
Effective and Efficient Dynamic Graph Coloring

Long Yuan§, Lu Qin‡, Xuemin Lin§, Lijun Chang†, and Wenjie Zhang§
§ The University of New South Wales, Australia

‡Centre for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia
† The University of Sydney, Australia

§{longyuan,lxue,zhangw}@cse.unsw.edu.au; ‡lu.qin@uts.edu.au;
†Lijun.Chang@sydney.edu.au

ABSTRACT
Graph coloring is a fundamental graph problem that is widely ap-
plied in a variety of applications. The aim of graph coloring is to
minimize the number of colors used to color the vertices in a graph
such that no two incident vertices have the same color. Existing
solutions for graph coloring mainly focus on computing a good col-
oring for a static graph. However, since many real-world graphs are
highly dynamic, in this paper, we aim to incrementally maintain the
graph coloring when the graph is dynamically updated. We target
on two goals: high effectiveness and high efficiency. To achieve
high effectiveness, we maintain the graph coloring in a way such
that the coloring result is consistent with one of the best static graph
coloring algorithms for large graphs. To achieve high efficiency,
we investigate efficient incremental algorithms to update the graph
coloring by exploring a small number of vertices. We design a
color-propagation based algorithm which only explores the vertices
within the 2-hop neighbors of the update-related and color-changed
vertices. We then propose a novel color index to maintain some
summary color information and, thus, bound the explored vertices
within the neighbors of these vertices. Moreover, we derive some
effective pruning rules to further reduce the number of propagated
vertices. The experimental results demonstrate the high effective-
ness and efficiency of our approach.

PVLDB Reference Format:
Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang andWenjie Zhang. Effective
and Efficient Dynamic Graph Coloring. PVLDB, 11(3): 338 - 351, 2017.
DOI: 10.14778/3157794.3157802

1. INTRODUCTION
Graph coloring is one of the most fundamental problems in graph

analysis. Given a graph G, graph coloring assigns each vertex in G
a color, such that no two incident vertices have the same color. The
aim of graph coloring is to minimize the number of different colors.
Computing the optimal graph coloring is an NP-hard problem [27].
Applications. Graph coloring has been adopted in a wide range of
application scenarios. For example:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11... $ 10.00.
DOI: 10.14778/3157794.3157802

(1) Nucleic Acid Sequence Design in Biochemical Networks. Given
a set of nucleic acids, a dependency graph is a graph in which each
vertex is a nucleotide and two vertices are connected if the two
nucleotides form a base pair in at least one of the nucleic acids.
The problem of finding a nucleic acid sequence that is compatible
with the set of nucleic acids can be modelled as a graph coloring
problem on a dependency graph [57].
(2) Air Traffic Flow Management. In air traffic flow management,
the air traffic flow can be considered as a graph in which each vertex
represents a flight route and there is an edge between two vertices
if the corresponding two routes intersect. The airspace congestion
problem can be modelled as a graph coloring problem [6].
(3) Channel Assignment in Wireless Networks. In a wireless net-
work, each device is represented as a vertex, and the potential inter-
ference between two devices is represented as an edge. The channel
assignment aims to to cover all devices (vertices) with the mini-
mum number of channels (colors) such that no two adjacent devices
(vertices) use the same channel (color), which can be modelled as
a graph coloring problem [5].
(4) Community Detection in Social Networks. In a social network,
graph coloring is used to compute seed vertices that can be expanded
to high quality overlapping communities in the network [49].
(5) A Key Step to Solve other Graph Problems. Graph coloring also
serves as a key step to solve other important graph problems, such
as clique computation [55, 70] and graph partitioning [3].
Motivation. Plenty of algorithms that handle the graph coloring
problem in a static graph have been proposed, such as [7, 34, 40, 42,
57, 68]. However, many real-world graphs are highly dynamic [2,
19, 36], which raises the following two requirements for the graph
coloring algorithms in this new scenario:
(1) Effectiveness. In dynamic graph coloring, besides minimiz-
ing the number of used colors [60], coloring consistency is also
an important issue to be considered in real applications. Here, by
consistency, we mean that the coloring result of the same graph is
independent of the graph updating orders. For example, in channel
assignment [5], power consumption is critical to the usability of
mobile devices [14] andWiFi is a prime source of energy consump-
tion [47]. Consistent coloring result can save the power of mobile
devices by avoiding unnecessary channel assignments triggered by
the movement of other mobile devices. In graph partitioning, con-
sistent coloring result can reduce the repartitioning costs when the
graph is updated, as graph coloring is used to classify vertices into
different groups based on the colors of vertices [3].
(2) Efficiency. In real applications, many graphs are large and
frequently updated. For example, in wireless networks, the access
devices are frequently inserted/removed because of themovement of

338

1

4

3

4

3

5

0

4

4

2

2

4

3
2

4
4

4
4

4

1

1

1

(a) The initial coloring

6

3

2

1

3

1

0

1

8

2

7

4

2
2

5
1

4
4

1

1

2

1

(b) Color by DC-Local (1st test)

8

3

1

5

2

0

7

3

9

1

4

5

1
1

5
5

5
6

3

0

0

0

(c) Color by DC-Local (2nd test)

1

4

3

4

3

5

0

4

4

2

2

4

3
2

4
4

4
4

4

1

1

1

(d) Color by our algorithm
Figure 1: Graph coloring on part of the rating network MoiveLens (the numbers denote different colors)

people [62]; the air traffic flow in air traffic flow networks changes
as flights are delayed or cancelled [51]; In the online social net-
works, the graphs are typically large and continually evolving. For
instance, Facebook has more than 1.3 billion users and approxi-
mately 5 new users join Facebook every second [54]; Twitter has
more than 300 million users and 3 new users join Twitter every
second [54]. Therefore, high efficiency is another requirement for
a practical dynamic graph coloring algorithm.

Online graph coloring, which focuses on vertex insertion with the
assumption that the color of a vertex is not allowed to change after
the color assignment, has been investigated [44] in the literature.
However, edge insertion/deletion are common in real applications
[2, 19, 36] and vertex insertion can be treated as a special case
of edge insertion. Thus, we focus on the general dynamic model
in which the graph is updated by edge insertion/deletion. In the
literature, an algorithm denoted as DC-Local [60] is proposed for
the dynamic graph coloring problem. Briefly, after an edge (u, v)
is inserted/deleted, DC-Local locally updates the graph coloring by
adjusting only the colors of u and v and their neighbors. The time
complexity of DC-Local for each update is O(dmax2), where dmax
is the maximum vertex degree in the graph. This type of local
update strategy may be efficient in practice, but if a new color is
introduced in a certain update, the algorithm will miss the opportu-
nity to reduce the number of colors globally and, thus, may continue
to increase the number of colors in subsequent updates. Moreover,
the graph coloring generated by DC-Local is largely dependent on
the order of the edges being inserted/deleted, and may lead to in-
consistent coloring if we obtain the same graph by different edge
insertion/deletion orders. The example below shows its drawbacks.
Example 1.1: We extract part of a rating network from the Moive-
Lens dataset (https://movielens.org/). Initially, we color the net-
work using one of the best static graph coloring algorithms for large
graphs. The coloring result, with 6 colors, is shown in Fig. 1 (a).
Then, as a test, we randomly remove some edges from the graph and
add them back in a random order, and repeat this 100 times. Obvi-
ously, the final graph is the same as the initial graph. We conduct
this test twice using DC-Local to update the graph coloring with the
same initial coloring in Fig. 1 (a). The results for the two tests are
shown in Fig. 1 (b) and Fig. 1 (c), respectively. We can see that (1)
the number of colors is significantly increased in both tests; and (2)
the colorings of the two tests are largely different. �

This example shows two main drawbacks of the existing solu-
tion: (1) low coloring quality; and (2) inconsistent coloring result.
Motivated by this, we aim to design an efficient incremental graph
coloring update algorithm that can overcome these drawbacks.
General Idea. Our general idea is simple: after each update of the
graph, we aim to update the graph coloring incrementally to make
it exactly the same as the coloring result obtained by one of the

best static graph coloring algorithms for large graphs, Global [68].
Briefly, given a graph G, Global colors the vertices according to a
global vertex order in which vertices are sorted in decreasing order
of their degrees in G. For each vertex, Global assigns the vertex the
minimum possible color not assigned to its neighbors. Global has
beenwidely adopted in the literature because of its high efficiency in
handling large graphs and its high graph coloring quality in practice
[1, 3, 55, 70]. To show that our idea is practically applicable, we
study two issues: effectiveness and efficiency.
Effectiveness. Our approach is able to overcome the two main
drawbacks of the existing algorithm:
• High Coloring Quality. Unlike DC-Local, which locally updates
vertex colors without considering global optimization, the color-
ing quality of our approach is the same as Global, which colors
the graph in a global vertex order. Therefore, we are able to
achieve a much better coloring quality than DC-Local.
• Consistent Coloring Result. Given Global’s unique global ver-
tex order, its coloring result is only dependent on the graph’s
topology. Since the coloring result of our approach is the same as
Global’s, we can guarantee that the coloring result of our approach
is independent of the edge deletion/insertion order.

Example 1.2: We conduct the same test in Example 1.1 using our
approach on the graph shown in Fig. 1 (a). The initial coloring is
computed using Global and the result in Fig. 1 (d) is the same as the
coloring in Fig. 1 (a) since the graph topology does not change. �

Efficiency. We design an algorithm that maintains the graph col-
oring incrementally for each graph update without computing the
coloring from scratch using Global. The rationale is based on the
observation that, in practice, very few vertices have color changes
after an edge insertion/deletion in the new coloring generated by
Global. To demonstrate this, we compute the average number of
vertices ϕ with color changes in each update on 10 real datasets
from different application domains. According to the results, the
maximum ϕ across the 10 datasets is 40.43 and the average ϕ is
only 11.4 (see Exp-6 in Section 6). This suggests the opportunity
to explore only a small number of vertices in the graph to update
the graph coloring for each update.

When an edge (u, v) is inserted/deleted, let ∆ be union of u, v and
the vertices with color changes after the graph update. According
to the above discussion, |∆| is small in practice. Thus, we aim to
explore only those vertices related to ∆ to achieve high efficiency.
We first propose a color-propagation based algorithm that iteratively
recolors a vertex u and notifies its out-neighbors in an oriented
coloring graph to be further recolored if the color of u changes.
Here, the oriented coloring graph is a directed graph created based
on the original graph. By carefully assigning a priority for vertices
to be recolored, we can guarantee that each vertex is recolored
once, at most, in each update. Such an approach may visit the 2-hop

339

neighbors of vertices in ∆. Thus, we further propose an index that
maintains a summary of the color information of the in-neighbors
for each vertex in the oriented coloring graph. The index has a linear
size to G and can be maintained efficiently. With this index, we can
determine whether the color of a vertex will change in constant
time prior to the color computation. Thus, the algorithm only needs
to explore the vertices in ∆ and their neighbors to handle a graph
update. The time complexity of our algorithm is O(n∆ · log(n∆))
where n∆ is the number of vertices in ∆ and their neighbors.
Contributions. We make the following contributions in this paper.
(1) A new idea to update graph coloring by considering global op-
timization. We investigate the drawbacks of the existing algorithm
using a local update and propose a new idea to update the graph
coloring by considering global optimization.
(2) An efficient coloring update algorithm with a bounded time
complexity. We propose a color-propagation based algorithm on
an auxiliary graph called oriented coloring graph. With a proper
vertex propagation order, we bound the explored vertex to be within
the 2-hop neighbors of the vertices in ∆.
(3) Novel early pruning strategies to further improve the efficiency.
We propose an index, DINC-Index, to efficiently determine whether
the color of a vertex will change before color computation occurs
and, thus, bound the explored vertices within the neighbors of ver-
tices in∆. We also explore some pruning rules to reduce the number
of propagated vertices to further improve efficiency.
(4) Extensive performance studies on real and synthetic datasets.
We conduct extensive performance studies on real and synthetic
datasets. The experimental results demonstrate that our proposed
algorithm can achieve both high effectiveness and high efficiency.

2. PRELIMINARIES
Consider an undirected and unweighted graph G = (V, E), where

V(G) represents the set of vertices and E(G) represents the set
of edges in G. We denote the number of vertices as n and the
number of edges as m. Every vertex has a unique ID and we
use id(u,G) to denote the id of vertex u. We use nbr(u,G) to
denote the set of neighbors of u for each vertex u ∈ V(G), i.e.,
nbr(u,G) = {v |(u, v) ∈ E(G)}. The degree of a vertex u ∈ V(G),
denoted by deg(u,G), is the number of neighbors of u in G, i.e.,
deg(u,G) = |nbr(u,G)|. For simplicity, we omit G in the notations
if the context is self-evident. Given a graph G, we use dmax to
denote the largest degree of vertices in G. We useN to denote the
set of non-negative integers.
Definition 2.1: (Graph Coloring) Given a graph G = (V, E), a
graph coloring of G is a function f : V → C from the set V of
vertices to a set C of colors such that any two incident vertices are
assigned different colors, where C ⊂ N. �

For a graph G and a coloring f , we use | f (G)| to denote the
number of colors used in f . For a vertex u ∈ V(G), we use u.color =
f (u) to denote the color of u assigned by f .
Definition 2.2: (k-colorable) A graph G is k-colorable if there is a
graph coloring of G with at most k colors. �

Definition 2.3: (Chromatic Number) For a given graph, the chro-
matic number of G, denoted by χ(G), is the smallest integer k for
which G is k-colorable. �

Definition 2.4: (Optimal Graph Coloring) For a given graph G,
the optimal graph coloring, denoted by %(G), is a graph coloring of
G such that |%(G)| = χ(G). �

Algorithm 1 DC-Local(Graph G)

1: Procedure DC-Local-Ins(Graph G, Edge(u, v))
2: G.insert((u, v));
3: if u.color = v.color then
4: u ← argminu′∈{u,v} { |SC(u′) | };
5: DC-Local-Recolor(u);
6: Procedure DC-Local-Del(Graph G, Edge(u, v))
7: G.delete((u, v));
8: DC-Local-Recolor(u); DC-Local-Recolor(v);
9: Procedure DC-Local-Recolor(Vertex u)
10: C← SC(u); C← {0, 1, . . . , deg(u)};
11: cmax ← max{c |c ∈ C}; cmin ← min{c |c ∈ C, c < C};
12: if cmin < cmax then
13: u.color← cmin;
14: else
15: mcolor[c] ← 0 for all c ∈ C;
16: for all v ∈ nbr(u) do
17: mcolor[v.color] ← max{mcolor[v.color], |SC(v) |};
18: ccand ← argminc∈C {mcolor[c]};
19: if ccand < cmin − 1 then
20: u.color← ccand;
21: for each v ∈ nbr(u) if v.color = ccand then
22: v.color← SmallestUnassignedColor(v);
23: else
24: u.color← cmin;
25: Procedure SmallestUnassignedColor(Graph G,Vertex u)
26: C← {0, 1, . . . , deg(u)}, C← ∅;
27: for each v ∈ nbr(u) do
28: C← C ∪ {v.color};
29: return min{c |c ∈ C, c < C};

Problem Statement. In this paper, we study the problem of dy-
namic graph coloring, which is defined as follows: Given a graph
G, compute the optimal graph coloring %(G) of G when G is dy-
namically updated by the insertion and deletion of edges.

Since computing the optimal graph coloring is an NP-hard prob-
lem [27], we resort to approximate solutions in this paper.

3. THE EXISTING SOLUTION
The state-of-the-art dynamic graph coloring algorithm is pro-

posed in [60], which is based on saturation colors of a vertex.
Definition 3.1: (Saturation Colors) Given a graph G and a graph
coloring f , for a vertex u ∈ V(G), the saturation colors of u, denoted
by SC(u) , is the set of colors that f assigns to u’s neighbors, i.e.,
SC(u) = ⋃

v∈nbr(u) v.color. �

DC-Local is shown in Algorithm 1. When an edge (u, v) is in-
serted, if u and v share the same color, DC-Local recolors the vertex
with the small number of saturation colors (line 1-5). When an edge
(u, v) is deleted, DC-Local recolors both u and v (line 6-8).

To recolor a specific vertex u, DC-Local tries to avoid increasing
the number of colors based on SC(u). Specifically, it first computes
the smallest color cmin that is not assigned to any neighbor of u (line
10-11). If cmin is smaller than the maximum color in SC(u), cmin
is assigned to u (line 12-13). Otherwise, for each u’s neighbor v,
DC-Local uses mcolor[v.color] to store the the maximal number of
the saturation colors of u’s neighbors that are assigned with v.color
(line 15-17). DC-Local finds the color ccand that is assigned to a
neighbor v of u and the number of SC(v) is smaller than that of
any other neighbors of u which is not assigned with color ccand
based on mcolor (line 18). If ccand is smaller than cmin-1, DC-Local
assigns ccand to u and all the neighbors of u whose color is ccand are
reassigned with the smallest color not assigned to their neighbors
(line 19-22). Otherwise, it colors u with cmin (line 24). For a

340

given vertex u, procedure SmallestUnassignedColor computes the
smallest color not assigned to any neighbor of u (line 25-29).
Theorem 3.1: The time complexity of DC-Local to handle an edge
insertion/deletion is O(dmax2). �

Proof: Let’s consider the edge insertion first. For a vertex u, SC(u)
and SmallestUnassignedColor(u) can be computed in O(dmax).
Thus, DC-Local-Recolor(u) can finish in O(dmax2). Then, the time
complexity of DC-Local-Ins for an edge insertion is O(dmax2). The
edge deletion can be proved similarly. Thus, the theorem holds. �
Drawbacks of DC-Local. DC-Local maintains the graph coloring
by only considering recoloring the neighbors of the vertices in the
inserted/deleted edge. However, it has two drawbacks:
(D1) InferiorColoringQuality. The assumption behindDC-Local is
that the graph coloring can be well approximated by only exploring
local neighborhood of the vertices in the inserted/deleted edge.
However, as shown in Fig. 1, this assumption does not generally
hold in practice since it may miss opportunities to globally reduce
the number of colors.
(D2) Coloring Inconsistency. As shown in Fig. 1, the graph coloring
generated by DC-Local cannot keep consistent if we obtain the same
graph with different edge insertion/deletion orders. This means the
graph coloring generated by DC-Local is not robust in practice.

4. A NEW APPROACH
To overcome the drawbacks of DC-Local discussed in Section 3,

we devise a new algorithm for dynamic graph coloring. In this
section, we first analyze the dynamic graph coloring problem and
propose a basic algorithm. Then, we further improve the basic
algorithm with a prioritized vertex exploration.

4.1 The General Idea
The key idea of our approach is that we aim to guarantee the

quality by making the coloring result consistent with one of the best
static graph coloring algorithms for large graphs. Since the optimal
graph coloring problem is an NP-hard problem [27], and there is
no polynomial-time n1−ε approximation algorithm for the optimal
graph coloring problem, unless NP=ZPP [72], existing static graph
coloring algorithms resort to the greedy approach. One of the
best algorithms for large graphs is Global [68]. It is widely used
in the literature because of its high efficiency and good coloring
quality in practice [55, 70, 1, 3], which is also verified in our
experiments. Therefore, we use it to design our approach. Global
works as follows: It first sorts the vertices in decreasing order of
their degrees (increasing order of their IDs for verticeswith the same
degree). Then, it iterates vertices in the sorted order and assigns
each vertex the minimum possible color not assigned to its already
colored neighbors. The essence of Global is to find a coloring f
such that the color of vertex satisfies the following property:
Definition 4.1: (Global Color Property γ) Given a graph G and a
coloring f , the color of u satisfies the global color property γ of G,
denoted by u.color |= γ(G), if u.color = min{c | c ∈ N, c < C(u)},
where C(u) = {v.color | v ∈ nbr(u) ∧ (deg(v) > deg(u) ∨ (deg(v) =
deg(u) ∧ id(v) < id(u)))}. �

The dynamic graph coloring problem can be redefined as:
Definition 4.2: (Problem Definition∗) Given a graph G, we aim
to maintain a graph coloring f such that for each vertex u ∈ V(G),
u.color |= γ(G)when G is dynamically updated by the insertion and
deletion of edges. �

The approach designed based on Definition 4.2 can achieve the
goal of coloring quality and coloring consistency as the coloring
satisfying Definition 4.2 is the same as the coloring generated by
Global. A naive approach to maintain such a coloring is to use
Global to recompute the graph coloring for every update. Obvi-
ously, such an approach is impractical for large graphs. Therefore,
an incremental algorithm that maintains the global color property is
needed. A straightforward solution is to identify the set of vertices
that violates the global color property and then recolor them. How-
ever, recoloring a certain vertex may trigger other violations of the
global color property. To efficiently identify the vertex recoloring
order, we introduce the oriented coloring graph.

4.2 Oriented Dynamic Graph Coloring
Oriented Coloring Graph. Oriented coloring graph is constructed
based on the total order of vertices defined as follows:
Definition 4.3: (Total Order ≺) Given a graph G and two vertices
u, v ∈ G, we define u ≺ v if
• deg(u) > deg(v), or
• deg(u) = deg(v) and id(u) < id(v).
Obviously, ≺ defines a total order of all vertices in G. �

For two vertices u and v, if u ≺ v, we say u dominates v and v is
dominated by u. Based on Definition 4.3, we can assign a direction
to each edge in G with respect to the total order ≺ and we define:
Definition 4.4: (Oriented Coloring Graph) Given a graph G =
(V, E), the Oriented Coloring Graph (OCG) G∗ = (V, E∗) of G is a
directed acyclic graph such that for each edge (u, v) ∈ E , if u ≺ v
(v ≺ u), there is a directed edge from u to v (from v to u) in G∗,
denoted by <u, v> (<v, u>). �

If there is a directed edge <u, v> in G∗, we say u is an in-neighbor
of v and v is an out-neighbor of u. For each vertex u ∈ G∗, we
use nbr−(u,G∗) and nbr+(u,G∗) to denote the set of its in-neighbors
and out-neighbors in G∗ respectively. And we use nbr(u,G∗) to
denote nbr−(u,G∗) ∪ nbr+(u,G∗). For a vertex u, the in-degree of
u, denoted by deg−(u,G∗), is the number of in-neighbors of u and
the out-degree of u, denoted by deg+(u,G∗), is the number of out-
neighbors of u. For simplicity, we omit G∗ from the notations if the
context is self-evident. When an edge <u, v> is inserted into/deleted
from G∗, we use G∗+<u, v>/G∗−<u, v> to represent the new OCG
after the update. Based on the total order ≺ used to define G∗, we
can easily derive that G∗ is a directed acyclic graph (DAG).
Definition 4.5: (OCG Coloring) Given an OCG G∗ = (V, E∗), an
OCG coloring is a coloring f in which any two incident vertices
u, v ∈ V are assigned with different colors, i.e., <u, v> ∈ E∗ ⇒
u.color , v.color. �

Based on Definition 4.5, it is obvious that f is an OCG coloring
of G∗ if and only if f is a graph coloring of G. And we also define
the oriented global color property on OCG:
Definition 4.6: (Oriented Global Color Property σ) Given an
OCG G∗ and a coloring f , the color of u satisfies oriented global
color property σ of G∗, denoted by u.color |= σ(G∗), if u.color =
min{c |c ∈ N, c <

⋃
v∈nbr−(u) v.color}. �

Based on Definition 4.6, our problem (Definition 4.2) is equiva-
lent to maintaining the oriented global color property for all vertices
in the OCG. For simplicity, we call the OCG coloring f of G∗ in
which u.color |= σ(G∗) for all u ∈ V(G∗) as the global oriented
coloring of G∗ and denote it by Σ(G∗). Our aim is to maintain the
global oriented coloring Σ(G∗) when G∗ is dynamically updated.

341

(1)

v1

v2
v4

v0

(0)

(1)

(0)

(1)

v9

v9

v9

v9 v9

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

(0)

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

v1

v0

v2 v4

v3

v5

v6

v7

v8

v9

v10

v11

(a) G

(0) v1

v2

v4

v0

v3

v5 v7

v8

v6 v9

(1)

(2)

(1)

(3)

(0)

(0)

(1)

(0)

(1)

v1

v2
v4

v0

(0)

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

(b) G∗

Figure 2: Oriented Coloring Graph

Example 4.1: Consider G in Fig. 2 (a), the OCG G∗ of G is shown
in Fig. 2 (b). In G∗, the direction of an edge is decided by ≺. For
example, as v5 ≺ v0, we create a directed edge <v5,v0> in G∗. We
also show Σ(G∗) in Fig. 2 (b). The color of each vertex is shown
in the parentheses near the vertex. It is clear that the color of each
vertex in Σ(G∗) also satisfies the global color property of G. �

Given the OCG G∗, when an edge <u, v> is inserted/deleted, we
aim to compute Σ(G∗± <u, v>) by recoloring the vertices whose
colors in Σ(G∗) violate σ(G∗±<u, v>). According to Definition 4.6,
it is obvious that the colors of the vertices that always dominate u
before and after the update remain the same in Σ(G∗) and Σ(G∗±
<u, v>). Thus, these vertices do not need to be recolored. However,
the colors of other vertices in Σ(G∗)may violate σ(G∗±<u, v>). To
maintain the oriented global color property, we recolor the vertices
in G∗±<u, v> using the following equation:

fnew(w) ← min{c |c ∈ N, c < ∪x∈nbr−(w) fold(x)} (1)

where fnew and fold are the graph colorings before and after the
recoloring ofw respectively. Here, for brevity, although it is possible
that two incident vertices have the same color in fnew (fold), we still
refer to fnew (fold) as a graph coloring. Based on Eq. 1, we have:
Lemma 4.1: For a given G∗ and Σ(G∗), when an edge <u, v>
is inserted/deleted, the coloring f when Eq. 1 converges for all
vertices w ∈ G∗ is Σ(G∗±<u, v>). �

Proof: We prove this by contradiction. If the coloring is not Σ(G∗±
<u, v>), which means there exists a vertex whose color violates
σ(G∗±<u, v>). This is contradicts with the given condition that
Eq. 1 converges. Thus, the lemma holds. �

According to Lemma 4.1, we can obtain Σ(G∗±<u, v>) by iter-
atively recoloring the vertices whose colors violate σ(G∗±<u, v>).
The remaining problem is how to do this efficiently. Below, we
introduce a color propagation mechanism on OCG G∗.
Color Propagation by the CAN Step. According to Eq. 1, a vertex
w needs to be recolored only if one of its in-neighbors changes its
color. Therefore, when a vertex w changes its color, we only need
to notify its out-neighbors as the candidates to be recolored. We do
this using a CAN step with three operators CC, AC, and NC.
Definition 4.7: (Operator CC) Given an OCG G∗ and a vertex u
in G∗, the CC operator Collects the Colors C of u’s in-neighbors,
i.e., it computes C =

⋃
v∈nbr−(u) v.color. �

Definition 4.8: (Operator AC) Given an OCG G∗, a vertex u in
G∗, and a set of colors C, the AC operator Assigns the Color of u
to be the smallest color not in C. It returns true if the color of u
changes and returns false otherwise. �

Definition 4.9: (Operator NC) Given an OCG G∗, a vertex u in
G∗, and a boolean indicator b, the NC operator Notifies the out-
neighbors of u to reassign their Colors if b is true. �

Definition 4.10: (A CAN Step) Given an OCG G∗ and a vertex u
in G∗, a CAN step performs CC, AC and NC on u sequentially. �

Since G∗ is a DAG, we can guarantee that the color propagation
using the CAN steps will not result in propagation loops.
The Seed Vertices Selection. To start the color propagation using
the CAN step, we first need to select a set of seed vertices. It
is worth noting that when an edge <u, v> is inserted/deleted, it is
not enough to just consider u and v as the seed vertices. This is
because after <u, v> is inserted/deleted, the degree of u and v will
change. As a result, the dominant relationship between u (v) and
their neighbors will change. Consequently, these vertices whose
dominant relationship with respect to u (v) are changed may also
violate σ(G∗±<u, v>) and, thus, need to be considered as the seed
vertices as well. Specifically, we use the following two lemmas to
select the seed vertices for an edge insertion/deletion respectively:
Lemma 4.2: Given an OCG G∗, after inserting an edge <u, v>, it is
adequate to consider {{u, v}∪Iu∪Iv} as the seed vertices to compute
Σ(G∗+<u, v>), where Iu = nbr−(u,G∗) ∩ nbr+(u,G∗+<u, v>) and
Iv = nbr−(v,G∗) ∩ nbr+(v,G∗+<u, v>). �

Proof: We can prove this by contradiction. Suppose that it is
inadequate to consider {{u, v}∪ Iu∪ Iv} as seed vertices to compute
Σ(G∗+<u, v>), which means there exists a vertex w < {{u, v} ∪ Iu ∪
Iv} and its color in Σ(G∗) and Σ(G∗+<u, v>) are different, but it is
not notified by a CAN step during the color propagation procedure.
According to Eq. 1, the vertices in {{u, v} ∪ Iu ∪ Iv} lead to the
color propagation as their in-neighbor are changed in G∗+<u, v>.
Based on the definition of CAN step, a vertex is not notified iff the
colors of its in-neighbors are not changed during the propagation.
As w is not notified during the color propagation procedure, we can
derive that for all the in-neighbors of w, their colors are the same in
Σ(G∗) and Σ(G∗+<u, v>). Then we can derive that the colors of w’s
in-neighbors in Σ(G∗) and Σ(G∗+<u, v>) are the same but the color
of w in Σ(G∗) and Σ(G∗+<u, v>) are different, which contradicts
with Definition 4.6. Thus, the lemma holds. �

Lemma 4.3: Given an OCG G∗, after deleting an edge <u, v>, it is
adequate to consider {{u, v}∪Du∪Dv} as the seed vertices to com-
pute Σ(G∗−<u, v>), where Du = nbr+(u,G∗)∩nbr−(u,G∗−<u, v>)
and Dv = nbr+(v,G∗) ∩ nbr−(v,G∗−<u, v>). �

Proof: This lemma can be proved similarly as Lemma 4.2. �

Algorithm Design. Our DC-Orient algorithm to maintain Σ(G∗) is
shown in Algorithm 2. It contains two main procedures, DC-Orient-
Ins and DC-Orient-Del, to handle the edge insertion and deletion
respectively. Both DC-Orient-Ins and DC-Orient-Del maintain a
queue q to store the candidate vertices that need to be recolored
(line 2/line 8). When an edge <u, v> is inserted/deleted, DC-Orient-
Ins/DC-Orient-Del first invokes OCG-Ins/OCG-Del (introduced in
Algorithm 3) to maintain the OCG G∗ and obtain the seed vertices
in Lemma 4.2/Lemma 4.3 (line 3/line 9). It pushes these vertices
into q (line 4-5/line 10-11), and then invokes the CAN procedure to
iteratively recolor the vertices and conduct color propagation using
the CAN step (line 6/line 12).

The CAN procedure iteratively processes the CAN step (line 16-
18) and maintains the candidate vertices to be recolored in q. The
recoloring procedure terminates when there is no vertex in q (line
14). In a certainCAN step, theCC operator (line 16), theAC operator
(line 17), and the NC operator (line 18) are performed sequentially.

The CC operator is implemented as procedure CollectColor(u)
(line 19-23). It simply collects the set of colors C from the in-
neighbors of u and returnsC as defined inDefinition 4.7. TheAC op-
erator is implemented as the AssignColor(u,C) procedure (line 24-
29). According to Definition 4.8, it first computes the smallest color
cnew that is not in C (line 25-26). If cnew , u.color, it assigns cnew
to u and returns true; otherwise it returns false (line 27-29). The NC

342

Algorithm 2 DC-Orient(OCG G∗)
1: Procedure DC-Orient-Ins(OCG G∗, Edge<u, v>)
2: Queue q← ∅;
3: S← OCG-Ins(G∗,<u, v>) (Algorithm 3);
4: for each w ∈ S do
5: q.push(w);
6: CAN (G∗, q);
7: Procedure DC-Orient-Del(OCG G∗, Edge<u, v>)
8: Queue q← ∅;
9: S← OCG-Del(G∗,<u, v>) (Algorithm 3);
10: for each w ∈ S do
11: q.push(w);
12: CAN(G∗, q);
13: Procedure CAN(OCG G∗, Queue q)
14: while q , ∅ do
15: u ← q.pop();
16: C← CollectColor(u); //line 16-18 is a CAN step for u
17: b ← AssignColor(u, C);
18: NotifyColor(u, b, q);
19: Procedure CollectColor(Vertex u) //the CC operator
20: C← ∅;
21: for each v ∈ nbr−(u) do
22: C← C ∪ {v.color};
23: return C;
24: Procedure AssignColor(Vertex u, Set C) //the AC operator
25: C← {0, 1, . . . , deg(u)};
26: cnew ← min{c |c ∈ C, c < C};
27: if (cnew , u.color)
28: u.color← cnew; return true;
29: else return false;
30: Procedure NotifyColor(Vertex u, Bool b, Queue q) //the NC operator
31: if (b = true) then
32: for each v ∈ nbr+(u) do
33: if v < q then q.push(v);

operator is implemented as procedure NotifyColor(u, b, q). Here b
indicates whether the color of vertex u changes, and q is the queue.
According to Definition 4.9, if the color of u changes, the procedure
notifies all the out-neighbors of u to recolor by pushing them into q
if they have not been in q (line 31-33).
OCG Maintenance. OCG-Maintain (Algorithm 3) maintains the
OCG G∗ and returns the vertices defined in Lemma 4.2/Lemma 4.3.
It contains two procedures, OCG-Ins and OCG-Del, to handle the
edge insertion and deletion respectively.

OCG-Ins uses S to store the vertices in Lemma 4.2. When an
edge <u, v> is inserted, OCG-Ins stores u and v in S based on
Lemma 4.2 (line 2), and inserts edge <u, v> into G∗ (line 3). As
the degree of vertices u and v increases by 1, the direction of edges
involving u or v may change based on Definition 4.3. OCG-Ins
adjusts the direction of the edges involving u or v in line 4-8. Take
the vertex u as an example. Since the degree of u increases, it is
possible that the vertices that belong to nbr−(u) before inserting
<u, v> belong to nbr+(u) after the insertion. OCG-Ins visits each
vertex u′ ∈ nbr−(u) to check the dominant relationship between
u and u′. If their dominant relationship changes after the edge
insertion (line 5), OCG-Ins adjusts the direction of the edge (line 6)
and adds u′ in S (line 7). Finally, OCG-Ins returns S in line 9.
OCG-Del handles edge deletion similarly as OCG-Ins (line 10-18).
Example 4.2: Recall the OCG G∗ in Fig. 2 (b) and suppose that
an edge <v5, v8> is inserted. OCG-Ins first inserts <v5, v8> into G∗.
After inserting <v5, v8>, the degree of v8 increases from 4 to 5. As
a result, the dominant relationship between v6 and v8 is changed.
Therefore, OCG-Ins changes <v6, v8> to <v8, v6> in Fig. 3 (a). The
changed edges are shown as red lines in Fig. 3 (a). OCG-Ins returns
the set {v5, v8, v6, v7} based on Lemma 4.2.

Algorithm 3 OCG-Maintain(OCG G∗)
1: Procedure OCG-Ins(OCG G∗, Edge<u, v>)
2: S← ∅; S← S ∪ u; S← S ∪ v;
3: add edge <u, v> in G∗;
4: for each u′ ∈ nbr−(u) do
5: if u ≺ u′ then
6: remove edge <u′, u> and add edge <u, u′> in G∗;
7: S← S ∪ u′;
8: process line 4-7 by replacing u with v and u′ with v′;
9: return S;
10: Procedure OCG-Del(OCG G∗, Edge<u, v>)
11: S← ∅; S← S ∪ u; S← S ∪ v;
12: remove edge <u, v> in G∗;
13: for each u′ ∈ nbr+(u) do
14: if u′ ≺ u then
15: remove edge <u, u′> and add edge <u′, u> in G∗;
16: S← S ∪ u′;
17: process line 13-16 by replacing u with v and u′ with v′;
18: return S;

(0) v1

v2

v4

v0

v3

v5 v7

v8

v6 v9

(1)

(2)

(1)

(3)

(0)

(0)

(1)

(0)

(1)

v1

v2
v4

v0

(0)

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

(a) OCG maintenance

v1

v2

v4

v0

v3

v5 v7

v8

v6 v9

(0)

(2)

(1)

(3)

(0)

(0)

(1)

(0)

(1)

NC

N
C

v1

v2
v4

v0

(0)

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(1)

(1)

(1)

(0)

NC

CC

(b) A CAN step on v8
Figure 3: Insertion of edge <v5, v8>

colorStep
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

q

Init 3 4 5 1 2 0 2 1 0 1 0 1 v5, v8, v6, v7
1.CAN(v5) 3 4 5 1 2 0 2 1 0 1 0 1 v8, v6, v7
2.CAN(v8) 3 4 5 1 2 0 2 1 1 1 0 1 v6, v7, v9, v11
3.CAN(v6) 3 4 5 1 2 0 2 1 1 1 0 1 v7, v9, v11
4.CAN(v7) 3 4 5 1 2 0 2 3 1 1 0 1 v9, v11
5.CAN(v9) 3 4 5 1 2 0 2 3 1 0 0 1 v11, v10
6.CAN(v11) 3 4 5 1 2 0 2 3 1 0 0 2 v10
7.CAN(v10) 3 4 5 1 2 0 2 3 1 0 1 1 v11
8.CAN(v11) 3 4 5 1 2 0 2 3 1 0 1 0 ∅

Figure 4: Steps of DC-Orient for inserting edge <v5, v8>

Fig. 3 (b) shows a CAN step on vertex v8. It first collects the
color set C of v8’s in-neighbors using the CC operator. v5 is the
only in-neighbors of v8 and its color is 0, thus C = {0}. As the
smallest color not in C is 1, AC changes the color of v8 from 0
to 1 and returns the true indicator for NC. NC notifies the set of
out-neighbors v6, v7, v9, v11 of v8 by pushing them into q.
The recoloring procedure of DC-Orient-Ins is shown in Fig. 4.

The vertex that the CAN step processes and the color of each vertex
is shown for each step, along with the vertices in q afterwards. For
example, at step 2, after the CAN step for v8, the color of v8 is
changed from 0 to 1 and two new vertices v9 and v11 are pushed
into q. DC-Orient-Ins finishes the recoloring in 8 steps. �

Theorem 4.1: For a given OCG G∗ and Σ(G∗), when an edge
<u, v> is inserted/deleted, the coloring returned by Algorithm 2 is
Σ(G∗±<u, v>). �

Proof: When an edge <u, v> is inserted, OCG-Ins can correctly
maintain G∗ and return the vertices based on Lemma 4.2 (line 3).
Line 16-18 implements a CAN step. As a CAN step recolors a
vertex based on Eq. 1 and we iteratively process the vertices whose
colors may violate σ(G∗+<u, v>) until there exists no such kind of
vertices. According to Lemma 4.1, the coloring is Σ(G∗+<u, v>)
when the recoloring procedure converges. Thus, DC-Orient-Ins
returns Σ(G∗+<u, v>). Edge deletion can be proved similarly. �

343

Since Σ(G∗) is only dependent on the topology of graph G∗, it is
easy to see that Algorithm 2 can guarantee coloring consistency.
Theorem 4.2: Let no be the number of vertices pushed in q in
Algorithm 2, the time complexity of Algorithm 2 to handle the in-
sertion/deletion of an edge <u, v> is O(no · dmax). �

Proof: Let’s consider the edge insertion first. For an inserted edge,
DC-Orient-Ins first invokes OCG-Ins to maintain G∗ (line 3). Since
OCG-Ins only visits the in-neighbors of u and v, it can be finished
in O(dmax). The push/pop operation for a queue can be finished in
O(1). In the recoloring procedure, we push no vertices in q (line
4-5 and 33) and pop no vertices from q (line 15), which can be
finished in O(no). For each vertex u in q, both CollectColor (line
16) and AssignColor (line 17) can be finished in O(dmax). Thus,
the time for processing no vertices is O(no · dmax). Thus, the time
complex for an edge insertion is O(no · dmax). Edge deletion can
be proved similarly. Thus, the theorem holds. �

4.3 Prioritized Dynamic Graph Coloring
As shown in Theorem 4.2, the time complexity of Algorithm 2

depends on the number of vertices pushed in q. However, such a
number is not bounded since a vertex may be pushed into q multiple
times. We call it the out-of-order NC problem.
Out-of-Order NC Problem. For a given OCG G∗, when an edge
<u, v> is inserted/deleted, the reason that a vertex w may be pushed
into q multiple times in Algorithm 2 is that the colors of multiple
in-neighbors of w are changed, which leads to w being pushed into
q repeatedly by the NC operator. For instance, in Example 4.2,
vertex v11 has two in-neighbors v8 and v10. At CAN step 2, vertex
v8 is recolored and notifies v11 to be pushed into q. At CAN step
6, vertex v11 is popped out from q. However, at CAN step 7, vertex
v10 is recolored and notifies v11 to be pushed into q again. As a
result, v11 is pushed into q twice.
PrioritizedDynamicGraphColoring. From the above discussion,
we can see the out-of-order NC problem is caused by the situation
in which a vertex is recolored before one of its in-neighbors. In
Example 4.2, the vertex v11 is recolored at step 6 while its in-
neighbors v10 is recolored at step 7, which causes v11 to be recolored
again. To resolve this problem, we need to postpone the recoloring
of a vertex until all its candidate in-neighbors have been recolored.
In other words, we need to find an appropriate order of vertices
to be recolored such that when recoloring a certain vertex, all its
candidate in-neighbors have been recolored. Note that the OCG G∗

is a directed acyclic graph. Therefore, if we follow a topological
order of vertices in the directed acyclic graph to recolor the vertices,
the above condition can always be satisfied. As a result, the out-of-
order NC problem can be completely avoided.
Algorithm Design. We can obtain the topological order by assign-
ing each vertex a priority in the queue q. Since the direction of the
edges in G∗ are assigned according to the ≺ relation, we can simply
use the ≺ relation to define the vertex priority as follows.
Definition 4.11: (Vertex Priority) Given two vertices u and v, if
u ≺ v, then u has a higher priority than v in q. �

The prioritized dynamic graph coloring algorithm is shown in
Algorithm 4. It contains two procedures, DC-Pri-Ins and DC-Pri-
Del, to handle an edge insertion and deletion, respectively. DC-
Pri-Ins (DC-Pri-Del) shares a similar framework to DC-Orient-Ins
(DC-Orient-Del) except that the queue is replaced with a priority
queue at line 2 (line 7). Here, the priority of vertices in the priority
queue is based on Definition 4.11.

Algorithm 4 DC-Pri(OCG G∗)
1: Procedure DC-Pri-Ins(OCG G∗, Edge<u, v>)
2: PriorityQueue q← ∅;
3: S← OCG-Ins(G∗,<u, v>); (Algorithm 3)
4: for each w ∈ S do q.push(w);
5: CAN(G∗, q); (Algorithm 2)
6: Procedure DC-Pri-Del(OCG G∗, Edge<u, v>)
7: PriorityQueue q← ∅;
8: S← OCG-Del(G∗,<u, v>); (Algorithm 3)
9: for each w ∈ S do q.push(w);
10: CAN(G∗, q); (Algorithm 2)

colorStep
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

q

Init 3 4 5 1 2 0 2 1 0 1 0 1 v5, v8, v6, v7
1.CAN(v5) 3 4 5 1 2 0 2 1 0 1 0 1 v8, v6, v7
2.CAN(v8) 3 4 5 1 2 0 2 1 1 1 0 1 v6, v7, v9, v11
3.CAN(v6) 3 4 5 1 2 0 2 1 1 1 0 1 v7, v9, v11
4.CAN(v7) 3 4 5 1 2 0 2 3 1 1 0 1 v9, v11
5.CAN(v9) 3 4 5 1 2 0 2 3 1 0 0 1 v10, v11
6.CAN(v10) 3 4 5 1 2 0 2 3 1 0 1 1 v11
7.CAN(v11) 3 4 5 1 2 0 2 3 1 0 1 0 ∅

Figure 5: Steps of DC-Pri for inserting edge <v5, v8>

Example 4.3: Continuing withOCG G∗ in Fig. 2 (b) to demonstrate
the process of DC-Pri, suppose that the edge <v5, v8> is inserted,
the corresponding G∗ after the insertion of <v5, v8> is the same as
that in Example 4.2 shown in Fig. 3 (a). When <v5, v8> is inserted,
the recoloring procedure of DC-Pri-Ins is shown in Fig. 5. For each
step, we show the vertex on which the CAN step process, the color
of each vertex, and the vertices in the priority queue q after the CAN
step. Because of the vertex priority, the vertex v11 is recolored after
its in-neighbor v10. Therefore, v11 is only recolored once. As a
result, DC-Pri-Ins finishes the recoloring procedure in 7 steps. �

Theorem 4.3: For a given OCG G∗, when an edge <u, v> is in-
serted/deleted, let ∆ be the union of u, v and the vertices whose
colors in Σ(G∗) and Σ(G∗±<u, v>) are different, then the number
of vertices pushed in q by Algorithm 4 can be bounded by n∆ where
n∆ = | ∪u∈∆ nbr(u) ∪ ∆| �

Proof: Let’s consider the edge insertion first. In Algorithm 4,
the number of vertices pushed in q in line 4 can be bounded by
| ∪u∈{u,v } nbr(u) ∪ {u, v}|. According to Theorem 4.1, the vertices
whose colors are different in Σ(G∗) and Σ(G∗±<u, v>) are pushed
into q. Besides, based on Definition 4.10, the neighbors of the
vertex whose colors are different are pushed into q by operator NC.
Since Algorithm 4 avoids the out-of-order problem, each vertex is
processed only once, whichmeans the vertices pushed into q are just
the vertices in ∆ together with their out-neighbors. Therefore, the
number of vertices pushed in q can be bounded by |∪u∈∆nbr(u)∪∆|.
Edge deletion can be proved similarly. Thus, the theorem holds. �
Theorem 4.4: The time complexity of Algorithm 4 to handle the
insertion/deletion of an edge <u, v> is O(n∆ · (dmax+ log(n∆))). �
Proof: Let’s consider the edge insertion first. Let η be the number
of vertices pushed into q. For an edge insertion, DC-Orient-Ins first
invokes OCG-Ins to maintain G∗ (line 3), which can be finished
in O(dmax). The push/pop operation for a priority queue can be
finished in O(1)/O(log η) if we use Fibonacci heap. We push/pop η
vertices into/from q, which can be finished in O(η · log η). For each
vertex u in q, both CollectColor and AssignColor can be finished in
O(dmax). Thus, the time for processing η vertices is O(η · dmax).
Since η can be bounded by n∆ based on Theorem 4.3, the time
complexity of DC-Pri-Ins is O(n∆ · (dmax + log(n∆))). The edge
deletion can be proved similarly. Thus, the theorem holds. �

344

5. EARLY PRUNING
In this section, we aim to further improve the performance of our

algorithm using early pruning strategies. In Theorem 4.4, the time
complexity of Algorithm 4 depends on two factors: n∆ and dmax.
Although n∆ can be well bounded according to Theorem 4.3, dmax
can be large. In this section, we try to eliminate the factor dmax
from the time complexity and further reduce n∆. In DC-Pri, two
types of vertices are pushed in the priority queue q:
• Type-1: u, v and the set of vertices whose colors in Σ(G∗±<u, v>)
and Σ(G∗) are different, i.e., the vertices in ∆.
• Type-2: the set of vertices that are (1) out-neighbors of the type-1
vertices; and (2) not type-1 vertices.

For every vertex w in q, w is processed using the CAN step. As a
result, for each type-2 vertexw, its in-neighbors need to be collected
by the CC operator because we do not know whether w is a type-2
vertex in CC. Since a type-2 vertex is a neighbor of a type-1 vertex,
the 2-hop neighbors of some type-1 vertices need to be explored,
which results in the need to include the factor dmax in the time
complexity. To eliminate the dmax factor, exploring the neighbors
of type-2 vertices should be avoided.
According to the above analysis, we design two early pruning

strategies: early color computation and notification pruning. The
former focuses on eliminating the dmax factor by improving the CC
and AC operators, and the latter focuses on reducing the n∆ factor
by improving the NC operator.

5.1 Early Color Computation
In this subsection, we discuss how to eliminate the dmax factor

by improving CC and AC through a compact index, DINC-Index.
Dynamic In-Neighbor Color Index (DINC-Index). A DINC-Index
I contains the following two components:
• Color Counts I.cntu(c): the number of u’s in-neighbors whose
color is c for each vertex u ∈ V(G∗) and color c ≤ deg−(u).
• Recolor Candidates I.Cu : the set of colors that are smaller than

u.color and not assigned to any in-neighbor of u.
The rationale behind the DINC-Index is as follows. First, for any

vertex u in an OCG G∗, we have u.color ≤ deg−(u). Therefore,
we can uniquely determine the color of u if we know all the colors
of u’s in-neighbors that are not greater than deg−(u). As a result,
it is adequate to maintain the color counts for c ≤ deg−(u) in
I.cntu(c) for our goal. This property is the key to bound the space
consumption of the DINC-Index. Based on the definition of the
DINC-Index, we can easily derive the following equation:

I.Cu = {c |c < u.color,I.cntu(c) = 0} (2)

According to Eq. 2, for an OCG G∗, a graph coloring is Σ(G∗) if
and only if I.Cu = ∅ for all u ∈ V(G∗). Therefore, given an OCG
G∗, after an edge insertion/deletion, a vertex u changes its color in a
certain CAN step if and only if either I.Cu , ∅ or I.cntu(u.color) ,
0. If I.Cu , ∅, the new color of u can be computed as u.color =
min{c |c ∈ I.Cu}. If I.cntu(u.color) , 0, the new color of u can
be computed as u.color = min{c |c ∈ N,I.cntu(c) = 0}. Con-
sequently, if we can maintain the DINC-Index, we can determine
whether a vertex u will change its color in a CAN step in O(1)
time, which means we can avoid exploring the neighbors of type-2
vertices. If u does change its color, the new color of u can be com-
puted using I.Cu and I.cntu . Next, we show how to maintain the
DINC-Index without affecting the overall time complexity.
The DINC-Index Maintenance. The algorithm to maintain the
DINC-Index I is shown in Algorithm 5. We first introduce two
proceduresColor-Ins andColor-Dec tomaintainI.cntu(c) andI.Cu

Algorithm 5 DINC-Index Maintenance

1: Procedure Color-Ins(DINC-Index I, Vertex u, Color c)
2: if c ≤ deg−(u) then
3: I.cntu (c) ← I.cntu (c) + 1;
4: if c ∈ I.Cu then I.Cu ← I.Cu \ {c };
5: Procedure Color-Dec(DINC-Index I, Vertex u, Color c)
6: if c ≤ deg−(u) then
7: I.cntu (c) ← I.cntu (c) − 1;
8: if I.cntu (c) = 0 and c < u.color then I.Cu ← I.Cu ∪ {c };
9: Procedure DINC-Index-Ins(OCG G∗, DINC-Index I, Edge <u, v>)
10: S← ∅; S← S ∪ u; S← S ∪ v; add edge <u, v> in G∗;
11: for each u′ ∈ nbr−(u) do
12: if u ≺ u′ then
13: remove edge <u′, u> and add edge <u, u′> in G∗; S← S ∪ u′;
14: Color-Ins(I, u′, u.color); Color-Dec(I, u, u′.color);
15: process line 11-14 by replacing u with v and u′ with v′;
16: Color-Ins(I, v, u.color);
17: for each w ∈ nbr−(v) do
18: if w.color = deg−(v) then
19: Color-Ins(I, v, w.color);
20: return S;
21: Procedure DINC-Index-Del(OCG G∗, DINC-Index I, Edge <u, v>)
22: S← ∅; S← S ∪ u; S← S ∪ v; remove edge <u, v> in G∗;
23: for each u′ ∈ nbr+(u) do
24: if u′ ≺ u then
25: remove edge <u, u′> and add edge <u′, u> in G∗; S← S ∪ u′;
26: Color-Ins(I, u, u′.color); Color-Dec(I, u′, u.color);
27: process line 23-26 by replacing u with v and u′ with v′;
28: Color-Dec(I, v, u.color);
29: I.cntv (deg−(v) + 1) ← 0;
30: return S;

by inserting and deleting a color c in the DINC-Index for vertex
u. Color-Ins is shown in line 1-4. Based on the definition of
DINC-Index, we only consider the case of c ≤ deg−(u) (line 2). In
this case, we increase I.cntu(c) by 1 (line 3). As we can guarantee
thatI.cntu(c) , 0, we remove c fromI.Cu if c ∈ I.Cu according to
Eq. 2. Similarly, in Color-Dec (line 5-8), if c ≤ deg−(u) (line 6), we
first decrease I.cntu(c) by 1 (line 7), and if I.cntu(c) = 0 and c <
u.color, we add c into I.Cu according to Eq. 2 (line 8). Clearly, the
time complexity for both Color-Ins and Color-Dec is O(1). Below
we introduce the procedures to maintain the DINC-Index I.

Procedure DINC-Index-Ins maintains the DINC-Index I and the
OCG G∗ when an edge <u, v> is inserted, which is shown in line 9-
20. Line 10-15 is similar to the OCG-Maintain procedure in Algo-
rithm 3. The only difference is that we insert the color u.color to the
DINC-Index for u′ and delete the color u′.color from the DINC-Index
for u for each edge <u′, u> that needs to be reversed in G∗ to main-
tain the DINC-Index (line 14). In line 16, we insert u.color to the
DINC-Index for v as the edge <u, v> is inserted. Line 17-19 handles
a special case: since we only consider the colors c ≤ deg−(v) in the
DINC-Index for v, after inserting <u, v>, deg−(v) increases by 1, so
we should add all vertices in nbr−(v) whose color is deg−(v) to the
DINC-Index for v. Procedure DINC-Index-Del handles the deletion
of an edge <u, v> (line 21-30). Line 22-27 follows a similar method
to line 10-15 to maintain the OCG G∗ and adjust the DINC-Index
by considering the reversed edges. Line 28 deletes u.color from the
DINC-Index for v because of the deletion of <u, v>. In line 29, since
deg−(v) decreases by 1 andwe only consider the colors c ≤ deg−(v)
in I.cntv , we simply set I.cntv(deg−(v) + 1) to be 0.

5.2 Notification Pruning
In this subsection, we explore pruning rules to improve NC.

Specifically, when a vertex u’s color changes, we aim to find rules
that can guarantee that the color of u’s neighbor v is not affected by
the color change of u, and thus we do not need to push v into q.

345

u

v
(3)

(2) (3)

(a) case 1

u

v
(4)

(2) (3)

(b) case 2

u

v
(4)

(3) (2)

(c) case 3

u

v
(3)

(4) (2)

(d) case 4
u

v
(3)

(2) (4)

(e) case 5

u

v
(2)

(3) (4)

(f) case 6

u

v
(2)

(4) (3)

(g) case 7

Figure 6: Notification Pruning

In Fig. 6, we consider different cases when the color of a vertex
u changes and show how the change of u’s color affects the color
of its out-neighbor v. In Fig. 6, the colors of u and v before a CAN
step are shown in the parentheses near the vertices. In a CAN step,
we suppose that the color of u changes. The color change of u is
shown near it. For example, in Fig. 6 (a), (2) → (3)means the color
of u changes from 2 to 3. For ease of presentation, we use u.old and
u.color to represent the colors of u before and after the CAN step
and we use v.color to represent the color of v.

We consider different cases based on the relationship among
u.old, u.color and v.color. If u.color = v.color, then the color of v
has to be reassigned as its color conflicts with u’s. Therefore,
� case 1: u.color = v.color, which is shown in Fig. 6 (a). In this

case, v has to be recolored.
Now we consider the cases in which u.color , v.color. We first

consider the cases in which u.color < v.color and we have:
� case 2: u.old < u.color, which is shown in Fig. 6 (b). When

the color of u changes from 2 to 3, it is possible for v to be
recolored to color 2.

� case 3: u.color < u.old < v.color, which is shown in Fig. 6 (c).
When the color of u changes from 3 to 2, it is possible for v
to be recolored with color 3.

� case 4: u.old > v.color, which is shown in Fig. 6 (d). In this case,
the color of u is changed from 4 to 2. The color of v is 3,
which means that colors 0, 1, and 2 have been assigned to
v’s other in-neighbors. Therefore, we cannot find a possible
smaller color for v. As a result, the color change of u does
not lead to the color change of v in this case.

The cases in which u.color > v.color are shown in Fig. 6 (e)-(g).
Summarizing the above cases, we find that when u.color , v.color,
whether the color change of u affects the color change of v only
depends on the relation between u.old and v.color. If u.old < v.color
(cases 2, 3, 5), it is possible that the color of v changes; otherwise
(cases 4, 6, 7), the color of v is not affected by the color change of u.
Therefore, we have the following three rules to determine whether
v should be notified by adding it to q.
Rule 1 If u.color = v.color, v should be notified for recoloring;
Rule 2 If u.color , v.color and u.old < v.color, v should be notified

for recoloring;
Rule 3 If u.color , v.color and u.old > v.color, v does not need to

be notified for recoloring.

5.3 Early Pruning Dynamic Graph Coloring
Our DC∗ algorithm, which is integrated with the DINC-Index and

notification pruning rules, is shown in Algorithm 6. It follows a
similar framework to Algorithm 4. DC∗-Ins/DC∗-Del handles the
edge insertion/deletion, respectively. In DC∗-Ins, when an edge is
inserted, we first initialize q to be ∅ andmaintainG∗ andDINC-Index
(line 2-3). Line 4 pushes all seed vertices into q and line 5 recolors
the vertices using color propagation by invoking a new algorithm

Algorithm 6 DC∗(OCG G∗)
1: Procedure DC∗-Ins(OCG G∗, Edge<u, v>)
2: PriorityQueue q← ∅;
3: S← DINC-Index-Ins(G∗, I, <u, v>);
4: for each w ∈ S do q.push(w);
5: CAN∗(G∗, q, I);
6: Procedure DC∗-Del(OCG G∗, Edge<u, v>)
7: PriorityQueue q← ∅;
8: S← DINC-Index-Del(G∗, I, <u, v>);
9: for each w ∈ S do q.push(w);
10: CAN∗(G∗, q, I);
11: Procedure CAN∗(OCG G∗, PriorityQueue q, DINC-Index I)
12: while q , ∅ do
13: u ← q.pop();
14: cnew ← CollectColor∗(u);
15: if cnew , ∅ then
16: cold ← u.color;
17: AssignColor∗(I, u, cnew);
18: NotifyColor∗(u, cold, q);
19: Procedure CollectColor∗(DINC-Index I, Vertex u)
20: if I.Cu , ∅ then return min{c |c ∈ I.Cu };
21: if I.cntu (u.color) , 0 then return min{c |c ∈ N, I.cntu (c) = 0};
22: return ∅;
23: Procedure AssignColor∗(DINC-Index I, Vertex u, Color cnew)
24: for each v ∈ nbr+(u) do
25: Color-Dec(I, v, u.color); Color-Ins(I, v, cnew);
26: u.color← cnew; I.Cu ← ∅;
27: Procedure NotifyColor∗(Vertex u, Color cold, PriorityQueue q)
28: for each v ∈ nbr+(u) do
29: if v < q and (u.color = v.color or cold < v.color) then
30: q.push(v);

CAN∗ which is the optimized CAN algorithm using early pruning.
The DC∗-Del procedure follows a similar framework as DC∗-Ins.

The CAN∗ algorithm is shown in line 11-18. It follows a similar
framework as CAN but uses the improved CC, AC, and NC, which
are implemented as CollectColor∗, AssignColor∗, and NotifyColor∗
respectively. For each vertex u in q, CollectColor∗ returns the new
color of u if its color changes, and ∅ otherwise (line 14). And
AssignColor∗ and NotifyColor∗ are invoked only if the color of u
changes (line 15-18). AssignColor∗ assigns u with the new color.
For NotifyColor∗, it takes the old and the new color of u to determine
whether an out-neighbor of u needs to be pushed into q.

The new CC, AC and NC are implemented as CollectColor∗,
AssignColor∗ and NotifyColor∗, respectively. In CollectColor∗, if
I.Cu , ∅, we return min{c |c ∈ I.Cu} (line 20); otherwise,
if I.cntu(u.color) , 0, we return min{c |c ∈ N,I.cntu(c) = 0}
(line 21); otherwise, we return ∅ which indicates that the color of u
is not changed after the CAN step (line 22). In AssignColor∗, we first
remove u’s old color, and insert u’s new color in the DINC-Index for
each out-neighbor of u (line 24-25). We then assign the new color
to u and set I.Cu to be ∅ since u does not need to be recolored again
(line 26). In NotifyColor∗, for all the out-neighbors v of u (line 28),
if v is not in q and v satisfies either rule 1 or rule 2 above, we should
notify v by adding v to the priority queue q (line 29-30).
Theorem 5.1: The space consumption of DINC-Index is O(m). �
Proof: For each vertex u, both I.cntu and I.Cu can be bounded
by deg−(u). Therefore, the total size of the DINC-Index is O(m). �
Theorem 5.2: The time complexity of Algorithm 6 to handle the
insertion/deletion of an edge <u, v> is O(n∆ · log(n∆)). �

Proof: Let’s consider the edge insertion first. Let η be the number
of vertices pushed into q. For an edge insertion, DINC-Index-Ins
maintains G∗ and DINC-Index in O(dmax) (line 3). The push/pop
operation for a priority queue can be finished in O(1)/O(log η) if we

346

Table 1: Datasets used in Experiments
ID Dataset G Type |V (G) | |E(G) |
D0 MoiveLens Rating 150,433 10,000,054
D1 AS Computer 1,696,415 11,095,298
D2 Epinion Rating 996,744 13,668,320
D3 Libimseti Social 220,970 17,359,346
D4 Baidu Hyperlink 2,141,300 17,794,839
D5 LastFM Interaction 1,085,612 19,150,868
D6 WikiTalk Communication 2,987,535 24,981,163
D7 Flickr Social 2,302,925 33,140,017
D8 Trec Text 2,285,379 151,632,178
D9 WikiEnglish Hyperlink 18,268,992 172,183,984
D10 PL Power-law 1,048,576 15,728,640
D11 UniDeg Uniform-degree 1,048,576 10,485,760

use Fibonacci heap. We push (line 4 and 30)/pop (line 13) η vertices
in/from q, which can be finished in O(η · log η). For the vertices in
q, since we can determine whether a vertex u will change its color in
a CAN step in O(1) time with DINC-Index (line 20 and 21), we can
avoid exploring the in-neighbors of type-2 vertices in Algorithm 6.
Therefore, the total time for CollectColor∗ and AssignColor∗ can be
bounded by the sum of the number of type-1 vertices and that of
type-2 vertices, i.e., O(η), in Algorithm 6. Since η can be bounded
by n∆, the time complexity of DC∗-Ins is O(n∆ log(n∆)). The edge
deletion can be proved similarly. Thus, the theorem holds. �

5.4 Vertex Insertion/Deletion
In this paper, we mainly focus on edge insertion/deletion. How-

ever, we can extend our techniques to handle vertex insertion/deletion.
Specifically, when a vertex u is inserted, we first assign u with color
0. Then, we insert the edges incident to u into OCG and maintain
the DINC-Index by DINC-Index-Ins in Algorithm 5. However, in-
stead of returning S for each inserted edge, we return S until all the
incident edges of u have been inserted. At last, we push the ver-
tices in S into priority queue and perform the coloring propagation
procedure as edge insertion. When the procedure terminates, we
obtain the graph coloring. Vertex deletion can be handled similarly
as the vertex insertion by DINC-Index-Del.

6. PERFORMANCE STUDIES
This section presents our experimental results. All experiments

are conducted on a machine with an Intel Xeon 2.9 GHz CPU (8
cores) and 32 GB main memory, running Linux.
Datasets. We evaluate the algorithms on ten real-world graphs and
two synthetic graphs. All the real-world graphs are downloaded
from KONECT1. For the synthetic graphs, we generate a power-
law graph in which edges are randomly added such that the degree
distribution follows a power-law distribution and a uniform-degree
graph in which all vertices have the same degree 2. The details of
the datasets are shown in Table 1.
Algorithms. We implement and compare four algorithms:
• DC-Local: Algorithm 1 (Section 3).
• DC-Orient: Algorithm 2 (Section 4.2).
• DC-Pri: Algorithm 4 (Section 4.3).
• DC∗: Algorithm 6 (Section 5.3).

All algorithms are implemented in C++. The time cost of the
algorithms is measured as the amount of elapsed wall-clock time
during the program’s execution. As all our algorithms use the same
number of colors, we only show the number of colors used by DC∗.

1http://konect.uni-koblenz.de/networks
2https://networkx.github.io

10
28
46
64
82

100

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(a) MoiveLens

 10
 20
 30
 40
 50
 60

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(b) Libimseti

15
56
97

138
179
220

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(c) Flickr

10
22
34
46
58
70

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(d) Trec

15
61

107
153
199
245

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(e) PL

2
4
6
8

10
12

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(f) UniDeg
Figure 7: Coloring Quality

140
158
176
194
212
230

0 1 2 3 4 5
#C

ol
or

s

DC-Local
DC*

(a) Flickr

30
36
42
48
54
60

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(b) Trec

140
160
180
200
220
240

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(c) PL

9

10

11

12

13

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(d) UniDeg
Figure 8: Coloring Consistency

When comparing the effectiveness, we only show the representative
results as the trends are similar on all datasets.
Exp-1: Coloring Quality. These experiments compare the color-
ing quality of the four algorithms. To test the coloring quality, we
remove all the edges and only keep the vertices for each dataset as
the initial graph. Then, we increasingly insert 5% of the edges of
the dataset into the initial graph and record the number of colors for
each algorithm. The results are shown in Fig. 7.

Fig. 7 shows that: 1) As the percentage of inserted edges in-
creases, the number of colors used by each algorithm also increases.
This is because, as the number of edges increases, the relationships
among vertices become more complex. As a result, more colors are
needed to avoid a color conflict between adjacent vertices. 2) Our
algorithm, DC∗, uses far fewer colors than DC-Local. This is be-
cause DC-Local recolors the graph just based on the local neighbor
information while DC∗ considers the dynamic coloring on a global
scope. 3) The difference in the number of used colors between DC-
Local and DC∗ grows larger and larger as the percentage of inserted
edges increases. This is also because DC-Local uses local neighbor
information while DC∗ exploits the global information of the graph.
As the graph becomes large, the local information increasingly de-
viates from an optimal solution. Thus, the gap between the number
of colors used by them becomes larger and larger as the number of
inserted edges increases.
Exp-2: Coloring Consistency. These experiments compare the
coloring consistency of the algorithms. We extract 20% the edges

347

1

10

100

1K

10K

100K

MoiveLens AS Epinion Libimseti Baidu LastFM WikiTalk Flickr Trec WikiEnglish PL UniDeg

T
im

e
(µ

s)

DC-Local DC-Orient DC-Pri DC*

Figure 9: Average Processing Time

from each graph as the pool and use the remaining part as the
initial graph. We color the initial graph with Global. To test the
coloring consistency, we sample 25% edges from the pool and then
randomly insert the sampled edges into the initial graph and delete
them. The final graph is the same as the initial graph when the
test completes. We conduct the test five times. DC∗ can obtain the
coloring consistencywhileDC-Local cannot obtain it on all datasets.
To further compare them, we record the number of colors used by
each algorithm for each test. The result are shown in Fig. 8.

Fig. 8 shows the number of colors used by DC∗ remains the same
on every dataset when the graph is updated. This is because the final
graph is the same as the initial graph and DC∗ can guarantee that
it generates the same coloring for a graph regardless of the order
in which the edges are inserted/deleted. Conversely, the number
of colors used by DC-Local increases sharply at first, then remains
stable. The reason for the sharp increase is that DC-Local performs
recoloring solely on local information. This leads to a bad coloring
compared to our approach when the graph is continuously updated.
DC-Local stabilizes after several updating procedures because it can
easily find a coloring with a large number of colors.
Exp-3: Processing Time for Each Update. We evaluate the ef-
ficiency of the four algorithms in this experiment. We randomly
insert and delete 1,000, 000 edges in/from the graph to minimize
the effect of caching noises, record the total running time of these
updates and compute the average processing time for each update.
All the experiments are repeated 5 times. We color the initial graph
with the static graph coloring algorithm Global and the preprocess-
ing times for each dataset are 0.8s, 3.2s, 2.2s, 1.9s, 4.8s, 3.2s, 4.1s,
6.1s, 8.7s, 47.6s, 2.5s, 1.9s, respectively. The average processing
time for each update is shown in Fig. 9.

As shown in Fig. 9, among our proposed algorithms, DC-Pri
performs better than DC-Orient and DC∗ has the least average pro-
cessing time on all datasets. This is because DC-Pri avoids the
out-of-order NC problems in DC-Orient and DC∗ combines the two
early pruning strategies. Compared to computing from scratch by
Global for each update (the preprocessing time), DC∗ performs at
least three orders of magnitude faster. Considering many graphs
are large and frequently updated in real applications, DC∗ is more
practical for the dynamic graph coloring problem. Compared to
DC-Local, DC∗ is more efficient on 9 of the 10 real graphs. For
synthetic graphs, DC∗ consumes more but comparable time than
DC-Local on UniDeg.
Exp-4: ScalabilityTesting. Wevary |V | and |E | from 20% to 100%
of two large datasets Trec and WikiEnglish to test the scalability of
our proposed algorithms. We conduct the experiment the same as
Exp-3 on each dataset and the results are shown in Fig. 10.

As shown in Fig. 10 (a) and (c), the average processing time of our
proposed algorithms for each update increases when |V | increases.
This is because as |V | increases, the neighbors for each vertex in
the graph generally increases as well. As a result, more vertices
need to be explored when an edge is inserted or deleted. Thus, the
average processing time increases as |V | increases. Of our proposed
algorithms, DC∗ performs the best on all datasets. This is the result
of the combination of the proposed optimization strategies. On all

0

125

250

375

500

20% 40% 60% 80% 100%

T
im

e
(µ

s)

DC-Orient
DC-Pri

DC*

(a) Trec (Vary |V |)

0

125

250

375

500

20% 40% 60% 80% 100%

T
im

e
(µ

s)

DC-Orient
DC-Pri

DC*

(b) Trec (Vary |E |)

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(µ

s)

DC-Orient
DC-Pri

DC-*

(c) WikiEnglish (Vary |V |)

10

100

1K

10K

1 2 3 4 5

T
im

e
(µ

s)

DC-Orient
DC-Pri

DC*

(d) WikiEnglish (Vary |E |)

Figure 10: Scalability

Table 2: Static Algorithms on MoiveLens
Algorithm Bktr HC TabuCol AntCol HEA ParCol Global
Time (s) - 3,013 1,077 - 2,620 5,906 0.8
Colors - 57 57 - 56 57 65

the datasets, the average processing time of DC∗ increases stably
when |V | increases. Thus, DC∗ has a good scalability. In Fig. 10
(b) and (d), we can find similar trends when varying |E |.
Exp-5: StaticAlgorithmsTesting. In this experiment, we compare
the performance of Global with the state-of-the-art static graph col-
oring algorithms. [43] investigates six representative static graph
coloring algorithms in the literature: Bktr, HC, TabuCol, AntCol,
HEA and ParCol. We follow [43] and run these algorithms and
Global on the graphs used in our experiments. We adopt the same
settings as [43] and consider the algorithm cannot finish the test if
the algorithm does not terminate in 7,200 seconds or fails due to
out of memory exception. The results are shown in Table 2.

For the six algorithms, they cannot finish the test on all datasets
except MoiveLens. On MoiveLens, only HC, TabuCol, HEA and
ParCol can finish the test and they are at least three orders of mag-
nitude slower than Global. This is because these algorithms have to
search huge candidate space to optimize the coloring while Global
only sorts the vertices based on their degrees and traverses the graph
once. On the other hand, the number of colors used by these six
algorithms and Global are comparable. As real graphs are typically
large [25], considering the running time and the number of used
colors, we qualify Global as one of the best static graph coloring
algorithms for large graphs.
Exp-6: ϕ forEachUpdate. Table 3 shows the ϕ (average number of
vertices with color changes) when an edge is inserted/deleted on real
graphs. To compute ϕ, we insert and delete 10,000 edges randomly.
When an edge is inserted/deleted, we compute the new coloring
with Global and record the number of vertices with changes.
As Table 3 shows, when an edge is inserted/deleted, ϕ is very

small compared to |V | for each dataset. From example, on D1, ϕ
for each update is 9.88 while |V | of D1 is 1, 696, 415. Moreover, the
maximum ϕ for the 10 datasets is 40.43 and the average ϕ for these
10 datasets is only 11.4. Therefore, the number of vertices whose
colors are changed in each update is very small in practice.

348

Table 3: ϕ for each update
Dataset ID D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

ϕ 4.77 9.88 14.86 1.09 10.58 2.01 3.21 24.09 3.27 40.43

Table 4: #Colors of FF, OB and DC∗

Dataset ID D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
FF 106 85 41 64 58 36 116 257 74 78
OB 103 84 39 67 57 35 116 259 74 77
DC∗ 65 71 21 39 33 25 96 188 37 49

Exp-7: Online Graph Coloring Algorithms Testing. Table 4
shows the number of colors used by two popular online graph color-
ing algorithms: FF [29] and OB [56] and our algorithm w.r.t vertex
insertion on real graphs. The vertices are given in a random order.
We perform the testings five times and report the best result.

Table 4 shows that DC∗ uses much less colors than FF and OB
on all datasets. This is because FF and OB determine the color of
a new vertex based on the given vertices and the colors of vertices
are not allowed to change once assigned while DC∗ considers the
global optimization and the colors of vertices are allowed to update.

7. RELATED WORK
We review the related work from three categories: static graph

coloring, online graph coloring and dynamic graph coloring.
Static Graph Coloring. Static graph coloring problem has been
explored extensively in the literature. Finding an optimal coloring
for a general graph is NP-complete [27]. Zuckerman further shows
that for any ε > 0, there is no polynomial-time n1−ε approximation
algorithm for the optimal graph coloring problem, unless NP=ZPP
[72]. Due to the hardness of the problem, many approximation
algorithms are proposed, which can be divided into two classes:

(1) Constructive Approaches. A constructive approach builds a
coloring step by step by fixing the color of a vertex on each step.
Global [68] iterates over the vertices based on their degrees and
assigns each vertex the smallest color not assigned to a neighbor.
After that, some other variants are proposed, such as [11, 48, 28,
61]. Other constructive methods adopt vertex cut strategy or back-
tracking strategy, such as [57], [59], and Bktr [40].

(2) Stochastic Search-basedApproaches. Stochastic search-based
approaches search a space of candidate coloring solutions and at-
tempt to identify the coloring that optimizes a specific objective
function. They can be further divided into three subclasses:

The first subclass considers different permutations of the vertices,
uses a constructive algorithm to form a feasible solution and chooses
the best solution among the permutations. IG [18] generates the per-
mutation iteratively such that the vertices of the independent sets
identified in the previous coloring are adjacent in the new permu-
tation. To produce a new permutation, other intelligence algorithm
based methods are proposed, such as ant colony optimization algo-
rithm [17], evolutionary based algorithm [24, 52] and hill-climbing
algorithm based algorithm (HC) [42].

The second subclass starts by fixing k colours and assigns each
vertex one of these colours. As two incident vertices may be as-
signedwith the same color, itmakes alterations to reduce the number
of such vertices to zero. If this achieves, k decreases; otherwise,
k increases. Then, the process restarts with the new k. TabuCol
[34] based on tabu search is one of the earliest graph coloring algo-
rithm in this subclass. Other methods using intelligence algorithms
have been proposed, including simulated annealing [37], GRASP
algorithm [41], local search algorithm [15], variable neighborhood
search algorithm [4], evolutionary algorithms [20, 58, 45, 69], HEA
[26] and ant colony optimization algorithm AntCol [22].

The third subclass also starts by fixing k colors. It stores the ver-
tices that cannot be feasibly assigned to a color in a set S and aims to
find a solution with S = ∅. Then, it adapts k as the second subclass.
An early algorithm in this subclass uses a simulated annealing-based
algorithm that operates on a population of candidate solutions [50].
[35] suggests an algorithm that when the search stagnates in one
space, it alters the current solution to become a member of another
space. [46] hybridises an exploitative local search method with
an evolution-based approach. ParCol [7] uses tabu search together
with a neighborhood operator to explore the search space.
Online Graph Coloring. Online graph coloring assumes that the
vertices with their incident edges are given one by one and a color is
assigned to the current vertex before the next vertex is colored. Once
a vertex is colored, changes are not allowed [44]. The goal is to
minimize the number of used colors. [44] develops a deterministic
online algorithm that achieves a competitive factor of O(n/log∗ n).
[67] devises a randomized algorithm that attains a competitiveness
of O(n/

√
log n). This bound is improved to O(n/log n) in [30].

[31] proves that the competitive ratio of any deterministic online
algorithm isΩ(n/log2 n). A popular practical online graph coloring
algorithm is the first-fit algorithm (FF) [29, 53, 63, 32, 38], which
colors the new vertex with the smallest color that is not assigned to
its neighbors. OB [56] suggests to assign vertices with the feasible
color containing the most vertices. There are considerable studies
on online coloring for special graph classes, such as tree [29],
interval graph [39], disk graph [13] and bounded treewidth graph
[21]. Recent works study scenarios where an online algorithm can
query oracle about future information [64, 12, 10].

The Grundy number Γ(G) [16] is the maximum k such that G
admits a vertex order in which FF yields a proper k-coloring. Thus,
Γ(G) measures the worst case of FF. Determining Γ(G) is NP-hard
and testing whether the Γ(G) of a given graph is at least k, for a fixed
constant k, can be performed in polynomial time [71]. Trivially,
Γ(G) ≤ dmax + 1 but deciding whether Γ(G) ≤ dmax is NP-
complete [32]. [8] shows an exact algorithm for theGrundyNumber
with O(2.443n). Polynomial time algorithms for determining the
Γ(G) have been proposed for trees [33] and partial k-trees [66].
Recently, [65] gives two upper bounds on Γ(G) in terms of its
Randic index and clique number.
Dynamic Graph Coloring. There exist several studies on dynamic
graph coloring problem in the literature. [9] studies the dynamic
graph coloring problem on trees and product graphs and proves
various dynamic chromatic number bounds on these types of graphs.
[23] studies a decentralized approach for graph coloring problem on
vertex-centric distributed systems. DC-Local is the state-of-the-art
dynamic graph coloring algorithm [60]. We introduce it in Section 3
and use it as the baseline solution in our experiment.

8. CONCLUSION
In this paper, we study the dynamic graph coloring problem.

We propose a color-propagation based algorithm on the oriented
coloring graph to bound the explored vertices within the 2-hop
neighbors of the vertices in ∆. We further improve our algorithm by
devising a novel dynamic in-neighbor color index and some pruning
rules. The experimental results demonstrate the effectiveness and
efficiency of our approach.
Acknowledgements. Lu Qin is supported by ARC DP160101513.
Xuemin Lin is supported by NSFC61232006, ARC DP140103578,
DP150102728 and DP170101628. Lijun Chang is supported by
ARCDE150100563 andDP160101513. Wenjie Zhang is supported
by ARC DP150103071 and DP150102728.

349

9. REFERENCES
[1] A. Aboulnaga, J. Xiang, and C. Guo. Scalable maximum

clique computation using mapreduce. In Proceedings of
ICDE, pages 74–85, 2013.

[2] D. Alberts, G. Cattaneo, and G. F. Italiano. An empirical
study of dynamic graph algorithms. Journal of Experimental
Algorithmics (JEA), 2:5, 1997.

[3] N. Armenatzoglou, H. Pham, V. Ntranos, D. Papadias, and
C. Shahabi. Real-time multi-criteria social graph
partitioning: A game theoretic approach. In Proceedings of
SIGMOD, pages 1617–1628, 2015.

[4] C. Avanthay, A. Hertz, and N. Zufferey. A variable
neighborhood search for graph coloring. European Journal
of Operational Research, 151(2):379–388, 2003.

[5] B. Balasundaram and S. Butenko. Graph domination,
coloring and cliques in telecommunications. In Handbook of
Optimization in Telecommunications, pages 865–890.
Springer, 2006.

[6] N. Barnier and P. Brisset. Graph coloring for air traffic flow
management. Annals of operations research,
130(1):163–178, 2004.

[7] I. Blöchliger and N. Zufferey. A graph coloring heuristic
using partial solutions and a reactive tabu scheme.
Computers & Operations Research, 35(3):960–975, 2008.

[8] É. Bonnet, F. Foucaud, E. J. Kim, and F. Sikora. Complexity
of grundy coloring and its variants. In International
Computing and Combinatorics Conference, pages 109–120,
2015.

[9] P. Borowiecki and E. Sidorowicz. Dynamic coloring of
graphs. Fundamenta Informaticae, 114(2):105–128, 2012.

[10] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W.
Mikkelsen. Online algorithms with advice: A survey. ACM
Computing Surveys (CSUR), 50(2):19, 2017.

[11] D. Brélaz. New methods to color the vertices of a graph.
Communications of the ACM, 22(4):251–256, 1979.

[12] E. Burjons, J. Hromkovič, X. Muñoz, and W. Unger. Online
graph coloring with advice and randomized adversary. In
International Conference on Current Trends in Theory and
Practice of Informatics, pages 229–240, 2016.

[13] I. Caragiannis, A. V. Fishkin, C. Kaklamanis, and
E. Papaioannou. A tight bound for online colouring of disk
graphs. Theoretical Computer Science, 384(2-3):152–160,
2007.

[14] A. Carroll, G. Heiser, et al. An analysis of power
consumption in a smartphone. In USENIX annual technical
conference, pages 21–21, 2010.

[15] M. Chiarandini, T. Stützle, et al. An application of iterated
local search to graph coloring problem. In Proceedings of the
Computational Symposium on Graph Coloring and its
Generalizations, pages 112–125, 2002.

[16] C. A. Christen and S. M. Selkow. Some perfect coloring
properties of graphs. Journal of Combinatorial Theory,
Series B, 27(1):49–59, 1979.

[17] D. Costa and A. Hertz. Ants can colour graphs. Journal of
the operational research society, 48(3):295–305, 1997.

[18] J. C. Culberson and F. Luo. Exploring the k-colorable
landscape with iterated greedy. Cliques, coloring, and
satisfiability: second DIMACS implementation challenge,
26:245–284, 1996.

[19] C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano.
Dynamic graph algorithms. In Algorithms and theory of

computation handbook, pages 9–28, 2010.
[20] R. Dorne and J.-K. Hao. A new genetic local search

algorithm for graph coloring. In International Conference on
Parallel Problem Solving from Nature, pages 745–754, 1998.

[21] R. G. Downey and C. McCartin. Online promise problems
with online width metrics. Journal of Computer and System
Sciences, 73(1):57–72, 2007.

[22] K. A. Dowsland and J. M. Thompson. An improved ant
colony optimisation heuristic for graph colouring. Discrete
Applied Mathematics, 156(3):313–324, 2008.

[23] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné. On the
decentralized dynamic graph coloring problem. In Workshop
of COSSOM, 2007.

[24] W. Erben. A grouping genetic algorithm for graph colouring
and exam timetabling. In International Conference on the
Practice and Theory of Automated Timetabling, pages
132–156, 2000.

[25] W. Fan, X. Wang, and Y. Wu. Querying big graphs within
bounded resources. In Proceedings of SIGMOD, pages
301–312, 2014.

[26] P. Galinier and J.-K. Hao. Hybrid evolutionary algorithms for
graph coloring. Journal of combinatorial optimization,
3(4):379–397, 1999.

[27] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1990.

[28] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and
A. Pothen. Colpack: Software for graph coloring and related
problems in scientific computing. ACM Transactions on
Mathematical Software, 40(1):1, 2013.

[29] A. Gyárfás and J. Lehel. On-line and first fit colorings of
graphs. Journal of Graph theory, 12(2):217–227, 1988.

[30] M. M. Halldórsson. Parallel and on-line graph coloring.
Journal of Algorithms, 23(2):265–280, 1997.

[31] M. M. Halldórsson and M. Szegedy. Lower bounds for
on-line graph coloring. In Proceedings of SODA, pages
211–216, 1992.

[32] F. Havet and L. Sampaio. On the grundy number of a graph.
In International Symposium on Parameterized and Exact
Computation, pages 170–179, 2010.

[33] S. M. Hedetniemi, S. T. Hedetniemi, and T. Beyer. A linear
algorithm for the grundy (coloring) number of a tree. Congr.
Numer, 36:351–363, 1982.

[34] A. Hertz and D. de Werra. Using tabu search techniques for
graph coloring. Computing, 39(4):345–351, 1987.

[35] A. Hertz, M. Plumettaz, and N. Zufferey. Variable space
search for graph coloring. Discrete Applied Mathematics,
156(13):2551–2560, 2008.

[36] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic graphs. In
Proceedings of SIGMOD, pages 1311–1322, 2014.

[37] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and
C. Schevon. Optimization by simulated annealing: an
experimental evaluation; part ii, graph coloring and number
partitioning. Operations research, 39(3):378–406, 1991.

[38] H. A. Kierstead, D. A. Smith, and W. T. Trotter. First-fit
coloring on interval graphs has performance ratio at least 5.
European Journal of Combinatorics, 51:236–254, 2016.

[39] H. A. Kierstead and W. T. Trotter. An extremal problem in
recursive combinatorics. Congressus Numerantium,
33(143-153):98, 1981.

350

[40] S. M. Korman. The graph-colouring problem. Combinatorial
optimization, pages 211–235, 1979.

[41] M. Laguna and R. Martí. A grasp for coloring sparse graphs.
Computational optimization and applications,
19(2):165–178, 2001.

[42] R. Lewis. A general-purpose hill-climbing method for order
independent minimum grouping problems: A case study in
graph colouring and bin packing. Computers & Operations
Research, 36(7):2295–2310, 2009.

[43] R. Lewis, J. Thompson, C. Mumford, and J. Gillard. A
wide-ranging computational comparison of
high-performance graph colouring algorithms. Computers &
Operations Research, 39(9):1933–1950, 2012.

[44] L. Lovász, M. Saks, and W. T. Trotter. An on-line graph
coloring algorithm with sublinear performance ratio.
Discrete Mathematics, 75(1-3):319–325, 1989.

[45] Z. Lü and J.-K. Hao. A memetic algorithm for graph
coloring. European Journal of Operational Research,
203(1):241–250, 2010.

[46] E. Malaguti, M. Monaci, and P. Toth. A metaheuristic
approach for the vertex coloring problem. INFORMS Journal
on Computing, 20(2):302–316, 2008.

[47] J. Manweiler and R. Roy Choudhury. Avoiding the rush
hours: Wifi energy management via traffic isolation. In
Proceedings of MobiSys, pages 253–266, 2011.

[48] D. W. Matula and L. L. Beck. Smallest-last ordering and
clustering and graph coloring algorithms. Journal of the
ACM, 30(3):417–427, 1983.

[49] F. Moradi, T. Olovsson, and P. Tsigas. A local seed selection
algorithm for overlapping community detection. In
Proceedings of ASONAM, pages 1–8, 2014.

[50] C. Morgenstern. Distributed coloration neighborhood search.
Discrete Mathematics and Theoretical Computer Science,
26:335–358, 1996.

[51] A. Mukherjee and M. Hansen. A dynamic rerouting model
for air traffic flow management. Transportation Research
Part B: Methodological, 43(1):159–171, 2009.

[52] C. L. Mumford. New order-based crossovers for the graph
coloring problem. In Parallel Problem Solving from
Nature-PPSN IX, pages 880–889. 2006.

[53] N. Narayanaswamy and R. S. Babu. A note on first-fit
coloring of interval graphs. Order, 25(1):49–53, 2008.

[54] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi. Efficient
pagerank tracking in evolving networks. In Proceedings of
KDD, pages 875–884, 2015.

[55] P. R. J. Östergård. A fast algorithm for the maximum clique
problem. Discrete Appl. Math., 120(1-3):197–207, 2002.

[56] L. Ouerfelli and H. Bouziri. Greedy algorithms for dynamic
graph coloring. In Proceedings of CCCA, pages 1–5, 2011.

[57] Y. Peng, B. Choi, B. He, S. Zhou, R. Xu, and X. Yu. Vcolor:
A practical vertex-cut based approach for coloring large
graphs. In Proceedings of ICDE, pages 97–108, 2016.

[58] D. C. Porumbel, J.-K. Hao, and P. Kuntz. An evolutionary
approach with diversity guarantee and well-informed
grouping recombination for graph coloring. Computers &
Operations Research, 37(10):1822–1832, 2010.

[59] S. Prestwich. Using an incomplete version of dynamic
backtracking for graph colouring. Electronic Notes in
Discrete Mathematics, 1:61–73, 1999.

[60] D. Preuveneers and Y. Berbers. Acodygra: an agent algorithm
for coloring dynamic graphs. Symbolic and Numeric
Algorithms for Scientific Computing, 6:381–390, 2004.

[61] R. A. Rossi and N. K. Ahmed. Coloring large complex
networks. Social Network Analysis and Mining, 4(1):228,
2014.

[62] C. Schindelhauer. Mobility in wireless networks. In
International Conference on Current Trends in Theory and
Practice of Computer Science, pages 100–116, 2006.

[63] S. Smorodinsky. A note on the online first-fit algorithm for
coloring k-inductive graphs. Information Processing Letters,
109(1):44–45, 2008.

[64] B. C. Steffen. Advice complexity of online graph problems.
Ph.D Thesis, 2014.

[65] Z. Tang, B. Wu, L. Hu, and M. Zaker. More bounds for the
grundy number of graphs. Journal of Combinatorial
Optimization, 33(2):580–589, 2017.

[66] J. A. Telle and A. Proskurowski. Algorithms for vertex
partitioning problems on partial k-trees. SIAM Journal on
Discrete Mathematics, 10(4):529–550, 1997.

[67] S. Vishwanathan. Randomized online graph coloring. In
Proceedings of FOCS, pages 464–469, 1990.

[68] D. J. Welsh and M. B. Powell. An upper bound for the
chromatic number of a graph and its application to
timetabling problems. The Computer Journal, 10(1):85–86,
1967.

[69] Q. Wu and J.-K. Hao. Coloring large graphs based on
independent set extraction. Computers & Operations
Research, 39(2):283–290, 2012.

[70] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified
top-k clique search. In Proceedings of ICDE, pages 387–398,
2015.

[71] M. Zaker. Results on the grundy chromatic number of
graphs. Discrete mathematics, 306(23):3166–3173, 2006.

[72] D. Zuckerman. Linear degree extractors and the
inapproximability of max clique and chromatic number. In
Proceedings of STOC, pages 681–690, 2006.

351

