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ABSTRACT

The lightweight codebase of SQLite was helpful in mak-
ing it become the de-facto standard database in most mo-
bile devices, but, at the same time, forced it to take less-
complicated transactional schemes, such as physical page
logging, journaling, and force commit, which in turn cause
excessive write amplification. Thus, the write IO cost in
SQLite is not lightweight at all.

In this paper, to make SQLite truly lite in terms
of 1O efficiency for the transactional support, we pro-
pose SQLite/SSL, a per-transaction SQL statement logging
scheme: when a transaction commits, SQLite/SSL ensures
its durability by storing only SQL statements of small size,
thus writing less and performing faster at no compromise
of transactional solidity. Our main contribution is to show
that, based on the observation that mobile transactions tend
to be short and exhibit strong update locality, logical log-
ging can, though long discarded, become an elegant and
perfect fit for SQLite-based mobile applications. Further,
we leverage the WAL journal mode in vanilla SQLite as a
transaction-consistent checkpoint mechanism which is indis-
pensable in any logical logging scheme. In addition, we show
for the first time that byte-addressable NVM (non-volatile
memory) in host-side can realize the full potential of logical
logging because it allows to store fine-grained logs quickly.

We have prototyped SQLite/SSL by augmenting vanilla
SQLite with a transaction-consistent checkpoint mechanism
and a redo-only recovery logic, and have evaluated its per-
formance using a set of synthetic and real workloads. When
a real NVM board is used as its log device, SQLite/SSL can
outperform vanilla SQLite’s WAL mode by up to 300x and
also outperform the state-of-the-arts SQLite/PPL scheme
by several folds in terms of IO time.
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1. INTRODUCTION

Given that SQLite is used as the de-facto standard
database manager in major mobile platforms, Android, iOS,
and Tizen, it is not surprising that popular mobile applica-
tions such as Facebook, Twitter, Gmail, and messengers,
manage data using SQLite [3]. Further, with the advent of
the era of mobile first, Internet of Things and messenger-
style chatbots, it is obvious that users will carry out more
computing on mobile platforms unprecedentedly [28], and
thus more transactional data will be managed by SQLite.

The pervasive use of SQLite in mobile platforms is mainly
due to the development productivity, solid transactional
support, and lightweight codebase. But, the compromise
for the lightweight codebase, at the same time, forced it to
take less-complicated but costlier schemes for the transac-
tional support, such as physical logging at page granularity,
redundant journaling, and force commit policy [2, 4]. Hence,
this is often cited as the main cause of huge write amplifica-
tion and tardy response time in mobile applications [17, 26].
In addition, considering more than two-thirds of all writes
in smartphones are from SQLite [29], the write amplification
by SQLite will, in turn, shorten the lifespan of flash storage
in mobile devices.

Considering the ever-growing popularity of SQLite but at
the same time its run-time overhead of write operations, it
is compelling to make SQLite truly lite in terms of write
efficiency. In this paper, for this purpose, we propose a
form of logical logging scheme, called SQLite/SSL: on a
transaction commit, SQLite/SSL will write all update SQL
statements of the committing transaction persistently and
atomically in log device. In this sense, SQLite/SSL takes a
per-transaction SQL statement logging for its transactional
support. Thus, it can avoid the overhead of vanilla SQLite:
force-writing every modified page in its entirety redundantly
at every commit. In an ideal case, upon every transaction
commit, the single write operation of a small amount of per-
transaction SQL statements log in SQLite/SSL will replace
the redundant write of several or tens of physical pages in
vanilla SQLite, thus writing less and performing faster.

In fact, despite its compactness and simplicity, the logical
logging approach has been discarded in database commu-
nity mainly for two reasons [12, 13, 24]. First, there is no
efficient transaction-consistent checkpoint (in short, TCC)
mechanism, which is crucial in realizing any logical logging
approach. Second, even though any TCC mechanism does
exist (e.g., the shadow page technique [23]), it is quite un-
realistic in large multi-user database environments because



of high checkpoint IO cost and intolerable delays for newly
incoming transactions during quiescent checkpoints [13].

Then, conversely, could the logical logging approach be
practical for a database engine in case the system man-
ages small database in single-user mode and also has a
TCC mechanism? Our work on SQLite/SSL is motivated
by this question as well as a few intriguing observations on
SQLite architecture itself, popular mobile applications and
their workload characteristics. The first observation is that
because the fundamental role of two journaling modes in
vanilla SQLite is to propagate multiple pages updated by
a committing transaction from buffer cache to the original
database atomically [17], a TCC mechanism for logical log-
ging can be easily embodied by slightly extending either
journaling mechanism in vanilla SQLite. The second one is
that most mobile application run in single-user mode and
the size of the database is relatively small. In particular, al-
though concurrent read operations are allowed in some ap-
plications, concurrent update transactions are not allowed
in any SQLite-based mobile application. The third one is
about the characteristics of mobile workloads. The trans-
actions in mobile applications tend to be very short (i.e.,
most transaction consists of one or a few DML statements
and each SQL statement accesses a small number of data
objects) and, more importantly, exhibits strong update lo-
cality (i.e., the same logical pages are repeatedly updated
by consecutive transactions) [18, 26].

The above observations led us to conclude that logical log-
ging could be an ideal and practical solution for the transac-
tional support in SQLite-based mobile applications. In par-
ticular, the characteristic of short transactions with strong
update locality in mobile applications will allow the logical
logging approach to drastically reduce the amount of pages
to be written to the storage for the transactional durability:
because only a small set of active pages are repeatedly up-
dated by consecutive transactions, those pages will remain
buffered at DRAM cache until next checkpoint, at which
point of time each page will be written to the storage only
once. Consequently, unlike vanilla SQLite which will repeat-
edly force-write those pages at every commit and thus incur
huge write amplification [17, 26], logical logging can amor-
tize repetitive updates to the same page by one write during
the checkpoint. In addition, the characteristic will require
logical logging to flush only small number of pages at each
checkpoint, and thus the checkpointing will not introduce
an unacceptable latency spike. Otherwise, if there is no
outstanding update locality (e.g., in an extreme case where
updates are randomly made against a large set of pages),
logical logging will not provide any benefit at all [6]: the
eventual effect of logical logging is simply to delay the write
operations for the updated pages until the next checkpoint,
at which the checkpoint cost will be intolerably high [12].

The key contributions of this work are summarized as
follows:

e Based on observations made about SQLite and popu-
lar mobile workloads running on SQLite, we recognize
that the logical logging approach is a perfect fit for the
transactional support in SQLite-based mobile applica-
tions. To our best knowledge, this is the first work that
utilizes non-volatile memory (NVM) so as to make logi-
cal logging realizes its full potential: fine-grained logical
logs can be quickly written with byte-addressable NVM
without the overhead of standard I/O stack.
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e We have designed and implemented a new mobile
database manager, SQLite/SSL, on a real NVM board by
augmenting vanilla SQLite minimally and compatibly. It
optimizes data management for mobile applications by
replacing redundant page writes with fine-grained SQL
log writes. For transactional atomicity and recoverabil-
ity upon system crashes under its no-force commit policy,
SQLite/SSL provides a transaction-consistent checkpoint
mechanism and a redo-only recovery logic.

e SQLite/SSL has been evaluated empirically with real
traces obtained from popular mobile applications as
well as a synthetic benchmark. We have observed that
SQLite/SSL can improve the performance of mobile ap-
plications by an order of magnitude.

2. BACKGROUND AND MOTIVATIONS

Clearly, logical logging is the best approach in guarantee-
ing the durability of committing transactions in terms of log
compactness since one single log record (e.g., one SQL state-
ment) could correspond to several or tens of physical page
updates or Aries-like physiological log records [12]. Though
elegant, however, any logical logging approach has not been
successful mainly for two reasons. First, there has not been
an efficient transaction-consistent checkpoint solution. Sec-
ond, there has not been any major killer database applica-
tion with which logical logging can fit well.

From this point of view, this section will describe why log-
ical logging is a perfect fit for mobile applications running
on SQLite database. Concretely, as background and moti-
vation of our work, we will review the SQLite architecture
and the characteristics of mobile workloads in depth, par-
ticularly pointing out that SQLite provides TCC and most
mobile applications are running in single user mode and their
transactions tend to be short and with strong update local-
ity. In addition, we will review the performance characteris-
tics of a byte-addressable non-volatile memory and explain
why it can make logical logging more attractive than ever.

2.1 SQLite Architecture

SQLite is a software library that implements a server-
less transactional SQL database engine [3], and thus mobile
applications are linked to the SQLite library to utilize its
database management functions. In SQLite, tables and in-
dexes are managed in a single database file on top of a un-
derlying file system such as ext4. In order to provide the
solid transactional atomicity and durability while keeping its
codebase lightweight as well as portable on a wide spectrum
of platforms, SQLite takes less-complicated but costlier re-
covery schemes. The architectural features of recovery in
SQLite are summarized below.

For the durability of committing transactions, SQLite
adopts the force policy for buffer management: when a
transaction commits, it force-writes all the pages updated
by the transaction in their entireties to a stable storage by
calling the fsync command. In addition, since the atomic
propagation of one or more updated pages is not guaran-
teed by the underlying operating system and storage device,
SQLite relies on redundant journaling mechanisms for the
atomicity of committing transactions: rollback mode [2] and
write-ahead log mode [4]. In rollback mode, if a transac-
tion is about to update a page, the original content of the
page is copied to the rollback journal file before updating



it in the database, so that the change can always be un-
done if the transaction aborts. In this regard, rollback mode
takes a undo-based journaling. In contrast, write-ahead log
mode (hereafter, WAL mode for short) takes a redo-based
journaling. In WAL mode, pages updated by a committing
transaction are appended to the WAL journal file while their
old page copies remain intact in the original database. The
change is then later propagated to the database by check-
point. Once safely written in the WAL file, any committed
change can be redone by copying the recent page copies from
the WAL file to the original database.

In either mode, the less-complicated transactional scheme
taken by SQLite causes the costlier run-time IO overhead
since every page updated by every committing transaction
should be redundantly force-written in its entirety. Further,
given that the actual amount of changes in each page made
by mobile SQLite transactions is generally very small [18,
26], the redundant force-writing of updated pages is the root
cause of the huge write amplification in SQLite [15, 17, 29].

The journaling mechanisms of SQLite, meanwhile, of-
fer one attractive aspect in implementing a logical logging
approach. For example, the checkpointing and recovery
schemes in WAL mode guarantee the atomic propagation
of a set of all pages updated by committed transactions to
the original database despite crash. Therefore, the origi-
nal database under the WAL mode will always remain in
transaction-consistent state. In this sense, the WAL mode
provides a transaction-consistent checkpoint (TCC) mecha-
nism which is indispensable in any logical logging approach
including SQLite/SSL [12, 13, 24]. This architectural aspect
of SQLite allows SQLite/SSL to adopt the logical logging of
per-transaction SQL statements, where all modified pages
by recently committed transactions are checkpointed in a
transaction-consistent manner.

2.2 Mobile Workload Characteristics

Now let us explain the transactional characteristics of mo-
bile applications running on SQLite and their adverse effects
on write amplification on vanilla SQLite, and discuss the op-
portunities they provide for logical logging.

Short Transactions with Strong Update Locality

As mentioned above, popular mobile applications manage
their data using SQLite. And mobile transactions in those
applications have a few unique characteristics. First of all,
they tend to be very short, mostly running in the autocom-
mit mode, where a transaction consists of a single SQL state-
ment [29]. More importantly, each transaction usually mod-
ifies very small amount of data. For instance, the database
workload in a mobile messenger application is mostly small
insertions and, once stored, most of the messages are seldom
deleted or update [18, 26]. The second, and more impor-
tant, one is that mobile transactions exhibit strong update
locality. Whenever a new record is inserted into a SQLite
database table (which is also organized as a BT-tree), it is
inserted into the rightmost leaf node of the table BT-tree
because a surrogate key automatically created by SQLite is
stored together as part of the record and the surrogate keys
are increasing monotonically. Consequently, the same leaf
node of the table will be consecutively updated until that
node becomes full when successive insertions are made to
the table. Interestingly, the secondary indexes from mobile
applications also show high update locality [26],
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Opportunities for Logical Logging

To better understand the opportunities that the character-
istic of “short transaction with high update locality”’ in mo-
bile applications provides in terms of logical logging, we ran
SQLite traces collected while running six popular mobile
applications and, for each trace, measured several update-
related metrics and summarized the results in Table 1. Refer
to Section 5.2 for the detailed description of those applica-
tions. The second and third columns in Table 1 show the
total number of logical page writes made by update trans-
actions (A) and the total number of distinct pages updated
by update transactions (B) in each trace, respectively. The
fourth column shows the total number of update transac-
tions in each trace (C). The fifth column shows the average
number of logical page writes made by each update transac-
tion (D), which is calculated by dividing A by C. Lastly, the
sixth column shows the average number of overwrites per
updated pages (E), which is calculated by dividing A by B.

From Table 1, we can make a few important observations
on why logical logging is an attractive alternative for mo-
bile applications. First, as shown in column D, each trans-
action in all applications except Twitter, mostly running
in autocommit mode, updates three to eight pages on av-
erage. In this case, it is well known that logical logging
is especially useful by replacing multiple pages writes with
one SQL statement log [6]. The second observation is that,
across all the traces used, the actual number of all distinct
pages updated in each trace (column B) is relatively very
small, compared to the total number of pages written in
each trace (column A). In addition, from column E, we know
that one same logical page is repetitively overwritten when
each trace was run using vanilla SQLite in the WAL mode.
In one extreme case of AndroBench, each page is overwrit-
ten on average almost up to 150 times. This confirms that
database workload in mobile applications is mostly small
updates. Therefore, taking into account that the default
size of buffer cache in SQLite (i.e., 1,000 pages) is large
enough to buffer all the pages updated by many consecu-
tive transactions, there is no compelling reason to take the
force commit policy as long as the durability of each com-
mitting transaction can be guaranteed in another way (e.g.,
SQL statement logging). Therefore, by taking logical log-
ging approach and thus buffering updated page in DRAM,
instead of force-writing them upon every commit, a multi-
tude of successive page writes to the same logical page can
be avoided. The third observation is about checkpoint and
recovery. Since only small number of active pages will be up-
dated by many consecutive transactions and those pages can
be buffered in the cache, those pages can be checkpointed in
a transaction-consistent way without causing unacceptable
latency spike. In addition, compared to the force commit
policy in vanilla SQLite, the WAL file will be filled up at a
much slower rate under logical logging approach because of
its write buffering effect. Therefore, checkpoint operations
are called much less frequently than vanilla SQLite. In ad-
dition, in terms of recovery time, the number of pages to be
recovered from crashes is limited so that the recovery can
be completed only with small IOs.

2.3 Phase Change Memory (PCM)

One obvious benefit of logical logging over other logging
techniques such as physical logging and Aries-style physio-
logical logging is its compactness of log. However, if the log



Table 1: Analysis of Update Patterns in Mobile Application Traces

Trace Total # of page Total # of distinct Total # of update Page writes / TX Avg. overwrites /
writes (A) pages updated (B) TX (C) (D=A/C) page (E = A/B)
AndroBench 10,407 37 3,077 3.38 281.3
Gmail 6,041 190 704 8.58 31.8
KakaoTalk 7,835 178 2,187 3.58 44.0
Facebook 3,717 476 1,194 3.11 7.8
Browser 5,232 613 1,350 3.88 8.5
Twitter 11,083 278 7,907 1.40 39.9

data is stored in files on the secondary block storage, the
advantages of writing small logical log will be offset mainly
by the I/O stack. Specifically, because the I/O stack takes
about 20,000 instructions to issue and complete a 4KB 10
request under standard Linux, its overhead can exceed the
hardware access time in fast storage devices such as flash
memory SSDs [7]. Therefore, the best way to making the
most of logical logging is to use a persistent memory ab-
straction with DIMM interface. By doing so, we can avoid
the latency of I/O stack and also minimize the write ampli-
fication at the flash memory storage layer.

A contemporary PCM product can write 4 bytes in 7.5
us while a TLC NAND flash memory chip takes as long as
1,500 us in writing 8KB [8, 16]. A similar read and write
speed was observed in other PCM products as well [19, 22,
25]. From this, we confirm that current PCM technology
is, though not delivering its promised performance as yet
especially for write operations [21], absolutely superior to
flash memory for fine-grained writes (e.g., less than several
hundred bytes). Thus, it is obvious that PCM is an ideal
and practical log device for small-sized logical logs.

Considering that the PCM technology is still in its in-
fancy in the commercial market and its price is quite higher
(at least, 10 times expensive as of now) than that of flash
memory, it is unlikely that PCM will supplant flash mem-
ory in foreseeable future. Instead, we expect that while flash
memory device is used as main storage, a small amount of
PCM will, in the form like the UMS board, be complemen-
tarily used as a special purpose device. In this paper, we
will show that the availability of byte-addressable PCM as
log device is key to making logical logging realize its full po-
tential. Meanwhile, the lifespan of NVM is in general quite
longer than that of flash memory: NVM can be overwritten
at least 10° times [21]. Therefore, when NVM is used as
log device for logical logging, its lifespan, though limited in
theory, would not be a limiting issue in practice.

In this paper, as the PCM device, we will use a proto-
type development board that allows PCM to be accessed via
DIMM interface [22]. This prototype will be called a unified
memory system (UMS), as both DRAM and PCM can be
accessed through the same DIMM interface [26]. With this
board, an application can write a small amount of data (e.g.,
a logical log record), much smaller than a page, persistently
to PCM through the DIMM interface.

3. RELATED WORKS

By taking a logical logging approach to leverage the char-
acteristics of mobile applications and also by exploiting
NVM in storing fine-grained logs quickly, SQLite/SSL can,
at no compromise of its transactional solidity, minimize the
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amount of data written to the flash storage. In this regard,
three types of existing work are related to SQLite/SSL. Each
work is briefly reviewed and compared with SQLite/SSL be-
low.

3.1 Logical Logging

At least two database systems have taken logical logging
approach: operation logging in System/R [11] and command
logging in VoltDB [24]. In operation logging, the before- and
after-value of one or more records updated by an update
SQL statement are logged. In command logging, the stored
procedure name with its actual parameters is the unit of
logging. Although each scheme differs in the format of log
and the layer where log is captured, these two schemes and
SQLite/SSL are common in that they try to minimize the
size of log data for faster durability. In this respect, the idea
of SQLite/SSL is not new.

However, SQLite/SSL has made three contributions dis-
tinguishable from the previous studies. First, we show for
the first time that SQLite/SSL, a variant of logical logging,
can be a perfect fit for SQLite-based mobile applications.
In fact, large multi-user databases have been main-stream in
database community, and there was no practical solution for
transaction-consistent checkpoint [11, 13]. For this reason,
logical logging had been rejected from the database commu-
nity until VoltDB’s command logging and its asynchronous
transaction-consistent checkpoint technique is recently pro-
posed [24]. Second, SQLite/SSL present a new way to
implement transaction-consistent checkpoint by leveraging
the existing WAL checkpoint mechanism in vanilla SQLite,
which is different from the existing ones [11, 24]. Third,
SQLite/SSL is the first work to show that logical logging
can realize its full potential when combined with byte-
addressable NVM. As shown in Section 5, the performance
of SQLite/SSL can boost by changing its log device from
flash storage to host-side “real” PCM device.

3.2 NVM-based Logging

In order to exploit the fast durability and byte-
addressability of NVMs, many NVM-based logging schemes
have recently been proposed [5, 9, 10, 20, 26]. Among
them, SQLite/PPL [26] and NVWAL [20] are closest to
SQLite/SSL in that they utilize NVM to boost the SQLite
performance. Whenever pages are updated by a transaction,
the changes are captured in either physio-logical log [26]
or physical-differential log [20], and, later when the trans-
action commits, the logs are flushed to NVM. However,
SQLite/SSL is in stark contrast with these schemes in that
while they capture per-page differential logs, SQLite/SSL
takes SQL statement logging. Therefore, SQLite/SSL will be



obviously superior to them mainly due to its log compact-
ness, especially in SQLite-based mobile applications. Con-
sidering the time taken to write in NVM is proportional
to the amount of data to transfer, more log means longer
commit latency. More importantly, given the same size of
PCM, larger log data will trigger more frequent checkpoints.
For this reason, as will be shown in Section 5, SQLite/SSL
outperforms SQLite/PPL by several folds in many cases.

3.3 Flash-optimized Single-Write Journaling

One of the main roles of SQLite RBJ and WAL journal-
ing is to atomically propagate multiple pages updated by a
transaction to the storage. However, the atomicity comes at
the cost of redundant writes [17]. This double-write journal-
ing is one of the major factors explaining the huge write am-
plification in SQLite databases. To achieve the write atom-
icity of multiple pages at no cost of redundant writes, two
novel schemes, X-FTL [17] and SHARE [27], have been re-
cently proposed for flash storage from the database com-
munity. Though quite novel, they should force-write all
physical pages updated by every committing transaction
and thus will cause excessive write amplifications in SQLite-
based mobile applications. In addition, they assume a flash
storage with a special interface and accordingly require some
changes in OS kernel stack. In contrast, SQLite/SSL drasti-
cally reduces the amount of data directed to the flash stor-
age by storing only SQL statements as log in NVM and by
taking a periodic checkpoint.

4. DESIGN OF SQLite/SSL

In this section, we present a new mobile database man-
ager called SQLite/SSL that logs only SQL statements upon
commit, thus achieving its transactional atomicity and dura-
bility in a truly lightweight manner. For the realization of
the statement logging strategy in SQLite/SSL, we have aug-
mented vanilla SQLite with a few new features and also
have modified its existing modules minimally. This section
presents the design overview of SQLite/SSL, describes its
overall architecture, shown in Figure 1, and provides the
detailed description of modules and data structures (in gray
color) added to or modified from vanilla SQLite.

4.1 Design Overview

Design objectives  The design objectives of
SQLite/SSL are threefold. First, while embodying its
new functionalities, SQLite/SSL takes full advantage of the
existing proven features in vanilla SQLite so as to make
only minimal changes and thus keep its codebase as reliable
as vanilla SQLite. For instance, the WAL mode in vanilla
SQLite was leveraged to embody a transaction-consistent
checkpoint in SQLite/SSL. Second, SQLite/SSL should be
able to keep its recovery logic as simple and efficient as
vanilla SQLite. In fact, as is described below, SQLite/SSL
introduces an additional data structure for logging SQL
statements, SLA, which in turn can, upon crashes, lead to
the numerous failure combinations of SLA and the existing
WAL journal. Therefore, we deliberately chose to take a
simple checkpoint and recovery logic at the cost of some
performance overhead. Third, SQLite/SSL aims at making
the implementation logic of logging SQL statements in SLA
as generic as possible. In addition to PCM, the emerging
NVDIMM [14] as well as the existing flash storage can also
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be used as the log device for SQLite/SSL. Therefore, as is
detailed later, we use the mmap and msync calls to achieve
both the device independence and the byte-addressability
in storing statement logs irrespective of the log devices.

New data structures SQLite/SSL introduce two new
key data structures: statement log area (SLA) and state-
ment log buffer (SLB). For an active transaction, all the up-
dating SQL statements, in addition to transaction_begin,
commit, and abort, are captured and buffered in SLB (Step
1 in Figure 1). When a transaction is about to normally
commit, all the updating statement logs of the transaction
which are buffered in SLB will be flushed to SLA (Step 2
in Figure 1). Note that because the system can crash while
flushing logs from SLB to SLA, all logs of a committing
transaction should be atomically flushed to SLA. When
SLA is managed in the byte-addressable NVM with DIMM
interface, the mmap call will avoid the overhead of I/O stack.
In contrast, when SLA is managed in block storage device,
not in UMS board, the msync () command should be further
called to make the log of SQLite/SSL durable in statement-
log-file, as illustrated in Figure 1 (Step 2.1). In this case,
the log write in SQLite/SSL will follow the standard I/O
stack of file systems. The mmap interface is chosen as a uni-
fied abstraction to access any byte-addressable NVM so that
SQLite/SSL should be able to work without any changes in
its code even when any storage media is used as SLA. Since
every modern file system supports the mmap interface, both
a specific DRAM area and file residing on flash storage can
be accessed using a single mmap interface.

Durability, atomicity, and recovery SQLite/SSL dif-
fers from the vanilla SQLite mainly in the way transactional
durability and atomicity are guaranteed. When a trans-
action commits, SQLite/SSL guarantees its durability by
force-writing all update SQL statements of the committing
transaction in SLA. Note that under SQLite/SSL all the
updated pages by the committing transaction are buffered
in DRAM cache. When the log data reaches a threshold
in SLA, the checkpoint process is triggered, by which ev-
ery pages dirtified by the committed transactions but still
buffered in DRAM cache are propagated to its permanent
location in original databases. In terms of transactional
durability, a multitude of successive page writes against
the same logical pages by successive committing transac-
tions in vanilla SQLite is replaced by one page write per
each logical page at checkpoint in SQLite/SSL. Therefore,
SQLite/SSL can achieve faster durability with much less
write amplification than vanilla SQLite, especially when the
byte-addressable PCM is used as the storage media for SLA.

For transactional atomicity, SQLite/SSL basically takes
the same approach with vanilla SQLite. Both systems
rely on the WAL journal to ensure that all the pages up-
dated by committed transactions are atomically propagated
to the original database. However, while vanilla SQLite
force-writes all updated pages to the WAL journal upon ev-
ery commit, the buffer manager in SQLite/SSL has been
modified to take the no-force commit policy so that all
pages updated by committing transactions remain buffered
in DRAM cache, as depicted in the left side of Figure 1.
Those pages will be, upon next checkpoint, first journaled
in the WAL file and then written to the original database.
This transaction-consistent checkpoint in SQLite/SSL will
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guarantee the transactional atomicity against unexpected
crashes. Please refer to section 4.2 for details.

Upon crash, database can be recovered to the state where
the last transaction successfully committed by re-executing
all valid SQL statements recorded in SLA against the orig-
inal database. Note that under SQLite/SSL the original
database remains unchanged since the last checkpoint be-
cause any updated page is not allowed to propagate to the
original database until the next checkpoint.

4.2 Added Functions

For the realization of SQLite/SSL, vanilla SQLite is aug-
mented mainly with four functional modules (log capturer,
log writer, transaction-consistent checkpoint, and
recovery manager) as is illustrated in Figure 1. The func-
tional modules are described below in more detail.

Log capturer In the vanilla SQLite, when a new SQL
statement is issued from an active transaction, it is first
parsed at the Virtual Database Engine(VDBE) layer. For
each updating statement (i.e., INSERT, DELETE, or UPDATE)
which has passed the parsing step, log capturer buffers
the statement into SLB in sequence. To capture update
statements at the VDBE layer is very crucial in making
our SQLite/SSL deterministic. 1f pure SQL statements
with functions or parameters varying over time are cap-
tured and logged, the database state recovered from crashes
by re-executing those SQL statements will not be deter-
ministic. Fortunately, every parsed SQL statement at the
VDBE layer has deterministic values as its parameters, and
therefore the recovery in SQLite/SSL will be always deter-
ministic. In addition, the transaction-consistent checkpoint
scheme in SQLite/SSL can guarantee any physical structural
changes (e.g., index splits) which might be non-deterministic
to be propagated to the original database in a transaction-
consistent manner. Therefore, SQLite/SSL can maintain its
original database always deterministic even with its SQL
statement logging scheme.

Meanwhile, SQLite/SSL does not either capture or log
any SELECT statements. We made this design choice for
two reasons. First, SELECT statement does not update
any data page. Second, and more importantly, all updating
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SQL statements in all the mobile applications we observed
have no dependency on any preceding SELECT statement in
terms of their parameter values. In addition, it is obvious
that no logging of SELECT statements will keep SLA more
compact, which will in turn trigger less checkpoints.

The format of a log record in SQLite/SSL is shown in
Figure 2. The Length field stores the length of the following
SQL Statement. This field was introduced to distinguish
each SQL statement while reading the SQL statements from
SLA during the recovery process. The SQL Statement field
stores an SQL statement to be logged. In addition, the
four byte CRC (cyclic redundancy check) field is added to
ensure the atomicity of writing a log record longer than 32
bytes because the UMS board we used does not guarantee
the atomicity [22]. Upon reading each log record during
recovery, a CRC calculation is repeated and, when new CRC
value does not match with the CRC value stored in the log,
the log record is regarded as invalid and the recovery process
stops.

Storing SQL statements sequentially is the key to know-
ing the beginning and end of a transaction. Therefore, it
allows to handle both autocommit and batchcommit modes
in a unified way. From the start of the transaction, the SQL
statement is stored in the statement log buffer, and the pro-
cessing depends on the behavior of the transaction (commit,
rollback, abort). In the case of commit, it is guaranteed
to be stored durable in SLA against the SQL statement log
that has been buffered. In the case of rollback, the buffered
statement log is simply discarded from SLB.

Length SQL Statement | CRC |

Figure 2: Log format in SQLite/SSL

Log writer When a transaction commits, the log
writer is responsible for writing all the update SQL state-
ment logs of the transaction persistently to SLA. When
PCM is used as SLA, all the logs are copied from SLB in
DRAM to SLA in PCM and then the CLFLUSH command is
called to ensure the log durability. Meanwhile, when flash



memory is used as SLA, the durability of the log write is
ensured by invoking the msync call to SLA.

Transaction consistent checkpoint For faster com-
mit, SQLite/SSL takes the no-force commit policy. There-
fore, to recover the database after a crash, SQLite/SSL
will have to replay all the logged SQL statements in SLA
against old database each time, which would be very time-
consuming. Hence, all the updated pages by committed
transactions should be regularly checkpointed to reduce the
recovery time. As is depicted in Figure 1, the checkpoint
process in SQLite/SSL consists of two sub-checkpoints:
SSL-checkpoint and WA L-checkpoint. SSL-checkpoint is
triggered when the current transaction successfully com-
mits and, at the same time, either the amount of logs in
SLA reaches to a pre-determined threshold (i.e., 70%) or
the number of dirty pages in the buffer cache is larger than
1024. While a checkpoint is in progress, no new transaction
can start, likewise vanilla SQLite. But, the cost of quies-
cent checkpoints in both SQLite versions, as will be shown
in Section 5, is acceptable consistently across all the real
workloads we tested.

During SSL-checkpoint, all the pages once updated since
the last checkpoint but still buffered in DRAM cache, which
are maintained by the pCheckpoint list, will be written to
the WAL journal (Step 3 in Figure 1). Once all the pages
ever dirtified since the last checkpoint are written to the
WAL journal, it is guaranteed that the effect of all the trans-
actions executed since the last checkpoint has been made
durable at the WAL journal. This, in turn, means that all
the SQL statement logs in SLA can be safely truncated.
As an implementation mechanism to truncate SLA, a field
log_size, which represents the total amount of SQL state-
ment logs in byte, is managed at the head of SLA file, and
its value is reset to zero and all the old logs are reset by call-
ing the mset interface. This atomic reset of SLA represents
the success of SSL-checkpoint. It is crucial to reset SLA as
the final step of SSL-checkpoint since, during the recovery
upon a system crash, SQLite/SSL will leverage the status
of SLA to identify the exact crash state.

Immediately after SSL-checkpoint is finished, WAL-
checkpoint is triggered, which works exactly same as in
vanilla SQLite: all the latest pages in the WAL journal are
copied to the original database and then the WAL journal is
reset by truncating all the page copies in it (Step 4 in Fig-
ure 1). In vanilla SQLite, meanwhile, WA L-checkpoint is not
triggered on every transaction commit. Instead, it happens
only when the number of pages in the WAL journal reaches
the threshold (1,000 pages by default). One benefit of this
lazy checkpoint is the write buffering effect: i.e., when same
pages are repeatedly written because of the update locality,
only the most recent version of each page need to be copied
from the WAL journal to the original database. Because of
this write buffering effect, write-ahead log can outperform
rollback in many cases [4, 17]. However, while designing
SQLite/SSL, we instead decided to take immediate WAL-
checkpoint right after SSL-checkpoint for two reasons. First,
the effect of write buffering by the WAL journal is, if any,
not such high in SQLite/SSL because the update locality
will be absorbed mainly by the DRAM cache and thus the
same page is not likely to be re-written to the WAL journal.
Second, and more importantly, the lazy WA L-checkpoint will
make the recovery logic more complicated.
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Once the checkpoint is successfully completed in
SQLite/SSL, the original database is now in a transaction-
consistent state: it represents a consistent snapshot of the
database at the time the last transaction commits, and
does not contain any uncommitted changes. In this re-
spect, SQLite/SSL accomplishes its transaction-consistent
checkpoint by carrying out two sub-checkpoints in sequence.
Even when a crash is encountered during the checkpoint,
SQLite/SSL can, along with its redo-only recovery mecha-
nism, guarantee that all updates from committed transac-
tions since the last checkpoint be propagated to the orig-
inal databases in all-or-nothing manner. Note that al-
though SQLite/SSL takes the steal policy from the perspec-
tive of buffer replacement and thus some dirty pages would
be replaced out from DRAM cache to the WAL journal,
SQLite/SSL can be regarded as to take the no-steal pol-
icy in effect from the perspective of recovery because prior
to WAL-checkpoint, any dirty page in the WAL journal
is not allowed to propagate to its home location in origi-
nal database. Therefore, the undo recovery is not required
in SQLite/SSL since any update made by non-committed
transactions is not allowed to propagate to the original
database.

Recovery manager In vanilla SQLite, when the sys-
tem restarts, the existence of the WAL journal file indicates
a crash, and the database can be recovered simply by copy-
ing every page with a corresponding commit record in the
journal file to the original database. Meanwhile, since new
data structure SLA and an additional step of SSL-checkpoint
are introduced, SQLite/SSL can encounter more crash sce-
narios. That is, it can fail at any point in time while flushing
log to SLA, carrying out SSL-checkpoint or WA L-checkpoint.
For this reason, the recovery module in SQLite/SSL has
been carefully designed to cope with all the various failure
cases, as will be detailed in Section 4.4.

4.3 Database Operations in SQLite/SSL

With the added data structures and functions described
above, SQLite/SSL performs basic database operations such
as read, write, commit, abort, and normal shutdown differ-
ently from vanilla SQLite. This section describes how those
basic operations are performed in SQLite/SSL.

4.3.1 Read

The read operation in SQLite/SSL works in the same way
with that in vanilla SQLite. On a page hit, the page frame
found in the buffer pool can be returned because the page
in the buffer pool is always up to date. On a page fault,
a data page needs to be fetched from flash memory, whose
up-to-date copy may reside in either the WAL journal or the
original database file.

4.3.2  Update and Commit

The BT -tree module of vanilla SQLite processes an up-
date statement by inserting a new entry to or, deleting or
updating an existing one from leaf nodes of a table and
its secondary indexes. When a page is first updated by a
transaction, its identifier is appended to the pDirty list.
SQLite/SSL differs from vanilla SQLite in that, after pro-
cessing an update statement, the log capturer captures a
log of the statement and adds it to SLB.

Upon commit, the vanilla SQLite relies on the force policy
to write all the dirty pages, which are listed in pDirty, to



the WAL journal immediately. Therefore, the commit time
overhead is substantial because each dirty page is written
twice physically (including the write operations incurred by
checkpointing in the WAL journal mode) and a write barrier
operation (by a fsync call) is executed at least once. Af-
ter completing the flush operation, the pDirty list is reset
to empty. In contrast, SQLite/SSL does not immediately
force-write pages updated by the committing transaction.
Instead, the durability of a committing transaction is en-
sured by logging all its update statements to the SLA per-
sistently. Thus, because small amount of logical SQL state-
ments is written as log in SLA in byte unit, the commit
time overhead in SQLite/SSL, compared to vanilla SQLite,
can drastically reduce, especially when the byte-addressable
NVM is used as the device for SLA.

Note that, before resetting the pDirty list after having
flushed SQL statement log, SQLite/SSL makes the snapshot
of each page listed in pDirty and adds it to pCheckpoint.
The pCheckpoint list is newly introduced in SQLite/SSL for
the purpose of keeping track of all the pages which are up-
dated at least once since the last checkpoint and thus need to
be flushed upon next checkpoint. If a page is already listed
in pCheckpoint, SQLite/SSL just copies its recent commit-
ted version to its snapshot page. The goal of maintaining
separate snapshot of every updated page in pCheckpoint
is to preserve the effects on each page ever made by all
the committed transactions in preparation for transaction
aborts. This issue will be detailed in Section 4.3.3.

Whenever new pages are updated by the committing
transactions, the pCheckpoint list will be ever growing.
However, taking the spatial locality of updates in mobile
transactions into account, the length of the pCheckpoint
list is usually kept very small (e.g., several tens) until the
next checkpoint at which it will be reset.

4.3.3 Abort

When a transaction aborts, vanilla SQLite simply dis-
cards all the pages updated by the transaction from the
buffer by calling the pcacheDrop function for each page
listed in pDirty. By doing this, any effect on each page
updated by the aborting transaction can be completely re-
moved. When any following transaction needs to access the
dropped page again, it is fetched from either the WAL jour-
nal or original database. Vanilla SQLite can take this simple
approach because of its force commit policy. That is, be-
cause any update on a page made by the preceding transac-
tions which have successfully committed is made persistent
either in the WAL journal or in the original database, the ef-
fect of in-memory undo can be achieved by reading the page
from the storage. If the force commit policy is not taken,
more complex undo recovery scheme should be devised.

Upon abort, likewise vanilla SQLite, SQLite/SSL also
drops the pages updated by the aborting transaction from
the buffer cache. In addition, all the buffered SQL state-
ments from the aborting transactions will be discarded
from SLB. But some of the pages being dropped might
be included in pCheckpoint. For each page listed in
pCheckpoint, SQLite/SSL will copy its most recent snap-
shot from pCheckpoint back to the page, thus reverting
the page to the transaction-consistent state just before the
aborting transaction started. By doing so, SQLite/SSL car-
ries out the in-memory undo against the pages modified
by the aborting transaction. This rather simple in-memory
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undo scheme was deliberately taken to avoid developing the
complex undo logic like in Aries and also to prevent the ex-
cessive 10 overhead due to the force policy in vanilla SQLite.

4.3.4 Normal Shutdown

When an application terminates, it will invoke the shut-
down routine of the SQLite/SSL library. When the routine
is called, it first triggers the checkpoint, and deletes WAL
journal and SLA files in turn. Note that it is critical to
keep the order of file deletions for the correct recovery in
SQLite/SSL because an unexpected crash can happen dur-
ing the normal shutdown and the existence of SLA upon
restart indicates that system crashed.

4.4 Recovery

A crash may occur due to power loss or system crash dur-
ing program execution. On a system reboot, vanilla SQLite
has its own way to detect failure. It first checks whether the
WAL journal file exists, and the existence of the file indi-
cates that the system terminated abnormally. In this case,
vanilla SQLite will copy the most recent version of each page
in the WAL journal to the original database. Note that this
recovery logic is idempotent in that it can recover the same
consistent database despite repetitive crashes during the re-
covery. SQLite/SSL has extended this simple recovery logic
in vanilla SQLite so that it can cope with all the various
crash cases introduced by the new data structures such as
SLA and SSL-checkpoint.

On a reboot, SQLite/SSL first checks the existence of the
SLA file. If the file is not found, it means that the system
has terminated normally and thus the normal operation can
start without further recovery action. In contrast, the exis-
tence of the SLA file indicates that the system crashed. In
this case, based on the existence of WAL journal as well as
SLA file and their status (i.e., reset or in-use), SQLite/SSL
can identify the step at which it failed in the previous ex-
ecution. Recall from Section 4.2 that the checkpointing in
SQLite/SSL propagates all updated pages from the buffer
cache to the original database along with the following four
steps in sequence: 1) flushing dirty pages from buffer cache
to the WAL journal, 2) resetting SLA, 3) copying all the
pages from the WAL journal to the original database, and
4) resetting the WAL journal. The system can crash in any
of these steps. In addition, the system can also crash before
a SSL-checkpoint is triggered (that is, prior to step 1). Now
let us explain how SQLite/SSL can identify the crashes into
four cases according to the combinations of the existence
and status of SLA and WAL journal file, and what actions
it takes to recover from each case.

SLA = reset & No-WAL-file This combination indi-
cates that the system crashed right after deleting WAL file
during the normal shutdown. Therefore, the system can re-
sume simply after creating WAL journal file.

SLA = reset & WAL = reset This combination indi-
cates that the system crashed just after system initialization
or checkpointing and no new transaction has not committed.
Thus, SQLite/SSL can resume without further action.

SLA = reset & WAL = in-use This indicates that the
system crashed during the step 3 of checkpointing. In this
case, SQLite/SSL will complete the recovery by copying the
most recent version of each page in the WAL journal to the
original database, and then resetting the WAL file.



SLA = in-use When SLA exists and is in in-use status,
it indicates, regardless of the WAL journal, that system
crashed prior to or during the step 1 of checkpointing. This
means that the effects of all committed transactions since
the last checkpoint were made durable in SLA but not propa-
gated to the original database yet. In this case, SQLite/SSL
re-executes all the valid SQL statements from SLA in se-
quence against the original database, and then call its check-
point to propagate all the pages to the original database. In
this sense, the recovery process in SQLite/SSL can be re-
garded as redo-only. Recall that, as explained in Section 4.2,
although a dirty page is allowed to be replaced out from
DRAM buffer to the WAL journal before a checkpoint, the
page is not allowed to propagate to its home locations in
the original database until next checkpoint. In this respect,
SQLite/SSL can be regarded to take the no-steal policy in ef-
fect from the perspective of recovery while it does the steal
policy from the perspective of buffer replacement. There-
fore, the undo recovery is not necessary for SQLite/SSL.

Finally, let us discuss the above four cases in SQLite/SSL
in terms of recovery time. For the first two cases, the re-
covery time would be negligible. Also, for the third one,
the recovery time in SQLite/SSL would be almost same to
that in vanilla SQLite. But, the recovery time in the last
case would not be marginal. In fact, the re-execution of SQL
statements in SLA will incur many read operations and CPU
overhead, and the recovery time is proportional to the num-
ber of SQL logs in SLA. But this prolonged recovery time is
a compromise for its faster normal time performance.

S.  PERFORMANCE EVALUATION

In this section, we present the results of empirical evalu-
ation of SQLite/SSL and analyze its impact on the perfor-
mance of mobile applications. We tested five real traces and
one synthetic trace with the SQLite/SSL on the UMS board.
To evaluate the performance effect of the SLA log device, we
carried out the same experiment on the UMS board using
flash memory SD card and PCM, respectively. For compar-
ison, we also tested the same workloads on the UMS board
with the vanilla SQLite in the WAL journal mode [4] and
SQLite/PPL [26]. Also we carried out the same test with the
SQLite/SSL and vanilla SQLite on a commodity PC with
SD card as its storage device.

5.1 Experimental Setup

All the experiments were conducted with the UMS board
and a commodity PC with flash memory SD card. The UMS
board [22] is based on Xilinx Zyng-7030 equipped with a
dual ARM Cortex-A9 1GHz processor, 1GB DDR3 533Mhz
DRAM, 512MB LPDDR2-N PCM and a flash SD card slot.
The host OS is a Linux system with 3.9.0 Xilinx kernel, and
we used ext4 file system in the ordered journaling mode.
The version of vanilla SQLite used in this work is 3.13.0,
and the size of database page is set to 4KB to match the
page size of the underlying file system.

In order to evaluate the effect of SQLite/SSL on a
commodity PC with fast CPU performance, a set of
experiments was carried out using Linux system with 4.6
kernel running on Intel core i7-3770 3.40GHz processor
and 12GB DRAM. We used the same ext4 file system
and the flash memory SD card storage as in the UMS board.
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5.2 Workloads from Mobile Applications

For the evaluation, we used real traces from five popular
mobile applications, all of which uses SQLite for data man-
agement: KakaoTalk messenger, Gmail, Facebook, Twitter
and Web Browser. These traces were obtained by running
the applications on a Nexus7 tablet with Android 4.1.2 Jelly
Bean [26]. In addition, a publicly available mobile bench-
mark program, AndroBench [1], was used.

AndroBench is an update-intensive workload that consists
of 3 different types of SQL statements performed on a
single table with 17 attributes. The workload includes
1,024 insertions, 1,024 updates, and 1,024 deletes [1].

Gmail includes common operations such as saving new
messages, reading from and searching for keywords in the
inbox. It relies on SQLite to capture and store everything
related to messages such as senders, receivers, label names
and mail bodies in the mailstore database file. Therefore,
this trace includes a large number of insert statements,
and most of the SQLite transactions are run in the batch
mode.

KakaoTalk is a popular mobile messenger application in
Korea, which is similar to other messengers such as What-
sapp, Viber, and iMessenger. It stores the text messages
in the kakaotalk database file. In the KakaoTalk trace,
most transactions are processed in the autocommit mode.

Facebook was obtained from a Facebook application that
reads news feed, sends messages and uploads photo files.
Among 11 files created by the Facebook application, fb.db
was accessed most frequently by many SQL statements.
The other files were used to manage the information about
users, threads, and bookmarks. Similarly to Gmail, this
trace includes a large number of insert statements.

Browser was obtained while the Android web browser read
online newspapers, surfed several portals and online shop-
ping sites, and SNS sites. The web browser uses SQLite
to manage the browsing history, bookmarks, the titles and
thumbnails of fetched web pages using six database files.

Twitter As a social networking service, Twitter enable
users to send and receive a short text message called tweet
that is no longer than 140 bytes. Twitter manages text
messages in 21 tables and 9 indexes distributed over sev-
enteen database files, and most of the SQLite transactions
process text messages in the autocommit mode.

In order to provide better insights into understanding
the performance difference between vanilla SQLite and
SQLite/SSL, we collected several metrics from each trace,
and summarized them in Table 2. The second and third
column represents the number of database files and the to-
tal size of database in each trace, respectively. The fourth
and fifth column shows the distribution of transactions and
the detail of the transactions broken down into SQL state-
ment executed in the batch mode (enclosed by begin and
commit/abort) and auto-commit mode, respectively. The
sixth column shows the average number of logical page
writes requested by a committing transactions in each trace
when the database was run in the vanilla SQLite WAL mode.
Lastly, the seventh column shows the average of total size
of all update SQL statements per transaction in each trace.
By comparing the average page writes per transaction (i.e.,
the sixth column) and the average size of SQL statement
per transaction (i.e., the seventh column) from Table 2, we
can expect that SQLite/SSL will show much faster commit
latency than vanilla SQLite.



Table 2: Analysis of Mobile Application Traces

Trace # of DB DB Size Total # of TXs Total # of SQLs Page writes Avg. size of update SQL
files (MB) (Batch+Auto) (Batch+Auto) / TX stmt. / TX (B)

AndroBench 1 0.19 3,081 (2+3,079) 3,082 (3+3,079) 3.38 215
Gmail 1 0.74 984 (806+178) 10,597 (10,419+4178) 8.58 1,913
KakaoTalk 1 0.45 4,342 (432+3,910) 8,469 (4,559+3,910) 3.58 1,094
Facebook 11 1.95 1,281 (26241,019) 3,082 (2,063+1,019) 3.11 1,094
Browser 6 2.51 1,522 (1,439429) 4,493 (4,464+29) 3.88 8,304
Twitter 17 6.08 2,022 (1742,005) 10,291 (448+2,005) 1.40 506

5.3 Performance Analysis

5.3.1 Baseline Performance

We measured the performance of SQLite/SSL,
SQLite/PPL, and vanilla SQLite (in WAL mode), respec-
tively, by replaying the six traces on the UMS board using
PCM as SLA log device. Also, in order to evaluate the
effect of SQLite/SSL when the traditional block storage de-
vice is used as SLA log device and a faster CPU is avail-
able, we measured the performance of vanilla SQLite and
SQLite/SSL by replaying the traces on a commodity PC us-
ing flash memory SD card as SLA log device. The results
are presented in Figure 3. Figure 3 shows the I/O time
taken to each workload completely. From Figure 3(a), we
see that, when PCM is used as SLA log device, SQLite/SSL
can outperform SQLite/PPL and vanilla SQLite by up to 27
and 300 times, respectively. From Figure 3(b), we see that,
even when flash memory SD card is used as SLA log device,
SQLite/SSL can outperform vanilla SQLite by up to 6 times.
Overall, the performance results presented in Figure 3 con-
firm two main points: 1) the logical logging approach itself,
without the help of NVM device, can give significant per-
formance improvement to SQLite-based mobile applications
(Figure 3(b)), and 2) SQLite/SSL can realize its full poten-
tial when PCM is used as its SLA log device (Figure 3(a)).

In addition to Figure 3, Table 3 drills down the I/O ac-
tivities further for the traces. We separated the number of
the page writes requested by the SQLite and the file sys-
tem. As expected, SQLite/SSL wrote a far smaller num-
ber of data pages to flash memory than vanilla SQLite and
SQLite/PPL.

Let us first discuss the performance results in Figure 3(a).
The considerable performance gain of SQLite/SSL in Fig-
ure 3 is direct reflection of reductions in the number of
write operations against flash storage by SQLite/SSL (the
fourth row in Table 3, SSL-PCM (UMS)). SQLite/SSL delays
the page write until SLA becomes full. Therefore, multitude
of updates against same pages by consecutive transactions
will be buffered in DRAM cache and each page will be writ-
ten only once at checkpoint. On the other hand, in the
case of vanilla SQLite, because it repetitively force-writes
all the pages updated by consecutively committing transac-
tions, the number of writes (i.e., the second row in Table 3)
was much higher than that done by SQLite/SSL. Finally, in
the case of SQLite/PPL, multitude of updates against same
pages can be collected as physio-logical logs and saved in
PCM log sector and later the logs are merged into the cor-
responding data pages [26]. However, the amount of physio-
logical log in SQLite/PPL is quite larger than that of com-
pact SQL statement log in SQLite/SSL. This implies that,
when the same size of PCM was used as log device, more
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frequent checkpoints are required in SQLite/PPL than in
SQLite/SSL. Recall that one update SQL statement will
update several pages of table and its secondary indexes. For
this reason, the number of page writes in SQLite/PPL (the
third row in Table 3) is larger than that in SQLite/SSL (the
fourth row in Table 3) by up to several times. The least per-
formance gain was observed in the Browser trace. This is
because, as shown in the last column of Table 2, the average
length of SQL statement logs per transaction in the trace is
relatively quite large, which implies frequent checkpoints.

Let us then analyze the performance results of vanilla
SQLite and SQLite/SSL in Figure 3(b), which were obtained
by running the six traces on a commodity PC with SD card
as the SLA log device. As expected, for each trace, the 10
time taken by vanilla SQLite is almost same to that in the
UMS board. Also, it is not surprising to see that the IO time
taken by SQLite/SSL is quite higher than that in the UMS
because the log device was changed from byte-addressable
and fast PCM to slow SD card with block interface. But the
main point to note from Figure 3(b) is that the performance
gap between vanilla SQLite and SQLite/SSL is substantial
even when traditional SD card with block interface is used
as the SLA log device. This considerable performance dif-
ference between two schemes can be explained as follows.
Because SQLite/SSL takes the logical logging approach, it
will cause just one page write upon every commit. But, in
the case of vanilla SQLite, as shown in the sixth column of
Table 2, multiple pages should be force-written upon every
commit. Thus, the number of page writes in vanilla SQLite
(i.e., the second row in Table 3) is quite larger than that
in SQLite/SSL (i.e., the fourth row in Table 3) consistently
over all the traces used. In addition, while running six mo-
bile workloads on top of UMS board, we also measured the
average transactional latency, the frequency of checkpoints,
the average time taken to complete checkpoints, and the av-
erage number of dirty pages to be flushed per checkpoint
and present the results in Table 4.

Let us discuss first about the transactional latency. From
the second row in Table 4, it is clear that SQLite/SSL signif-
icantly outperforms vanilla SQLite across all the workloads.
To be more specific, the relative performance gap of the av-
erage transactional latency between SQLite/SSL and vanilla
SQLite is almost in proportion to that of the total runtime
between them in Figure 3(a). In terms of the checkpoint
frequency (the third row in Table 4), vanilla SQLite trig-
gers quite more checkpoints than SQLite/SSL for all work-
loads. The force commit policy in vanilla SQLite will fill
up quickly the WAL journal area and thus causes frequent
checkpoints. Even though the number of checkpoints in the
last three traces including Facebook, Browser, and Twitter
are more than tens in SQLite/SSL mode, most of check-
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Table 3: I/O Count (# of Physical Pages Written in Flash Storage)

Mode AndroBench Gmail KakaoTalk Facebook Browser Twitter
SQLite [ OS SQLite | OS SQLite | OS SQLite [ OS SQLite [ OS SQLite [ OS
WAL (UMS) 7,700 619 7,093 2,055 | 10,236 | 2,156 5,365 2,124 7,076 1,972 | 19,606 | 4,069
PPL (UMS) 295 271 1,832 1,033 1,300 2,242 1,261 2,095 989 4,123 494 230
SSL-PCM (UMS) 60 35 270 597 354 572 597 884 558 1,586 525 414
SSL-Flash (PC) 3,374 1,107 2,004 1,465 3,148 1,672 3,046 3,198 3,691 3,724 9,663 2,559

Table 4: Transactional Latency and Checkpoint Performance: Vanilla SQLite vs. SQLite/SSL

Metric AndroBench Gmail

KakaoTalk Facebook Browser Twitter

WAL | SSL_| WAL [ SSL | WAL | SSL | WAL [ SSL | WAL | SSL | WAL [ SSL

Transactional latency (msec) 37.0 0.04 17.3 1.5 18.1 0.5 27.8 5.9 24.0 3.4 90.8 5.3

# of checkpoints 21 1 12 5

16 4 16 12 15 11 35 17

Checkpoint latency (msec) 253.4 | 250.0 | 103.6 | 456.3 | 220.1 | 614.2 | 132.0 | 572.4 | 189.9 | 653.9 | 71.2 | 652.6

# of dirty pages / checkpoint 21.5 37 73.3 | 114.5 | 51.4 | 105.7 | 34.8 41.1 62.4 80.2 16.6 25.3

points are triggered when closing the database files, not dur-
ing the normal operation. Please recall from the second col-
umn in Table 2 that those traces have several or more than
tens database files. Meanwhile, in terms of average check-
point latency (the fourth row in Table 4), SQLite/SSL takes
longer than vanilla SQLite. The reason is quite obvious
because, upon checkpoint, SQLite/SSL should double-write
more pages whereas vanilla SQLite only needs to write fewer
pages once from the WAL journal to the original database.
However, across all workloads we tested, the average check-
point time in SQLite/SSL is less than 1 second, which we
believe is acceptable in mobile applications. As you see from
the fifth row in Table 4, the average number of dirty pages
to be written per checkpoint in SQLite/SSL is only 2x or
less than that in vanilla SQLite, which is mainly due to
the update locality in the mobile workloads. As will be
discussed later, the checkpoint latency in both SQLite/SSL
and vanilla SQLite will become intolerably high (e.g., longer
than 7 seconds) when workloads show no update locality.

5.3.2 Worst-case Performance

Until now, we have shown that SQLite/SSL can signif-
icantly outperform vanilla SQLite in real mobile workloads
with strong update locality. In order to illustrate the lim-
itations of SQLite/SSL, we carried out another experiment
with a synthetic workload having no update locality. For
this experiment, we created a partsupply table of the TPC-

H benchmark using the dbgen tool, containing 60,000 tu-
ples of 220 bytes each. In addition, we created two types of
transactions accessing this table, Random-A and Random-B. In
Random-A, each of 10,000 transactions autocommits after
updating only one tuple of the table and consecutive trans-
actions will access the data pages with no locality. Mean-
while, in Random-B, each of five transactions commits in
batch mode after executing 2,000 update statements in se-
quence, each of which updates only one tuple of partsupply
table with no locality. The reason why we chose 2,000 tu-
ples as the unit of batch commit in Random-B workload
is that each transaction is long enough to trigger a check-
point upon every commit in either mode. We believe that
Random-B is the worst-case workload from the perspective
of SQLite/SSL.

For both random workloads, we measured the same set of
update-related metrics presented in Table 1 and the result
is presented in Table 5. From the table, we can observe that
that both workloads show no update locality since the values
of the last column are almost one, unlike the corresponding
values of the real workloads shown in Table 1.

While running both SQLite/SSL and vanilla SQLite using
those two random workloads, we also measured the same set
of key performance metrics listed in Table 4. The result is
presented in Table 6. In case of Random-A workload consist-
ing of short transactions with no locality, SQLite/SSL still
far outperforms vanilla SQLite in terms of both throughput

523



Table 5: Analysis of Update Patterns in Random Workloads: Random-A and Random-B
Trace Total # of page Total # of distinct | Total # of update Page writes / TX Avg. overwrites /
writes (A) pages updated (B) TX (C) (D=A/C) page (E = A/B)
Random-A 11,002 9,053 10,000 T1 T1
Random-B 7,026 7,026 5 1405.2 1.0
Table 6: SQLite Performance for Random Workloads (Vanilla SQLite / SQLite/SSL)
| Trace | I/O Time (sec) | Transaction latency (msec) [ Checkpoint latency (sec) | # of checkpoints
Random-A 166.0 / 13.0 166 /1.3 23 /638 22 /2
Random-B 455 / 38.7 9,002 / 7,743 75/ 8.0 5/5

and transactional latency. This is mainly because vanilla
SQLite suffers from excessive WAL metadata writes and fre-
quent fsync calls due to its force commit policy. In case
of Random-B workload consisting of long transactions with
no locality, SQLite/SSL and vanilla SQLite show almost
the same performance in terms of transactional latency and
throughput. This is because, upon every commit in either
mode, almost 2,000 dirty pages have to be written to both
WAL journal and original database. From this, we con-
clude that SQLite/SSL can perform no worse than vanilla
SQLite even with the worst-case workload such as Random-
B. With respect to the checkpoint latency, we observe that
both SQLite/SSL and vanilla SQLite suffer from long check-
point spikes for both random workloads. In particular, the
checkpoint time of both SQLite versions can spike up to 8
seconds, which is hardly acceptable even in mobile applica-
tion. But, we expect that these extreme random workloads
would be rare in real mobile applications.

5.3.3  Recovery Performance

To evaluate the recovery performance of SQLite/SSL
and vanilla SQLite, we turned off the power of the UMS
board while running each of the six traces. In the case of
vanilla SQLite, the UMS board was turned off when the
WAL journal file was almost filled. Similarly, in the case of
SQLite/SSL, the board was turned off when the SLA file of
750KB size was almost filled. Therefore, the recovery time
will correspond to the worst case in each mode. For each
mode, we measured the time taken to restart the SQLite
database and took the average of restart times from three
separate runs. Table 7 shows the average recovery times of
both modes on the UMS board.

Table 7: Recovery Time (in seconds)

| Trace [[ vanilla SQLite | SQLite/SSL |
AndroBench 0.1 0.34
Gmail 0.1 0.22
KakaoTalk 0.1 0.8
Facebook 0.1 0.35
Browser 0.1 0.63
Twitter 0.1 0.26

The recovery time in vanilla SQLite was about 0.1 seconds
(the second column in Table 7) consistently irrespective of
the traces. This is because the recovery process in the mode
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consists of reading all the pages in the WAL file and creating
the WAL index in the DRAM. In contrast, the recovery time
in SQLite/SSL was varying depending on the traces. As ex-
plained in Section 4.4, the recovery process in SQLite/SSL
consists of reading SQL logs from SLA, re-executing them
in sequence, and carrying out SSL-checkpoint and WAL-
checkpoint. Thus, the CPU time taken in re-executing SQL
statements would not be marginal. In a separate experiment
using the commodity PC with higher CPU performance, we
observed the recovery time in SQLite/SSL was slightly re-
duced consistently across all the traces we tested.

Even though SQLite/SSL takes longer than vanilla SQLite
in terms of recovery time, its recovery time was less than
one second across all traces tested. Considering that the
recovery time in Table 7 is the worst-case one and also the
huge performance benefit for normal operations, we believe
that its recovery time would be acceptable in practice.

6. CONCLUSION

In this paper, we presented the design and implementa-
tion of SQLite/SSL, a type of logical logging scheme, for
mobile applications. For the durability of committing trans-
actions, it force-writes only all update SQL statements from
each transaction while vanilla SQLite force-writes all pages
updated by each transaction in their entireties redundantly.
Our main contributions are in three folds. First, we made an
important observation about the characteristic of transac-
tional workload in SQLite-based mobile applications: short
transactions with high update locality. Second, based on this
observation, we showed that the concept of logical logging
is, though not new at all, a perfect fit for modern SQLite-
based mobile applications. In addition, we showed how the
WAL mode in vanilla SQLite can be used as transaction-
consistent checkpoint mechanism. Third, we demonstrated
that the logical logging can realize its full potential by using
a real PCM board with DIMM interface as its log device.
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