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ABSTRACT
String joins have wide applications in data integration and
cleaning. The inconsistency of data caused by data errors,
term variations and missing values has led to the need for
approximate string joins (ASJ). In this paper, we study ASJ
with abbreviations, which are a frequent type of term vari-
ation. Although prior works have studied ASJ given a user-
inputted dictionary of synonym rules, they have three com-
mon limitations. First, they su↵er from low precision in the
presence of abbreviations having multiple full forms. Sec-
ond, their join algorithms are not scalable due to the ex-
ponential time complexity. Third, the dictionary may not
exist since abbreviations are highly domain-dependent.

We propose an end-to-end workflow to address these lim-
itations. There are three main components in the work-
flow: (1) a new similarity measure taking abbreviations into
account that can handle abbreviations having multiple full
forms, (2) an e�cient join algorithm following the filter-
verification framework and (3) an unsupervised approach to
learn a dictionary of abbreviation rules from input strings.
We evaluate our workflow on four real-world datasets and
show that our workflow outputs accurate join results, scales
well as input size grows and greatly outperforms state-of-
the-art approaches in both accuracy and e�ciency.
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1. INTRODUCTION
Join is one of the fundamental operations of relational

DBMSs. Joining string attributes is especially important
in areas such as data integration and data deduplication.
However, in many applications the data between two tables
is not consistent because of data errors, abbreviations, and
missing values. This leads to a requirement for approximate
string joins (ASJ), which is the topic of this paper.
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1
mit harvd division of health sciences technology

harvard mit division of hst

2
camp activ compl

campus activities complex

3
dept of athletics phys ed recreation

daper

4
us and p

urban studies and planning

Figure 1: Some similar department names in the
MIT Data Warehouse found by our approach.

In ASJ, the similarity between two strings is typically cap-
tured by traditional measures such as Jaccard and edit dis-
tance [13]. These measures calculate a value between 0 and
1, with higher values indicating more similarity. The join
results are string pairs with similarity values not less than a
user-inputted threshold.1

However, abbreviations, as a frequent type of term vari-
ation in real-world data, pose a significant challenge to the
e↵ectiveness of traditional similarity functions. Figure 1
shows several pairs of similar department names with ab-
breviations we found in the MIT Data Warehouse2. We can
see none of these pairs have large edit or Jaccard similarity.

1.1 Previous Research and their Limitations
To address the ine↵ectiveness of traditional measures, two

prior works JaccT [4] and SExpand [15] have studied how to
find similar strings given a user-inputted dictionary of syn-
onym rules. They both adopt the idea of generating a set of
derived strings for any given string s, either by applying syn-
onym rewritings to s [4] or appending applicable synonyms
to s [15], and consider two strings similar if the similarity of
the most similar pair of derived strings is not less than the
threshold.

However, they have three common limitations.

Limitation 1: Low precision is likely when the same ab-
breviation has multiple full forms, as illustrated by the fol-
lowing example.

Example 1. Figure 2 shows two sets of strings and a
user-inputted synonym dictionary. The abbreviation cs has
five di↵erent synonyms (full forms).

JaccT generates derived strings of a string by rewriting
it using applicable synonym rules. For example, string b1

1This threshold is usually greater than 0.5 to avoid outputting too
many dissimilar strings.
2http://ist.mit.edu/warehouse
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String set 1 The synonym dictionary
a1 department of cs

a2 campus security

a3 ctr for control systems

hdept , departmenti
hcs , computer sciencei
hcs , campus securityi
hcs , career servicesi
hcs , control systemsi
hcs , chemical sciencesi

String set 2
b1 dept of computer science

b2 career services

b3 ctr for cs

Figure 2: Example strings and synonym rules to
illustrate prior work [4,15].

= dept of computer science has two applicable synonym
rules: hdept, departmenti and hcs, computer sciencei.
So b1 has 22 = 4 derived strings, namely dept of cs, dept

of computer science, department of cs and depart-

ment of computer science. Given two strings s1 and s2,
JaccT searches for a derived string s01 of s1 and a derived
string s02 of s2 such that f(s01, s

0
2) is maximized where f is

some traditional similarity function3 such as Jaccard4 or
edit similarity. Consider a2 = campus security and b2
= career services. They represent two di↵erent things
and thus should not be considered similar. Yet because they
have a common derived string cs, their JaccT similarity is 1.
More generally, any two di↵erent full forms of cs will have
a JaccT similarity of 1 because they share a common derived
string cs. Therefore, low precision is a possible outcome.

SExpand generates derived strings in a di↵erent way by
appending applicable synonyms. For instance, b1 has the
following four derived strings:

– dept of computer science

– dept of computer science cs

– dept of computer science department

– dept of computer science cs department

Then, in the same manner as JaccT, SExpand calculates the
similarity between two strings by searching for the most sim-
ilar pair of derived strings. Consider a1 = department of

cs and b3 = ctr for cs. The tokens cs in two strings re-
spectively stand for computer science and control sys-

tems. However, because SExpand searches for the most sim-
ilar pair of derived strings, all five full forms of cs will be
appended to both strings (e.g. a0

1 =department of cs com-

puter science campus security career services control

systems chemical sciences), leading to a high similarity
of 11

15 (a0
1\b03 = 11 and a0

1[b03 = 15) . More generally, given
the dictionary in Figure 2, any two strings both containing
cs will get a relatively high SExpand similarity.

Limitation 2: The join algorithms are not scalable.

Based on their similarity measures, both JaccT and SEx-

pand propose a filter-verification algorithm to compute the
join results. In the filter step, they first generate a signature
set for each string which guarantees that two strings are sim-
ilar only if their signature sets intersect. So they select a set
of candidate string pairs whose signature sets intersect. In
the verification step, for each candidate pair, they compute
its real JaccT or SExpand similarity. However, to generate

3For simplicity, in the following we use Jaccard as the default un-
derlying similarity function, but our techniques can be modified to
support other functions.
4The Jaccard similarity of two strings is the number of shared tokens
divided by the number of all distinct tokens in two strings.

the signature set of a string, both JaccT and SExpand need
to enumerate all its derived strings, which are O(2n) where
n is number of applicable synonym rules in this string. This
makes their join algorithms not scalable when n is large.

Limitation 3: The dictionary may not exist, as term ab-
breviations are highly domain-dependent.

Some previous works [5,16] learn synonyms from user-
provided examples of matching strings. However, it is im-
practical for a human to manually compile a set of examples
that is large enough to make this approach e↵ective (in [5],
100,000 examples are used). To this end, the authors used
traditional Jaccard-based ASJ to automatically generate ex-
amples (e.g. all string pairs with Jaccard similarity no less
than 0.8). But we can see from Figure 1 that good examples
of matching strings often have very small Jaccard similar-
ity, making these approaches su↵er from low recall. There is
also some NLP work [3,8,17,19,21] discovering abbreviations
in text. However, these works all rely on explicit indica-
tors of abbreviations in text documents such as parentheses
(e.g. ...At MIT (Massachusetts Institute of Technol-

ogy)...). In the string join setting, those indicators often
do not exist. For example, no string in Figure 1 has paren-
theses.

1.2 Our Solution
To address these limitations, we propose an end-to-end

workflow to e↵ectively and e�ciently solve ASJ with abbre-
viations.

We first propose a new similarity measure which is
robust to abbreviations having multiple full forms. Instead
of searching for the most similar pair of derived strings, we
search for a derived string of one string that is the most
similar to the other string, i.e., find a derived string s01 of
s1 that maximizes f(s01, s2) and vice versa. For example, in
Figure 2, no derived string of campus security will have a
positive Jaccard similarity with career services and vice
versa. We present the formal description and analysis of this
new measure in Section 2. Another big advantage brought
by this new measure is that to compute the similarity, it
has a much smaller search space than JaccT and SExpand,
leading to much more e�cient join computation (Section 3).

We then design an e�cient join algorithm following the
filter-verification framework. In contrast to JaccT and SEx-

pand, we propose a polynomial time algorithm to calcu-
late signatures without iterating through all derived
strings. Calculating the new similarity measure is NP-hard,
so we propose an e�cient heuristic algorithm to verify all
candidate string pairs after the filter step (Section 3).

We also present an unsupervised approach to learn an
abbreviation dictionary5 from input strings. We first ex-
tract a small set of candidate abbreviation rules by assum-
ing that the length of the Longest Common Subsequence
(LCS)6 between an abbreviation and its full form should be
equal or very close to the length of the abbreviation. For
example, the LCS between harvd and its full form harvard

5We focus on discovering abbreviations in this paper, but our similar-
ity measure and join algorithm can use other types of user-inputted
synonym rules.
6A subsequence of a string s can be derived by deleting zero or more
characters in s without changing the order of remaining characters.
The longest common subsequence between two strings is a subse-
quence of both strings which has the most number of characters.

54



is harvd, which is exactly the abbreviation itself. This LCS-
based assumption is expressive. It can capture a variety
of abbreviation patterns such as prefix abbreviations (e.g.
hcamp , campusi), single term abbreviations (e.g. hharvd
, harvardi) and acronyms (e.g. hcs , computer sci-

encei). We search all pairs of a token in any string and
a token sequence in any string that satisfy the LCS-based
assumption. A naive approach which iterates through every
pair runs quadratically in the number of strings and thus
is not scalable. So we propose an e�cient algorithm to
retrieve LCS-based candidate rules without enumerating all
pairs. We then use existing NLP techniques [3,19] to refine
the LCS-based candidate rule set to remove unlikely abbre-
viations. Details are in Section 4.

To summarize, we make the following contributions:

• The first (to our best knowledge) end-to-end workflow
solving ASJ with abbreviations.

• A new string similarity measure taking abbreviations
into account which is robust to abbreviations having
multiple full forms and enables much more e�cient
join computation than previous measures.

• An e�cient join algorithm which generates signatures
for strings in PTIME (as opposed to the exponential
approach adopted by previous works) and calculates
similarities e�ciently using a heuristic algorithm.

• An unsupervised approach to e�ciently learn a com-
prehensive abbreviation dictionary from input strings.

• Experimental results on four real-world datasets demon-
strating that (1) our join results have high accuracy,
(2) the entire workflow scales well as the input size
grows and (3) individual parts of the workflow outper-
form state-of-the-art alternatives in both accuracy and
e�ciency.

2. STRING SIMILARITY MEASURE AND
JOINS WITH ABBREVIATIONS

We start by describing how we formally model strings and
abbreviation rules. Next, we introduce a new similarity mea-
sure which quantifies how similar two strings are given a
dictionary of abbreviation rules7. The formal definition of
the ASJ problem is presented at the end of this section.

2.1 Strings and Abbreviation Rules
Wemodel a string s as a token sequence8 s(1), s(2), . . . , s(|s|)

where |s| denotes the number of tokens in s. For example, if
the tokenization delimiter is whitespace, then for s = dept

of computer science, s(1) = dept, s(4) = science and
|s| = 4. The token sequence s(i, j) (1  i  j  |s|) is the
token sequence: s(i), s(i+1), . . . , s(j). For example, for s =
dept of computer science, s(3, 4) = computer science.

An abbreviation rule is a pair of the form habbr , fulli,
where abbr is a token representing an abbreviation and full is
a token sequence representing its full form. Example abbre-
viation rules in Figure 1 include hcamp , campusi, hharvd
, harvardi and hhst , health sciences technologyi.
An abbreviation rule habbr , fulli is applicable in a string

s if either abbr is a token of s, or full is a token subsequence
7Section 4 will introduce how to learn this dictionary.
8A string can be tokenized by splitting it based on common delimiters
such as whitespace.

of s. For example, hcamp , campusi is applicable in camp

activ compl and hcs, computer sciencei is applicable in
department of computer science. We use applicable side
to denote the side of an applicable rule that matches the
string and rewrite side to denote the other side. For ex-
ample, the applicable side of hcamp , campusi w.r.t camp

activ compl is camp whereas the rewrite side is campus.

2.2 Our Measure
We propose a new similarity measure pkduck

9 to address
the issue with previous measures, i.e., low precision in the
presence of abbreviations having multiple full forms. In con-
trast to JaccT and SExpand which search for the most similar
pair of derived strings, we search for a derived string of one
string that is the most similar to the other string.

Formally, we use pkduck(R, s1, s2) to denote the similarity
between strings s1 and s2 given a dictionary R of abbrevi-
ation rules. pkduck(R, s1, s2) is calculated as follows. For a
given string s, we use A(s) to denote the set of applicable
rules in s. Applying an applicable rule means rewriting the
applicable side with the rewrite side. Following JaccT, we
get a derived string s0 of s by applying rules in a subset of
A(s) such that the applications of rules do not overlap (i.e.
each original token is rewrote by at most one rule)10. We
use D(s) to denote the set of all derived string of s. Then,

pkduck(R, s1, s2) = max

8
<

:

max
s

0
12D(s1)

Jaccard(s01, s2)

max
s

0
22D(s2)

Jaccard(s1, s
0
2)

(1)

Example 2. Consider in Figure 1 the fourth similar string
pair s1 = us and p and s2 = urban studies and plan-

ning. Let R be {hus , urban studiesi, hp , planningi}.
We have A(s1) = A(s2) = R. D(s1) contains the following
strings:

– us and p

– us and planning

– urban studies and p

– urban studies and planning

The fourth derived string has the highest Jaccard similarity
(1.0) with s2, thus max

s

0
12D(s1)

Jaccard(s01, s2) = 1. Similarly,

we can calculate that max
s

0
22D(s2)

Jaccard(s1, s
0
2) = 1. Thus

pkduck(R, s1, s2) equals 1.

Let us consider again the dissimilar string pairs in Figure
2 which both JaccT and SExpand consider similar. For a2 =
campus security and b2 = career services, their pkduck

similarity is 0. Similarly, for a1 = department of cs and
b3 = ctr for cs, their pkduck similarity is only 1

5 . We
can see this new measure is robust to abbreviations having
multiple full forms.

Analysis. Because any string is also a derived string
of itself, the pkduck similarity of two strings is always no
less than their Jaccard similarity. That is to say, pkduck

subsumes Jaccard and other traditional similarity functions
that can replace Jaccard in Equation 1.

Compared to JaccT and SExpand, not only can the pkduck
measure handle abbreviations having multiple full forms, the
9
pkduck is an abbreviation of the famous Chinese dish Peking Duck.

10As shown in [4], calculating derived string becomes intractable if we
allow a token generated by some rule application to participate in
other rule applications.
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search space is also significantly reduced. Let n denote the
number of applicable rules in a string. Both JaccT and SEx-

pand have a search space of O(22n) whereas the search space
of pkduck is only O(2n). As will be shown in Section 3, this
will lead to more e�cient join computation. We will also
show in Section 3 that calculating pkduck similarity values
is NP-hard and propose an e�cient heuristic algorithm.

Note that it is not viable to generate derived strings as
SExpand does by appending strings with applicable abbrevi-
ations/full forms. The reason is that the original tokens are
preserved, so if we search for a derived string of one string
that is the most similar to the other string, the resulting
similarity will often be lower than expected. Consider s1 =
harvd, s2 = harvard and a given applicable rule hharvd ,
harvardi. If we generate derived strings as SExpand does,
D(s1) will have two derived strings harvd and harvd har-

vard. So max
s

0
12D(s1) Jaccard(s

0
1, s2) is only 1

2 and vice
versa. In contrast, their pkduck similarity is 1.

2.3 Problem Formulation
The ASJ problem we study receives as input a set S

of strings, and a real number ✓ 2 [0, 1]. We learn from
S a dictionary R of abbreviation rules (Section 4). The
output is the set of string pairs {s1, s2} 2 S ⇥ S where
pkduck(R, s1, s2) � ✓. We focus on self-join in this paper
for ease of presentation, but our approach easily extends to
joining two sets of strings.

3. JOIN ALGORITHM
Our join algorithm follows the filter-verification frame-

work [4,9,15]. In the filter step, we use a signature-based
scheme to select from the O(|S|2) search space a small set
of candidate string pairs. In the verification step, we cal-
culate the pkduck similarity for every candidate string pair
and output those with pkduck similarities not less than ✓.

We review the conventional signature scheme in Section
3.1. Section 3.2 describes a new filtering scheme for pkduck
by extending the conventional signature scheme. Naively
calculating the new signatures is not scalable, so we intro-
duce a PTIME signature generation algorithm in Section
3.3. In Section 3.4, we propose an e�cient heuristic algo-
rithm to calculate pkduck similarities.

3.1 Conventional Signature Schemes
Conventional signature schemes [6,9,14,26] construct a sig-

nature set for each input string and filter out those string
pairs whose signature sets do not intersect. We use the
widely-adopted prefix-filter [9] to briefly illustrate this idea.

We assume in the rest of Section 3 a global ordering of all
tokens constituting the strings in S is determined11. Given
a similarity threshold ✓, the prefix-filter signature set of s,
denoted as Sigpf(s), is a prefix token sequence of s after
sorting its tokens based on the global ordering. The length
of the prefix is determined by a function I

✓

of |s|: I
✓

(|s|)
= b(1� ✓) · |s|c+ 1. This function I

✓

ensures the signature
property that two strings have a Jaccard similarity not less
than ✓ only if Sigpf(s1) and Sigpf(s2) intersect12. So in
traditional Jaccard-based ASJ, we can safely prune those

11Prefix-filter works correctly for any token ordering but the ascending
order of frequency generally achieves the best performance [6].

12See [9] for proof.

Global token ordering:
planning < us < urban <

studies < p < and

R = {hus , urban studiesi, hp , planningi}

s1 = us and p Sigpf(s1) = {us}

s2 = urban studies

and planning

Sigpf(s2) = {planning,urban}

(a) The first table contains a global token ordering and a rule dic-
tionary. Strings s1 and s2 and their prefix-filter signature sets are
shown in the second table.

s01 Sigpf(s
0
1)

1. us and p {us}
2. us and planning {planning}
3. urban studies and p {urban,studies}
4. urban studies and planning {planning,urban}

Sigu(s1) = {planning,us,urban,studies}
(b) An illustration of calculating Sigu(s1).

Figure 3: An illustration of our filtering scheme.
The user-inputted join threshold ✓ is 0.7.

pairs where Sigpf(s1) and Sigpf(s2) do not intersect, and
see the remaining pairs as candidate pairs.

Consider the example in Figure 3(a). A global token or-
dering and a rule dictionary containing two rules are given.
The user-inputted threshold ✓ is 0.7. s2 has 4 tokens, so
Sigpf(s2) contains the I

✓

(4) = b(1� ✓) · 4c+ 1 = 2 smallest
tokens of s2, i.e., planning and urban.

3.2 Filtering Scheme for pkduck
Because calculating pkduck similarities involves abbrevia-

tion rules in R, conventional signature schemes are no longer
su�cient. For example, in Figure 3(a), pkduck(R, s1, s2) =
1 � ✓, but their prefix-filter signature sets do not intersect.

In this subsection, we extend the prefix-filter13 signature
approach to design a filtering scheme for pkduck.

We first observe that pkduck(R, s1, s2) � ✓ if and only if

max
s

0
12D(s1)

Jaccard(s01, s2) � ✓ (2)

or

max
s

0
22D(s2)

Jaccard(s1, s
0
2) � ✓ (3)

Next, we calculate for each string s a signature set Sigu(s),
which is the union of the prefix-filter signature sets of all its
derived strings, i.e.,

Sigu(s) =
[

s

02D(s)

Sigpf(s
0)

Figure 3(b) shows the prefix-filter signatures of all derived
strings of s1 and Sigu(s1).

The following theorem involving Sigu(s) shows a necessary
condition for two strings to be similar.

13Our filtering scheme can be fit in by any conventional signature
scheme, but we focus on extending prefix-filter in this paper. Section
6 includes an explanation on this choice.
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Theorem 1. s1 and s2 satisfy Equation 2 only if Sig
u

(s1)\
Sig

pf

(s2) 6= ? and vice versa for Equation 3.

Due to space constraints, we put all proofs of theorems
into our extended technical report [1].

Theorem 1 states that, we can select as candidate string
pairs all {s1, s2} where Sigu(s1) and Sigpf(s2) intersect, or
Sigu(s2) and Sigpf(s1) intersect. The pairs not selected can
be safely pruned because they do not satisfy Equation 2 or
Equation 3 and thus will have a pkduck similarity less than
✓. In Figure 3, {s1, s2} is selected as a candidate string pair
because Sigu(s1) \ Sigpf(s2) 6= ?.

Comparison with JaccT [4] and SExpand [15]. Both
JaccT and SExpand calculate the similarity between two
strings by searching for the most similar pair of derived
strings. So the authors of JaccT and SExpand propose to
select as candidate string pairs all {s1, s2} where Sigu(s1)
and Sigu(s2) intersect. We can see that our filtering frame-
work selects significantly fewer candidate pairs than JaccT

and SExpand because Sigpf(s) is subsumed by Sigu(s) and
is expected to have much fewer tokens. Therefore, in ad-
dition to handling abbreviations having multiple full forms,
the pkduck measure also leads to better performance.

3.3 PTIME Signature Generation
An important yet unanswered question is how to calculate

the signature set Sigu(s), given an input string s. JaccT and
SExpand both calculate Sigu(s) in a brute-force manner by
enumerating all possible derived strings, which are O(2n).
This is not scalable when n is large. In this subsection, we
propose a PTIME algorithm to calculate Sigu(s).

3.3.1 Basic Flow of the Algorithm

Figure 4 shows the basic flow of our algorithm.

The main idea is to loop over each possible signature t and
test if t is in Sigu(s). The motivation is that the set T of
tokens from which Sigu(s) can draw is small and polynomial.
T only contains tokens in s and any rule in A(s), so |T | is
O(k · n) where k is the maximum number of tokens a string
in S could have, i.e., max

s2S

|s|.
Given a token t, isInSigU is the key function testing if t

is in Sigu(s). We implement this isInSigU function using
the idea of categorizing derived strings of s based on the
number of tokens they have. W

l

is the set of derived strings
of s containing t and having l tokens. X

l

is the least number
of smaller tokens (tokens preceding t in the global ordering)
that one string in W

l

could have (Section 3.3.2 will describe
how to calculate X

l

). We have the following theorem.

Theorem 2. t is in Sig
pf

(s0) of a string s0 2 W
l

if and
only if X

l

+ 1  I
✓

(l). 14

For example, let s be s1 and t be studies in Figure 3. W4

contains the third and the fourth derived strings of s1, which
both have four tokens and contain the token studies. The
third derived string contains one smaller token urban while
the fourth derived string contains two, so X4 = 1. Then
we have X4 + 1 = 2  I

✓

(4) = 2. Therefore, studies is in
the prefix-filter signature set of one string in W4 (the third
derived string in Figure 3(b)).

To check if t is in Sigu(s), we just need to check if there
exists an l s.t. X

l

+1  I
✓

(l). Note that l values greater than
14See the extended technical report [1] for proof.

t True/False

Figure 4: The flow of calculating Sig
u

(s).

b k
✓

c do not need to be considered because derived strings
having more than this number of tokens will have a Jaccard
similarity less than ✓ with any string in S.

3.3.2 Calculating X
l

using Dynamic Programming

We propose a dynamic programming algorithm to calcu-
late X

l

. Formally, let g(i, l, o) denote the least number of
smaller tokens a string satisfying the following constraints
could have: (1) it is a derived string of the first i tokens of
s (i.e. s(1, i)), (2) it has l tokens and (3) it contains token
t if o = T and does not contain token t if o = F . It can be
seen that X

l

= g(|s|, l, T ).
We can recursively calculate g(i, l, o) by considering the

di↵erent cases of s(i)’s participation in rule applications.
Specifically, g(i, l, T ) is the minimum over the following things:

1. g(i� 1, l� 1, T ) + small(s(i)), where small(s(i)) eval-
uates to 1 if s(i) is a smaller token and 0 otherwise. In
this case, token s(i) does not participate in any rule
application.

2. g(i�1, l�1, F )+small(s(i)), if s(i) is t. s(i) still does
not participate in any rule application in this case. Yet
because we use g(i� 1, l � 1, F ) to calculate g(i, l, T ),
s(i) must be token t.

3. min
r2end(i) g(i � aside(r), l � rside(r), T ) + small(r),

where end(i) is the set of rules in A(s) that end at
s(i), aside(r) and rside(r) are respectively the size of
the applicable side and rewrite side of a rule r, and
small(r) is the number of smaller tokens in the rewrite
side of r. In this case, we are trying to apply a rule
ending at s(i).

4. min
r2end(i)

T
At(s) g(i�aside(r), l�rside(r), F )+small(r),

where A
t

(s) is the set of rules in A(s) whose rewrite
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side contains t. We are still trying to apply rules end-
ing at s(i), but similar to the second case, the rewrite
side of a rule must contain t.

The recursion base is g(0, 0, F ) = 0. The calculation of
g(i, l, F ) is similar and simpler.

Example 3. Suppose we want to check if studies is in
Sig

u

(s1) in Figure 3, where s1 = us and p. Consider the
calculation of g(1, 2, T ). Token s1(1) must participate in a
rule application, otherwise the resulting derived string will
not have two tokens. There is only one applicable rule hus
, urban studiesi ending at s1(1), which has studies as
well as one smaller token urban in the rewrite side. So
g(1, 2, T ) = g(0, 0, F )+1 = 1. Similarly, we can get g(2, 3, T ) =
g(3, 4, T ) = 1. Finally, because X4 + 1 = g(3, 4, T ) + 1 
I
✓

(4), we know studies is in Sig
u

(s1).

Complexity Analysis. There are O(k · n) tokens in T
which we will loop over. The time complexity of calculating
X

l

values is O(k · n) because each applicable rule is consid-
ered once for each l. Therefore, the overall time complexity
of generating Sigu(s) for a string is O(k2n2).

Further Optimization. Consider the third and fourth
cases of the recursive calculation of g(i, l, T ). We need to
consider every applicable rule ending at s(i). We observe
that this process can be further optimized by categorizing
rules ending at s(i) based on aside(r) and rside(r). For
the same combination of aside(r) and rside(r), we only
care about the rule that has the fewest smaller tokens in
the rewrite side. We can then precompute this information
and reduce the overall signature generation complexity from
O(k2n2) to O(k3n). This optimization technique, we call
rule compression, is especially e↵ective given the dictionary
learned in Section 4 because n is often much greater than k
as we will show in our experiments.

3.4 Candidate Verification
The last step of the join algorithm is to verify candidate

string pairs. Unfortunately, the following theorem states the
hardness of calculating pkduck similarities.

Theorem 3. Calculating pkduck similarities is NP-Hard.
15

So we propose an e�cient heuristic algorithm to calculate
pkduck similarities for all candidate pairs. In the following,
we only consider calculating max

s

0
12D(s1) Jaccard(s

0
1, s2). Cal-

culating max
s

0
22D(s2) Jaccard(s1, s

0
2) is the same.

The basic idea is to keep applying the most ‘useful’ appli-
cable rule until no applicable rule remains. The usefulness
U(r) of an applicable rule r 2 A(s1) is defined as follows.
Suppose there are c common tokens between the rewrites
side of r and s2, U(r) is defined as c

rside(r) , which is the
percentage of ‘useful’ tokens in the rewrite side.

Main steps of this algorithm are:

(1) Select an applicable rule r 2 A(s1) with the largest
U(r) and apply it;

(2) If no r exists or U(r) = 0, goto (6);

(3) Remove fromA(s1) all rules whose applicable side over-
laps with that of r;

15See the extended technical report [1] for proof.

(4) Remove from s2 tokens that intersect with the rewrite
side of r;

(5) Recalculate rule usefulnesses, goto (1);

(6) return Jaccard(s01, s2).

The time complexity of this algorithm is O(k · n) because
the loop from step (1) to (5) repeats at most k times and
each loop takes O(n) time to select the most useful rule and
update rule usefulnesses.

The algorithms for calculating JaccT and SExpand simi-
larities have the time complexity of respectively O(22n) and
O(k ·n2), which are not scalable when n is large. The lower
time complexity of our algorithm results from the smaller
search space of pkduck. pkduck only searches for a derived
string of one string that is the most similar to the other
string, so step (1) in the above algorithm only needs to con-
sider applicable rules of one string. In contrast, SExpand

has to consider applicable rules of both strings, resulting in
a time complexity quadratic in n, while JaccT uses a brute-
force approach iterating over all pairs of derived strings.

4. LEARNING ABBREVIATION RULES
In this section, we present an unsupervised approach to

learn an abbreviation dictionary from input strings. Given
a set of strings S, every pair of a token in S and a token
sequence in S can form a potential abbreviation rule. How-
ever, the number of pairs is huge and most of the pairs do
not contain real abbreviations.

To this end, in Section 4.1, we describe a Longest Common
Subsequence (LCS) based approach to e�ciently extract a
small set of candidate abbreviation rules. In Section 4.2, we
discuss how to use existing NLP techniques to further refine
the LCS-based candidate rule set.

4.1 Generating LCS-based Candidate Rules
4.1.1 The LCS-based Assumption

We assume that the length of the LCS between an ab-
breviation and its full form is usually equal or very close
to the length of the abbreviation. Consider the following
abbreviation rules in Figure 1:

– hcompl , complexi,
– hharvd , harvardi,
– hhst , health sciences technologyi.

Characters in blue form the LCS between the abbreviation
and the full form in each rule. We can see that in each rule,
the length of the LCS equals the length of the abbreviation
(i.e. the abbreviation is a subsequence of its full form).
There are also rules where the length of the LCS is very
close but not exactly equal to the length of the abbreviation
such as hbill , williami.
More formally, we make the assumption that, in an abbre-

viation rule habbr , fulli, the di↵erence between the length
of LCS(abbr, full) and the length of abbr is smaller than or
equal to a small threshold � (typically 0 or 1 in practice),
i.e., |abbr|� |LCS(abbr , full)|  �.

This LCS-based assumption is expressive and can capture
a variety of frequent abbreviation patterns, including prefix
abbreviations (e.g. hcamp , campusi), single term abbrevi-
ations (e.g. hmgmt , managementi) and acronyms (e.g. hcs
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, computer sciencei). Moreover, it can also capture some
common misspellings (e.g. hmanuver , maneuveri) and er-
roneous concatenations (e.g. hnewyork, new yorki) which
frequently appear in manually entered data.

Therefore, we generate a set of LCS-based candidate rules
by identifying all pairs of a token and a token sequence from
strings in S that satisfy the LCS-based assumption. The
formal definition of the LCS-based candidate rule generation
problem is presented in Definition 1.

Definition 1 (LCS-based Rule Generation). Given
a set S of strings and a non-negative integer �, find all dis-
tinct rules habbr, full i s.t. (1) |abbr |�|LCS(abbr , full)| 
� and (2) there exist two strings s1 and s2 in S s.t. abbr is
a token of s1 and full is a token subsequence of s2.

4.1.2 Efficient Calculation

The key challenge in solving the candidate rule generation
problem is how to e�ciently identify the candidate rules. We
first describe a naive algorithm.

A Naive Algorithm. The most straightforward way to
identify the candidate rules is to enumerate all possible pairs
of a token (abbr) and a token sequence (full) in S and use
the following standard dynamic programming procedure to
compute LCS(abbr, full) and check whether the LCS-based
assumption is satisfied:

f(i, j) =

8
<

:

0, i = 0 or j = 0
f(i� 1, j � 1) + 1, i, j > 0 and s1[i] = s2[j]

max(f(i, j � 1), f(i� 1, j)), i, j > 0 and s1[i] 6= s2[j]

where s1 is abbr, s2 is the concatenation of tokens in full,
s
x

[i] denotes the i-th character of string s
x

(counting from
1) and f(i, j) denotes the LCS between the prefix of s1 with
length i and the prefix of s2 with length j.

There are O(|S| ·k) tokens and O(|S| ·k2) token sequences
(recall that k is the maximum number of tokens that a string
in S could have). So the search space is O(|S|2 ·k3). Even if
we see k as a relatively small constant, this search space is
still quadratic in |S|, making this naive algorithm not scale
when |S| is large.

Despite this huge search space, the number of candidate
rules is expected to be much smaller due to the LCS-based
assumption. This motivates us to design the following e�-
cient algorithm to retrieve LCS-based candidate rules with-
out enumerating all pairs.

E�cient trie-based Algorithm. For simplicity, we first
discuss the case of � = 0, i.e., identifying all pairs of a token
t and a token sequence ts in S where t is a subsequence
of ts. We will discuss later how to extend our algorithm to
the case of � > 0.

Our algorithm is based on the trie structure [11], which
is widely used in Information Retrieval to e�ciently index a
set of strings and search a query string in linear time in the
string length. Figure 5 shows the trie constructed for four
strings. The string formed by concatenating the characters
on the path from the root to a node is called the prefix of
that node. For example, the prefix of node 10 is dap. We
say a trie node matches a string if the string equals the
prefix of this node. In Figure 5, every leaf node (in orange)
uniquely matches one original string16.

16Indexed strings are often appended a special character to ensure no
string is the prefix of another.
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Figure 5: A trie constructed by four strings.

We first create a trie T to index all tokens in S. Then, the
core problem we need to solve is for each token sequence ts
in S, find all leaf nodes in T that matches some subsequence
of ts.

Our algorithm recursively calculates this set of leaf nodes
by considering the characters in ts one by one. Formally,
we use F (i) to denote the set of nodes in T that match
some subsequence of the first i characters of ts (denoted as
ts[1..i]). The recursion base is F (0) = {root of T}, meaning
the root matches the empty subsequence. What we need
are all leaf nodes in F (|c|) where c is the concatenation of
tokens in ts.

For i > 0, F (i) is calculated based on F (i� 1) as follows.
According to the definition of F (i), F (i � 1) should be a
subset of F (i) because subsequences of ts[1..i � 1] are also
subsequences of ts[1..i]. So we initially set F (i) to F (i� 1).
Let c

i

denote the i-th character of ts. Recall that each node
x 2 F (i�1) matches a subsequence of ts[1..i�1]. If x has an
outgoing edge with a character label c

i

to a child x0, we can
append c

i

to the subsequence that x matches, and form a
new subsequence of ts[1..i]. This new subsequence of ts[1..i]
is matched by the child x0, which we add to F (i).

Every leaf node x 2 F (|c|) matches a token in S which is
also a subsequence of ts. Therefore, the prefix of x and ts
can form a valid LCS-based candidate rule.

We use the following example to illustrate the recursive
calculation of the F sets.

Example 4. Let T be the trie in Figure 5 and ts be health
st. The F sets are in the following table.

i c
i

F (i)
0 {1}
1 h {1, 2}
2 e {1, 2}
3 a {1, 2, 4}
4 l {1, 2, 4}
5 t {1, 2, 4}
6 h {1, 2, 4}
7 s {1, 2, 4, 5}
8 t {1, 2, 4, 5, 9}

Let us consider the calculation of F (8). F (7) contains
nodes 1, 2, 4 and 5 which respectively match the empty sub-
sequence, subsequences h, ha and hs. The 8-th character is
t. In F (7), only node 5 has an outgoing edge with character
label t. Thus, node 9 is added into F (8).
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Algorithm 1: LCS-based Candidate Rule Generation

Input: A set S of tokenized strings.
Output: A set R of LCS-based candidate rules.

T  an empty trie;1

for each token t in S do2

Insert t into T ;3

R ?;4

root the root node of T ;5

for each token sequence ts 2 S do6

c concatenation of tokens in ts;7

F (0) {root};8

for i 1 to |c| do9

F (i) F (i� 1);10

for each x 2 F (i� 1) do11

if node x has an outgoing edge with12

character c
i

then
x0  the corresponding child;13

Insert x0 into F (i);14

for each x 2 F (|c|) do15

if node x is a leaf node then16

abbr  the prefix of x;17

full  ts;18

Insert habbr , fulli into R;19

return R;20

After calculating all F sets, node 9 is the only leaf node
in F (8), which suggests one valid LCS-based candidate rule
hhst , health sti.

Algorithm 1 presents the pseudo-code of our algorithm.
Lines 9⇠14 show the recursive calculation of the F sets.
Lines 15⇠19 generate an LCS-based candidate rule for each
leaf node in F (|c|).

Extension to � > 0. To support positive � values, we can
modify the above algorithm as follows. First, for any token
t and token sequence ts, if |t|� |LCS(t, ts)|  �, LCS(t, ts)
must be one of the subsequences of t having at least |t|� �
characters. Because � is small, we can just insert all these
subsequences into the trie index. Second, in Line 17 of Al-
gorithm 1, if the prefix of x is not a token in S, we should
assign to abbr the original token in S that x corresponds to.

Performance Analysis. Constructing a trie for a set of
strings runs linearly in the sum of the string length. So the
cost of building a trie is very small.

For a given token sequence ts, compared to the naive ap-
proach, our algorithm does not iterate over all leaf nodes
and only visits trie nodes that match a subsequence of ts.
In the worst case, this number could be as large as the size
of T . But we will empirically show in Section 5 that this
number is very small on real-world datasets and that this
algorithm is very e�cient and scales well.

4.2 Refinement
Some of the LCS-based candidate rules are not likely to

contain real abbreviations. Consider the rule hte, databasei.
Although it satisfies the LCS-based assumption, in practice
it is unlikely that people will abbreviate database as te.
Other examples include hia , informationi and hay ,

dictionaryi. Including those kinds of rules in the dictio-
nary not only incurs unnecessary overhead in the ASJ pro-
cess but also hurts the accuracy of join results since they
falsely equate a pair of a token and a token sequence.

Thus it is important to design a rule refiner17 to filter out
rules that are not likely to contain real abbreviations from
the LCS-based candidate rule set.

We implement the rule refiner combining heuristic pat-
terns from existing NLP works [2,3,19,21]. By analyzing
large amounts of text, these works create handcrafted heuris-
tic patterns to filter out unlikely abbreviations from a set
of candidates extracted from text. An example pattern is
that if a vowel letter in full preceded by a consonant let-
ter matches a letter in abbr, the preceding consonant letter
must also match a letter in abbr. For example, in hte ,
databasei, the e in database matches the e in te, but the
preceding s does not match any letter in te. Thus this rule
will be filtered out by this pattern. Similarly, hia, infor-

mationi and hay , dictionaryi will also be filtered out by
this pattern. Interested readers should refer to the papers
for more patterns and details.

There are also some supervised learning approaches [8,18,
28] that can be adopted to implement the rule refiner. How-
ever, we focus on building an automatic end-to-end work-
flow and leave the comparison of di↵erent implementations
for future work.

5. EXPERIMENTAL RESULTS
In this section, we describe our experiments and results.

The goals of our experiments are (1) evaluating the end-to-
end accuracy and e�ciency of our workflow and (2) compar-
ing individual parts of our workflow with state-of-the-art al-
ternatives. Section 5.1 describes the experimental settings.
Section 5.2⇠5.4 respectively evaluates our similarity mea-
sure, join algorithm and abbreviation dictionary.

5.1 Experimental Settings
Datasets. We use four real-world datasets:

• Disease contains 634 distinct disease names. The av-
erage number of tokens per string (denoted as a) is
2.1 and the maximum number of tokens a string could
have (denoted as k) is 10.

• Dept contains 1,151 distinct department names we
collect from the MIT Data Warehouse by merging all
department name columns in all tables. The a value
and k value are respectively 3.4 and 10.

• Course contains 20,049 distinct course names we col-
lect from the MIT Data Warehouse by merging all
course name columns. The a value and k value are
respectively 4.1 and 17.

• Location contains 112,394 distinct location names
(street names, city names, etc.) we collect from 7,515
tables crawled from Data.gov. The a value and k value
are respectively 3.6 and 13.

Sample similar strings. Figure 1 shows sample similar
strings in the Dept dataset found by our approach. Figures
6, 7 and 8 show some sample similar strings in Disease,

17The characteristics of abbreviations are language-dependent [18,22],
but we focus on English abbreviations in this paper.
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Table 1: Comparing pkduck with SExpand and traditional non-weighted Jaccard (using LCS-based dictionary
with � = 0). JaccT is not included because it did not terminate in one week. P, R and F respectively stand
for Precision, Recall and F-measure.

✓
Disease Dept Course Location

P R F P R F P R F P R F

Jaccard
0.7 0.00 0.00 0.00 0.64 0.18 0.28 0.45 0.08 0.14 0.53 0.21 0.30
0.8 0.00 0.00 0.00 0.60 0.08 0.14 0.50 0.03 0.06 0.25 0.01 0.02
0.9 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.01 0.01 0.00 0.00 0.00

SExpand

0.7 0.71 0.75 0.73 0.14 0.93 0.25 0.01 1.00 0.03 0.01 0.98 0.02
0.8 0.83 0.73 0.78 0.30 0.90 0.45 0.04 0.99 0.07 0.01 0.97 0.03
0.9 0.99 0.69 0.82 0.42 0.62 0.50 0.15 0.89 0.25 0.02 0.74 0.05

pkduck

0.7 0.88 0.74 0.81 0.75 0.79 0.77 0.66 0.77 0.71 0.46 0.55 0.50
0.8 0.97 0.72 0.83 0.83 0.60 0.70 0.78 0.58 0.66 0.74 0.28 0.40
0.9 0.99 0.72 0.83 0.96 0.37 0.54 0.95 0.39 0.56 0.80 0.24 0.37

1
cmt disease

charcot marie tooth disease

2
ic/pbs

interstitial cystitis/painful bladder syndrome

Figure 6: Sample similar strings in Disease.

1
prac it mgmt

practical information technology management

2
seminar in marine geology and geophysics at mit

sem in mg g at mit

3
quant analysis emp methods

quant analysis empirical meth

Figure 7: Sample similar strings in Course.

Course and Location. These demonstrate that abbrevia-
tions are a common type of term variation in real-world data
and that solving ASJ with abbreviations has pragmatic ben-
efits.

Quality Metrics of Join Results. We have all pairs of
strings that refer to the same disease (i.e. the ground truth)
for the Disease dataset. For Dept, we manually construct
the ground truth. For Course and Location, we randomly
sample 5% strings and manually construct the ground truth.
Then we test the Precision (P), Recall (R) and F-measure
(F), where F = 2⇥P⇥R

P+R

. All reported P, R and F numbers
are rounded to the nearest hundredth.

Implementation & Environment. Non-weighted Jac-
card is used as the underlying similarity function f . All al-
gorithms are implemented in C++18. All experiments were
run on a Linux server with 1.0GHz CPU and 256GB RAM.

5.2 Evaluating the Similarity Measure
In this experiment, we compare our pkduck similarity mea-

sure with traditional non-weighted Jaccard, JaccT [4] and
SExpand [15] by evaluating the end-to-end accuracy of join
results.

LCS-based dictionary with � = 0 is used. Table 2 shows
some characteristics of this dictionary. Section 5.4 will in-
clude a comparison of di↵erent dictionaries.

We implement JaccT and SExpand using a modification of
our signature generation algorithm to generate JaccT and

18Due to space limitation, interested readers could refer to our ex-
tended technical report [1] for a discussion on how to implement the
ASJ in an RDBMS and an additional scalability experiment.

1
martin luther king ave se

mlk avenue se

2
historic columbia river hwy e

hist col rvr hwy

3
broadway ste

brdway suite

Figure 8: Sample similar strings in Location.

Table 2: Characteristics of the LCS-based dictionary
(� = 0). n is the number of applicable rules in a
string. f is the sum of the frequency of abbreviations
having more than 5 di↵erent full forms.

Maximum n Average n f
Disease 51 2.60 0.02
Dept 188 11.90 0.04

Course 1,351 40.87 0.20
Location 1,716 38.87 0.26

SExpand signatures in polynomial time19. However, even
with this optimization, JaccT still did not terminate in one
week on any dataset because of the O(22n) algorithm used
to calculate the similarities for candidate string pairs, where
n is can be in the thousands as shown in Table 2. Therefore,
we conclude that it is not practical to use JaccT and do not
include it in the comparison.

Results are shown in Table 1. We observe the following:

• Our pkduck measure has the highest F-measure on all
datasets, and greatly outperforms SExpand. For ex-
ample, on Course, pkduck’s highest F-measure is 0.71
(✓ = 0.7) while SExpand’s highest F-measure is only
0.25 (✓ = 0.9).

• SExpand su↵ers from low precision. For example, on
Location, SExpand’s highest precision is only 0.02.
This is because SExpand is susceptible to abbrevia-
tions having multiple full forms, which are frequent
in input strings as shown in Table 2. In general, as
analyzed in Example 1, any two strings both contain-
ing an abbreviation that has multiple full forms will
get a high SExpand similarity. Note on Disease with

19See our extended technical report [1] for details on the modification.
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✓ = 0.9, SExpand has high precision (0.99). This is be-
cause abbreviations having multiple full forms are not
very frequent and the threshold is large.

• Jaccard has very low recall. The highest recall on all
datasets is only 0.21. This is not surprising because
matching strings often have very low Jaccard similarity
as shown in Figures 1, 6, 7 and 8.

Limitations. Despite the clear benefits pkduck has, we
note its two limitations. First, pkduck is often subject to the
ine↵ectiveness of the underlying function f :

• pkduck has relatively low recall when ✓ is large. For
example, on Course with ✓ = 0.9, the recall of pkduck
is only 0.39. This actually results from the use of Jac-
card as the underlying similarity function. For two
strings both containing very few tokens, a single dan-
gling token will result in a very low Jaccard similar-
ity. Consider two strings s1 = dept of cs and s2 =
department cs. Even with the rule hdept , depart-

menti, their pkduck similarity is only 2
3 because of the

dangling token of. On the contrary, SExpand is less
sensitive to the underlying function because it can ap-
pend di↵erent full forms of the same abbreviation to
both strings to increase their similarity. For exam-
ple, suppose cs has five di↵erent full forms as in Fig-
ure 2, the SExpand similarity between s1 and s2 is 12

13
(s01 \ s02 = 12 and s01 [ s02 = 13). Unfortunately, as
mentioned before, this comes at the cost of precision.

• The fact that some strings are considered similar by f
even if they actually mean di↵erent things, may cause
pkduck to incorrectly join some strings. One exam-
ple of such false positives on Course is s1 = spe-

cial sub in ee cs and s2 = special sub in com-

puter science, with a learned rule hcs , computer

sciencei. Their pkduck similarity is 5
6 because the

Jaccard similarity between s01 = special sub in ee

computer science and s2 is 5
6 . However, they are two

di↵erent courses.

Second, pkduck may join an abbreviation with an incorrect
full form. For example, one false positive on Disease is
s1 = ml and s2 = metachromatic leukodystrophy (s1 refers
to mucolipidoses not s2). In this case, considering other
attributes of a record will help (e.g. the symptoms of a
disease). However, this is beyond the scope of this paper so
we leave it for future work.

5.3 Evaluating the Join Algorithm
In this experiment, we evaluate the e�ciency and scala-

bility of our join algorithm and compare it with JaccT and
SExpand. JaccT, SExpand and our join algorithm all fol-
low the filter-verification framework which first generates
prefix-filter signatures, then selects a set of candidate string
pairs and finally verifies each candidate string pair. So we
first compare our join algorithm with JaccT and SExpand

in terms of signature generation e�ciency, number of candi-
date string pairs and verification e�ciency. Then, we eval-
uate how our join algorithm scales as the input size varies.
The LCS-based dictionary with � = 0 is used.

Signature generation. Both JaccT and SExpand calcu-
late the signature of a string by iterating over its derived
strings, which is O(2n). Table 2 shows that in LCS-based
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Figure 9: Performance of our PTIME signature gen-
eration algorithm. JaccT and SExpand did not finish
generating signatures in one week.

 0

 25

 50

 75

 100

0.7 0.8 0.9

#
 o

f 
ca

n
d
id

a
te

 p
a
ir
s 

(×
1
0

6
)

θ

pkduck
JaccT

SExpand

(a) Course

 0

 25

 50

 75

0.7 0.8 0.9

#
 o

f 
ca

n
d
id

a
te

 p
a
ir
s 

(×
1
0

7
)

θ

pkduck
JaccT

SExpand

(b) Location

Figure 10: Number of candidate string pairs, in
comparison with JaccT and SExpand. The signatures
of JaccT and SExpand are generated using a modifica-
tion of our PTIME signature generation algorithm.

dictionaries n can be in the thousands, making this approach
far from scalable. We implemented this brute-force way of
generating signatures and it did not terminate in one week
on any dataset.

In contrast, our PTIME signature generation algorithm is
very e�cient. The execution time is shown in Figure 9. Even
without the rule compression optimization (Section 3.3), our
signature generation algorithm took less than 1,500 seconds
to finish on the largest dataset Location.

Figure 9 also shows that the rule compression technique
significantly improves the e�ciency. For example, when ✓ =
0.7, rule compression makes the algorithm respectively 23⇥
and 21⇥ faster on Course and Location. The reason is
that the rule compression technique groups rules having the
same number of tokens on the applicable side and the rewrite
side, which lowers down the time complexity of our signature
generation algorithm.

Number of candidate string pairs. Figure 10 shows
the number of candidate string pairs selected by JaccT, SEx-
pand and pkduck. It can be seen that pkduck selects much
fewer candidate string pairs than JaccT and SExpand. For
instance, on Location with ✓ = 0.9, pkduck selects 30⇥
fewer candidate pairs than JaccT, and 33⇥ fewer candidate
pairs than SExpand. As analyzed in Section 3.2, this results
from the much smaller search space of pkduck compared to
those of JaccT and SExpand.

Verification e�ciency. We report in Table 3 the aver-
age time of SExpand and pkduck to verify a candidate string
pair (✓ = 0.7). JaccT is not included in the comparison
because it did not terminate in one week on any dataset.
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Table 3: Average verification time (✓ = 0.7) in com-
parison with SExpand.

Course Location

pkduck 8.12⇥10�5 s. 1.02⇥10�4 s.
SExpand 1.75⇥10�2 s. 1.69⇥10�1 s.
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Figure 11: Scalability of our join algorithm.

We can see that pkduck’s verification algorithm is much
faster than that of SExpand onCourse and Location where
n is large. For example, on Location, pkduck’s average ver-
ification time is approximately three orders of magnitude
shorter than that of SExpand. This is expected since the
time complexity of pkduck’s verification algorithm is O(k ·n)
whereas that of SExpand is O(k · n2).

Scalability. We test how our entire join algorithm (in-
cluding signature generation, candidate selection and candi-
date verification) scales as the input size varies on Course

and Location. For each dataset, we generate three smaller
datasets by randomly choosing a subset with respectively
25%, 50% and 75% of the original strings. The execution
time on all small and original datasets is shown in Figure 11.
As shown, our join algorithm scales well on both datasets.

5.4 Evaluating the Abbreviation Dictionary
Number of rules. Table 4 shows the number of LCS-

based rules (� = 0 or 1) and number of rules after refinement,
in comparison to the search space. We can see that the
number of rules satisfying the LCS-based assumption is very
small compared to the huge search space. For example, with
� = 0 on the Course dataset, the search space is 1.9⇥ 1010

while the number of LCS-based candidate rules is only 3.3⇥
105. Also, many LCS-based candidate rules are filtered out
by the rule refiner. For example, among all 44,748 LCS-
based candidate rules on Dept when � = 1, only 4,786 of
them are preserved by the rule refiner.

Comparison of Dictionaries. We compare our LCS-
based dictionaries with three types of dictionaries:

• ExampleS [5]: the state-of-the-art approach to learn
synonym rules from examples of matching string pairs.
We implement ExampleS using as examples all string
pairs with Jaccard similarity not less than a threshold
⌧ , as described in the paper.

• Handcrafted dictionaries: we manually construct ab-
breviation dictionaries for two small datasets Disease

and Dept.

• A general-purpose dictionary: we collect from abbre-

viations.com 20,014 pairs of general-purpose abbre-
viations and their full forms.

Table 4: Number of LCS-based candidate rules (L)
and number of rules after refinement (R), as com-
pared to the search space (all pairs of a token and a
token sequence).

Search
space

� L R

Disease 3.5⇥ 106
0 4,302 1,362
1 34,972 4,306

Dept 3.8⇥ 107
0 9,274 2,764
1 44,748 4,786

Course 1.9⇥ 1010
0 333,054 41,354
1 2,068,916 67,292

Location 4.1⇥ 1011
0 1,631,330 106,192
1 17,374,792 286,424

To compare di↵erent dictionaries, we feed them to our join
algorithm (using the pkduck similarity measure), and com-
pare the accuracy of the join results with the user-inputted
threshold ✓ = 0.7. � values 0 and 1 are used for LCS-based
dictionaries. For those learned by ExampleS, we use ⌧ values
0.4, 0.6 and 0.8.

Table 5 shows results. It is clear that LCS-based dictio-
naries greatly outperform dictionaries learned by ExampleS.
For example, on Course, the highest F-measure of LCS-
based dictionaries is 0.71 whereas that of ExampleS is only
0.14. We can also see ExampleS has very low recall. On Dis-

ease, the recall of ExampleS is 0. The maximum recall on
all four datasets is only 0.27. The reasons are twofold. First,
as can be seen in Figures 1, 6, 7 and 8, matching strings of-
ten have very low Jaccard similarity20, so using traditional
Jaccard-based ASJ misses many good examples. Second,
ExampleS uses the frequency in the examples to infer how
likely a rule is a real synonym rule (higher frequency indi-
cates higher likelihood). Although high frequency is a good
indicator (e.g. hdept , departmenti occurs many times in
Dept), many real abbreviations occur very few times (e.g.
htat, training alignment teami only has one occurrence
in Dept) and are thus missed by ExampleS.

Table 5 also shows that our LCS-based dictionaries have
comparable accuracy as handcrafted dictionaries. Manual
construction of the dictionary is an extremely cumbersome
process which is prone to omissions of correct abbreviations,
as indicated by the lower recall of handcrafted dictionaries.
The low recall of the general-purpose dictionary indicates
that abbreviations are highly domain-dependent and that
our automatic approach is needed.

The comparison between two LCS-based dictionaries with
� = 0 and � = 1 reveals that 0 is already a very good choice
of � in practice. The F-measure and precision of � = 0 is
always no lower than that of � = 1. The recall of � = 0 is
only slightly lower than that of � = 1 (by at most 2%). This
shows that most real-world abbreviations can be captured
by � = 0. Also, the LCS-based rule generation algorithm is
easier to implement and runs faster with � = 0.

Scalability. We test how the LCS-based rule generation
algorithm (Algorithm 1) scales as the input size varies on
Course and Location.

20In fact, matching strings in Disease all have a Jaccard similarity less
than 0.4, leading to ExampleS’s 0 recall.
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Table 5: Accuracy of join results (✓ = 0.7) when using LCS-based dictionaries, those learned by ExampleS [5],
handcrafted dictionaries and a general-purpose abbreviation dictionary.

Disease Dept Course Location

P R F P R F P R F P R F

ExampleS, ⌧ = 0.4 0.00 0.00 0.00 0.03 0.27 0.06 0.06 0.17 0.09 0.21 0.21 0.21
ExampleS, ⌧ = 0.6 0.00 0.00 0.00 0.14 0.23 0.17 0.09 0.17 0.12 0.27 0.21 0.23
ExampleS, ⌧ = 0.8 0.00 0.00 0.00 0.64 0.18 0.28 0.37 0.09 0.14 0.53 0.21 0.30
General-purpose 0.96 0.08 0.15 0.64 0.18 0.28 0.47 0.09 0.15 0.52 0.21 0.30
Handcrafted 0.92 0.69 0.79 0.80 0.74 0.77 — — — — — —

LCS-based, � = 0 0.88 0.74 0.81 0.75 0.79 0.77 0.66 0.77 0.71 0.46 0.55 0.50
LCS-based, � = 1 0.88 0.74 0.81 0.70 0.80 0.75 0.61 0.78 0.68 0.25 0.57 0.35
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Figure 12: Scalability of the LCS-based rule gener-
ation algorithm.

Results are shown in Figure 12. We can see that Algo-
rithm 1 has high e�ciency and scales almost linearly as the
input size grows. This high e�ciency results from the use
of the trie structure and the recursive calculation of the F
array (Section 4.1.2).

6. RELATED WORK
There is a long literature on e�cient computation of ASJs

using traditional metrics, which can be divided into two cat-
egories: set-based (e.g. Jaccard [7,24] and Cosine [20,27])
and character-based (e.g. Edit [14,23,26] and Hamming Dis-
tance [6]). Many works [12,20,25,26] transform strings into
sets of substrings with length q (i.e. q-grams), and then
convert character-based metrics to set-based metrics. This
idea can be adopted in our workflow when the underlying
function f is one of those character-based metrics. Note,
however, that traditional metrics are ine↵ective to deal with
abbreviations, so these works cannot be adopted directly.

The filter-verification framework is widely adopted by afore-
mentioned works for e�cient computation. Under the frame-
work, a filtering algorithm first filters out a large portion of
dissimilar string pairs. A verification algorithm then ver-
ifies the remaining pairs by calculating their real similari-
ties. Various signature-based filtering algorithms have been
proposed, including prefix-filter [9,27], positional-filter [27],
partition-based signature schemes [6,14] and approximate
signature schemes [10]. Verifying set-based metrics is gen-
erally simple due to the straightforward calculation. Yet
calculating character-based metrics such as edit distance is
usually expensive. Algorithms have been designed to speed
up the calculation of these metrics [14,26].

Our join algorithm for pkduck is also under this filter-
verification framework. The filtering scheme extends prefix-
filter [9] by calculating the signature union Sigu(s). Other

types of signatures can also fit in this scheme, but it is gen-
erally hard to e�ciently calculate Sigu(s) for two reasons.
First, many signature algorithms [12,20,24,27] require build-
ing indexes on input strings to keep track of some positional
information of tokens. However, to extend them to support
pkduck, one has to build indexes for all derived strings, which
is prohibitively expensive. Second, the signature space of
many fast algorithms [6,14] is not polynomial, so it is not
viable to modify our signature generation algorithm (which
enumerates all possible signatures in the first step) to extend
these algorithms.

Besides filter-verification algorithms, trie-join [23] is a fast
algorithm using trie to directly compute join results. Both
trie-join and our rule generation algorithm (Algorithm 1)
employ the idea of identifying “valid trie nodes” for a set
of query strings. However, because we focus on a di↵er-
ent problem, Algorithm 1 di↵ers inherently from trie-join
in many key aspects. For example, the trie in trie-join is
simply constructed by input strings. In contrast, the trie
in Algorithm 1 is constructed by every subsequence of any
token t that has at least |t|� � characters. The definition of
valid nodes and query strings are also di↵erent, due to the
di↵erent problems being tackled.

Other highly related works [4,5,15] are discussed in detail
in Section 1, so we do not repeat them in this section.

7. CONCLUSION
In this paper, we studied approximate string joins with

abbreviations. We highlighted the limitations of existing
approaches and proposed an end-to-end workflow to address
them. We first designed a new similarity measure to quan-
tify the similarity between two strings taking abbreviations
into account. In contrast to existing measures, this mea-
sure is robust to abbreviations having multiple full forms.
Note that this measure can also use other types of synonym
rules. We then devised a PTIME join algorithm following
the filter-verification framework, as opposed to existing al-
gorithms whose time complexity is exponential. We also
presented an unsupervised approach to learn a dictionary of
abbreviation rules from input strings based on the LCS as-
sumption. Experimental results on four real-world datasets
showed that our approach is highly e↵ective and e�cient,
and has clear advantages over state-of-the-art approaches.
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