pose an index-based method for SCAN. Based on our index, we
cluster the graph for any ε and µ in O(

∑
C∈C |EC |) time, where C

is the result set of all clusters and |EC | is the number of edges in
a specific cluster C. In other words, the time expended to compute
structural clustering depends only on the result size, not on the size
of the original graph. Our index’s space complexity is bounded by
O(m), wherem is the number of edges in the graph. To handle dy-
namic graph updates, we propose algorithms and several optimiza-
tion techniques for maintaining our index. We conduct extensive
experiments to practically evaluate the performance of all our pro-
posed algorithms on 10 real-world networks, one of which contains
more than 1 billion edges. The experimental results demonstrate
that our approaches significantly outperform existing solutions.

PVLDB Reference Format:
Dong Wen, Lu Qin, Ying Zhang, Lijun Chang and Xuemin Lin. Efficient
Structural Graph Clustering: An Index-Based Approach. PVLDB, 11(3):
 243 - 255, 2017.
DOI: 10.14778/3157794.3157795

1. INTRODUCTION
Graphs are widely used for representing the relationships across

countless interests. A proliferation in graph-building applications
has steered research efforts toward challenges in managing and an-
alyzing graph data; those efforts identify graph clustering as a fun-
damental problem. This has led to extensive studying of graph clus-
tering [25, 13, 19, 2, 8, 17, 16].

A graph cluster is a group of vertices that are densely connected
within a group and sparsely connected to vertices outside that group.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11... $ 10.00.
DOI: 10.14778/3157794.3157795

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 1: Clusters, hubs and outliers under ε = 0.7, µ = 4

Graph clustering mainly aims to detect all clusters in a given graph.
Such analysis is required for metabolic networks [8], identifying
communities that are populating social networks [7], creating rele-
vant search results for web crawlers, and identifying research groups
across collaborating networks [27], among others.

While detecting all clusters is important, also worthwhile is iden-
tifying the specific role—either hub or outlier—of each vertex that
is not a member of any cluster. Hubs are vertices that bridge dif-
ferent clusters, and outliers are vertices that do not. Distinguishing
between hubs and outliers is important for mining various complex
networks [25, 11]. Normally, hubs are regarded as influential ver-
tices, and outliers are treated as noise.
Structural Graph Clustering. Many different graph clustering
methods are proposed in the literature. They include the modularity-
based methods [15, 18, 15], graph partitioning [17, 6, 23] and the
density-based methods [10]. However, most of these clustering
methods only focus on computing clusters, ignoring identification
of hubs and outliers. To handle this issue, a structural graph clus-
tering (SCAN) method is proposed in [25]. Its basic premise is that
two vertices belong to the same cluster if they are similar enough.

SCAN defines the structural similarity between adjacent ver-
tices, with two vertices being considered similar if their structural
similarity is not less than a given parameter ε. To construct clus-
ters, SCAN detects a special kind of vertex, named core. A core
is a vertex that is neighbored closely by many similar vertices and
is regarded as the seed of a cluster. The number of similar neigh-
bors for a core is evaluated by a given parameter µ. A cluster is
constructed by a core expanding to all vertices that are structurally
similar to that core. SCAN successfully finds all these clusters, and
also the hubs and outliers. If a vertex does not belong to any cluster,
it is a hub if its neighbors belong to more than one cluster, and an
outlier otherwise. Fig. 1 gives an example of graph clustering. In
it, two clusters are colored gray, and cores are colored black. Hubs
and outliers are also labeled.
Existing Solutions. The effectiveness of structural graph clus-
tering across many applications means that plenty of related re-

243

searches has been proposed. The original algorithm for SCAN
is proposed in [25]; for the ease of presentation, we also use the
generic term SCAN to represent this algorithm. It iteratively pro-
cesses each vertex u that has not been assigned to any cluster. If u
is a core, it creates a cluster containing u and recursively adds the
similar vertices for cores into the cluster. However, the algorithm
needs to compute the structural similarity for every pair of adjacent
vertices; this requires high computational cost and does not scal-
able to large graphs. Several methods are proposed for overcoming
this drawback. In one method, SCAN++ [19] defines the vertex
set containing only vertices that are two hops away from a given
vertex. This helps SCAN++ compute fewer structural similarities
than SCAN. LinkSCAN∗ [13] improves the efficiency of SCAN
via sampling edges and obtains an approximate result of SCAN.

The state-of-the-art solution for improving SCAN’s algorithm
efficiency is pSCAN [2]. Under this method, identification of all
cores is the key to structural graph clustering. To reduce the num-
ber of similarity computations, pSCAN maintains an upper bound
(effective-degree) and a lower bound (similar-degree) for the num-
ber of similar neighbors of each vertex. pSCAN always processes
the vertex that has the largest effective-degree, which means that
vertex has a high probability of being a core. pSCAN avoids a
large number of similarity computations and is significantly faster
than previous methods.

Several other methods address the problem of structural graph
clustering across different computational environments. A parallel
version of SCAN is studied in [26]; the algorithm for SCAN on
multicore CPUs is studied in [14]. More details about related work
are summarized in Section 7.
Motivation. Even though these various SCAN methods can suc-
cessfully compute clusters, hubs, and outliers, several challenges
remain:
• Parameters Tuning. The results heavily depend on two sensi-

tive input parameters, µ and ε, and the optimal parameter set-
ting is dependent on different graph properties and user require-
ments. To obtain reasonable clusters, users may need to run an
algorithm several times to tune the parameters. Therefore, effi-
ciently computing the clustering given to each parameter setting
is a critical factor.
• Query Efficiency. pSCAN proposes several pruning rules to im-

prove efficiency. However, it still needs to compute the struc-
tural similarity for every pair of adjacent vertices in the worst-
case scenario. At a minimum, it needs to process all of a graph’s
vertices and their adjacent edges to obtain the clusters, even if
there exist only a small number of vertices belonging to clusters.
• Network Update. Many real-world networks are frequently up-

dated. The clustering results may change when an edge is in-
serted or removed. Solutions for structural graph clustering should
consider handling dynamic graphs.

Our Solution. Motivated by the above challenges, in this paper, we
propose a novel index structure, named GS∗-Index, for structural
graph clustering. GS∗-Index has two main parts: core-orders and
neighbor-orders. Given parameters ε and µ, we can easily obtain
all cores with the help of core-orders, while neighbor-orders help
us group all cores and add non-core vertices into each cluster. The
space complexity of GS∗-Index is bounded by O(m) and the time
complexity to construct GS∗-Index is bounded by O((m + α) ·
logn), where n is the number of vertices,m is the number of edges
and α is graph arboricity [5].

Based on GS∗-Index, we propose an efficient algorithm to an-
swer the query for any possible ε and µ. We compute all clusters
in O(

∑
C∈C |EC |) time complexity, where C is the result set of all

clusters and |EC | is the number of edges in a specific cluster C in
C. In other words, the running time of our algorithm is only depen-
dent on the result size, and not on the size of the original graph.

Most real-world networks are frequently updated. Thus we pro-
vide algorithms for updating GS∗-Index when an edge inserts or
is removed. We further propose techniques for improving the effi-
ciency of updating both neighbor-orders and core-orders.
Contributions. This paper’s main contributions in response to the
SCAN challenges are as follows:
• The first index-based algorithm for structural graph clustering.

We propose an effective and flexible index structure, named
GS∗-Index, for structural graph clustering. To the best of our
knowledge, this is the first index-based solution for the struc-
tural graph clustering problem. The size of GS∗-Index can be
well bounded by O(m).
• Efficient query processing. Based on our GS∗-Index, we pro-

pose an efficient algorithm for answering the query for any pos-
sible ε and µ. The time complexity is linear to the number of
edges in the resulting clusters.
• Optimized algorithms for index maintenance. We propose algo-

rithms for maintaining our proposed index when graphs update.
Several optimizations are proposed for achieving significant al-
gorithmic speedup.
• Extensive performance studies in real-world networks. We do

extensive experiments for all our proposed algorithms in 10 real-
world datasets, one of which contains more than 1 billion edges.
The results demonstrate that our algorithm can achieve several
orders of magnitude speedup in query processing compared to
the state-of-the-art algorithm.

Outline. The rest of this paper is organized as follows. Section 2
gives preliminary definitions and formally defines the problem. Sec-
tion 3 reviews existing solutions. Section 4 introduces our index
structure and proposes the query algorithm. Section 5 describes the
algorithms for maintaining index when graph updates occur. Sec-
tion 6 is a practical evaluation of our proposed algorithms and re-
ports the experimental results. Section 7 summarizes related works,
and Section 8 concludes the paper.

2. PRELIMINARY
In this paper, we consider an undirected and unweighted graph

G(V,E). We denote the number of vertices |V | and the number
of edges |E| by n and m respectively. For each vertex u, the open
neighborhood of u, denoted by N(u), is the set of neighbors of u,
i.e., N(u) = {v ∈ V |(u, v) ∈ E}. Before stating the problem, we
introduce basic definitions for the graph clustering method SCAN.

DEFINITION 1. (STRUCTURAL NEIGHBORHOOD) The struc-
tural neighborhood of a vertex u, denoted by N [u], is defined as
N [u] = {v ∈ V |(u, v) ∈ E} ∪ {u}.

Given a vertex u, we define the degree of u as the cardinality of
N [u], i.e., deg[u] = |N [u]|. Based on the concept of structural
neighborhood, the structural similarity[25] is defined as follows.

DEFINITION 2. (STRUCTURAL SIMILARITY) The structural sim-
ilarity between two vertices u and v, denoted by σ(u, v), is de-
fined as the number of common structural neighbors between u and
v, normalized by the geometric mean of their cardinalities of the
structural neighborhood. That is,

σ(u, v) =
|N [u] ∩N [v]|√
|N [u]||N [v]|

(1)

From the definition, we can see that the structural similarity be-
tween two vertices becomes large when they share many common

244

structural neighbors. Intuitively, it is highly possible that two ver-
tices belong to the same cluster if their structural similarity is large.
In SCAN, a parameter ε is used as a threshold for the similarity
value. Given a vertex u and a parameter ε (0 < ε ≤ 1), the ε-
neighborhood[25] for u is defined as follows.

DEFINITION 3. (ε-neighborhood) The ε-neighborhood for a ver-
tex u, denoted by Nε[u], is defined as the subset of N [u], in which
every vertex v satisfies σ(u, v) ≥ ε. That is, Nε[u] = {v ∈
N [u]|σ(u, v) ≥ ε}.

Note that the ε-neighborhood for a given vertex u includes u
itself, since σ(u, v) = 1; when the number of ε-neighbors is large
enough, we call u a core. The formal definition of a core is given
below. A parameter µ is used as the threshold for the cardinality of
ε-neighborhood.

DEFINITION 4. (CORE) Given a similarity threshold ε (0 <
ε ≤ 1) and an integer µ (µ ≥ 2), a vertex u is a core if |Nε[u]| ≥ µ.

A vertex is called a non-core vertex if it is not a core. Identifying
cores is a crucial task in SCAN, given clusters can be obtained by
expanding the cores. Specifically, each core u is considered as a
seed vertex, and all of its ε-neighbors v belong to the same cluster
of u, since u and v are similar enough. Once v is also a core,
the seed scope will be expanded and all ε-neighbors of v will be
added into the cluster as well. To describe such transitive relation,
structural reachability[25] is defined as follows.

DEFINITION 5. (STRUCTURAL REACHABILITY) Given two ver-
tices u and v, v is structurally reachable from u if there is a se-
quence of vertices v1, v2, ...vl ∈ V (l ≥ 2) such that: (i) v1 =
u, vl = v; (ii) for all 1 ≤ i ≤ l−1, vi is core, and vi+1 ∈ Nε[vi].

A cluster is obtained when all structurally reachable vertices from
any core vertex are identified. Below, we formally summarize the
definition of a cluster.

DEFINITION 6. (CLUSTER) A cluster C ∈ V is a non-empty
subset of V such that:
• (CONNECTIVITY) For any two vertices v1, v2 ∈ C, there exists

a vertex u ∈ C such that both of v1 and v2 are structurally
reachable from u.
• (MAXIMALITY) For a core u ∈ C, all vertices that are struc-

turally reachable from u are also belong to C.

EXAMPLE 1. We give an example of clustering result for the
graph G in Fig. 1, where ε = 0.7, µ = 4. The structural simi-
larity for every pair of adjacent vertices is given. For each pair
of adjacent vertices, we represent the edge by a solid line if the
structural similarity between them is not less than 0.7. Otherwise,
we use a dashed line. We have four cores, namely v0, v2, v9, and
v10. They are marked with the color black. All vertices that are
structurally reachable from cores are marked in gray. We can see
that there are two clusters obtained in the graph. In the cluster
{v0, v1, v2, v3, v4, v5}, all inside vertices are structurally reach-
able from v2 (connectivity). The vertices that are structurally reach-
able from v0 and v2 are all included in the cluster (maximality).

Problem Statement. Given a graph G(V,E) and two parameters
0 < ε ≤ 1 and µ ≥ 2, in this paper we aim to efficiently compute
the set C of all clusters in G.
Hub and Outlier. SCAN effectively identifies not only clusters but
also hubs and outliers. The definition of hub and outlier in SCAN
is given as follows.

DEFINITION 7. (HUB AND OUTLIER) Given a vertex u that
does not belong to any cluster, u is a hub if it has neighbors belong-
ing to two or more different clusters. Otherwise, u is an outlier.

Algorithm 1 SCAN [25]

Input: a graph G(V,E) and parameters 0 < ε ≤ 1 and µ ≥ 2
Output: the set C of clusters in G
1: for each edge (u, v) ∈ E do compute σ(u, v);
2: C← ∅;
3: for each unexplored vertices u ∈ V do
4: C ← {u};
5: for each unexplored vertices v ∈ C do
6: mark v as explored;
7: if |Nε[v]| ≥ µ then C ← C ∩Nε[v];
8: if |C| > 1 then C← C ∩ {C};
9: return C;

EXAMPLE 2. In the case of Fig. 1, vertex v7 is a hub, given it
has two neighbors, namely v5 and v8, belonging to different clus-
ters. Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters. Given
the set of clusters in G, all hubs and outliers can be linearly ob-
tained in O(m+ n) time, according to the definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. First, we

introduce the original algorithm SCAN [25]. Then we present the
state-of-the-art algorithm pSCAN [2].

3.1 SCAN
The original algorithm SCAN is proposed in [25]. For clearness

of presentation, we give the pseudocode of SCAN in Algorithm 1,
which is a version rearranged by [2] and is equivalent to the original
one [25]. The pseudocode is self-explanatory.

The total time complexity of SCAN is O(α ·m). Here α is the
arboricity of G, which is the minimum number of spanning forests
needed to cover all the edges of the graph G and α ≤ √m [5].
In line 1, it costs O(α · m) time to compute the structural simi-
larity for each pair of adjacent vertices, which dominates the total
time complexity in the algorithm. Given all structural similarities,
computing all clusters only needs O(m) time.

3.2 pSCAN
Even though the algorithm SCAN is worst-case optimal [2], it re-

quires a high computational cost to compute structural similarities.
To handle this issue, [2] proposes a new algorithm called pSCAN,
which is the state-of-the-art solution for this problem. The main
idea of pSCAN is based on three observations: 1) The clusters may
overlap; 2) The clusters of cores are disjointed; and 3) The clusters
of non-core vertices are uniquely determined by cores.

pSCAN first clusters all cores, as every resulting cluster is uniquely
identified by the cores inside it. Then, it assigns non-core vertices
to corresponding clusters. The pseudocode is given in Algorithm 2.

To reduce unnecessary similarity computations, pSCAN main-
tains a lower bound sd(u) and an upper bound ed(u) of the number
of ε-neighbors for each vertex u. Specifically, let N ′[u] be the set
of neighbors of u such that the structural similarity between u and
every v ∈ N ′[v] has been computed. N ′[u] is dynamically updated
in the algorithm. Accordingly, sd(u) and ed(u) are assigned by
|{v ∈ N ′[u]|σ(u, v) ≥ ε}| and deg[u] − |{v ∈ N ′[u]|σ(u, v) <
ε}| respectively. A vertex is a core if sd(u) ≥ µ and is a non-core
vertex if ed(u) < µ. sd(u) and ed(u) are initialized by 0 and
deg[u] respectively (line 3 and line 4).

In line 6 of Algorithm 2, CheckCore(u) is invoked for confirm-
ing whether the given vertex u is a core, and for updating sd(v)
and ed(v) for all unexplored neighbors v ∈ N [u]. In line 7,
ClusterCore(u) assigns u and each v ∈ N [u] to the same clus-
ter based on the disjoint-set data structure if v is also a core and

245

Algorithm 2 pSCAN [2]

Input: a graph G(V,E) and parameters 0 < ε ≤ 1 and µ ≥ 2
Output: the set C of clusters in G
1: initialize a disjoint-set data structure with all u in V ;
2: for each u ∈ V do
3: sd(u)← 0;
4: ed(u)← deg[u];
5: for each u ∈ V in non-increasing order w.r.t. ed(u) do
6: CheckCore(u);
7: if sd(u) ≥ µ then ClusterCore(u);
8: Cc ← the set of subsets of cores in the disjoint-set data structure;
9: ClusterNonCore();

10: return C;

σ(u, v) ≥ ε. All clusters with only cores are obtained after line 7.
Finally, in line 9, non-core vertices are assigned to corresponding
clusters, where necessary.

Several optimization techniques for similarity-checking exist in
pSCAN. Given two vertices, u and v, these techniques propose
necessary conditions for both σ(u, v) < ε and σ(u, v) ≥ ε. Specif-
ically, if deg[u] < ε2 · deg[v] or deg[v] < ε2 · deg[u], then
σ(u, v) < ε; and if |N [u] ∩N [v]| ≥ dε ·

√
deg[u] · deg[v]e, then

σ(u, v) ≥ ε. This helps the algorithm achieve increased speed
when structural similarity checking. In worst-case scenarios, the
time complexity of pSCAN is still bounded by O(α ·m).
Drawbacks of Existing Solutions. All existing solutions focus on
the online-computing of all clusters via two exact given parame-
ters. However, the change of input parameter value may heavily
influence on the clustering result, especially in large graphs. We
consider an example in Fig. 2. We use a dashed line to circle the
clusters obtained by given ε and µ. The results may change even
though we only slightly adjust ε or µ. Additionally, all existing
methods always need to scan an entire graph to obtain its result
clusters; for big graphs, this may consume a huge chunk of time.

Motivated by this, we propose an index-based method. With the
index, we can answer the query for any given 0 < ε ≤ 1 and
µ ≥ 2 in a time complexity that is proportional to only the size of
result subgraphs. To make our solution scalable to big graphs, the
index size should be well bounded, and the time cost to index con-
struction should be acceptable. Additionally, to handle the frequent
updates in many real-world graphs, we also propose maintenance
algorithms for our index structure. We discuss the details of index
implementation in the following section.

4. INDEX-BASED ALGORITHMS
A Basic Index Structure. A straightforward idea for our index
structure is the maintenance of structural similarity for each pair of
adjacent vertices. We name such index by GS-Index. The construc-
tion for GS-Index is the same as in line 1 of Algorithm 1. Specifi-
cally, to calculate all structural similarities, we need to compute the
number of common neighbors for each pair of adjacent vertices.
This is equivalent to enumerating all triangles in the graph [5]. The
space complexity of GS-Index, and time complexity of GS-Index
construction, are summarized in the following lemmas.

LEMMA 1. The space complexity of GS-Index isO(m) and the
time complexity for constructing GS-Index is O(α ·m).

LEMMA 2. The time complexity of the query algorithm based
on GS-Index is O(m).

Given all similarities, the result clusters are easily obtained by
scanning the graph following the same procedures as detailed in
lines 2–8 in Algorithm 1. We can see that even though the space
usage of GS-Index can be well bounded, it still needs to traverse
the entire graph to obtain the result clusters in query processing,

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Algorithm 2 pSCAN [1]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: initialize a disjoint-set data structure with all u in V ;
2: for each u 2 V do
3: sd(u) 0;
4: ed(u) degree[u];
5: for each u 2 V in non-increasing order w.r.t. ed(u) do
6: CheckCore(u);
7: if sd(u) � µ then ClusterCore(u);
8: Cc the set of subsets of cores in the disjoint-set data

structure;
9: ClusterNonCore();

10: return C;

✏}| and degree[u] � |{v 2 N 0[u]|�(u, v) < ✏}| respectively.
A vertex is a core if sd(u) � µ and is a non-core vertex if
ed(u) < µ. sd(u) and ed(u) are initialized by 0 and degree[u]
respectively (line 3 and line 4).

In line 6 of algorithm Algorithm 2, CheckCore(u) is in-
voked to confirm whether given vertex u is a core and up-
dates sd(v) and ed(v) for all unexplored neighbors v 2 N [u].
In line 7, ClusterCore(u) assigns u and each v 2 N [u] to the
same cluster based on the disjoint-set data structure if v is
also a core and �(u, v) � ✏. All clusters with only cores are
obtained after line 7. Finally in line 9, non-core vertices are
assigned to corresponding clusters if necessary.

There also exist some optimization techniques for similar-
ity checking in pSCAN. Given two vertices u and v, they pro-
pose necessary conditions for both �(u, v) < ✏ and �(u, v) �
✏. Specifically, if degree[u] < ✏2 · degree[v] or degree[v] <
✏2 · degree[u], then �(u, v) < ✏; and if |N [u] \ N [v]| �
d✏ ·

p
degree[u] · degree[v]e, then �(u, v) � ✏. This helps

algorithm achieve speedup in structural similarity checking.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

Figure 3: Clusters under Di↵erent µ and ✏

Drawbacks of Existing Solutions. All existing solutions
focus on online computing all clusters with two given ex-
act parameters. However, the change of input parameter
value may heavily influence on the clustering result espe-
cially when the graph size is very large. We consider an
example in Fig. ??. We use dashed line to circle the clusters
obtained by given ✏ and µ. The results may become di↵erent
even though we only adjust ✏ or µ slightly.

✏ = 0.5, µ = 4
✏ = 0.7, µ = 4
✏ = 0.8, µ = 3
Motivated by this, we aim to propose an index-based

method. With the index, we can answer the query for any

given 0 < ✏  1 and µ � 2 in time complexity which is only
related to the size of result subgraphs. In addition, to keep
our solution scalable to big graphs, the size of index should
be well bounded and the time consuming for index construc-
tion should be acceptable. We discuss the index details in
the following section.

4. INDEX-BASED ALGORITHMS
A Basic Index Structure. A straightforward idea for
the index structure is maintaining the structure similarity
for each pair of adjacent vertices. We name such index by
GS-Index. The construction for GS-Index is same as line 1 of
Algorithm 1. Specifically, to calculate all structural similar-
ities, we need to compute the number of common neighbors
for each pair of adjacent vertices, which is equivalent to enu-
merate all triangles in graph [2]. The space complexity for
index structure and time complexity for index construction
are summarized in the following theorem.

Lemma 1. The space complexity of GS-Index is O(m) and
the time complexity for constructing GS-Index is O(↵ · m).

Given all similarities, the result clusters can be easily ob-
tained by scan the graph, which is same as the procedure
from line 2 to line 8 in Algorithm 1. Details can be found
in Subsection 3.1.

Lemma 2. The time complexity of query algorithm for
GS-Index is O(m).

We can see that even though the space usage of index
GS-Index can be well bounded, it still need to traverse the
entire graph to obtain the result clusters in query processing,
which may hard to be endured in big graphs. To conquer
this issue, we propose a novel index structure which is called
GS-Index⇤. Based on index GS-Index⇤, we can query all result
clusters in O(mc) time, where mc is the number of edges in
the induced subgraphs of result clusters. We use O(m) space
and O(↵ ·m+log n ·m) time to save and construct the index
respectively.

In the rest of this section, we introduce high-level ideas
of our index structure in Subsection 4.1. Subsection 4.2
gives the implementation details for index construction. We
proposes query algorithm for GS-Index⇤ in Subsection 4.3

4.1 Index Overview
Recall that di↵erent clusters may overlap while each core

only belongs to unique cluster. In this section, we mainly
study the index structure to cluster cores. We will also show
that such index can be naturally used to cluster non-core
vertices together.
E�ciently Cores Detection. The general idea of our
index implementation is saving the cores information for ev-
ery given ✏ and µ. Specifically, we aim to e�ciently obtain
all cores by given any ✏ and µ using the index. We divide
this problem into computing all cores with given similarity
thresholds ✏ under a fixed µ. This is due to the reason that
the parameter µ is an integer and there only exists limited
number of possible µ. In paragraphs below, we firstly dis-
cuss the candidate vertices to be cores with given µ. Then
we consider exactly obtaining cores with given ✏ in the can-
didate set.

Following observation presents the maximum and mini-
mum possible value of input parameter µ.

Algorithm 2 pSCAN [1]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: initialize a disjoint-set data structure with all u in V ;
2: for each u 2 V do
3: sd(u) 0;
4: ed(u) degree[u];
5: for each u 2 V in non-increasing order w.r.t. ed(u) do
6: CheckCore(u);
7: if sd(u) � µ then ClusterCore(u);
8: Cc the set of subsets of cores in the disjoint-set data

structure;
9: ClusterNonCore();

10: return C;

✏}| and degree[u] � |{v 2 N 0[u]|�(u, v) < ✏}| respectively.
A vertex is a core if sd(u) � µ and is a non-core vertex if
ed(u) < µ. sd(u) and ed(u) are initialized by 0 and degree[u]
respectively (line 3 and line 4).

In line 6 of algorithm Algorithm 2, CheckCore(u) is in-
voked to confirm whether given vertex u is a core and up-
dates sd(v) and ed(v) for all unexplored neighbors v 2 N [u].
In line 7, ClusterCore(u) assigns u and each v 2 N [u] to the
same cluster based on the disjoint-set data structure if v is
also a core and �(u, v) � ✏. All clusters with only cores are
obtained after line 7. Finally in line 9, non-core vertices are
assigned to corresponding clusters if necessary.

There also exist some optimization techniques for similar-
ity checking in pSCAN. Given two vertices u and v, they pro-
pose necessary conditions for both �(u, v) < ✏ and �(u, v) �
✏. Specifically, if degree[u] < ✏2 · degree[v] or degree[v] <
✏2 · degree[u], then �(u, v) < ✏; and if |N [u] \ N [v]| �
d✏ ·

p
degree[u] · degree[v]e, then �(u, v) � ✏. This helps

algorithm achieve speedup in structural similarity checking.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

Figure 3: Clusters under Di↵erent µ and ✏

Drawbacks of Existing Solutions. All existing solutions
focus on online computing all clusters with two given ex-
act parameters. However, the change of input parameter
value may heavily influence on the clustering result espe-
cially when the graph size is very large. We consider an
example in Fig. ??. We use dashed line to circle the clusters
obtained by given ✏ and µ. The results may become di↵erent
even though we only adjust ✏ or µ slightly.

✏ = 0.5, µ = 4
✏ = 0.7, µ = 4
✏ = 0.8, µ = 3
Motivated by this, we aim to propose an index-based

method. With the index, we can answer the query for any

given 0 < ✏  1 and µ � 2 in time complexity which is only
related to the size of result subgraphs. In addition, to keep
our solution scalable to big graphs, the size of index should
be well bounded and the time consuming for index construc-
tion should be acceptable. We discuss the index details in
the following section.

4. INDEX-BASED ALGORITHMS
A Basic Index Structure. A straightforward idea for
the index structure is maintaining the structure similarity
for each pair of adjacent vertices. We name such index by
GS-Index. The construction for GS-Index is same as line 1 of
Algorithm 1. Specifically, to calculate all structural similar-
ities, we need to compute the number of common neighbors
for each pair of adjacent vertices, which is equivalent to enu-
merate all triangles in graph [2]. The space complexity for
index structure and time complexity for index construction
are summarized in the following theorem.

Lemma 1. The space complexity of GS-Index is O(m) and
the time complexity for constructing GS-Index is O(↵ · m).

Given all similarities, the result clusters can be easily ob-
tained by scan the graph, which is same as the procedure
from line 2 to line 8 in Algorithm 1. Details can be found
in Subsection 3.1.

Lemma 2. The time complexity of query algorithm for
GS-Index is O(m).

We can see that even though the space usage of index
GS-Index can be well bounded, it still need to traverse the
entire graph to obtain the result clusters in query processing,
which may hard to be endured in big graphs. To conquer
this issue, we propose a novel index structure which is called
GS-Index⇤. Based on index GS-Index⇤, we can query all result
clusters in O(mc) time, where mc is the number of edges in
the induced subgraphs of result clusters. We use O(m) space
and O(↵ ·m+log n ·m) time to save and construct the index
respectively.

In the rest of this section, we introduce high-level ideas
of our index structure in Subsection 4.1. Subsection 4.2
gives the implementation details for index construction. We
proposes query algorithm for GS-Index⇤ in Subsection 4.3

4.1 Index Overview
Recall that di↵erent clusters may overlap while each core

only belongs to unique cluster. In this section, we mainly
study the index structure to cluster cores. We will also show
that such index can be naturally used to cluster non-core
vertices together.
E�ciently Cores Detection. The general idea of our
index implementation is saving the cores information for ev-
ery given ✏ and µ. Specifically, we aim to e�ciently obtain
all cores by given any ✏ and µ using the index. We divide
this problem into computing all cores with given similarity
thresholds ✏ under a fixed µ. This is due to the reason that
the parameter µ is an integer and there only exists limited
number of possible µ. In paragraphs below, we firstly dis-
cuss the candidate vertices to be cores with given µ. Then
we consider exactly obtaining cores with given ✏ in the can-
didate set.

Following observation presents the maximum and mini-
mum possible value of input parameter µ.

Algorithm 2 pSCAN [1]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: initialize a disjoint-set data structure with all u in V ;
2: for each u 2 V do
3: sd(u) 0;
4: ed(u) degree[u];
5: for each u 2 V in non-increasing order w.r.t. ed(u) do
6: CheckCore(u);
7: if sd(u) � µ then ClusterCore(u);
8: Cc the set of subsets of cores in the disjoint-set data

structure;
9: ClusterNonCore();

10: return C;

✏}| and degree[u] � |{v 2 N 0[u]|�(u, v) < ✏}| respectively.
A vertex is a core if sd(u) � µ and is a non-core vertex if
ed(u) < µ. sd(u) and ed(u) are initialized by 0 and degree[u]
respectively (line 3 and line 4).

In line 6 of algorithm Algorithm 2, CheckCore(u) is in-
voked to confirm whether given vertex u is a core and up-
dates sd(v) and ed(v) for all unexplored neighbors v 2 N [u].
In line 7, ClusterCore(u) assigns u and each v 2 N [u] to the
same cluster based on the disjoint-set data structure if v is
also a core and �(u, v) � ✏. All clusters with only cores are
obtained after line 7. Finally in line 9, non-core vertices are
assigned to corresponding clusters if necessary.

There also exist some optimization techniques for similar-
ity checking in pSCAN. Given two vertices u and v, they pro-
pose necessary conditions for both �(u, v) < ✏ and �(u, v) �
✏. Specifically, if degree[u] < ✏2 · degree[v] or degree[v] <
✏2 · degree[u], then �(u, v) < ✏; and if |N [u] \ N [v]| �
d✏ ·

p
degree[u] · degree[v]e, then �(u, v) � ✏. This helps

algorithm achieve speedup in structural similarity checking.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

enough. Once the ✏-neighbor v is also a core, the seed scope
will be expended and all ✏-neighbors of v will be added into
the cluster. To describe such transitive relation, structural
reachability [4] is defined as follows.

Definition 5. (Structural Reachability) Given two
vertices u and v, v is structural reachable from u if there is
a sequence of vertices v1, v2, ...vl 2 V (l � 2) such that: (i)
v1 = u, vl = v; (ii) for all 1  i  l � 1, vi is core and
vi+1 2 N✏[vi].

A cluster is obtain when all structural reachable vertices
from any core vertex are identified. Below, we formally sum-
marize the definition of cluster.

Definition 6. (Cluster) A cluster C 2 V is a non-
empty subset of V such that:

• (Connectivity) For any two vertices v1, v2 2 C, there
exists a vertex u 2 C such that both of v1 and v2 are
structural reachable from u.

• (Maximality) For a core u 2 C, all vertices which are
structural reachable from u are also belong to C.

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Hub

Outlier

Cluster

Cluster

Figure 2: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 3. We continue use the parameters used in Ex-
ample 2. Given ✏ = 0.7, µ = 4, the clustering result is
presented in Fig. 3. For each pair of adjacent vertices, we
represent the edge by solid line if the structural similarity
between them is not less than 0.7. Otherwise, we use dashed
line. We have 4 cores which are v0, v2, v9 and v10. They are
marked by black color. All vertices in the cluster which are
structural reachable from cores are marked by gray color. We
can see that there are two clusters obtained in the graph. In
the cluster {v0, v1, v2, v3, v4, v5}, all vertices inside are struc-
tural reachable from v2 (connectivity). The vertices which
are structural reachable from v0 and v2 are all included in
the cluster (maximality).

Problem Statement. Given a graph G(V, E) and two
parameters 0 < ✏  1 and µ � 2, in this paper, we aim to
e�ciently compute all clusters C in G.
Hub and Outlier. SCAN e↵ectively identifies not only
clusters but also hubs and outliers. The definition of hub
and outlier in SCAN is given as follows.

Definition 7. (Hub and Outlier) Given a vertex u
which does not belong to any cluster, u is a hub if it has
neighbors belonging to two or more di↵erent clusters. Oth-
erwise, u is an outlier.

✏ = 0.8, µ = 3
✏ = 0.7, µ = 4
✏ = 0.5, µ = 2

0.75

0.75

0.820.82 0.82 0.750.67 0.60

0.670.75 0.63
0.52 v10v5 v8

v9v0 v3
v2

0.58
v1 v4

v7

v6

0.751.000.75

v110.87 0.87

Figure 3: Clusters, Hubs and Outliers under ✏ = 0.7, µ = 4

Example 4. In the case of Fig. 3, vertex v7 is a hub since
it has two neighbors v5 and v8 belonging to di↵erent clusters.
Vertex v6 is an outlier.

In this paper, we mainly focus on computing all clusters.
Given the set of clusters in G, all hubs and outliers can
be straightly obtained in O(m + n) time according to the
definition.

3. EXISTING SOLUTIONS
In this section, we briefly review existing solutions. We

firstly introduce the original algorithm SCAN [4]. Then we
present the state-of-art algorithm pSCAN [1].

3.1 SCAN
The original algorithm SCAN is proposed in [4]. For clear-

ness of presentation, we give the pseudocode of SCAN in Al-
gorithm 1 which is a version rearranged by [1] and equivalent
to the original one [4]. The pseudocode is self-explanatory.

Algorithm 1 SCAN [4]

Input: a graph G(V, E) and parameters 0 < ✏  1 and
µ � 2

Output: the set C of clusters in G

1: for each edge (u, v) 2 E do compute �(u, v);
2: C ;;
3: for each unexplored vertices u 2 V do
4: C {u};
5: for each unexplored vertices v 2 C do
6: mark v as explored;
7: if |N✏[v]| � µ then C C \N✏[v];
8: if |C| > 1 then C C \ {C};
9: return C;

The proof of algorithm correctness is omitted and can be
found in [4]. The total time complexity of SCAN is O(↵ ·m).
Here ↵ is the arboricity of G, which is the minimum number
of spanning forests needed to cover all the edges of the graph
G and ↵  pm [2]. In line 1, it costs O(↵ · m) time to
compute the structural similarity for each pair of adjacent
vertices, which dominates the total time complexity in the
algorithm. Given all structural similarities, computing all
clusters only need O(m) time complexity.

3.2 pSCAN
Even though algorithm SCAN is worst-case optimal [1],

it is not scalable to large graphs. To handle this issue, [1]
proposes a new algorithm called pSCAN, which is the state-
of-art solution for this problem. The main idea of pSCAN is
based on three observations below:

Figure 3: Clusters under Di↵erent µ and ✏

Drawbacks of Existing Solutions. All existing solutions
focus on online computing all clusters with two given ex-
act parameters. However, the change of input parameter
value may heavily influence on the clustering result espe-
cially when the graph size is very large. We consider an
example in Fig. ??. We use dashed line to circle the clusters
obtained by given ✏ and µ. The results may become di↵erent
even though we only adjust ✏ or µ slightly.

✏ = 0.5, µ = 4
✏ = 0.7, µ = 4
✏ = 0.8, µ = 3
Motivated by this, we aim to propose an index-based

method. With the index, we can answer the query for any

given 0 < ✏  1 and µ � 2 in time complexity which is only
related to the size of result subgraphs. In addition, to keep
our solution scalable to big graphs, the size of index should
be well bounded and the time consuming for index construc-
tion should be acceptable. We discuss the index details in
the following section.

4. INDEX-BASED ALGORITHMS
A Basic Index Structure. A straightforward idea for
the index structure is maintaining the structure similarity
for each pair of adjacent vertices. We name such index by
GS-Index. The construction for GS-Index is same as line 1 of
Algorithm 1. Specifically, to calculate all structural similar-
ities, we need to compute the number of common neighbors
for each pair of adjacent vertices, which is equivalent to enu-
merate all triangles in graph [2]. The space complexity for
index structure and time complexity for index construction
are summarized in the following theorem.

Lemma 1. The space complexity of GS-Index is O(m) and
the time complexity for constructing GS-Index is O(↵ · m).

Given all similarities, the result clusters can be easily ob-
tained by scan the graph, which is same as the procedure
from line 2 to line 8 in Algorithm 1. Details can be found
in Subsection 3.1.

Lemma 2. The time complexity of query algorithm for
GS-Index is O(m).

We can see that even though the space usage of index
GS-Index can be well bounded, it still need to traverse the
entire graph to obtain the result clusters in query processing,
which may hard to be endured in big graphs. To conquer
this issue, we propose a novel index structure which is called
GS-Index⇤. Based on index GS-Index⇤, we can query all result
clusters in O(mc) time, where mc is the number of edges in
the induced subgraphs of result clusters. We use O(m) space
and O(↵ ·m+log n ·m) time to save and construct the index
respectively.

In the rest of this section, we introduce high-level ideas
of our index structure in Subsection 4.1. Subsection 4.2
gives the implementation details for index construction. We
proposes query algorithm for GS-Index⇤ in Subsection 4.3

4.1 Index Overview
Recall that di↵erent clusters may overlap while each core

only belongs to unique cluster. In this section, we mainly
study the index structure to cluster cores. We will also show
that such index can be naturally used to cluster non-core
vertices together.
E�ciently Cores Detection. The general idea of our
index implementation is saving the cores information for ev-
ery given ✏ and µ. Specifically, we aim to e�ciently obtain
all cores by given any ✏ and µ using the index. We divide
this problem into computing all cores with given similarity
thresholds ✏ under a fixed µ. This is due to the reason that
the parameter µ is an integer and there only exists limited
number of possible µ. In paragraphs below, we firstly dis-
cuss the candidate vertices to be cores with given µ. Then
we consider exactly obtaining cores with given ✏ in the can-
didate set.

Following observation presents the maximum and mini-
mum possible value of input parameter µ.Figure 2: Clusters under different µ and ε

and this may be hard to tolerate in big graphs. To address this
issue, we propose a novel index structure, namely GS∗-Index. With
GS∗-Index, we can query all result clusters in O(mc) time, where
mc is the number of edges in the induced subgraphs of the result
clusters. We use O(m) space and O((α+ logn) ·m) time to save
and construct the index, respectively.

We provide an overview of our index structure in Subsection 4.1.
In Subsection 4.2, we provide the implementation details for index
construction. We propose the query algorithm in Subsection 4.3.

4.1 Index Overview
In this section, we introduce a novel index structure, namely

GS∗-Index. GS∗-Index contains core-orders and neighbor-orders
in addition to the structural similarity for each pair of adjacent ver-
tices. Recall that different clusters may overlap while each core
only belongs to a unique cluster. In this section, we first discuss the
index for clustering cores. We will also show that our index can be
naturally used to cluster together non-core vertices.

4.1.1 Core-Orders: Efficient Core Detection
The general idea underpinning our index is the maintenance of

cores for every given ε and µ. In other words, with such index, we
can efficiently obtain all cores by given any ε and µ. We address
this problem by first computing all cores of any given similarity
threshold ε under a specific µ. This is because that the parameter µ
cannot be larger than the maximum degree, and there exists only a
limited number of possible µ. Next, in the rest of this section, we
discuss the candidate vertices nominated as cores within a given µ,
and then we consider the precise obtainment of cores within a given
ε in the candidate set.

The following observation presents the maximum and minimum
possible value of input parameter µ.

OBSERVATION 1. Given a graph G, we have 2 ≤ µ ≤ dmax,
where dmax = max(deg[u]|u ∈ V).

If µ = 1, each vertex uwould be an isolated result cluster, which
is meaningless; there would be no result if µ = 0 or if µ > dmax.
Additionally, in each given µ, not every vertex has the probability
of being a core in a result cluster.

OBSERVATION 2. Given a graphG and a parameters 2 ≤ µ ≤
dmax, vertex u cannot be a core in any cluster if deg[u] < µ.

According to Observation 1 and Observation 2, the set of all can-
didate vertices that will be cores is {u ∈ V |deg[u] ≥ µ}.

Now, given the candidate set for each specific µ, we consider
detecting cores by similarity threshold ε. Recall that a vertex u
is a core if there exist not less than µ ε-neighbors. We have the
following lemma.

LEMMA 3. Given a graph G, a parameter µ ≥ 2, and two
similarity thresholds 0 < ε ≤ ε′ ≤ 1, a vertex u is a core in a
cluster obtained by µ and ε if it is a core in a cluster obtained by µ
and ε′.

246

According to the above lemma, we only need to save the maxi-
mum similarity value ε for each vertex u that will be a core under
each specific µ. We call such a value the core-threshold and it is
formally defined as follows.

DEFINITION 8. (CORE-THRESHOLD) Given a parameter µ, the
core-threshold for a vertex u, denoted by CT µ[u], is the maximum
value of ε such that u is a core in clusters obtained by [µ, ε].

Given parameters ε and µ, we know a vertex u is a core if CT µ[u] ≥
ε and u is not a core otherwise. Assume that we have CT µ[u] for
all vertices u under every 2 ≤ µ ≤ dmax. For any given µ′ and
ε′, to obtain all cores, a straightforward method is the checking
of CT µ′ [u] for all vertices u such that deg[u] ≥ µ′. However,
this costs n times checking, even though there exists only a small
number of cores. To reduce unnecessary checking, we give the fol-
lowing lemma.

LEMMA 4. Given a graph G and two parameters ε and µ, a
vertex u is a core in result clusters if (i) v is a core; and (ii)CT µ[v] ≤
CT µ[u].

According to Lemma 4, we know that if a given vertex u is a
core, all vertices v with CT µ[v] ≥ CT µ[u] must be cores. To effi-
cient obtain all cores, we sort the vertices in non-increasing order of
their core-thresholds for each µ. We define such order as follows.

DEFINITION 9. (CORE-ORDER) The core-order for a given pa-
rameter µ, denoted by COµ, is a vertex order such that: (i) for all
v ∈ COµ, deg[u] ≥ µ; and (ii) for any two vertices u and v, u
appears before v if the core-threshold of u is not smaller than that
of v, i.e., CT µ[u] ≥ CT µ[v].

Given parameters µ and ε, all cores can be successfully obtained
using the core-order. The identification starts from the first vertex
in the core-order COµ and terminates once there is a vertex whose
core-threshold is less than the given similarity threshold ε.

We compute core-orders for all µ as a part of our index. The
space complexity of all core-orders is given as follows:

LEMMA 5. The space cost of core-orders for all possible µ is
bounded by O(m).

4.1.2 Neighbor-Orders:Efficient Cluster Construction
Core-Threshold Computation. A crucial task in core identifica-
tion is computing the core-thresholds for each vertex under every
possible µ. Based on the definition of cores, we propose following
lemma.

LEMMA 6. Given a parameter µ, the core-threshold of a vertex
u (deg[u] ≥ µ) is the µ-th largest value in structural similarities
between u and its structural neighbors.

According to Lemma 6, for each vertex u, we compute the struc-
tural similarities between u and all neighbors v ∈ N [u], and sort
the neighbors of u in a non-increasing order of their structural sim-
ilarities. Consequently, the core-thresholds for all possible µ of u
are obtained. We define such order as follows.

DEFINITION 10. (NEIGHBOR-ORDER) The neighbor-order for
a given vertex u, denoted by NOu, is a vertex order such that:
(i) for all v ∈ NOu, v ∈ N [u]; and (ii) for any two vertices
v1 and v2, v1 appears before v2 if the structural similarity be-
tween u and v1 is not smaller than that between u and v2, i.e.,
σ(u, v1) ≥ σ(u, v2).

Based on Lemma 6 and Definiton 10, given a parameter µ, the
core-threshold for a vertex u can be easily obtained by using the
neighbor-order NOu. In addition to obtaining all core-thresholds

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v0

v3

v2v1
0.82
0.75
0.75

1.00 v1

v4

v2v0
0.82
0.750.67

1.00 v2

v3

v0v1
0.82
0.820.82

1.00

v5
v40.75

0.67

v3

v5

v2v0
0.82
0.75
0.67

1.00 v4

v6

v2v1
0.75
0.67
0.63

1.00

v50.60

v51.00 v61.00 v71.00 v81.00 v91.00 v101.00 v111.00

v4

v2v3
0.75
0.670.60

v70.52
v40.63 v80.58v50.52 v7

v9v10
0.75
0.75
0.58 v8

v10v11
1.00
0.87
0.75 v8

v9v11
1.00
0.87
0.75

v9v10
0.87
0.87

Figure 3: Neighbor-order for each vertex in graph G

for each vertex, we can also use neighbor-orders to construct clus-
ters based on obtained cores.
Clusters Construction. Thanks to core-orders, we can efficiently
obtain all cores. Then, to construct clusters from known cores u,
we need to obtain all vertices v that are structurally reachable from
u. Recall that the structural reachability transmits between cores
only if they are ε-neighbor of each other. Thus, the construction of
clusters can be solved by computing the ε-neighbors of each core.

All ε-neighbors of a given vertex u can be efficiently identi-
fied via the neighbor-order of u. Identification originates in the
neighbor-order’s first vertex, and terminates upon identification of
a vertex whose structural similarity to u is smaller than the given
similarity threshold ε. GS∗-Index also computes neighbor-orders
for all vertex u as a part of GS∗-Index. There are deg[u] items in
the neighbor-order of each u, and the size of all neighbor-orders
can be well bounded, as follows:

LEMMA 7. The space cost of neighbor-orders for all vertices
in the graph is bounded by O(m).

Based on Lemma 5 and Lemma 7, we have:

THEOREM 1. The space cost of GS∗-Index is bounded byO(m).

4.1.3 An Example of GS-Index*
We continue to use the graph G in Fig. 1 to give the example of

our proposed GS∗-Index.

EXAMPLE 3. The neighbor-order for each vertex in G is pre-
sented in Fig. 3. For each vertex u, the order is shown vertically
and the structural similarity σ(u, v) is presented over each neigh-
bor v. Consider vertices v3. There are four structural neighbors,
namely v3, v0, v2 and v5. We sort the neighbors by their struc-
tural similarity to v3, and obtain the neighbor-order of v3, which
is [(1.00, v3),(0.82, v2), (0.75, v0),(0.67, v5)]. Given ε = 0.7, to
obtain ε-neighbors of vertex v3, we iteratively check items in the
neighbor-order of v3. Its ε-neighbors are v3, v2 and v0. The iter-
ation terminates when checking neighbor v5, since the structural
similarity between v5 and v3 is less than 0.7.

Given the neighbor-order for each vertex u, we obtain the core-
threshold of u under any given µ. Assume µ = 3. The core-
threshold of v3 is the structural similarity between v3 and the third
vertex in the neighbor-order of v3, which is 0.75. That means v3 is
a core if the other given parameter ε is not larger than 0.75, i.e.,
ε ≤ 0.75. Otherwise, v3 is not a core.

Based on the neighbor-orders, we compute the core-orders for
all possible µ, and they are presented in Fig. 4. For each µ, the or-
der is shown horizontally and the core-threshold CT u is presented

247

Algorithm 3 GS∗-Construct(G)

Input: a graph G(V,E)
Output: GS∗-Index of G
1: for each edge (u, v) ∈ E do compute σ(u, v);
2: NO ← ∅;
3: for each vertex u ∈ V do
4: NOu ← N [u];
5: sort vertices inNOu according to Definiton 10;
6: NO ← NO ∪ {NOu};
7: CO ← ∅;
8: for each µ ∈ [2, dmax] do
9: COµ ← {u ∈ V |deg[u] ≥ µ};

10: sort vertices in COµ according to Definiton 9;
11: CO ← CO ∪ {COµ};
12: return NO and CO;

over u. Assume ε = 0.7 and µ = 4. To obtain all cores, we fo-
cus on the core-order for µ = 4 and check vertices from left to
right iteratively. v2, v0, v9 and v10 are cores because their core-
thresholds are all not less than 0.7. The iteration terminates when
checking vertex v1, as its core-threshold is less than 0.7.

4.2 Index Construction
We present the index construction algorithm, which is named

GS∗-Construct, in this section. The pseudocode of GS∗-Construct
is given in Algorithm 3.

Algorithm 3 computes the similarities for every pair of adjacent
vertices in line 1, which is equivalent to counting all triangles in the
graph. We adopt the same method in [2].
Neighbor-Order Computation. Algorithm 3 computes neighbor-
orders for all vertices in lines 2-6. NO can be implemented as a
two-dimensional array that saves the neighbor-order for each ver-
tex. In each neighbor-order NOu, we sort the structural v ∈ N [u]
in a non-increasing order of σ(u, v) (line 5).
Core-Order Computation. Algorithm 3 computes core-orders for
all possible µ in lines 7-11. All vertices that have probability of
being cores in the current µ are collected in line 9. Each item in
COµ is a vertex id. They are sorted by their core-thresholds under
µ. Based on Lemma 6 and Definiton 10, the core-threshold CT µ[u]
of a given vertex u is the structural similarity between u and µ-th
items inNOu.

THEOREM 2. The time complexity of Algorithm 3 is O((α +
logn) ·m).

PROOF. The time complexity for computing all structural simi-
larities (line 1) is O(α ·m), and has been discussed previously.

For each vertex u in lines 4–6, the time cost for sorting all neigh-
bors is bounded by O(deg[u] · log deg[u]). Thus the time cost for
all vertices is bounded by O(

∑
u∈V deg[u] · log deg[u]). Given∑

u∈V deg[u] = 2m, we have
∑
u∈V deg[u] · log deg[u] ≤ 2m ·

logn. The time complexity of line 2–6 is bounded byO(m·logn).
For each µ in lines 9–11, it costs O(|COµ| log |COµ|) time to

sort vertices in COµ. The time complexity for all µ in lines 7–11 is
O(

∑
2≤µ≤dmax

|COµ| log |COµ|). Each vertex u totally appears
in deg[u] arrays in CO, resulting in

∑
2≤µ≤dmax

|COµ| = 2m.
|COµ| gradually decreases when increasing µ and CO2 = n. We
have |COµ| ≤ n for any µ. Thus the time complexity of lines 7–11
can be bounded by O(m · logn).

Summing the time complexity of all three parts above, total time
complexity of Algorithm 3 is O((α+ logn) ·m).

Normally, the arboricity α is much greater than logn especially
for big graphs. Thus, we can bound the total time complexity of
Algorithm 3 by O(α ·m), which is same as that for pSCAN in the
worst case.

v101.00v91.00 v110.87 v0 v1 v2 v30.82 0.82 0.82 0.82 v4 v5 v80.75 0.75 0.75 v60.63
v9 v10 v110.87 0.87 0.87 v20.82 v0 v1 v3 v80.75 0.75 0.75 0.75 v4 v50.67 0.67
v20.82 v0 v9 v100.75 0.75 0.75 v1 v30.67 0.67 v40.63 v50.60 v80.58

v70.58
v70.52

v2 v4 v50.75 0.60 0.52 v20.67

μ = 2
μ = 3
μ = 4
μ = 5 μ = 6

Figure 4: Core-Order for each µ in Graph G

4.3 Query Processing
In this section, we discuss the query processing procedure, named

GS∗-Query, which is based on our proposed index GS∗-Index. The
general idea of GS∗-Query is iteratively finding an unexplored core
u; then computing all vertices v that are structurally reachable from
u, and grouping them into a result cluster. Before introducing the
details of GS∗-Query, we give the following observation based on
Definiton 6.

OBSERVATION 3. Given a cluster C and any core u ∈ C, all
vertices v ∈ C are structural reachable from u.

From Observation 3, we know that the cluster obtained from any
inside core is complete. The detailed pseudocode is given in Algo-
rithm 4. Note that GS∗-Query no longer needs the original graph
G as an input parameter, given the neighborhood information can
be obtained via the neighbor-order for each vertex.

To obtain all clusters, Algorithm 4 iteratively processes vertices
according the order in COµ. It performs until we find a vertex u
whose core-threshold is less than given ε (line 4).

Algorithm 4 computes the cluster C containing a core u from
line 5–20. This is done by using a queue. For each vertex v in
the queue, we add all ε-neighbors of v into the cluster and add
new discovered cores into the queue (line 11–20). Specifically, we
iteratively process each neighbor w of v according to their posi-
tion in NOv (line 10). The iteration terminates once we find a
vertex w that is not ε-neighbor of v (line 12). The explored neigh-
bors are skipped, as they have been added into the cluster previ-
ously (line 13). We add the unexplored neighbors into the cluster
in line 15. In line 17, we identify whether w is a core by checking
the core-threshold of w, which is the µ-th structural similarity in
NOw. We add w to the queue to detect more structurally reach-
able vertices if w is a core in line 18. The cluster containing u is
added to the result set in line 21. In line 22 we mark all non-core
vertices back to unexplored before computing new clusters, given
the non-core vertices may overlap between different clusters. A
running example of Algorithm 4 is given below.

EXAMPLE 4. We give an example of Algorithm 4 for ε = 0.7,
µ = 4 in Fig. 5. All neighbor-orders and core-orders for G in
Fig. 1 can be found in Fig. 3 and Fig. 4, respectively. Given µ = 4,
Algorithm 4 first focuses on the core-order CO4, which is shown in
the top of Fig. 5. Then, vertices in CO4 are processed iteratively.
We mark in the color black the vertices that are inserted into the
queue (line 7 and line 18 of Algorithm 4).

Vertex v2 is the first vertex inserted into the queue, given its core-
threshold is larger than 0.7. Algorithm 4 then assesses neighbors
of v2 following the neighbor-orderNOv2 . The neighbor-order for
each vertex in queue is shown around clockwise below the core-
order in Fig. 5. v2 has been explored and thus is skipped. Then,
v0 is added to the cluster and inserted into the queue, as its core-
threshold is 0.75. After that, vertices v1, v3andv4 are added to
the cluster. Given none of them is core, they are not inserted into

248

Algorithm 4 GS∗-Query

Input: GS∗-Index and parameters 0 < ε ≤ 1, µ ≥ 2;
Output: the set C of clusters in G;
1: C← ∅;
2: for each u ∈ COµ do
3: v ← µ-th vertex inNOu;
4: if σ(u, v) < ε then break;
5: C ← {u};
6: Q ← initialize an empty queue;
7: Q.insert(u);
8: mark u as explored;
9: whileQ 6= ∅ do

10: v ← Q.pop();
11: for each w ∈ NOv do
12: if σ(v, w) < ε then break;
13: if w is explored then continue;
14: mark w as explored;
15: C ← C ∪ {w};
16: t← µ-th vertex inNOw;
17: if σ(w, t) ≥ ε then
18: Q.insert(w);
19: else
20: mark w as non-core vertex;
21: C← C ∪ {C};
22: for each non-core vertex v do mark v as unexplored;
23: return C;

the queue. The iteration terminates after checking v5, given the
structural-similarity between v5 and v2 is less than 0.7. Algo-
rithm 4 continues to process v0 in the queue, and adds all its ε-
neighbors to the cluster. A cluster is successfully obtained, since
no vertex exists in the queue any more.

In the core-order, vertex v0 is explored, and thus skipped. Al-
gorithm 4 inserts v9 into the queue and obtains the second cluster.
Algorithm 4 terminates when checking v1 in the core-order, since
its core-threshold is less than 0.7. That means v1 and all following
vertices can not be cores.

THEOREM 3. Given parameters µ ≥ 2 and 0 < ε ≤ 1, Algo-
rithm 4 correctly computes all clusters of the graph G.

PROOF. (Correctness) We first prove the correctness for each
obtained cluster. Based on Lemma 6 and Definiton 8, Algorithm 4
successfully identifies cores by comparing given ε with the µ-th
largest similarity value between a given vertex and its structural
neighbors (line 4 and line 17). For each core v, the neighbors w are
sorted in the non-increasing order of their structural similarities to
v in NOv . Following this order, Algorithm 4 successfully obtains
all ε-neighbors of v and inserts their cores into the queue. Then it
traverses the unexplored ε-neighbors of the core in the queue un-
til the queue is empty. That means all vertices that are structurally
reachable from the original u in line 3 are obtained. According to
Observation 3, we obtained the correct and complete cluster con-
taining u. Note that all non-core vertices are marked back to unex-
plored. This guarantees we do not lose any non-core vertices in the
following cluster computation.

(Completeness) Next, we prove the completeness of the resulting
cluster set. Recall that given a parameter µ, vertices are sorted in
the non-increasing order of their core threshold under µ in COµ.
Based on Definiton 8, Algorithm 4 correctly finds all cores by fol-
lowing this order, and terminates once a non-core vertex is found
(line 4). Since a cluster can be correctly obtained by an inside core,
all clusters are successfully obtained in Algorithm 4.

(Redundancy Free) Since each core only belongs to a unique
cluster, Algorithm 4 only loads ε-neighbors for each core, and marks
all explored cores. This guarantees no repeated cluster exists in the
result set.

v2

v3

v0 v10.820.820.82

1.00

v5 v4

0.750.67

v0

v3

v2v1
0.820.750.751.00 v91.00

v8

v10v11
1.000.870.75v2 v0 v9 v10

Cluster 1 Cluster 2

Core Order

1.00

v8

v9v11
1.000.870.75
v10

v20.82 v0 v9 v100.75 0.75 0.75 v1 v30.67 0.67 v40.63 v50.60 v80.58
μ = 4

Figure 5: A running example for ε = 0.7, µ = 4

Let EC be the set of edges in the induced subgraph of cluster C.
The time complexity of Algorithm 4 is given as follows.

THEOREM 4. The time complexity of Algorithm 4 is bounded
by O(

∑
C∈C |EC |).

PROOF. Let Ccore be the set of cores in a cluster C. The total
number of visited vertices in line 2 is

∑
C∈C |Ccore|+1. Since all

cores that belong to the same cluster are processed in lines 5–20,
the total number of explored vertices found in line 2 is |C|.

To obtain each cluster C, only cores are inserted into the queue.
Thus, the number of iterations in the while loop (line 9) is |Ccore|.
For each core v in line 10, all of its ε-neighbors are visited and
the number of iterations in the for loop (line 11) is degC [v] + 1,
where degC [v] is the degree of v in the induced subgraph of clus-
ter C containing v. Thus the time complexity for computing a
cluster (lines 5–20) is O(

∑
u∈Ccore

degC [u]). This can be also
represented by O(|EC |). The total complexity of Algorithm 4 is
O(

∑
C∈C |EC |).

Local Cluster Query. Our query processing algorithm can also
be naturally extended to compute result clusters containing a query
vertex u. Given a query vertex u and two parameters µ ≥ 2 and
0 < ε ≤ 1, if u is a core, the algorithm is the same as in lines 5–20
of Algorithm 4.

Otherwise, u may be contained in several clusters. In this case,
we process ε-neighbors v of u by following the order in NOu. If
v is a core, we obtained the cluster containing u and v by similarly
invoking lines 5–20 of Algorithm 4. We skip v if it is not a core.

Let C be the result set of clusters containing query vertex u. The
time complexity for each of the two cases detailed above is also
bounded by O(

∑
C∈C |EC |). Note that for the case in which the

query vertex is a core, only one cluster C exists in the result set C.

5. INDEX MAINTENANCE
In the previous section we discussed our index-based solution

for the graph clustering, namely GS∗-Query. Compared to exist-
ing online-computing solutions, GS∗-Query can correctly and effi-
ciently compute the clusters by given any given parameters µ and ε.
However, most of real-word graphs are frequently updated. A fixed
and outdated index structure can hardly meet the expectations of ef-
ficiently clustering large, dynamic graphs. Motivated by this issue,
in this section we discuss the algorithms for maintaining our pro-
posed index structure when graphs update. Note that in this paper,
we mainly focus on the edge insertion and deletion, as the vertex
updates can be handled by performing several edge updates.

5.1 Basic Solutions
In this section we give a basic solution for index maintenance.

For the ease of presentation, we mainly discuss edge insertion. The
ideas can be easily extended to handle edge removal.
Edge Insertion. Recall that our index structure GS∗-Index con-
tains two parts: neighbor-orders and core-orders. We give the fol-
lowing observation to reveal the relationship between them.

249

Algorithm 5 GS∗-Insert

Input: an edge (u, v);
Output: updated index structure;
1: insert the edge(u, v) into graph G;
2: deg[u]← deg[u] + 1, deg[v]← deg[v] + 1;
3: UpdateVertex(u);
4: UpdateVertex(v);

5: Procedure UpdateVertex(u) :
6: NOu ← ∅;
7: for each vertex w ∈ N(u) do
8: recompute σ(u,w);
9: if u ∈ NOw then

10: update u inNOw according to σ(u,w);
11: else
12: insert u intoNOw according to σ(u,w);
13: UpdateCores(w);
14: insert w intoNOu;
15: UpdateCores(u);

16: Procedure UpdateCores(u) :
17: i← 0;
18: for each v ∈ NOu do
19: i← i+ 1
20: if v = u then continue;
21: if u ∈ COi then
22: update u in COi according to σ(u, v);
23: else
24: insert u into COi according to σ(u, v);

OBSERVATION 4. The core-order COµ for parameter µ does
not change if the neighbor-order NOu for each vertex u ∈ COµ
does not change.

According to Observation 4, when inserting an edge, we first up-
date the neighbor-orders of the corresponding vertices, and then up-
date the core-orders, if necessary. In the neighbor-order for vertex
u, the structural similarity between u and each neighbor v ∈ N [u]
is computed in accordance with their common neighbors and de-
grees. We have the following observation.

OBSERVATION 5. The neighbor-order of vertex w changes if
∃u ∈ N [w], and an edge (u, v) inserts into or is removed from u.

Let (u, v) be an edge inserting into graph G. Following the
above observation, we only need to update the neighbor-orders for
the following vertices: u, v, w ∈ N [u], and w′ ∈ N [v]. Then
we update the position of these vertices in the core-order for each
parameter µ, based on their new core-thresholds.

The algorithm for edge insertion, namely GS∗-Insert, is given in
Algorithm 5. In Algorithm 5, we first physically insert u and v into
the neighbor list of each other in line 1, and update their degree in
line 2. For the ease of presentation, we call u and v root vertices.

We invoke procedure UpdateVertex for root vertices. To main-
tain neighbor-orders, we first compute the new structural similar-
ity between u and each v ∈ N [u] (line 8). When the new struc-
tural similarity σ(u,w) is found, we correspondingly update the
neighbor-order for v correspondingly (line 10). Note that we check
the existence for v because when inserting a new edge (u, v), ver-
tex v does not exist in the neighbor-order of u. Since the neighbor-
order for w changes, we update the corresponding core order by
invoking UpdateCores(w). Given all items in the neighbor-order
of root vertex u change, we update the core-orders influenced by u
(line 15) after constructing an entire neighbor-order for u.

The procedural details for UpdateCores are also given in Al-
gorithm 5. The first vertex is skipped, since it is the vertex itself
(line 20). We update the position of vertex u in each core-order
COi by the i-th structural similarity inNOu. In cases where u is a
root vertex, u does not exist in the core-order COdeg[u]. Thus, we

Algorithm 6 GS∗-Remove

Input: an edge (u, v);
Output: updated index structure;
1: remove the edge(u, v) from graph G;
2: deg[u]← deg[u]− 1, deg[v]← deg[v]− 1;
3: remove u from order COdeg[u];
4: UpdateVertex(u);
5: remove v from order COdeg[v];
6: UpdateVertex(v);

check the existence for vertex u in line 21. Vertex u is inserted into
COi+1 (line 24) if it does not exist.

Given a vertex u, let N[u] be the set of vertices whose distances
to v are not larger than 2, and EN[u] be the set of edges in the
induced subgraph of N[u].

THEOREM 5. Given an inserted edge (u, v), the time complex-
ity of Algorithm 5 is bounded by O((|EN[u]|+ |EN[v]|) · logn).

PROOF. In Algorithm 5, line 1 and line 2 cost constant time.
The dominating cost is the invocation of UpdateVertex. For each
neighborw in line 7 of Algorithm 5, computing new structural sim-
ilarity σ(u,w) needs O(deg[w]) of time. This can be done by
using a bitmap to mark all neighbors of u in advance. The algo-
rithm updates the neighbor-order of w in lines 9–12. The update
(line 10) or insertion (line 12) can be finished in O(log deg[w])
time in the worst-case scenarios via a self-balancing binary search
tree that maintains the order. Similarly, we use such data struc-
tures to implement the core-orders. UpdateCores is invoked for
a vertex w in line 13. We know that the size of any core-order is
not larger than n. Thus the time complexity of line 8 is bounded
by O(deg[w] · logn). In line 14, it costs O(log deg[u]) of time
to insert a new vertex w into the neighbor-order of u. Summa-
rizing the above time cost: the time complexity of UpdateVertex
is O(

∑
w∈N [u] deg[w] · logn), which can be also represented as

O(|EN[u]| · logn). The total time complexity of GS∗-Insert can be
easily bounded by O((|EN[u]|+ |EN[v]|) · logn).
Edge Removal. Following the similar idea for handling edge in-
sertion, the procedure for edge removal is given in Algorithm 6.
We invoke the same subroutine UpdateVertex for each vertex. A
difference here is that we need to remove the root-vertex from the
highest core-order in advance (line 3 and line 5).

THEOREM 6. Given a removed edge (u, v), the time complexity
of Algorithm 6 is bounded by O((|EN[u]|+ |EN[v]|) · logn).

PROOF. The proof is similarity to that for Theorem 5, and thus
is purposefully omitted here.

5.2 Improved Algorithms
In the previous section, we gave a basic solution for maintain-

ing our proposed index. In the procedure UpdateVertex of Algo-
rithm 5, the dominating cost is the recomputing of the structural
similarity for each neighbor w in line 8, and updating deg[w] core-
orders in line 13. In this section, we discuss several optimizations
for reducing the time cost of these two tasks and propose optimized
algorithms for the index maintenance.
Avoiding Structural Similarity Recomputation. The key to com-
puting the structural similarity is calculating the number of com-
mon neighbors. Our general idea of avoiding recomputing struc-
tural similarity is to efficiently maintain the number of common
neighbors for each adjacent pair of vertices. Note that storing the
number of common neighbors for each pair of adjacent vertices
needs O(m) space, and thus the total space complexity can be still
bounded by O(m).

250

Algorithm 7 GS∗-Insert∗

Input: an edge (u, v);
Output: updated index structure;
1: insert the edge(u, v) into graph G;
2: deg[u]← deg[u] + 1, deg[v]← deg[v] + 1;
3: UpdateAdd(u);
4: UpdateAdd(v);

5: Procedure UpdateAdd(u, v) :
6: NOu ← ∅;
7: cn← 2;
8: for each vertex w ∈ N(u) do
9: if w = v then continue;

10: σold(u,w)← existing structural similarity between u and w;
11: if w ∈ N(v) then
12: cn← cn+ 1;
13: CN (u,w)← CN (u,w) + 1;
14: σ(u,w)← CN (u,w)/

√
deg[u] · deg[w];

15: update u inNOw according to σ(u,w);
16: UpdateCores∗(w, σold(u,w), σ(u,w));
17: insert w intoNOu according to σ(u,w);
18: CN (u, v)← cn;
19: σ(u, v)← CN (u, v)/

√
deg[u] · deg[v];

20: insert v intoNOu according to σ(u, v);
21: UpdateCores∗(u, 1, 0);

22: Procedure UpdateCores∗(u, εl, εr) :
23: if εr > εl then swap(εr, εl);
24: i← 0;
25: for each v ∈ NOu do
26: i← i+ 1;
27: if σ(u, v) > εl then continue;
28: if σ(u, v) < εr then break;
29: if u ∈ COi then
30: update u in COi according to σ(u, v);
31: else
32: insert u into COi according to σ(u, v);

Recall that when inserting or removing an edge (u, v), only the
neighbor-orders of structural neighbors of vertex u and v are influ-
enced. We categorize vertices into the following three types:
• (TYPE I) the neighbors of either u or v, i.e., N(u) ∪ N(v) −
N(u) ∩N(v);
• (TYPE II) the common neighbors of u and v, i.e.,N(u)∩N(v);
• (TYPE III) the edge’s terminals, i.e., u and v.

Considering an inserting or removing edge (u, v), u is an type III
vertex. For each neighbor w of u, let CN old(w, u) be the original
number of common neighbors betweenw and u, and CNnew(w, u)
be the updated value. We have the following observations.

OBSERVATION 6. Given an inserted edge (u, v), for an open
neighbor w ∈ N(u), CNnew(w, u) = CN old(w, u) if w is a type
I vertex, and CNnew(w, u) = CN old(w, u) + 1 if w is a type II
vertex.

OBSERVATION 7. Given an removed edge (u, v), for an open
neighbor w ∈ N(u), CNnew(w, u) = CN old(w, u) if w is a type
I vertex, and CNnew(w, u) = CN old(w, u) − 1 if w is a type II
vertex.

Observation 6 and Observation 7 shows that we can efficiently
obtain the new number of common neighbors for type I and type II
vertices, and consequently obtain the new structural similarities.

In our basic solution (Algorithm 5), we compute the number of
common neighbors between two type III vertices. Note that the
type II vertices essentially are their open common neighbors; thus
we can count the number of type II neighbors and avoid recomput-
ing the number of common neighbors between two type III vertices.
Details are shown in the pseudocodes.

Algorithm 8 GS∗-Remove∗

Input: an edge (u, v);
Output: updated index structure;
1: remove the edge(u, v) from graph G;
2: deg[u]← deg[u]− 1, deg[v]← deg[v]− 1;
3: UpdateDel(u);
4: UpdateDel(v);

5: Procedure UpdateDel(u) :
6: NOu ← ∅;
7: remove u from order COdeg[u];
8: for each vertexw ∈ N(u) do
9: σold(u,w)← existing similarity between u and w;

10: if w ∈ N(v) then
11: CN (u,w)← CN (u,w)− 1;
12: σ(u,w)← CN (u,w)/

√
deg[u] · deg[w];

13: update u inNOw according to σ(u,w);
14: UpdateCores∗(w, σold(u,w), σ(u,w));
15: insert w intoNOu according to σ(u,w);
16: UpdateCores∗(u, 1, 0);

Accurate Core-Order Updates. Besides avoiding naively recom-
puting structural similarities, we can also achieve increased speed
in core-orders maintenance. Recall that the position of vertex u
in the core-order COµ may change only if its core threshold for µ
(the µ-th structural similarity in its neighbor-orderNOu) changes.
Given a vertex u and a vertex v ∈ N [u], assume that structural sim-
ilarity σ(u, v) between u and v changes from simold to simnew.
Let siml and simr be the smaller value and the larger value respec-
tively in simold and simnew. We have the following observation.

OBSERVATION 8. Given a parameter µ, the core-threshold for
vertex u changes if the µ-th structural similarity value in NOu
falls in range [siml, simr].

Based on Observation 8, we avoid the operation for updating the
core-order if the corresponding core-threshold does not fall into the
specified range.

We name the optimized insertion algorithm by GS∗-Insert∗. The
pseudocode for GS∗-Insert∗ is given in Algorithm 7. GS∗-Insert∗

invokes UpdateAdd for each vertex. In the procedure UpdateAdd,
cn is used to count the common neighbors between two type III
vertices u and v. We check whether w is a type II vertex in line 11.
If so, we increase cn and update the number of common neigh-
bors between w and u according to Observation 6. We invoke an
optimized procedure UpdateCores∗ to update core-orders. In the
procedure UpdateCores∗, we only update core-orders if the struc-
tural similarity falls into the range [εr, εl] (line 27–28).

The pseudocode of our optimized edge removal algorithm, namely
GS∗-Remove∗, is given in Algorithm 8, and it invokes UpdateDel
for each vertex, which is similar to UpdateAdd. Based on Obser-
vation 7, we decrease the common neighbor between u and w in
line 11 when w is a type II vertex. The detailed explanation for
UpdateDel is purposefully omitted here.

6. EXPERIMENTS
We conduct extensive experiments to evaluate the performance

of our proposed solutions. Algorithms that appeared in the experi-
ments are summarized as follows:

• pSCAN: The state-of-the-art algorithm for structural clustering
in [2].
• GS-Construct: The algorithm that constructs the basic GS-Index,

which directly computes structural similarity between every pair
of adjacent vertices.
• GS∗-Construct: The algorithm that constructs our proposed in-

dex GS∗-Index in Section 4.

251

Table 1: Network Statistics
Datasets |V | |E| d c

DBLP 317,080 10,498,66 6.62 0.6324
Amazon 403,394 3,387,388 16.79 0.4177
WIKI 2,394,385 5,021,410 4.19 0.0526
Google 875,713 5,105,039 11.66 0.5143
Cit 3,774,768 16,518,948 8.75 0.0757
Pokec 1,632,803 30,622,564 37.51 0.1094
LiveJournal 3,997,962 34,681,189 17.35 0.2843
Orkut 3,072,441 117,185,083 76.28 0.1666
UK-2002 18,520,486 298,113,762 32.19 0.6891
Webbase 118,142,155 1,019,903,190 17.27 0.5533

• GS-Query: The query algorithm based on GS-Index.
• GS∗-Query: The query algorithm based on GS∗-Index.
• GS∗-Insert: The naive algorithm for edge insertion.
• GS∗-Insert∗: The optimized algorithm for edge insertion.
• GS∗-Remove: The naive algorithm for edge removal.
• GS∗-Remove∗: The optimized algorithm for edge removal.

All algorithms are implemented in C++ and compiled using g++
complier at -O3 optimization level. All the experiments are con-
ducted on a Linux operating system running on a machine with an
Intel Xeon 2.8GHz CPU, 256GB 1866MHz DDR3-RAM. The time
cost for algorithms is measured as the amount of wall-clock time
elapsed during the program execution.
Datasets. We use 10 publicly available real-world networks to
evaluate the algorithms. The detailed statistics are shown in Ta-
ble 1, where the average degree (d) and average clustering coef-
ficient (c) are shown in the last two columns. The networks are
displayed in non-decreasing order regarding the number of edges.
All networks and corresponding detailed description can be found
in SNAP1 and Webgraph2.

6.1 Performance of Query Processing
We compare our best query algorithm GS∗-Query with GS-Query

and the state-of-the-art algorithm pSCAN for structural clustering
in this section.

pSCAN GS-Query GS*-Query

1ms

10ms

100ms

1s

10s

0.2 0.4 0.6 0.8

R
u
n
n
in

g
 T

im
e

(b) WIKI

1ms

10ms

100ms

1s

10s

100s

0.2 0.4 0.6 0.8

R
u
n
n
in

g
 T

im
e

(c) Pokec

1ms

10ms

100ms

1s

10s

100s

1000s

0.2 0.4 0.6 0.8

R
u
n
n
in

g
 T

im
e

(d) Orkut

100ms

1s

10s

100s

0.2 0.4 0.6 0.8

R
u
n
n
in

g
 T

im
e

(e) UK-2002

Figure 6: Query time for different ε (µ = 5)

We first report the performance of the algorithms by varying µ
and ε. For parameter settings, we adopt a similar settings that are
used in [2] and [19]. For 0 < ε ≤ 1, we choose 0.2, 0.4, 0.6, and
1http://snap.stanford.edu/index.html
2http://webgraph.di.unimi.it/

0.8, with 0.6 as default and for µ ≥ 2, we choose 2, 5, 10, and
15, with 5 as default. Because of space limitations, we only show
the charts for WIKI, Pokec, Orkut and UK-2002, and note that the
results of the other datasets present similar trends. The results for
all datasets under default parameters settings are reported later.
Eval-I: Varying ε. The time cost of GS∗-Query,GS-Query, and
pSCAN by varying ε is given in Fig. 6. We can see that GS∗-Query
is faster than GS-Query under every ε on all datasets, and the gap
between them gradually increases when ε grows. For example,
in Orkut, GS∗-Query spends about 0.9 seconds while GS-Query
spends about 1.4 seconds when ε is 0.2. When ε reaches 0.8, it
costs only 5 milliseconds to perform GS∗-Query, while GS-Query
still costs almost 0.3 seconds. Additionally, when ε grows, lines for
GS∗-Query present a significant downward trend on all datasets.
This is because the time cost of GS∗-Query is strictly dependent
on the result size. The result size becomes smaller when ε in-
creases. The lines for GS-Query perform relatively steadier com-
pared with GS∗-Query. Lines for pSCAN on some datasets also
present slightly downward trends, reflecting the pruning techniques
used. However, GS∗-Query is significantly faster than pSCAN es-
pecially when ε is large.

pSCAN GS-Query GS*-Query

1ms

10ms

100ms

1s

10s

2 5 10 15

R
u
n
n
in

g
 T

im
e

(b) WIKI

1ms

10ms

100ms

1s

10s

100s

2 5 10 15

R
u
n
n
in

g
 T

im
e

(c) Pokec

1ms

10ms

100ms

1s

10s

100s

1000s

2 5 10 15

R
u
n
n
in

g
 T

im
e

(d) Orkut

100ms

1s

10s

100s

2 5 10 15
R

u
n
n
in

g
 T

im
e

(e) UK-2002

Figure 7: Query time for different µ (ε = 0.6)

Eval-II: Varying µ. The time cost for GS∗-Query,GS-Query and
pSCAN by varying µ is given in Fig. 7. Similar to Fig. 6, the lines
for GS∗-Query present downward trends when µ increases from 2
to 15 on all datasets. By comparison, the changes of time cost for
GS-Query and pSCAN are not obvious when increasing µ. Overall,
GS∗-Query significantly outperforms both GS-Query and pSCAN.
Moreover, it becomes still faster when the result size decreases.

1ms

10ms

100ms

1s

10s

100s

1000s

D
B
LP

A
m

azon

W
IK

I

G
oogle

C
it

Pokec

LJ O
rkut

U
K

W
ebbase

R
u
n
n
in

g
 T

im
e

pSCAN GS-Query GS*-Query

Figure 8: Query Time on Different Datasets

Eval-III: Query Performance on Different Datasets. The time
cost for GS∗-Query,GS-Query and pSCAN under the default pa-
rameters µ = 5, ε = 0.6 on all datasets is reported in Fig. 8. We
can see that GS∗-Query is far more efficient than GS-Query and

252

http://snap.stanford.edu/index.html
http://webgraph.di.unimi.it/

10MB

100MB

1GB

10GB

100GB

D
B
LP

A
m

azon

W
IK

I

G
oogle

C
it

Pokec

LJ O
rkut

U
K

W
ebbase

In
d
ex

 S
iz

e
GS-Index GS*-Index

Figure 9: Index size for different datasets

pSCAN on all datasets. The time cost to perform GS∗-Query on
Pokec is about only 4 milliseconds, which is the smallest value in
all results. Meanwhile, GS-Query and pSCAN cost 63 millisec-
onds and 9 seconds respectively on that dataset. In the dataset
Webbase with over 1 billion edges, GS∗-Query spends only 6
seconds, while GS-Query and pSCAN spend 12 seconds and 76
seconds respectively.

6.2 Performance of Index Construction
Eval-IV: Index Size on Different Datasets. The size of GS∗-Index
for different datasets is reported in Fig. 9. We add GS-Index as a
comparison, which only saves the structural similarity for every
pair of adjacent vertices. The size of GS∗-Index gradually grows
when the edge number increases, and the total size of GS∗-Index
can be always bounded by 1.5x the size used for GS-Index. For
example, in Fig. 9, it costs 16MB to save the GS-Index while the
GS∗-Index costs 24MB in DBLP. InWebbase, we use about 12.7GB
and 19.1GB to save the GS-Index and GS∗-Index respectively.

100ms

1s

10s

100s

1000s

10000s

D
B
LP

A
m

azon

W
IK

I

G
oogle

C
it

Pokec

LJ O
rkut

U
K

W
ebbase

R
u
n
n
in

g
 T

im
e

GS-Index GS*-Index

Figure 10: Time Cost for Index Construction

Eval-V: Construction Time on Different Datasets. The time cost
for constructing GS-Construct and GS∗-Construct are both re-
ported in Fig. 10. Compared with GS-Construct, we use additional
time in GS∗-Construct for sorting. On the largest dataset Web-
base, GS∗-Construct and GS-Construct cost about 20 minutes and
7 minutes respectivelly. Note that the time cost for GS∗-Construct
decreases from 3 seconds on WIKI to 2 seconds on Google, even
though Google has more edges. This is because the number of ver-
tices in WIKI is much larger than it is in Google.
Eval-VI: Scalability Testing. We test the scalability of our pro-
posed algorithms. We choose two real graph datasets Orkut and
UK-2002 as representatives. For each dataset, we vary the graph
size and graph density by randomly sampling nodes and edges re-
spectively from 20% to 100%. When sampling nodes, we obtain
the induced subgraph of the sampled nodes, and when sampling
edges, we get the incident nodes of the edges as the vertex set. We
report the time cost of GS∗-Construct under different percentages,
with GS-Construct as a comparison. The experimental results are
shown in Fig. 11 and Fig. 12.

As we can see from Fig. 11, GS∗-Construct expends more time
to sort the core-orders and neighbor-orders when the sampling ratio
increases. The gap between GS∗-Construct and GS-Construct re-
mains stable. Comparing lines in Fig. 11, the lines of GS∗-Construct
in Fig. 12 are gentler and have near linearly upward trends on both

GS-Construct GS*-Construct

1s

10s

100s

1000s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(b) Orkut

1s

10s

100s

1000s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(c) UK-2002

Figure 11: Index Construction (Vary |V |)

GS-Construct GS*-Construct

1s

10s

100s

1000s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(b) Orkut

1s

10s

100s

1000s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(c) UK-2002

Figure 12: Index Construction (Vary |E|)
datasets. This demonstrates that the time cost of GS∗-Construct is
mainly dominated by the number of edges.

6.3 Performance of Index Maintenance
We test the performance of our maintenance algorithms. Since

there is no previous work on this problem, we report on the algo-
rithms GS∗-Insert∗ and GS∗-Remove∗, with our basic algorithms
GS∗-Insert and GS∗-Remove as comparisons. We randomly se-
lect 1000 distinct existing edges in the graph for each test. To test
the performance of edge deletion, we remove the 1000 edges from
the graphs one-by-one and record the average processing time. To
test the performance of edge insertion, after the 1000 edges are re-
moved, we insert them into the graph one by one and record the
average processing time.

0.1ms
1ms

10ms
100ms

1s
10s

100s
1000s

D
B
LP

A
m

azon

W
IK

I

G
oogle

C
it

Pokec

LJ O
rkut

U
K

W
ebbase

R
u
n
n
in

g
 T

im
e

GS*-Insert GS*-Insert*

Figure 13: Time Cost for Edge Insertion

0.1ms

1ms

10ms

100ms

1s

10s

100s

D
B
LP

A
m

azon

W
IK

I

G
oogle

C
it

Pokec

LJ O
rkut

U
K

W
ebbase

R
u
n
n
in

g
 T

im
e

GS*-Remove GS*-Remove*

Figure 14: Time Cost for Edge Removal

Eval-VII: Index Maintenance on Different Datasets. The time
cost of GS∗-Insert∗ and GS∗-Insert is reported in Fig. 13. We can
find that GS∗-Insert∗ is significantly faster than GS∗-Insert. Of
particular note, the gap increases as the graph size increases. For
example, in Webbase, GS∗-Insert spends about 114 seconds in

253

handling the edge insertion, while GS∗-Insert∗ only spends about
0.3 seconds. Similar results appear in Fig. 14 for edge removal.
GS∗-Remove∗ is at least about 10x faster than GS∗-Remove on all
datasets and in some specific graphs, such as UK-2002, GS∗-Remove
spends more than 6 seconds compared to GS∗-Remove∗’s 35 mil-
liseconds. The result shows our proposed algorithms GS∗-Insert∗

and GS∗-Remove∗ are significantly more efficient than GS∗-Insert
and GS∗-Remove.

GS*-Insert GS*-Insert* GS*-Remove GS*-Remove*

0.1ms

1ms

10ms

100ms

1s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(b) Edge Insertion (Orkut)

0.1ms

1ms

10ms

100ms

1s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(c) Edge Removal (Orkut)

0.1ms

1ms

10ms

100ms

1s

10s

100s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(d) Edge Insertion (UK-2002)

1ms

10ms

100ms

1s

10s

100s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(e) Edge Removal (UK-2002)

Figure 15: Index Maintenance (Vary |V |)

GS*-Insert GS*-Insert* GS*-Remove GS*-Remove*

1ms

10ms

100ms

1s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(b) Edge Insertion (Orkut)

1ms

10ms

100ms

1s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(c) Edge Removal (Orkut)

1ms

10ms

100ms

1s

10s

100s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(d) Edge Insertion (UK-2002)

1ms

10ms

100ms

1s

10s

20% 40% 60% 80% 100%

R
u
n
n
in

g
 T

im
e

(e) Edge Removal (UK-2002)

Figure 16: Index Maintenance (Vary |E|)

Eval-VIII: Scalability Testing. We evaluate the index-maintenance
algorithm’s performance by sampling |V | and sampling |E| respec-
tively. The sampling method is the same as that in Eval-VI of Sub-
section 6.2. The statistics for varying |V | and varying |E| are re-
ported in Fig. 15 and Fig. 16 respectively. All figures show that
the time cost of GS∗-Insert∗ (resp. GS∗-Remove∗) is significantly
less than that of GS∗-Insert (resp. GS∗-Remove) and the gap be-
tween them grows when the sampling ratio increases. The increase

of GS∗-Insert∗ and GS∗-Remove∗ is not obvious when graph size
increases especially in Fig. 16. This suggests that the time cost
for maintenance algorithms does not closely rely on the graph size.
Overall, the results imply that our optimization techniques are ef-
fective and our final algorithms are efficient.

7. RELATED WORK
Structural Graph Clustering. The original algorithm for SCAN
is proposed in [25]. It successfully identifies not only clusters but
also hubs and outliers. However, SCAN computes the structural
similarities for all pairs of adjacent vertices, which requires high
computational cost and is not scalable to large graphs. To allevi-
ate this problem, [19] proposes an algorithm named SCAN++. It
is based on an intuitive idea that it is highly probable that many
common neighbors exist between a vertex and its two-hop-away
vertices. [2] proposes the algorithm pSCAN, which prior processes
vertex with large probabilities as cores. An approximate solution,
LinkSCAN∗ is proposed in [13]. It improves algorithm efficiency
by simpling edges.

Other researchers are working to parallelize SCAN. [26] pro-
vides a parallel structural graph clustering algorithm based on MapRe-
duce. [14] proposes an algorithm, named anySCAN, which pro-
gressively produces an approximate result for clustering on multi-
core CPUs.

There also exist some parameter-free methods for SCAN, mainly
focusing on computing a suitable ε during the algorithm. [1] pro-
poses the algorithms SCOT and HintClus. SCOT is used to com-
pute a sequence containing information for all ε-clusters, while
HintClus computes hierarchical clusters. gSkeletonClu [20] uses
a weighted version of structural similarity and computes clusters
based on a tree-decomposition-based method. SHRINK [9] com-
putes clusters by combining structural similarity and modularity-
based methods.
Other Graph Clustering Methods. Other graph clustering meth-
ods have also been studied in the literature; they include graph par-
titioning [17, 6, 23], the modularity-based method [15, 18, 15], and
the density-based method [10]. Efficient cohesive subgraphs de-
tection has also been studied recently. Enumeration of all cliques
and quasi-cliques are studied in [4] and [21] respectively. To relax
the strict definition of clique, clique-relaxed models have also been
studied, such as k-core [3], k-truss [22] and DN-subgraph [24], etc.
More details can be found in a survey [12].

8. CONCLUSION
In this paper, we propose an index-based method for structural

graph clustering. Our proposed index, named GS∗-Index, contains
two parts, which are core-orders and neighbor orders. We use core-
orders to efficiently detect all cores. We use neighbor-orders to
group all cores and construct the clusters. Based on GS∗-Index, we
efficiently answer the query for any given ε and µ, and the time
cost for the query algorithm is only proportional to the size of clus-
ters. To handle graph updates, we propose index maintenance al-
gorithms. The experimental results demonstrate that our solution
significantly outperforms the state-of-the-art algorithm.

254

9. REFERENCES
[1] D. Bortner and J. Han. Progressive clustering of networks

using structure-connected order of traversal. In Proc. of
ICDE’10, pages 653–656, 2010.

[2] L. Chang, W. Li, X. Lin, L. Qin, and W. Zhang. pscan: Fast
and exact structural graph clustering. In ICDE, pages
253–264, 2016.

[3] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core
decomposition in massive networks. In ICDE, pages 51–62,
2011.

[4] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive networks by h*-graph. In
SIGMOD, pages 447–458, 2010.

[5] N. Chiba and T. Nishizeki. Arboricity and subgraph listing
algorithms. SICOMP, 14(1):210–223, 1985.

[6] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A
min-max cut algorithm for graph partitioning and data
clustering. In ICDM, pages 107–114, 2001.

[7] S. Fortunato. Community detection in graphs. Physics
reports, 486(3):75–174, 2010.

[8] R. Guimera and L. A. N. Amaral. Functional cartography of
complex metabolic networks. Nature, 433(7028):895, 2005.

[9] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y. Liu.
Shrink: a structural clustering algorithm for detecting
hierarchical communities in networks. In CIKM, pages
219–228, 2010.

[10] P. Jiang and M. Singh. Spici: a fast clustering algorithm for
large biological networks. Bioinformatics, 26(8):1105–1111,
2010.

[11] U. Kang and C. Faloutsos. Beyond’caveman communities’:
Hubs and spokes for graph compression and mining. In
ICDM, pages 300–309, 2011.

[12] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of
algorithms for dense subgraph discovery. In Managing and
Mining Graph Data, pages 303–336. 2010.

[13] S. Lim, S. Ryu, S. Kwon, K. Jung, and J.-G. Lee. Linkscan*:
Overlapping community detection using the link-space
transformation. In ICDE, pages 292–303, 2014.

[14] S. T. Mai, M. S. Dieu, I. Assent, J. Jacobsen, J. Kristensen,
and M. Birk. Scalable and interactive graph clustering
algorithm on multicore cpus. In ICDE, pages 349–360, 2017.

[15] M. E. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical review E,
69(2):026113, 2004.

[16] S. E. Schaeffer. Graph clustering. Computer science review,
1(1):27–64, 2007.

[17] J. Shi and J. Malik. Normalized cuts and image
segmentation. TPAMI, 22(8):888–905, 2000.

[18] H. Shiokawa, Y. Fujiwara, and M. Onizuka. Fast algorithm
for modularity-based graph clustering. In AAAI, pages
1170–1176, 2013.

[19] H. Shiokawa, Y. Fujiwara, and M. Onizuka. Scan++:
efficient algorithm for finding clusters, hubs and outliers on
large-scale graphs. PVLDB, 8(11):1178–1189, 2015.

[20] H. Sun, J. Huang, J. Han, H. Deng, P. Zhao, and B. Feng.
gskeletonclu: Density-based network clustering via
structure-connected tree division or agglomeration. In
ICDM, pages 481–490. IEEE, 2010.

[21] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph: extracting
optimal quasi-cliques with quality guarantees. In KDD,
pages 104–112. ACM, 2013.

[22] J. Wang and J. Cheng. Truss decomposition in massive
networks. PVLDB, 5(9):812–823, 2012.

[23] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a
billion-node graph. In ICDE, 2014.

[24] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung. On
triangulation-based dense neighborhood graph discovery.
PVLDB, 4(2):58–68, 2010.

[25] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: A
structural clustering algorithm for networks. In KDD, pages
824–833, 2007.

[26] W. Zhao, V. Martha, and X. Xu. Pscan: a parallel structural
clustering algorithm for big networks in mapreduce. In
AINA, pages 862–869, 2013.

[27] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities. PVLDB, 2(1):718–729, 2009.

255

