
VERIFAS: A Practical Verifier for Artifact Systems

Yuliang Li
UC San Diego

La Jolla, California
yul206@eng.ucsd.edu

Alin Deutsch
UC San Diego

La Jolla, California
deutsch@cs.ucsd.edu

Victor Vianu
UC San Diego & INRIA Paris

La Jolla, California
vianu@cs.ucsd.edu

ABSTRACT
Data-driven workflows, of which IBM’s Business Artifacts are a
prime exponent, have been successfully deployed in practice, adopted
in industrial standards, and have spawned a rich body of research
in academia, focused primarily on static analysis. The present re-
search bridges the gap between the theory and practice of artifact
verification with VERIFAS, the first implementation of practical
significance of an artifact verifier with full support for unbounded
data. VERIFAS verifies within seconds linear-time temporal prop-
erties over real-world and synthetic workflows of complexity in the
range recommended by software engineering practice. Compared to
our previous implementation based on the widely-used Spin model
checker, VERIFAS not only supports a model with richer data ma-
nipulations but also outperforms it by over an order of magnitude.
VERIFAS’ good performance is due to a novel symbolic represen-
tation approach and a family of specialized optimizations.

PVLDB Reference Format:
Yuliang Li, Alin Deutsch, and Victor Vianu. VERIFAS: A Practical Verifier
for Artifact Systems. PVLDB, 11(3): 283 - 296, 2017.
DOI: 10.14778/3157794.3157798

1. INTRODUCTION
The past decade has witnessed the evolution of workflow specifi-

cation frameworks from the traditional process-centric approach to-
wards data-awareness. Process-centric formalisms focus on control
flow while under-specifying the underlying data and its manipula-
tions by the process tasks, often abstracting them away completely.
In contrast, data-aware formalisms treat data as first-class citizens.
A notable exponent of this class is IBM’s business artifact model
pioneered in [35], successfully deployed in practice [7, 6, 10, 14,
49] and adopted in industrial standards.

In a nutshell, business artifacts (or simply “artifacts”) model key
business-relevant entities, which are updated by a set of services
that implement business process tasks, specified declaratively by
pre- and-post conditions. A collection of artifacts and services is
called an artifact system. IBM has developed several variants of
artifacts, of which the most recent is Guard-Stage-Milestone (GSM)
[12, 28]. The GSM approach provides rich structuring mechanisms
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11... $ 10.00.
DOI: 10.14778/3157794.3157798

for services, including parallelism, concurrency and hierarchy, and
has been incorporated in the OMG standard for Case Management
Model and Notation (CMMN) [34, 36].

Artifact systems deployed in industrial settings typically specify
complex workflows prone to costly bugs, whence the need for verifi-
cation of critical properties. Over the past few years, the verification
problem for artifact systems has been intensively studied. Rather
than relying on general-purpose software verification tools suffer-
ing from well-known limitations, the focus of the research commu-
nity has been to identify practically relevant classes of artifact sys-
tems and properties for which fully automatic verification is possi-
ble. This is an ambitious goal, since artifacts are infinite-state sys-
tems due to the presence of unbounded data. However, verification
was shown to be decidable for significant classes of properties and
artifact models.

The present paper bridges the gap between the theory and prac-
tice of artifact verification by studying the implementation of a full-
fledged and efficient artifact verifier. The artifact model we verify
is a variant of the Hierarchical Artifact System (HAS) model pre-
sented in [17]. In brief, a HAS consists of a database and a hierarchy
(rooted tree) of tasks. Each task has associated to it local evolving
data consisting of a tuple of artifact variables and an updatable ar-
tifact relation. It also has an associated set of services. Each ap-
plication of a service is guarded by a pre-condition on the database
and local data and causes an update of the local data, specified by
a post condition (constraining the next artifact tuple) and an inser-
tion or retrieval of a tuple from the artifact relation. In addition, a
task may invoke a child task with a tuple of parameters, and receive
back a result if the child task completes. A run of the artifact sys-
tem is obtained by any valid interleaving of concurrently running
task services. Properties of HAS are specified using an extension
of Linear-Time Temporal logic (LTL).

In a previous study [32], we made a first attempt at implementing
a verifier for a simple version of HAS using Spin [27], the verifica-
tion tool widely used in the model checking community. However,
as discussed in [32], Spin cannot handle some of the most useful
features of artifacts which support unbounded data, such as sets of
tuples (see Section 2 for details). Moreover, its performance is dis-
appointing even after deploying a battery of non-trivial optimiza-
tions. This indicates the limited applicability of existing tools for
HAS verification and suggests the need for tailored approaches.

In this paper we present VERIFAS, an artifact verifier implemen-
tation built from scratch. Our main contributions are the following.

• We define HAS*, a novel variant of HAS which strikes a more
practically relevant trade-off between expressivity and verifica-
tion complexity, as demonstrated by its ability to specify a re-
alistic set of business processes. We adapt to HAS* the theory
developed in [17], laying the groundwork for our implementation.

283

• We implement VERIFAS, a fully automatic verifier for HAS*.
The implementationmakes crucial use of novel optimization tech-
niques, with dramatic impact on performance. The optimizations
are non-trivial and include concise symbolic representations, ag-
gressive pruning in the search algorithm, and the use of highly
efficient data structures.
• We evaluate the performance of VERIFAS using both real-world

and synthetic artifact systems and properties from a benchmark
we create, bootstrapping from existing sets of business process
specifications and properties by extending them with data-aware
features. To our knowledge, this is the first benchmark for busi-
ness processes and properties that includes such data aware fea-
tures. The experiments highlight the impact of the various opti-
mizations and parameters of both the artifact systems and prop-
erties.
• We adapt to HAS* a standard complexity measure of control

flow used in software engineering, cyclomatic complexity [48],
and show experimentally, using the above benchmark, that cy-
clomatic complexity of HAS* specifications correlates meaning-
fully with verification times. Since conventional wisdom in soft-
ware engineering holds that well-designed, human readable pro-
grams have relatively low cyclomatic complexity, this is an in-
dication that verification times are likely to be good for well-
designed HAS* specifications.
Taking this and other factors into account, the experimental re-

sults show that our verifier performs very well on practically rele-
vant classes of artifact systems. Compared to the Spin-based veri-
fier of [32], it not only applies to a much broader class of artifacts
but also has a decisive performance advantage even on the simple
artifacts the Spin-based verifier is able to handle. To the best of our
knowledge, this is the first implementation of practical significance
of an artifact verifier with full support for unbounded data.

The paper is organized as follows. We start by introducing in
Section 2 the HAS* model supported by VERIFAS, and we review
LTL-FO, the temporal logic for specifying properties of HAS*. Sec-
tion 3 describes the implementation of VERIFAS by first review-
ing in brief the theory developed of [17], particularly the symbolic
representation technique used in establishing the theoretical results.
We show an extension of the symbolic representation, called partial
isomorphism type, to allow practical verification by adapting the
classic Karp-Miller algorithm [29]. We then introduce three spe-
cialized optimizations to gain further performance improvement.
We present our experimental results in Section 4. Finally, we dis-
cuss related work in Section 5 and conclude in Section 6.

2. THE MODEL
In this section we present the variant of Hierarchical Artifact Sys-

tems used in our study. The variant, denoted HAS*, differs from the
HAS model used in [17] in two respects. On one hand, it restricts
HAS as follows:
• it disallows arithmetic in service pre-and-post conditions
• the underlying database schema uses an acyclic set of foreign keys
On the other hand, HAS* extendsHAS by removing various restric-
tions:
• tasks may have multiple updatable artifact relations
• each subtask of a given taskmay be calledmultiple times between

task transitions
• certain restrictions on how variables are passed as parameters

among tasks, or inserted/retrieved from artifact relations, are lifted
Because HAS* imposes some restrictions on HAS but removes

others, it is incomparable to HAS. Intuitively, the choice of HAS*
over HAS as a target for verification is motivated by the fact that

HAS* achieves a more appealing trade-off between expressiveness
and verification complexity. The acyclic schema restriction, sat-
isfied by the widely used Star (or Snowflake) schemas [30, 47], is
acceptable in return for the removal of various HAS restrictions lim-
iting modeling capability. Indeed, as shown by our real-life exam-
ples, HAS* is powerful enough to model a wide variety of business
processes. While the current version of VERIFAS does not han-
dle arithmetic, the core verification algorithm can be augmented to
include arithmetic along the lines developed for HAS in [17]. Lim-
ited use of aggregate functions can also be accommodated. These
enhancements are left for future work.

We now present the syntax and semantics of HAS*. The for-
mal definitions below are illustrated with an intuitive example of
the HAS* specification of a real-world order fulfillment business
process originally written in BPMN [2]. The workflow allows cus-
tomers to place orders and the supplier company to process the or-
ders. A detailed description of the example can be found in the
appendix of [18].

We begin by defining the underlying database schema.

Definition 1. A database schema DB is a finite set of relation
symbols, where each relation R of DB has an associated sequence
of distinct attributes containing the following:
• a key attribute ID (present in all relations),
• a set of foreign key attributes {F1, . . . , Fm}, and
• a set of non-key attributes {A1, . . . , An} disjoint from
{ID, F1, . . . , Fm}.

To each foreign key attribute Fi of R is associated a relation RFi

of DB and the inclusion dependency1 R[Fi] ⊆ RFi [ID]. It is said
that Fi references RFi .

The assumption that the ID of each relation is a single attribute
is made for simplicity, and multiple-attribute IDs can be easily han-
dled.

A database schema DB is acyclic if there are no cycles in the
references induced by foreign keys. More precisely, consider the
labeled graph FK whose nodes are the relations of the schema and
in which there is an edge from Ri to Rj labeled with F if Ri has a
foreign key attribute F referencing Rj . The schema DB is acyclic
if the graph FK is acyclic. All database schemas considered in this
paper are acyclic.

Example 2. The order fulfillment workflow has the following
database schema:

• CUSTOMERS(ID, name, address, record)
ITEMS(ID, item_name, price)
CREDIT_RECORD(ID, status)

In the schema, the IDs are key attributes, price, item_name,
name, address, status are non-key attributes, and record is a
foreign key attribute satisfying the dependency CUSTOMERS[record]
⊆ CREDIT_RECORD[ID]. Intuitively, the CUSTOMERS table contains
customer information with a foreign key pointing to the customers’
credit records stored in CREDIT_RECORD. The ITEMS table contains
information on the items. Note that the schema is acyclic as there is
only one foreign key reference from CUSTOMERS to CREDIT_RECORD.

We assume two infinite, disjoint domains of IDs and data values,
denoted by DOMid and DOMval, and an additional constant null
where null 6∈ DOMid ∪ DOMval (null serves as a convenient
default initialization value). The domain of all non-key attributes
is DOMval. The domain of each key attribute ID of relation R
is an infinite subset Dom(R.ID) of DOMid, and Dom(R.ID) ∩
1The inclusion uses set semantics.

284

Dom(R′.ID) = ∅ for R 6= R′. The domain of a foreign key
attribute F referencing R is Dom(R.ID). Intuitively, in such a
database schema, each tuple is an object with a globally unique id.
This id does not appear anywhere else in the database except in for-
eign keys referencing it. An instance of a database schema DB is a
mapping D associating to each relation symbol R a finite relation
(set of tuples) D(R) of the same arity of R, whose tuples provide,
for each attribute, a value from its domain. In addition, D satisfies
all key and inclusion dependencies associated with the keys and for-
eign keys of the schema. The active domain D, denoted adom(D),
consists of all elements ofD.

We next proceed with the definition of tasks and services, de-
scribed informally in the introduction. Similarly to the database
schema, we consider two infinite, disjoint setsVARid of ID variables
and VARval of data variables. We associate to each variable x its do-
mainDom(x). If x ∈ VARid, thenDom(x) = DOMid ∪{null},
and if x ∈ VARval, then Dom(x) = DOMval ∪ {null}. An ar-
tifact variable is a variable in VARid ∪ VARval. If x̄ is a sequence
of artifact variables, a valuation of x̄ is a mapping ν associating to
each variable x in x̄ an element inDom(x).

Definition 3. A task schema over database schema DB is a
tuple T = 〈x̄T ,ST , x̄Tin, x̄Tout〉 where x̄T is a sequence of artifact
variables, ST is a set of relation symbols not in DB, and x̄Tin and
x̄Tout are subsequences of x̄T . For each relation S ∈ ST , we denote
by attr(S) the set of attributes of S. The domain of each variable
x ∈ x̄T and each attribute A ∈ attr(S) is either DOMval ∪
{null} or dom(R.ID) ∪ {null} for some relation R ∈ DB. In
the latter case we say that the type of x (or A) is type(x) = R.ID
(type(A) = R.ID). An instance ρ of T is a tuple (ν, S) where ν
is a valuation of x̄T and S is an instance of ST such that S(S) is
of the type of S for each S ∈ ST .

We refer to the relations in ST as the artifact relations of T and
to x̄Tin and x̄Tout as the input and output variables of T . We denote
by x̄Tid = x̄T ∩ VARid and x̄Tval = x̄T ∩ VARval.

Example 4. The order fulfillment workflow has a task called
ProcessOrders, which stores the order data and processes the or-
ders by interacting with other tasks. It has the following artifact
variables:
• ID variables: cust_id of type CUSTOMERS.ID and item_id of

type ITEMS.ID
• non-ID variables: status and instock
There are no input or output variables. The task also has an arti-
fact relation ORDERS(cust_id, item_id, status, instock) with
attributes of the same types as the variables. Intuitively, ORDERS
stores the orders to be processed, where each order consists of a
customer and an ordered item. The variable status indicates the
current status of the order and instock indicates whether the item
is currently in stock.
We next define artifact schemas, essentially a hierarchy of task

schemas with an underlying database.

Definition 5. An artifact schema is a tuple A = 〈H,DB〉
where DB is a database schema and H is a rooted tree of task
schemas over DB with pairwise disjoint sets of artifact variables
and distinct artifact relation symbols.
The rooted treeH defines the task hierarchy. Suppose the set of

tasks is {T1, . . . , Tk}. For uniformity, we always take task T1 to be
the root of H. We denote by �H (or simply � when H is under-
stood) the partial order on {T1, . . . , Tk} induced byH (with T1 the
minimum). For a node T ofH, we denote by tree(T) the subtree of
H rooted atT , child(T) the set of children ofT (also called subtasks

of T), desc(T) the set of descendants of T (excluding T). Finally,
desc∗(T) denotes desc(T) ∪ {T}. We denote by SH the relational
schema ∪1≤i≤kSTi . An instance of SH is a mapping associating
to each S ∈ SH a finite relation of the same type.

Example 6. The order fulfillment workflow has 5 tasks: T1:
ProcessOrders, T2:TakeOrder, T3:CheckCredit, T4: Restock and
T5:ShipItem, which form the hierarchy represented in Figure 1. In-
tuitively, the root task ProcessOrders serves as a global coordinator
which maintains a pool of all orders and the child tasks TakeOrder,
CheckCredit, Restock and ShipItem implement the 4 sequential
stages in the fulfillment of an order. At a high level, ProcessOrders
repeatedly picks an order from its pool and processes it with a stage
by calling the corresponding child task. After the child task returns,
the order is either placed back into the pool or processed with the
next stage. For each order, the workflow first obtains the customer
and item information using the TakeOrder task. The credit record
of the customer is checked by the CheckCredit task. If the record is
good, then ShipItem can be called to ship the item to the customer.
If the requested item is unavailable, then Restock must be called
before ShipItem to procure the item.

T2: TakeOrder T4: RestockT3: CheckCredit

T1: ProcessOrders

T5: ShipItem

Figure 1: Tasks Hierarchy

Definition 7. An instance of an artifact schemaA = 〈H,DB〉
is a tuple I = 〈ν, stg,D, S〉whereD is a finite instance ofDB, S a
finite instance of SH, ν a valuation of

⋃k
i=1 x̄

Ti , and stg (standing
for “stage”) a mapping of {T1, . . . , Tk} to {active, inactive}.

The stage stg(Ti) of a task Ti has the following intuitive meaning
in the context of a run of its parent: active says that Ti has been
called and has not yet returned its answer, and inactive indicates
that Ti is not active. A task Ti can be called any number of times
within a given run of its parent, but only one instance of it can be
active at any given time.

Example 8. Figure 2 shows a partial example of an instance
of the Order Fulfillment artifact system. The only active task is
ProcessOrder.

cust_id item_id status instock

null null 'Init' null

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

C1 Item2 'Passed' 'Yes'

ID name address record

C0 'John' '1 Main St' R0

C1 'Tina' '2 Boardway' R1
ORDERS (Artifact Relation):

Artifact Variables: CUSTOMERS:

ID status

R0 'Good'

R1 'Bad'

CREDIT_RECORD:

ID item_name price

Item1 'Printer' 10

Item2 'Scanner' 15

ITEMS:

ProcessOrders: active DB:

TakeOrders, CheckCredit, Restock, ShipItem: inactive

Figure 2: An instance of the Order Fulfillment workflow

For a given artifact schema A = 〈H,DB〉 and a sequence x̄
of variables, a condition on x̄ is a quantifier-free FO formula over
DB∪{=} whose variables are included in x̄. The special constant
null can be used in equalities. For each atom R(x, y1, . . . , ym,
z1, . . . , zn) of relation R(ID, A1, . . . , Am, F1, . . . , Fn) ∈ DB,
{x, z1, . . . , zn} ⊆ VARid and {y1, . . . , ym} ⊆ VARval. If α is a

285

condition on x̄, D an instance of DB and ν a valuation of x̄, we
denote by D |= α(ν) the fact that D satisfies α with valuation ν,
with standard semantics. For an atom R(ȳ) in α where R ∈ DB,
if ν(y) = null for some y ∈ ȳ, then R(ν(ȳ)) is false (because
null does not occur in database relations). Although conditions are
quantifier-free, ∃FO conditions can be easily simulated by adding
variables to x̄T , so we use them as shorthand whenever convenient.

Example 9. The∃FO condition∃n∃a∃r CUSTOMERS(cust_id,
n, a, r)∧CREDIT_RECORD(r, “Good”) states that the customerwith
ID cust_id has good credit.

We next define services of tasks. We start with internal services,
which update the artifact variables and artifact relation of the task.
Intuitively, internal services implement local actions, that do not
involve any other task.

Definition 10. Let T = 〈x̄T ,ST , x̄Tin, x̄Tout〉 be a task of an
artifact schemaA. An internal service σ of T is a tuple 〈π, ψ, ȳ, δ〉
where:
• π and ψ, called pre-condition and post-condition, respectively,

are conditions over x̄T
• ȳ is the set of propagated variables, where x̄Tin ⊆ ȳ ⊆ x̄T ;
• δ, called the update, is a subset of {+Si(z̄),−Si(z̄)|Si ∈ ST , z̄ ⊆
x̄T , type(z̄) = type(attr(Si))} of size at most 1.
• if δ 6= ∅ then ȳ = x̄Tin

Intuitively, an internal service σ of T can be called only when
the current instance satisfies the pre-condition π. The update on
variables x̄T is valid if the next instance satisfies the post-condition
ψ and the values of propagate variables ȳ stay unchanged.

Any task variable that is not propagated can be changed arbitrar-
ily during a task activation, as long as the post condition holds.
This feature allows services to also model actions by external ac-
tors who provide input into the workflow by setting the value of
non-propagated variables. Such actors may even include humans
or other parties whose behavior is not deterministic. For example, a
bank manager carrying out a “loan decision” action can be modeled
by a service whose result is stored in a non-propagated variable and
whose value is restricted by the post-condition to either “Approve”
or “Deny”. Note that deterministic actors are modeled by simply
using tighter post-conditions.
When δ = {+Si(z̄)}, a tuple containing the current value of z̄

is inserted into Si. When δ = {−Si(z̄)}, a tuple is chosen and
removed from Si and the next value of z̄ is assigned with the value
of the tuple. Note that x̄Tin are always propagated, and no other
variables are propagated if δ 6= ∅. The restriction on updates and
variable propagation may at first appear mysterious. Its underlying
motivation is that allowing simultaneous artifact relation updates
and variable propagation turns out to raise difficulties for verifica-
tion, while the real examples we have encountered do not require
this capability.

Example 11. The ProcessOrders task has 3 internal services:
Initialize, StoreOrder and RetrieveOrder. Intuitively, Initialize cre-
ates a new order with cust_id = item_id = null. When Re-
trieveOrder is called, an order is chosen non-deterministically and
removed from ORDERS for processing, and (cust_id, item_id,
status, instock) is set to be the chosen tuple. When StoreOrder is
called, the current order (cust_id, item_id, status, instock)
is inserted into ORDERS. The latter two services are specified as
follows.

RetrieveOrder:
Pre: cust_id = null ∧ item_id = null

Post: True
Update: {−ORDERS(cust_id, item_id, status, instock)}

StoreOrder:
Pre: cust_id 6= null ∧ item_id 6= null ∧ status 6= “Failed"
Post: cust_id = null ∧ item_id = null ∧ status = “Init"
Update: {+ORDERS(cust_id, item_id, status, instock)}
The sets of propagated variables are empty for both services.

An internal service of a task T specifies transitions that modify
the variables x̄T of T and the contents of ST . Figure 3 shows an
example of a transition that results from applying the service Store-
Order of the ProcessOrders task.

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

cust_id item_id status instock

C1 Item2 'Passed' 'Yes'

ORDERS (Artifact Relation):

ProcessOrders: active

cust_id item_id status instock

null null 'Init' null

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

C1 Item2 'Passed' 'Yes'

ORDERS (Artifact Relation):

ProcessOrders: active

Store-
Order

Figure 3: Transition caused by an internal service

As seen above, internal services of a task cause transitions on the
data local to the task. Interactions among tasks are specified us-
ing two kinds of special services, called the opening-services and
closing-services. Specifically, each taskT is equippedwith an open-
ing service σoT and a closing service σcT . Each non-root task T can
be activated by its parent task via a call to σoT which includes pass-
ing parameters to T that initialize its input variables x̄Tin. When T
terminates (if ever), it returns to the parent the contents of its output
variables x̄Tout via a call to σcT . Moreover, calls to σoT are guarded
by a condition on the parent’s artifact variables, and closing calls to
σcT are guarded by a condition on the artifact variables of T . The
formal definition is provided in the extended version [18].

For uniformity of notation, we also equip the root task T1 with a
service σoT1

with pre-condition true and a service σcT1
whose pre-

condition is false (so it never occurs in a run). For a task T we
denote byΣT the set of its internal services,ΣocT = ΣT∪{σoT , σcT },
and Σobs

T = ΣocT ∪ {σoTc
, σcTc

| Tc ∈ child(T)}. Intuitively, Σobs
T

consists of the services observable locally in runs of task T .
Example 12. As the root task, the opening condition of Proces-

sOrders is True and closing condition is False. All variables are
initialized to null.

The opening condition of TakeOrder is status = “Init” in
task ProcessOrders, meaning that the customer and item informa-
tion have not yet been entered by the customer. The task contains
cust_id, item_id, status and instock as variables (with no
input variable). When this task is called, the customer enters the
information of the order (cust_id and item_id) and the status of
the order is set to “OrderPlaced". An external service determines
whether the item is in stock or not and sets the value of instock
accordingly. All variables are output variables returned to the par-
ent task. The closing condition is cust_id 6= null ∧ item_id 6=
null. When it holds, TakeOrder can be closed, and the values of
these variables are passed to ProcessOrders (to the variables with
the same names2). Figure 4 illustrates a transition caused by the
closing service of TakeOrder.

We are finally ready to define HAS*.

Definition 13. A Hierarchical Artifact System* (HAS*) is a
triple Γ = 〈A,Σ,Π〉, where A is an artifact schema, Σ is a set
2While the formal definition disallows using the same variable
names in different tasks, we do so for convenience, since the vari-
able names can be easily disambiguated using the task name.

286

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

cust_id item_id status instock

C1 Item2 'Passed' 'Yes'

ORDERS (Artifact Relation):

ProcessOrders: active

cust_id item_id status instock

null null 'Init' null

ProcessOrders: active

cust_id item_id status instock

C1 Item2 'Passed' 'Yes'

ORDERS (Artifact Relation):

cust_id item_id status instock

C0 Item1 'OrderPlaced' 'No'

TakeOrder: active

cust_id item_id status instock

TakeOrder: inactive

Close-
TakeOrder

Figure 4: Transition with a Closing Service

of services over A including σoT and σcT for each task T of A, and
Π is a condition over x̄T1 (the global pre-condition of Γ), where T1

is the root task.

We next define the semantics of HAS*. Intuitively, a run of a
HAS* on a databaseD consists of an infinite sequence of transitions
among HAS* instances (also referred to as configurations, or snap-
shots), starting from an initial artifact tuple satisfying pre-condition
Π, and empty artifact relations. The intuition is that at each snap-
shot, a transition can be made at an active task T by applying either
an internal service of T , the opening service of an inactive subtask
Tc, or the closing service of T . In addition, we require that an in-
ternal service of T can only be applied after all active subtasks of T
have returned their answer. Given two instances I , I ′ and a service
σ, we denote by I σ−→ I ′ if there is a valid transition from I to I ′
by applying σ. The full definition of transitions can be found in the
appendix of [18].

We next define runs of artifact systems. We will assume that runs
are fair, i.e. no task is starved forever by other running tasks. Fair-
ness is commonly ensured by schedulers in multi-process systems.
We also assume that runs are non-blocking, i.e. for each task that
has not yet returned its answer, there is a service applicable to it or
to one of its descendants.

Definition 14. Let Γ = 〈A,Σ,Π〉 be an artifact system, where
A = 〈H,DB〉. A run of Γ on database instance D over DB is
an infinite sequence ρ = {(Ii, σi)}i≥0, where each Ii is an in-
stance (νi, stgi, D, Si) of A, σi ∈ Σ, σ0 = σoT1

, D |= Π(ν0),
stg0 = {T1 7→ active, Ti 7→ inactive | 2 ≤ i ≤ k},
S0 = {SH 7→ ∅}, and for each i > 0 Ii−1

σi−→ Ii. In addi-
tion, for each i ≥ 0 and task T active in Ii, there exists j > i such
that σj ∈

⋃
T ′∈desc∗(T) ΣocT ′ .

We denote by Runs(Γ) the set of runs of Γ. Observe that all
runs of Γ are infinite. In a given run, the root task itself may have
an infinite run, or other tasks may have infinite runs. However, if a
task T has an infinite run, then none of its ancestor tasks can make
an internal transition or return (although they can still call other
children tasks).

Because of the hierarchical structure of HAS*, and the locality
of task specifications, the actions of independent tasks running con-
currently can be arbitrarily interleaved. In order to express prop-
erties of HAS* in an intuitive manner, it will be useful to ignore
such interleavings and focus on the local runs of each task, con-
sisting of the transitions affecting the local variables and artifact re-
lations of the task, as well as interactions with its children tasks.
A local run of T induced by ρ is a subsequence ρT of ρ corre-
sponding to transitions caused byT ’s observable services (call these
observable T -transitions). ρT starts from an opening service T -
transition and includes all subsequent observable T -transitions up
to the first occurrence of a closing service T -transition (if any).

See the appendix of [18] for the formal definition. We denote by
RunsT (ρ) the set of local runs of T induced by the run ρ of Γ, and
RunsT (Γ) =

⋃
ρ∈Runs(Γ) RunsT (ρ).

2.1 Specifying properties of artifact systems
In this paper we focus on verifying temporal properties of local

runs of tasks in an artifact system. For instance, in a task implement-
ing an e-commerce application, we would like to specify properties
such as:

(†) If an order is taken and the ordered item is out of stock, then
the item must be restocked before it is shipped.

In order to specify such temporal properties we use, as in previ-
ous work, an extension of LTL (linear-time temporal logic). LTL
is propositional logic augmented with temporal operators such as
G (always), F (eventually), X (next) and U (until) (e.g., see [37]).
An LTL formula ϕwith propositions prop(ϕ) defines a property of
sequences of truth assignments to prop(ϕ). For example, Gp says
that p always holds in the sequence, Fp says that p will eventually
hold, pUq says that p holds at least until q holds, and G(p→ Fq)
says that whenever p holds, q must hold subsequently.

An LTL-FO property3 of a task T is obtained starting from an
LTL formula using some set P ∪ ΣobsT of propositions. Proposi-
tions in P are interpreted as conditions over the variables x̄T of T
together with some additional global variables ȳ, shared by different
conditions and allowing to connect the states of the task at different
moments in time. The global variables are universally quantified
over the entire property. Recall that ΣobsT consists of the services
observable in local runs of T (including calls and returns from chil-
dren tasks). A proposition σ ∈ ΣobsT indicates the application of
service σ in a given transition.

LTL-FO is formally defined in the appendix of [18]. We provide a
flavor thereof using the example property (†). The property is of the
form ϕ = G(p → (¬q U r)), which means if p happens, then in
what follows, q will not happen until r is true. Here p says that the
TakeOrder task returned with an out-of-stock item, q states that
the ShipItem task is called with the same item, and r states that
the service Restock is called to restock the item. Since the item
mentioned in p, q and rmust be the same, the formula requires using
a global variable i to record the item ID. This yields the following
LTL-FO property:
∀iG((σcTakeOrder ∧ item_id = i ∧ instock = “No”)→

(¬(σoShipItem ∧ item_id = i) U (σoRestock ∧ item_id = i)))

A correct specification can enforce (†) simply by requiring in the
pre-condition of σoShipItem that the item is in stock. One such pre-
condition is (instock = “Yes” ∧ status = “Passed”), meaning
that the item is in stock and the customer passed the credit check.
However, in a similar specification where the instock = “Yes”
test is performed within ShipItem (i.e. in the pre-conditions of all
shipping internal services) instead of the opening service of Ship-
Item, the LTL-FO property (†) is violated because ShipItem can
be opened without first calling theRestock task. Our verifier would
detect this error and produce a counter-example illustrating the vi-
olation.

We say that a local run ρT of taskT satisfies∀ȳϕf , where prop(ϕ) =
P ∪ ΣobsT , if ϕ is satisfied, for all valuations of ȳ in DOMid ∪
DOMval ∪ {null}, by the sequence of truth assignments to P ∪
ΣobsT induced by f on ρT . More precisely, let (Ii, σi) denote the
ith snapshot of ρT . For each p ∈ P , the truth value induced for p in
3The variant of LTL-FO used here differs from some previ-
ously defined in that the FO formulas interpreting propositions are
quantifier-free. By slight abuse we use here the same name.

287

(Ii, σi) is the truth value of the condition f(p) in Ii; a proposition
σ ∈ ΣobsT holds in (Ii, σi) if σi = σ. A task T satisfies ∀ȳϕf if ρT
satisfies ∀ȳϕf for every ρT ∈ RunsT (Γ). Note that the database is
fixed for each run, but may be different for different runs.

A classical result in model checking states that for every LTL
formula ϕ, one can construct a finite-state automaton Bϕ, called
a Büchi automaton, that accepts precisely the infinite sequences of
truth assignments to prop(ϕ) that satisfy ϕ. A Büchi automaton is
syntactically just a finite-state automaton, which accepts an infinite
word if it goes infinitely often through an accepting state [46, 43].
Here we are interested in evaluating LTL-FO formulas ∀ȳϕf on
both infinite and finite runs (infinite runs occur when a task runs
forever). It is easily seen that for the Bϕ obtained by the standard
construction there is a subset Qfin of its states such that Bϕ viewed
as a classical finite-state automaton with final states Qfin accepts
precisely the finite words that satisfy ϕ.

Remark 15. In [17] we consider amore complex logic for spec-
ifying properties of artifact systems, called Hierarchical LTL-FO
(HLTL-FO). Intuitively, anHLTL-FO formula uses as building blocks
LTL-FO formulas as above, acting on local runs of individual tasks,
but can additionally recursively state HLTL-FO properties on runs
resulting from calls to children tasks. As shown in [17], verification
of HLTL-FO properties can be reduced to satisfiability of LTL-FO
properties by individual tasks. Our implementation focuses on ver-
ification of LTL-FO properties of individual tasks. While this could
be used as a building block for verifying complex HLTL-FO proper-
ties, verification of LTL-FO properties of individual tasks is in fact
adequate in most practical situations we have encountered.

3. VERIFAS
In this section we describe the implementation of VERIFAS. We

begin with a brief review of the theory developed in [17] that is
relevant to the implementation.

3.1 Review of the Theory
The decidability and complexity results of [17] can be extended

to HAS* by adapting the proofs and techniques developed there.
We can show the following.

Theorem 16. Given a HAS* Γ and an LTL-FO formula ϕ for a
task T in Γ, it is decidable in expspace whether Γ satisfies ϕ.
Weoutline informally the roadmap to verification developed in [17],
which is the starting point for the implementation. Let Γ be a HAS*
and ϕ an LTL-FO formula for some task T of Γ. We would like to
verify that every local run of T satisfies ϕ. Since there are generally
infinitely many such local runs due so the unbounded data domain,
and each run can be infinite, an exhaustive search is impossible.
This problem is addressed in [17] by developing a symbolic repre-
sentation of local runs. Intuitively, the symbolic representation has
two main components:
(i) the isomorphism type of the artifact variables, describing sym-

bolically the structure of the portion of the database reachable
from the variables by navigating foreign keys

(ii) for each artifact relation and isomorphism type, the number of
tuples in the relation that share that isomorphism type

Observe that because of (ii), the symbolic representation is not finite
state. Indeed, (ii) requires maintaining a set of counters, which can
grow unboundedly.
The heart of the proof in [17] is showing that it is sufficient to ver-

ify symbolic runs rather than actual runs. That is, for every LTL-FO
formula ϕ, all local run of T satisfy ϕ iff all symbolic local runs of
T satisfy ϕ. Then the verification algorithm checks that there is

no symbolic local run of T violating ϕ (so satisfying ¬ϕ). The
algorithm relies on a reduction to (repeated4) state reachability in
Vector Addition Systems with States (VASS) [8]. Intuitively, VASS
are finite-state automata augmented with non-negative counters that
can be incremented and decremented (but not tested for zero). This
turns out to be sufficient to capture the information described above.
The states of the VASS correspond to the isomorphism types of
the artifact variables, combined with states of the Büchi automaton
needed to check satisfaction of ¬ϕ.

The above approach can be viewed as symbolically running the
HAS* specification. Consider the example in Section 2. After
the TakeOrder task is called and returned, one possible local run
of ProcessOrders might impose a set of constraints {item_id 6=
null, cust_id 6= null, status = “OrderPlaced”, instock =
“Yes”} onto the artifact tuple of ProcessOrders. Now suppose the
CheckCredit task is called. The local run can make the choice that
the customer has good credit. Then whenCheckCredit returns, the
above set of constraints is updated with constraint
{cust_id.record.status = “Good”}, which means that in the
read-only database, the credit record referenced by cust_id via
foreign key satisfies status = “Good”. Next, suppose the Store-
Order service is applied in ProcessOrders. Then we symbolically
store the current set of constraints by increasing its corresponding
counter by 1. The set of constraints of the artifact tuple is reset to
{item_id = null, cust_id = null, status = “Init”} as speci-
fied in the post-condition of StoreOrder.

Although decidability of verification can be shown as outlined
above, implementation of an efficient verifier is challenging. The
algorithm that directly translates the artifact specification and the
LTL-FO property into VASS’s and checks (repeated) reachability
is impractical because the resulting VASS can have exponentially
many states and counters in the input size, and state-of-the-art VASS
tools can only handle a small number of counters (<100) [1]. To
mitigate the inefficiency, VERIFAS never generates thewholeVASS
but instead lazily computes the symbolic representations on-the-fly.
Thus, it only generates reachable symbolic states, whose number
is usually much smaller. In addition, isomorphism types in the
symbolic representation are replaced by partial isomorphism types,
which store only the subset of constraints on the variables imposed
by the current run, leaving the rest unspecified. This representation
is not only more compact, but also results in a significantly smaller
search space in practice.

In the rest of the section, we first introduce our revised symbolic
representation based on partial isomorphism types. Next, we review
the classic Karp-Miller algorithm adapted to the symbolic version
of HAS* for solving state reachability problems. Three specialized
optimizations are introduced to improve the performance. In ad-
dition, we show that our algorithm with the optimizations can be
extended to solve the repeated state reachability problems so that
full LTL-FO verification of infinite runs can be carried out. For
clarity, the exposition in this section focuses on specifications with
a single task. The actual implementation extends these techniques
to the full model with arbitrary number of tasks.

3.2 Partial Isomorphism Types
We start with our symbolic representation of local runs with par-

tial isomorphism types. Intuitively, a partial isomorphism type cap-
tures the necessary constraints imposed by the current run on the
current artifact tuple and the read-only database. We start by defin-
ing expressions, which denote variables, constants and navigation
via foreign keys from id variables or attributes. An expression is
either:
4Repeated reachability is needed for infinite runs.

288

• a constant c occurring in Γ or ϕ, or
• a sequence ξ1.ξ2. . . . ξm, where ξ1 is an id artifact variable x or

an id attribute A of some artifact relation S, ξ2 is an attribute of
R ∈ DBwhereR.ID = type(ξ1), and for each i, 2 ≤ i < m, ξi
is a foreign key and ξi+1 is an attribute in the relation referenced
by ξi.

We denote by E the set of all expressions. Note that the length of
expressions is bounded because of the acyclicity of the foreign keys,
so E is finite.

We can now define partial isomorphism types.

Definition 17. A partial isomorphism type τ is an undirected
graph over E with each edge labeled by = or 6=, such that the equiv-
alence relation ∼ over E induced by the edges labeled with = sat-
isfies:

1. for every e, e′ ∈ E and every attribute A, if e ∼ e′ and {e.A,
e′.A} ⊆ E then e.A ∼ e′.A, and

2. (e1, e2, 6=) ∈ τ implies that e1 6∼ e2 and for every e′1 ∼ e1 and
e′2 ∼ e2, (e′1, e

′
2, 6=) ∈ τ .

Intuitively, a partial isomorphism type keeps track of a set of “=”
and “6=” constraints and their implications among E . Condition
1 guarantees satisfaction of the key and foreign key dependencies.
Condition 2 guarantees that there is no contradiction among the 6=-
edges and the =-edges. In addition, the connection between two
expressions can also be “unknown” if they are not connected by an
edge. The full isomorphism type can be viewed as a special case
of partial isomorphism type where the undirected graph is com-
plete. In the worst case, the total number of partial isomorphism
types is no smaller than the number of full isomorphism types so
using partial isomorphism types does not improve the complexity
upper bound. In practice, however, since the number of constraints
imposed by a run is likely to be small, using partial isomorphism
types can greatly reduce the search space.

Example 18. Figure 5 shows two partial isomorphism types τ1
(left) and τ2 (right), where R(ID, A) is the only database relation
and {x, y, z} are 3 variables of typeR.ID. Solid lines are =-edges
and dashed lines are 6=-edges. In τ1, (x, y) is connected with = so
the edge (x.A, y.A,=) is enforced by the key dependency. Missing
edges between (x.A, z.A) and (y.A, z.A) indicate these connec-
tions are “unknown”. τ2 is a full isomorphism type, which requires
the graph to be complete so (x.A, z.A) , (y.A, z.A) and all pairs
between {x, y, z} and {x.A, y.A, z.A}must be connected by either
= or 6=. The 6=-edges between {x, y, z} and {x.A, y.A, z.A} are
omitted in the figure for clarity.

y z

x

y.A z.A

x.A

y z

x

y.A z.A

x.A

Figure 5: Partial and Full Isomorphism Types
We next define partial symbolic instances. Intuitively, a partial

symbolic instance consists of a partial isomorphism type capturing
the connections of the current tuple of x̄, as well as, for the tuples
present in the artifact relations, the represented isomorphism types
t and the count of tuples sharing t.

Definition 19. A partial symbolic instance I is a tuple (τ, c̄)
where τ is a partial isomorphism type and c̄ is a vector of N where
each dimension of c̄ corresponds to a unique partial isomorphism
type.
It turns out that most of the dimensions of c̄ equal 0 in practice, so in
implementation we only materialize a list of those dimensions with

positive counter values. We denote by pos(c̄) the set {τS |c̄(τS) >
0}.

Next, we define symbolic transitions among partial symbolic in-
stances by applying internal services. First we need to define con-
dition evaluation on partial isomorphism types. Given a partial iso-
morphism type τ , satisfaction of a condition φ in negation normal
form5 by τ , denoted τ |= φ, is defined as follows:
• x ◦ y holds in τ iff (x, y, ◦) ∈ τ for ◦ ∈ {=, 6=},
• for relationR(ID, A1, . . . , Am),R(x, y1, . . . , ym) holds in τ iff

(yi, x.Ai,=) ∈ τ for every 1 ≤ i ≤ m,
• ¬R(x, y1, . . . , ym) holds in τ iff (yi, x.Ai, 6=) ∈ τ for some

1 ≤ i ≤ m, and
• Boolean combinations of conditions are standard.

Notice that τ 6|= φmight be due to missing edges in τ but not be-
cause of inconsistent edges, so it is possible to satisfy φ by filling in
the missing edges. This is captured by the notion of extension. We
call τ ′ an extension of τ if τ ⊆ τ ′ and τ ′ is consistent, meaning that
the edges in τ ′ do not imply any contradiction of (in)equalities. We
denote by eval(τ, φ) the set of all minimal extensions τ ′ of τ such
that τ ′ |= φ. Intuitively, eval(τ, φ) contains partial isomorphism
types obtained by augmenting τ with a minimal set of constraints
to satisfy φ.
A symbolic transition is defined informally as follows (the full

definition can be found in the extended version. To make a sym-
bolic transition with a service σ = (π, ψ, ȳ, δ) from I = (τ, c̄)
to I ′ = (τ ′, c̄′), we first extend the partial isomorphism type τ to
a new partial isomorphism type τ0 to satisfy the pre-condition π.
Then the constraints on the propagated variables ȳ are preserved by
computing τ1, the projection of τ0 onto ȳ. Intuitively, the projec-
tion keeps only the expressions headed by variables in ȳ and their
connections. Finally, τ ′ is obtained by extending τ1 to satisfy the
post-condition ψ. If δ is an insertion, then the counter that corre-
sponds to the partial isomorphism type of the inserted tuple is incre-
mented. If δ is a retrieval, then a partial isomorphism type τS with
positive count is chosen nondeterministically and its count is decre-
mented. The new partial isomorphism type τ ′ is then extended with
the constraints from τS . We denote by succ(I) the set of possible
successors of I by taking one symbolic transition with any service
σ.

Example 20. Figure 6 shows an example of symbolic transi-
tion. The DB schema is that of Example 18. The variables are
x, y of type R.ID and a non-ID variable z, with input variables
{y, z}. The applied service is σ = (π : R(x, z), ψ : x 6= y, ȳ :
{y, z}, δ : {−S(x, z)}). First, the pre-condition R(x, z) is evalu-
ated so edge (x.A, z,=) is added (top-middle). Edge (y.A, z, 6=)
is also added so that the partial isomorphism type remains valid.
Then variables {y, z} are propagated, so the edges related to x or
x.A are removed (top-right). Next, we evaluate the post-condition
x 6= y so (x, y, 6=) is added (bottom-right). Finally, a tuple from
S is retrieved and overwrites {x, z}. Suppose the nondeterminis-
tically chosen τS contains a single edge (x.A, z,=) (below the re-
trieve arrow). Then c̄(τS) is decremented and τS is merged into the
final partial isomorphism type (bottom left). Note that if σ contains
an insertion of +S(x, z) in δ instead of a retrieval, then the sub-
graph of τ0 (top-middle) projected to {x, z} is inserted to S. The
corresponding counter in c̄ will be incremented by 1.
With symbolic transitions in place, verification works as follows.

Informally, given a single-task HAS* Γ and a LTL-FO property ϕ,
one can check whether Γ |= ϕ by constructing a new HAS* Γ′

obtained by combining Γ with conditions in ϕ and the Büchi au-
tomaton B¬ϕ built from ¬ϕ. We can show that deciding whether
5Negations are pushed down to leaf atoms.

289

x.A

z

x

y.Ay

x.A

z

x

y.Ay

x.A

z

x

y.Ay

x.Ax

y.Ay

z
R(x, z)

Post-cond x ≠ y

Pre-cond

{y, z}

Project

x.A

z

x

y.Ay

Retrieve S(x, z)

x x.A
z

Figure 6: Symbolic Transition

Γ 6|= ϕ reduces to checking whether an accepting state ofB¬ϕ is re-
peatedly reachable in Γ′. Verification therefore amounts to solving
the following problem:

Problem 21. (Symbolic Repeated Reachability, or SRR) Given
a HAS* Γ, an initial partial symbolic state I0, and a condition φ,
is there a partial symbolic run {Ii}0≤i≤m<n of Γ such that Ii+1 ∈
succ(Ii) for every i ≥ 0, τm = τn, c̄m ≤ c̄n and τn |= φ?

The condition φ above simply states that B¬ϕ is in one of its
accepting states.

3.3 The Classic Karp-Miller Algorithm
The SRR Problem defines an infinite search space due to the un-

bounded counter values, so reduction to finite-state model check-
ing is not possible. Adapting the theory developed in [17] from
symbolic representation based on isomorphism types to symbolic
representation based on partial isomorphism types, we can show
that the symbolic transitions defined in Section 3.2 can be mod-
eled as a VASS whose states are the partial symbolic instances of
Definition 19. Consequently, The SRR problem reduces to testing
(repeated) state reachability in this VASS. The benefit of the new
approach is that this VASS is likely to have much fewer states and
counters than the one defined in [17], because our search material-
izes partial isomorphism types parsimoniously, by lazily expanding
the current partial type c using the (typically few) constraints of the
symbolic transition to obtain a successor s. The transition from c to
s concisely represents all the transitions from full-type expansions
of c to full-type expansions of s (exponentially many in the num-
ber of “unknown” connections in c and s), which in the worst case
would be individually explored by the algorithm of [17].

The VERIFAS implementation of the (repeated) state reachabil-
ity is based on a series of optimizations to the classic Karp-Miller al-
gorithm [29]. We describe the original Karp-Miller algorithm first,
addressing the optimizations subsequently.

TheKarp-Miller algorithm constructs a finite representationwhich
over-approximates the entire (potentially infinite) reachable VASS
state space, called a “coverability set” of states [21]. Any coverabil-
ity set captures sufficient information about the global state space
to support global reasoning tasks, including repeated reachability.
In our context, the VASS states are the partial symbolic instances
(PSIs) and a coverability set is a finite set I of PSIs, each reachable
from the initial PSI I0, such that for every reachable PSI I = (τ, c̄),
there exists I ′ = (τ ′, c̄′) ∈ I with τ = τ ′ and c̄ ≤ c̄′. We say
that I ′ covers I , denoted I ≤ I ′. To represent counters that can in-
crease forever, the coverability set also allows an extension of PSIs
in which some of the counters can equal ω. Recall that the ordinal
ω is a special constant where n < ω for all n ∈ N, ω ≤ ω and
ω ± 1 = ω.
Since the coverability set I is finite, we can effectively extract

from it the reachable τn’s that satisfy the condition φ (referring to
the notation of the SRR problem). To test whether τn is repeatedly

reachable, we can show that In is repeatedly reachable iff In is con-
tained in a cycle consisting of only states in I (proved in [18]). As
a result, the repeatedly reachable τn’s can be found by constructing
the transition graph among I and computing its strongly connected
components. A partial isomorphism type τ is repeatedly reachable
if its corresponding PSI I is included in a component containing a
non-trivial cycle.

The Karp-Miller algorithm searches for a coverability set by ma-
terializing a finite part of the (potentially infinite) VASS transition
graph starting from the initial state and executing transitions, prun-
ing transitions to states that are covered by already materialized
states. The resulting transition subgraph is traditionally called the
Karp-Miller tree (despite the fact that it is actually a DAG).

In the notation of the SRRproblem, note that if at least one counter
value strictly increases from Im to In (c̄im < c̄in for some dimension
i), then the sequence of transitions from m to n can repeat indef-
initely, periodically reaching states with the same partial isomor-
phism type τn, but with ever-increasing associated counter values
in dimension i (there are infinitely many such states). In the limit,
the counter value becomes ω so a coverability set must include a
state (τn, c̄) with c̄i = ω, covering these infinitely many states.
Finite construction of the tree is possible due to a special accel-

erate operation that skips directly to a state with ω-valued coun-
ters, avoiding the construction of the infinitely many states it cov-
ers. Adapted to our context, when the algorithm detects a path
{Ii}0≤i≤m<n in the tree where Im ≤ In, the accelerate opera-
tion replaces in In the values of c̄n(τS) with ω for every τS where
c̄m(τS) < c̄n(τS).

We outline the details in Algorithm 1, which outputs the Karp-
Miller tree T . We denote by ancestors(I) the set of ancestors of I
in T . Given a set I of states and a state I ′ = (τ ′, c̄′), the accelerate
function is defined as accel(I, I ′) = (τ ′, c̄′′) where for every τS ,
c̄′′(τS) = ω if there exists (τ, c̄) ∈ I such that τ = τ ′, c̄ ≤ c̄′ and
c̄(τS) < c̄′(τS). Otherwise, c̄′′(τS) = c̄′(τS).

Algorithm 1: Karp-Miller Tree Search Algorithm
input : Initial instance I0
output : T , the Karp-Miller tree
variables:W , set of states waiting to be explored

1 W ← {I0}, T ← ({I0}, ∅);
2 whileW 6= ∅ do
3 Remove a state I fromW ;
4 for I ′ ∈ succ(I) do
5 I ′′ ← accel(ancestors(I), I ′);
6 if I ′′ 6∈ T ∨ I ′′ ∈W then
7 Add edge (I, I ′′) to T ;
8 W ←W ∪ {I ′′};

9 Return T ;

3.4 Optimization with Monotone Pruning
The original Karp-Miller algorithm is well-known to be ineffi-

cient in practice due to state explosion. To improve performance,
various techniques have been proposed. The main technique we
adopted in VERIFAS is based on pruning the Karp-Miller tree by
monotonicity. Intuitively, when a new state I = (τ, c̄) is generated
during the search, if there exists a visited state I ′ where I ≤ I ′,
then I can be discarded because for every state Ĩ reachable from I ,
there exists a reachable state Ĩ ′ starting from I ′ such that Ĩ ≤ Ĩ ′ by
applying the same sequence of transitions that leads I to Ĩ . For the
same reason, if I ≥ I ′, then I ′ and its descendants can be pruned

290

from the tree. However, correctness of pruning is sensitive to the or-
der of application of these rules (for example, as illustrated in [22],
application of the rules in a breadth-first order may lead to incom-
pleteness). The problem of how to apply the rules without losing
completeness was studied in [22, 38] and we adopt the approach in
[38]. More specifically, Algorithm 1 is extended by keeping track
of a set act of “active” states and adding the following changes:

• Initialize act with {I0};
• In line 3, choose the state fromW ∩ act;
• In line 5, accel is applied on ancestors(I) ∩ act;
• In line 8, I ′′ is not added toW if there exists Î ∈ act such that
I ′′ ≤ Î;
• When I ′′ is added toW , remove from act every state Î and its

descendants for Î ≤ I ′′ and Î is either active or not an ancestor
of I ′′. Add I ′′ to act.

3.5 A Novel, More Aggressive Pruning
We generalize the comparison relation ≤ of partial symbolic in-

stances to achieve more aggressive pruning of the explored transi-
tions. The novel comparison is based on the insight that a state I
can be pruned in favor of I ′ as long as every partial isomorphism
type reachable from I is also reachable from I ′. So I = (τ, c̄) can
be pruned by I ′ = (τ ′, c̄′) if τ ′ is “less restrictive” than τ (or τ
implies τ ′), and for every occurrence of τS in c̄, there exists a cor-
responding occurrence of τ ′S in c̄′ such that τ ′S is “less restrictive”
than τS . Formally, given partial isomorphism types τ and τ ′, τ im-
plies τ ′, denoted as τ |= τ ′, iff τ ′ ⊆ τ . We replace the coverage
relation ≤ on partial symbolic instances with a new binary relation
� as follows.

Definition 22. Given two partial symbolic states I = (τ, c̄)
and I ′ = (τ ′, c̄′), I � I ′ iff τ |= τ ′ and there exists f : pos(c̄) ×
pos(c̄′) 7→ N ∪ {ω} such that
• f(τS , τ

′
S) > 0 only when τS |= τ ′S ,

• for every τS ,
∑
τ ′
S
f(τS , τ

′
S) = c̄(τS) and

• for every τ ′S ,
∑
τS
f(τS , τ

′
S) ≤ c̄′(τ ′S).

Intuitively, f describes a one-to-one mapping from tuples stored
in the artifact relations in I to tuples in I ′. f(τS , τ

′
S) = k means

that there are k tuples in I of partial isomorphism type τS that are
mapped to k tuples in I ′ of type τ ′S . The condition τS |= τ ′S guar-
antees that each tuple in I is mapped to one in I ′ of a less restrictive
type.

Example 23. Consider the two PSIs I = (τ, c̄ = {τa : 2, τb :
2}) (left) and I ′ = (τ ′, c̄′ = {τa : 3, τb : 1}) (right) shown in
Figure 7. Since τ 6= τ ′ and c̄(τb) > c̄′(τb), I ≤ I ′ does not hold.
However, any sequence of symbolic transitions applicable starting
from I can also be applied starting from I ′, because if the condi-
tions imposed by these transitions do not conflict with those in I ,
then they won’t conflict with the subset thereof in I ′. Consequently,
I can be pruned if I ′ is found during the search. This fact is de-
tected by �: I � I ′ holds since τ |= τ ′ and we can construct f as
f(τa, τa) = 2 and f(τb, τb) = f(τb, τa) = 1 since τb |= τa.
Note that one can efficiently test whether I � I ′ by reduction to

the Max-Flow problem over a flow graph F with node set pos(c̄)∪
pos(c̄′)∪ {s, t}, with s a source node and t a sink node. For every
τS ∈ pos(c̄), there is an edge from s to τS with capacity c̄(τS).
For every τ ′S ∈ pos(c̄′), there is an edge from τ ′S to t with capacity
c̄′(τS). For every pair of τS , τ ′S , there is an edge from τS to τ ′S with
capacity∞ if τ ′S |= τS . We can show that F has a max-flow equal
to

∑
τS
c̄(τS) if and only if I � I ′.

The same idea can also be applied to the accel function. For-
mally, given I and I ′ = (τ ′, c̄′), the new accelerate function

e1

e2 e3

ea

eb ec

ea

eb ec

e1

e2 e3

ea

eb ec

ea

eb ec

2 × τa :

2 × τb :

τ : c

3 × τa :

1 × τb :

τ : c ’ ’

Figure 7: Illustration of �

accel(I, I ′) = (τ ′, c̄′′) where c̄′′(τ ′S) = ω if there exists I ∈ I
such that I � I ′ and there exists mapping f satisfying the con-
ditions in Definition 22 and

∑
τS
f(τS , τ

′
S) < c̄′(τ ′S). Otherwise

c̄′′(τ ′S) = c̄′(τ ′S).

3.6 Data Structure Support
The above optimization relies on two important operations ap-

plied every time a new state is explored: given the set of active states
act and a partial symbolic state I , (1) compute the set {I ′|I ′ �
I ∧ I ′ ∈ act} and (2) check whether there exists I ′ ∈ act such
that I � I ′. As each test of � might require an expensive op-
eration of computing the max-flow, when |act| is large, checking
whether I ′ � I (or I � I ′) for every I ′ ∈ act would be too
time-consuming.

We start with the simple case where c̄ = 0̄ in all I’s. Then to test
whether I � I ′ for I = (τ, c̄) and I ′ = (τ ′, c̄′) is to test whether
τ ′ ⊆ τ . When the partial isomorphism types are stored as sets of
edges, we can accelerate the two operations with data structures that
support fast subset (superset) queries: given a collection C of sets
and a query set q, find all sets in C that are subsets (supersets) of q.
The standard solutions are to use Tries for superset queries [39] and
Inverted Lists for subset queries [33].

The same idea can be applied to the general case where c̄ ≥ 0 to
obtain over-approximations of the precise results. Given I = (τ, c̄),
we let E(I) be the set of edges in τ or any τS where c̄(τS) > 0.
Then given I and I ′, I � I ′ implies E(I ′) ⊆ E(I). We build
the Trie and Inverted Lists indices such that for a given query I ,
they return a candidate set I� and a candidate set I� where I�
contains all I ′ from act such that E(I ′) ⊆ E(I) and I� contains
all I ′ such thatE(I) ⊆ E(I ′). Then it suffices to test each member
in the candidate sets for I � I ′ and I � I ′ to obtain the precise
results of operations (1) and (2).

3.7 Optimization with Static Analysis
Next, we introduce our optimization based on static analysis. At

a high level, we notice that in real workflow examples, some con-
straints in conditions of the specification and the property are ir-
relevant to the result of verification because they can never cause
violations when conditions are evaluated in a symbolic run. Such
conditions can be ignored to reduce the number of symbolic states.
For example, for a constraint x = y in the specification, if x 6= y
does not appear anywhere else and cannot be implied by other con-
straints, then x = y can be safely removed from any partial iso-
morphism types without affecting the result of the verification al-
gorithm. Our goal is to detect all such constraints by statically an-
alyzing the HAS* and the LTL-FO property. Specifically, we an-
alyze the constraint graph consisting of all possible “=” and “6=”
constraints that can potentially be added to any partial isomorphism
types in symbolic transitions of the HAS* Γ or when checking con-
dition φ (refer to the notation in the SRR problem).

Definition 24. The constraint graph G of (Γ, φ) is a labeled
undirected graph over the set of all expressions E with the following

291

edges. For every atom a that appears in a condition of Γ or φ in
negation normal form, if a is
• (x = y), then G contains (x.w, y.w,=) for all sequences w

where {x.w, y.w} ⊆ E ,
• (x 6= y), then G contains (x, y, 6=),
• R(x, y1, . . . , ym), then G contains (x.Ai.w, yi.w,=) for all i

and sequences w where {x.Ai.w, yi.w} ⊆ E , and
• ¬R(x, y1, . . . , ym), then G contains (x.Ai, yi, 6=) for all i.
For any subgraphG′ ofG,G′ is consistent if the edges inG′ do not
imply any contradiction, meaning that there is no path of =-edges
connecting two distinct constants or two expressions connected by
an 6=-edge.
An edge e of G is non-violating if for every consistent subgraph

G′, G′ ∪ {e} is also consistent.
Intuitively, by collecting the edges described above, the constraint

graph G becomes an over-approximation of the reachable partial
isomorphism types. Thus any edge in G that is non-violating is
also non-violating in any reachable partial isomorphism type. So
our goal is to find all the non-violating edges in G, since they can
be ignored in partial isomorphism types to reduce the size of the
search space.
Non-violating edges can be identified efficiently in polynomial

time. Specifically, an edge (u, v, 6=) is non-violating if u and v
belong to different connected components of =-edges of G. An
=-edge e is non-violating if there is no path u −→ v of =-edges
containing e for any (u, v, 6=) ∈ G or (u, v) being two distinct
constants. This can be checked efficiently by computing the bicon-
nected components of the =-edges [44]. We omit the details here.

Example 25. Consider the two constraint graphs G1 and G2

in Figure 8. In G1 (left), (e3, e5) is a non-violating 6=-edge be-
cause e3 and e5 belong to two different connected components of=-
edges ({e1, e2, e3, e4} and {e5, e6, e7} respectively). InG2 (right),
(e3, e5) is a non-violating =-edge because (e3, e5) is not on any
simple path of =-edges connecting the two ends of any 6=-edges
(i.e. (e2, e3) and (e5, e6)).

e1

e2

e4

e3 e5

e6

e7

e1

e2

e4

e3 e5

e6

e7

Figure 8: Non-violating Edges

3.8 Extension to Repeated-Reachability
Recall from Section 3.2 that providing full support for verifying

LTL-FO properties requires solving the repeated state reachability
problem. It is well-known that for VASS, the coverability set I ex-
tracted from the tree T constructed by the classic Karp-Miller al-
gorithm can be used to identify the repeatedly reachable partial iso-
morphism types (see Section 3.3). The same idea can be extended
to the Karp-Miller algorithm with monotone pruning (Section 3.4),
since the algorithm is guaranteed to construct a coverability set.

However, the Karp-Miller algorithm equipped with our �-based
pruning (Section 3.5) explores fewer states due to the more aggres-
sive pruning, and it turns out that the resulting coverability set I�
is incomplete to determine whether a state is repeatedly reachable.
We can no longer guarantee that a repeatedly reachable state is only
contained in a cycle of states in I�. We can nevertheless show that
the completeness of the search for repeatedly reachable states can
be restored by developing our own extraction technique which com-
pensates for the overly aggressive �-based pruning. The technical
development is subtle and relegated to the extended version [18].
As confirmed by our experimental results, the additional overhead
is acceptable.

4. EXPERIMENTAL EVALUATION
Weevaluated the performance ofVERIFAS using both real-world

and synthetic artifact specifications.

4.1 Setup and Benchmark
The Real Set We built an artifact system benchmark by rewrit-
ing in HAS* a sample of real-world BPMN workflows published
at the official BPMN website [2], which provides 36 workflows of
non-trivial size. To rewrite these workflows in HAS*, we manually
added the database schema, artifact variables/relations, and services
for updating the data. HAS* is sufficiently expressive to specify 32
of the 36 BPMN workflows. The remaining 4 cannot be expressed
in HAS* because they involve computing aggregate functions or up-
dating unboundedly many tuples of the artifact relations, which is
not supported in the current model. We will consider such features
in our future work.
The Synthetic Set Since we wished to stress-test VERIFAS, we
also randomly generated a set of HAS* specifications of increas-
ing complexity. All components of each specification, including
DB schema, task hierarchy, variables, services and conditions, were
generated fully at random for a certain size. We provide in the
full paper [18] more details on how each specification is generated.
Those with empty state space due to unsatisfiable conditions were
removed from the benchmark. Table 1 shows some statistics of the
two sets of specifications. (#Relations, #Tasks, etc. are averages
over the real / synthetic sets of workflows.)

Table 1: Statistics of the Two Sets of Workflows
Dataset Size #Relations #Tasks #Variables #Services

Real 32 3.563 3.219 20.63 11.59
Synthetic 120 5 5 75 75

LTL-FO Properties On each workflow of both sets, we run our
verifier on a collection of 12 LTL-FO properties of the root task con-
structed using templates of real propositional LTL properties. The
LTL properties are all the 11 examples of safety, liveness and fair-
ness properties collected from a standard reference paper [42] and
an additional property False used as a baseline when comparing
the performance of VERIFAS on different classes of LTL-FO prop-
erties. We list all the templates of LTL properties in Table 4. To see
why we choose False as the baseline property, recall from Section
3 that the verifier’s running time is mainly determined by the size
of the reachable symbolic state space (VERIFAS first computes all
reachable symbolic states –represented by the coverability set– then
identifies the repeatedly-reachable ones). The reachable symbolic
state space can be conceptualized as the cross-product between the
reachable symbolic state space of the HAS* specification (absent
any property) and the Büchi automaton of the property. When the
LTL-FO property is False, the generated Büchi automaton is of the
simplest form (a single accepting state within a loop), so it has no
impact on the cross-product size, unlike more complex properties.

In each workflow, we generate an LTL-FO property for each tem-
plate by replacing the propositions with FO conditions chosen from
the pre-and-post conditions and their sub-formulas. Note that by
doing so, the generated LTL-FO properties on the real workflows
are combinations of real propositional LTL properties and real FO
conditions, and so are close to real-world LTL-FO properties.
Baseline We compare VERIFAS with a simpler implementation
built on top of Spin, a widely used software verification tool [27].
Building such a verifier is a challenging task in its own right since
Spin is essentially a finite-state model checking tool and hence is
incapable of handling data of unbounded size, present in the HAS*

292

Table 2: Average Elapsed Time and Number of Failed Runs
(#Fail) due to Timeout or Memory Overflow

Verifier Real Synthetic
Avg(Time) #Fail Avg(Time) #Fail

Spin-Opt 2.97s 3 83.983s 440
VERIFAS-NoSet .229s 0 6.983s 19

VERIFAS .245s 0 11.01s 16

model. We managed to build a Spin-based verifier supporting a
restricted version of our model that does not handle updatable arti-
fact relations. As the read-only database can still have unbounded
size and domain, the Spin-based implementation requires nontriv-
ial translations and optimizations, which are presented in detail in
[32].
Platform We implemented both verifiers in C++ with Spin version
6.4.6 for the Spin-based verifier. All experiments were performed
on a Linux server with a quad-core Intel i7-2600 CPU and 16G
memory. For each specification, we ran our verifiers to test each of
the 12 generated LTL-FO properties, resulting in 384 runs for the
real set and 1440 runs for the synthetic set. Towards fair compari-
son, since the Spin-based verifier (Spin-Opt) cannot handle artifact
relations, in addition to running our full verifier (VERIFAS), we
also ran it with artifact relations ignored (VERIFAS-NoSet). The
timeout limit of each run was set to 10 minutes and the memory
limit was set to 8G.

4.2 Experimental Results
Performance Table 2 shows the results on both sets of workflows.
The Spin-based verifier achieves acceptable performance in the real
set, with an average elapsed time of a few seconds and only 3 time-
outs. However, it failed in a large number of runs (440/1440) in the
stress-test using synthetic specifications. On the other hand, both
VERIFAS andVERIFAS-NoSet achieve average running timeswithin
0.3 second and no timeout on the real set, and the average running
time is within seconds on the synthetic set, with only 19 timeouts
over 1440 runs. The presence of artifact relations introduced an ac-
ceptable amount of performance overhead, which was negligible in
the real set and less than 60% in the synthetic set. Compared with
the Spin-based verifier, VERIFAS is>10x faster in average running
time and scales significantly better with workflow complexity.

The timeout runs on the synthetic workflows are all due to state
explosion with a state space of size ∼3×104. The reason is that
though unlikely in practice, it is still possible that the reached partial
isomorphism types can degenerate to full isomorphism types, and in
this case our state-pruning optimization does not reduce the number
of reached states.
Cyclomatic Complexity To better understand the scalability of
VERIFAS,we alsomeasured verification time as a function ofwork-
flow complexity, adopting a metric called cyclomatic complexity,
which is widely used in measuring complexity of program modules
[48]. For a program P with control-flow graphG(V,E), the cyclo-
matic complexity of P equals |E|−|V |+2. We adapt this measure
to HAS* specifications as follows. Given a HAS* specification A,
a control flow graph ofA can be obtained by selecting a task T ofA
and a non-id variable x ∈ x̄T and projecting all services of T onto
{x}. The resulting services contain only x and constants and thus
can be viewed as a transition graph with x as the state variable. The
cyclomatic complexity of A, denoted as M(A), is defined as the
maximum cyclomatic complexity over all the possible control-flow
graphs of A (corresponding to all possible projections).

Figure 9 shows that the verification time increases exponentially
with the cyclomatic complexity, thus confirming the pertinence of

5 10 15 20 25 30 35 40 45
Cyclomatic Complexity

10 3

10 2

10 1

100

101

102

103

Ru
nn

in
g

Ti
m

e
(s

ec
.) Synthetic

Synthetic-
Timeout
Real

Figure 9: Average Running Time vs. Cyclomatic Complexity

the measure to predicting verification complexity, where the verifi-
cation time of a workflow is measured by the average running time
over all the runs of its LTL-FO properties. According to [48]’s rec-
ommendation, for a program to remain readable and testable, its
cyclomatic complexity should not exceed 15. Among all the 138
workflows with cyclomatic complexity at most 15, VERIFAS suc-
cessfully verified 130/138 (∼94%) of them within 10s and only 4
instances have timeout runs (marked as hollow triangles in Figure
9). For specifications with complexity above 15, only 2/14 instances
have timeout runs.

Typically, for the same cyclomatic complexity, the real workflows
can be verified faster compared to the synthetic workflows. This is
because the search space of the synthetic workflows is likely to be
larger because there are more variables and transitions.
Impact of OptimizationsWe studied the effect of our optimization
techniques: state pruning (SP, Section 3.5), data structure support
(DSS, Section 3.6), and static analysis (SA, Section 3.7). For each
technique, we reran the experiment with the optimization turned
off and measured the speedup by comparing the elapsed verifica-
tion time with the original elapsed time. Table 3 shows the aver-
age speedups of each optimization on both datasets. Since some
instances have extreme speedups (over 10,000x), simply averaging
could be misleading, so we also present the trimmed averages of the
speedups (i.e. removing the top/bottom 5% speedups before aver-
aging) to exclude the extreme values.

Table 3 shows that the effect of state pruning is the most signifi-
cant in both sets of workflows, with an average (trimmed) speedup
of ∼25x and ∼127x in the real and synthetic set respectively. The
static analysis optimization is more effective in the real set (1.4x im-
provement) but its effect in the synthetic set is less pronounced. It
creates a small amount (7%) of overhead in most cases, but signif-
icantly improves the running time of a single instance, resulting in
the huge gap between the normal average speedup and the trimmed
average speedup. The explanation to this phenomenon is that the
workflows in the real set are more “sparse" in general, which means
there are fewer comparisons within a subset of variables so a larger
number of comparisons can be pruned by static analysis. Finally, the
data-structure support provides ∼1.2x and ∼1.6x average speedup
in each set respectively. Not surprisingly, the optimization becomes
more effective as the size of the state space increases.

Table 3: Mean and Trimmed Mean (5%) of Speedups

Dataset SP SA DSS
Mean Trim. Mean Trim. Mean Trim.

Real 1586.54x 24.69x 1.80x 1.41x 1.87x 1.24x
Synthetic 322.03x 127.35x 28.78x 0.93x 2.72x 1.58x

Overhead of Repeated-Reachability We evaluated the overhead
of computing the set of repeatedly-reachable states from the cov-
erability set (Section 3.8) by repeating the experiment with the re-

293

peated reachability module turned off. Compared with the turned
off version, the full verifier has an average overhead of 19.03% on
the real set and 13.55% overhead on the synthetic set (overheads
are computed over the non-timed-out runs).
Effect of Different Classes of LTL-FO Properties Finally, we
evaluate how the structure of LTL-FO properties affects the perfor-
mance of VERIFAS. Table 4 lists all the LTL templates used in gen-
erating the LTL-FO properties and their intuitive meaning stated in
[42]. For each template and for each set of workflows, we measure
the average running time over all the runs with LTL-FO properties
generated using the template. Table 4 shows that for each class of
properties, the average running time is within 2x of the average run-
ning time for the simplest non-trivial property False. This is much
better than the theoretical upper bound, which is linear in size of
the Büchi automaton of the LTL formula. Some properties even
have a shorter running time because, although the space of partial
symbolic instances is enlarged by the Büchi automaton, more of the
states may become unreachable due to the additional constrains im-
posed by the LTL-FO property.

Table 4: Average Running Time of Verifying Different Classes
of LTL-FO Properties

Templates for LTL-FO Meaning Real Synthetic

False Baseline 0.26s 10.13s
Gϕ Safety 0.28s 10.26s

(¬ϕU ψ) Safety 0.28s 16.13s
(¬ϕUψ) ∧G(ϕ→ X(¬ϕUψ)) Safety 0.30s 10.79s
G(ϕ→ (ψ ∨Xψ ∨XXψ)) Safety 0.29s 12.07s

G(ϕ ∨G(¬ϕ)) Safety 0.30s 12.17s
G(ϕ→ Fψ) Liveness 0.29s 16.81s

Fϕ Liveness 0.02s 6.44s
GFϕ→ GFψ Fairness 0.30s 14.09s

GFϕ Fairness 0.28s 6.91s
G(ϕ ∨Gψ) Fairness 0.05s 9.64s

FGϕ→ GFψ Fairness 0.28s 6.75s

5. RELATED WORK
The artifact verification problem has previously been studiedmainly

from a theoretical perspective. As mentioned in Section 1, fully
automatic artifact verification is a challenging problem due to the
presence of unbounded data. To deal with the resulting infinite-
state system, we developed in [16] a symbolic approach allowing a
reduction to finite-state model checking and yielding a pspace veri-
fication algorithm for the simplest variant of the model (no database
dependencies and uninterpreted data domain). In [11] we extended
our approach to allow for database dependencies and numeric data
testable by arithmetic constraints. The symbolic approach devel-
oped in [16] and its extension to HAS [17] provides the theoretical
foundation for VERIFAS.

Another theoretical line of work considers the verification prob-
lem for runs starting from a fixed initial database. During the run,
the database may evolve via updates, insertions and deletions. Since
inputs may contain fresh values from an infinite domain, this veri-
fication variant remains infinite-state. The property languages are
fragments of first-order-extended µ-calculus [13]. Decidability re-
sults are based on sufficient syntactic restrictions [13, 26, 9]. [5]
derives decidability of the verification variant by also disallowing
unbounded accumulation of input values, but this condition is postu-
lated as a semantic property (shown undecidable in [26]). [3] takes
a different approach, in which decidability is obtained for recency-
bounded artifacts, in which only recently introduced values are re-
tained in the current data.

On the practical side of artifact verification, [15] considers the
verification of business processes specified in a Petri-net-basedmodel
extendedwith data and process components, in the spirit of the theo-
retical work of [40, 4, 31, 41], which considers extending Petri nets
with data-carrying tokens. The verifier of [15] differs fundamen-
tally from ours in that properties are checked only for a given initial
database. In contrast, our verifier checks that all runs satisfy given
properties regardless of the initial underlying database. [25] and
its prior work [23, 24] implemented a verifier for artifact systems
specified directly in the GSM model. While the above models are
expressive, the verifiers require restrictions of the models strongly
limiting modeling power [23], or predicate abstraction resulting in
loss of soundness and/or completeness [24, 25]. Lastly, the prop-
erties verified in [24, 25] focus on temporal-epistemic properties in
a multi-agent finite-state system. Thus, the verifiers in these works
have a different focus and are incomparable to ours.

Practical verification has also been studied in business process
management (see [45] for a survey). The considered models are
mostly process-driven (BPMN, Workflow-Net, UML etc.), with the
business-relevant data abstracted away. The implementation of a
verifier for data-driven web applications was studied in [19, 20].
The model is similar in flavor to the artifact model, but much less
expressive. The verification approach developed there is not ap-
plicable to HAS*, which requires substantially new tools and tech-
niques. Finally, our own work on building a verifier based on Spin
was discussed in Section 1, and compared to VERIFAS in Section
4.

6. CONCLUSION
We presented the implementation of VERIFAS, an efficient ver-

ifier of temporal properties for data-driven workflows specified in
HAS*, a variant of the Hierarchical Artifact System model studied
theoretically in [17]. HAS* is inspired by the Business Artifacts
framework introduced by IBM [28] and incorporated in OMG’s
CMMN standard [34, 36].

While the verification problem is expspace-complete (see ex-
tended version [18]) our experiments show that the theoretical worst
case is unlikely in practice and that verification is eminently feasi-
ble. Indeed, VERIFAS achieves excellent performance (verifica-
tion within seconds) on a practically relevant class of real-world
and synthetic workflows (those with cyclomatic complexity in the
range recommended by good software engineering practice), and a
set of representative properties. The good performance of VERI-
FAS is due to an adaptation of our symbolic verification techniques
developed in [17], coupled with the classic Karp-Miller algorithm
accelerated with an array of nontrivial novel optimizations.

We also compared VERIFAS to a verifier we built on top of the
widely used model checking tool Spin. VERIFAS not only applies
to a much broader class of artifacts but also outperforms the Spin-
based verifier by over one order of magnitude even on the simple
artifacts the Spin-based verifier is able to handle. To the best of
our knowledge, VERIFAS is the first implementation of practical
significance of an artifact verifier with full support for unbounded
data. In future work, we plan to extend VERIFAS to support a more
expressive model that captures true parallelism, aggregate functions
and arithmetic.
AcknowledgementWe are grateful to the anonymous reviewers for
their thorough reports and many suggestions that have greatly im-
proved the paper. This work was supported in part by the National
Science Foundation under award IIS-1422375.

294

7. REFERENCES

[1] MIST - a safety checker for Petri nets and extensions.
https://github.com/pierreganty/mist/wiki.
Accessed: 2017-04-13.

[2] Object management group business process model and
notation. http://www.bpmn.org/. Accessed: 2017-03-01.

[3] P. A. Abdulla, C. Aiswarya, M. F. Atig, M. Montali, and
O. Rezine. Recency-bounded verification of dynamic
database-driven systems. In PODS, pages 195–210, 2016.

[4] E. Badouel, L. Hélouët, and C. Morvan. Petri nets with
semi-structured data. In Petri Nets, 2015.

[5] F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of
GSM-based artifact-centric systems through finite
abstraction. In ICSOC, pages 17–31, 2012.

[6] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and
F. Y. Wu. Artifact-centered operational modeling: Lessons
from customer engagements. IBM Systems Journal,
46(4):703–721, 2007.

[7] K. Bhattacharya et al. A model-driven approach to
industrializing discovery processes in pharmaceutical
research. IBM Systems Journal, 44(1):145–162, 2005.

[8] M. Blockelet and S. Schmitz. Model checking coverability
graphs of vector addition systems. In Mathematical
Foundations of Computer Science 2011, pages 108–119.
Springer, 2011.

[9] D. Calvanese, G. Delzanno, and M. Montali. Verification of
relational multiagent systems with data types. In AAAI, pages
2031–2037, 2015.

[10] T. Chao et al. Artifact-based transformation of IBM Global
Financing: A case study. In BPM, 2009.

[11] E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems
with data dependencies and arithmetic. ACM Trans.
Database Syst., 37(3):22, 2012. Also in ICDT 2011.

[12] E. Damaggio, R. Hull, and R. Vaculín. On the equivalence of
incremental and fixpoint semantics for business artifacts with
guard-stage-milestone lifecycles. Information Systems,
38:561–584, 2013.

[13] G. De Giacomo, R. D. Masellis, and R. Rosati. Verification
of conjunctive artifact-centric services. Int. J. Cooperative
Inf. Syst., 21(2):111–140, 2012.

[14] H. de Man. Case management: Cordys approach. BP Trends
(www.bptrends.com), 2009.

[15] R. De Masellis, C. Di Francescomarino, C. Ghidini,
M. Montali, and S. Tessaris. Add data into business process
verification: Bridging the gap between theory and practice.
In AAAI, 2017.

[16] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic
verification of data-centric business processes. In ICDT,
pages 252–267, 2009.

[17] A. Deutsch, Y. Li, and V. Vianu. Verification of hierarchical
artifact systems. In PODS, pages 179–194, 2016.

[18] A. Deutsch, Y. Li, and V. Vianu. VERIFAS: A practical
verifier for artifact systems (extended version). arXiv
preprint, arXiv:1705.10007, 2017.

[19] A. Deutsch, M. Marcus, L. Sui, V. Vianu, and D. Zhou. A
verifier for interactive, data-driven web applications. In
SIGMOD, pages 539–550, 2005.

[20] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. A system for
specification and verification of interactive, data-driven web
applications. In SIGMOD, pages 772–774, 2006.

[21] A. Finkel. The minimal coverability graph for Petri nets.
Advances in Petri Nets 1993, pages 210–243, 1993.

[22] G. Geeraerts, J.-F. Raskin, and L. Van Begin. On the efficient
computation of the minimal coverability set of petri nets.
International Journal of Foundations of Computer Science,
21(02):135–165, 2010.

[23] P. Gonzalez, A. Griesmayer, and A. Lomuscio. Verifying
GSM-based business artifacts. In International Conference
on Web Services (ICWS), pages 25–32, 2012.

[24] P. Gonzalez, A. Griesmayer, and A. Lomuscio. Model
checking gsm-based multi-agent systems. In ICSOC, pages
54–68, 2013.

[25] P. Gonzalez, A. Griesmayer, and A. Lomuscio. Verification
of gsm-based artifact-centric systems by predicate
abstraction. In ICSOC, pages 253–268, 2015.

[26] B. B. Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and
M. Montali. Verification of relational data-centric dynamic
systems with external services. In PODS, pages 163–174,
2013.

[27] G. Holzmann. Spin Model Checker, The: Primer and
Reference Manual. Addison-Wesley Professional, first
edition, 2003.

[28] R. Hull et al. Business artifacts with guard-stage-milestone
lifecycles: Managing artifact interactions with conditions and
events. In ACM DEBS, 2011.

[29] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid
identification of repeated patterns in strings, trees and arrays.
In Proc. ACM Symposium on Theory of Computing (STOC),
pages 125–136. ACM, 1972.

[30] R. Kimball and M. Ross. The data warehouse toolkit: the
complete guide to dimensional modeling. John Wiley &
Sons, 2011.

[31] R. Lazić, T. Newcomb, J. Ouaknine, A. W. Roscoe, and
J. Worrell. Nets with tokens which carry data. Fundamenta
Informaticae, 88(3):251–274, 2008.

[32] Y. Li, A. Deutsch, and V. Vianu. A Spin-based verifier for
artifact systems. arXiv preprint, arXiv:1705.09427, 2017.

[33] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction
to information retrieval, volume 1. Cambridge university
press Cambridge, 2008.

[34] M. Marin, R. Hull, and R. Vaculín. Data centric bpm and the
emerging case management standard: A short survey. In
BPM Workshops, 2012.

[35] A. Nigam and N. S. Caswell. Business artifacts: An approach
to operational specification. IBM Systems Journal,
42(3):428–445, 2003.

[36] Object Management Group. Case Management Model and
Notation (CMMN), 2014.

[37] A. Pnueli. The temporal logic of programs. In FOCS, pages
46–57, 1977.

[38] P.-A. Reynier and F. Servais. Minimal coverability set for
Petri nets: Karp and Miller algorithm with pruning. In Int’l.
Conf. on Application and Theory of Petri Nets and
Concurrency, pages 69–88. Springer, 2011.

[39] R. L. Rivest. Partial-match retrieval algorithms. SIAM
Journal on Computing, 5(1):19–50, 1976.

[40] F. Rosa-Velardo and D. de Frutos-Escrig. Decidability and
complexity of Petri nets with unordered data. Theoretical
Computer Science, 412(34):4439–4451, 2011.

[41] N. Sidorova, C. Stahl, and N. Trčka. Soundness verification
for conceptual workflow nets with data: Early detection of

295

errors with the most precision possible. Information Systems,
36(7):1026–1043, 2011.

[42] A. P. Sistla. Safety, liveness and fairness in temporal logic.
Formal Aspects of Computing, 6(5):495–511, 1994.

[43] A. P. Sistla, M. Y. Vardi, and P. Wolper. The
complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer
Science, 49:217–237, 1987.

[44] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM journal on computing, 1(2):146–160, 1972.

[45] W. M. Van Der Aalst. Business process management: a
comprehensive survey. ISRN Software Engineering, 2013.

[46] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In LICS, 1986.

[47] P. Vassiliadis and T. Sellis. A survey of logical models for
OLAP databases. ACM Sigmod Record, 28(4):64–69, 1999.

[48] A. H. Watson, D. R. Wallace, and T. J. McCabe. Structured
testing: A testing methodology using the cyclomatic
complexity metric, volume 500. US Department of
Commerce, Technology Administration, National Institute of
Standards and Technology, 1996.

[49] W.-D. Zhu et al. Advanced Case Management with IBM Case
Manager. IBM Redbooks, 2015.

296

