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ABSTRACT
In the Big Data era, truth discovery has served as a promising tech-
nique to solve conflicts in the facts provided by numerous data
sources. The most significant challenge for this task is to estimate
source reliability and select the answers supported by high quality
sources. However, existing works assume that one data source has
the same reliability on any kinds of entity, ignoring the possibil-
ity that a source may vary in reliability on different domains. To
capture the influence of various levels of expertise in different do-
mains, we integrate domain expertise knowledge to achieve a more
precise estimation of source reliability. We propose to infer the do-
main expertise of a data source based on its data richness in differ-
ent domains. We also study the mutual influence between domains,
which will affect the inference of domain expertise. Through lever-
aging the unique features of the multi-truth problem that sources
may provide partially correct values of a data item, we assign more
reasonable confidence scores to value sets. We propose an inte-
grated Bayesian approach to incorporate the domain expertise of
data sources and confidence scores of value sets, aiming to find
multiple possible truths without any supervision. Experimental re-
sults on two real-world datasets demonstrate the feasibility, effi-
ciency and effectiveness of our approach.
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1. INTRODUCTION
In the information explosion era, not all the data collected from

the Web is correct. There exist conflicts in the answers provided by
different data sources on the same set of questions or facts. For ex-
ample, one online bookseller may provide a complete author list of
a book, while another bookseller only provides the first author, or
makes a mistake by treating press information as the author. There-
fore, a key challenge in data integration is to derive the most com-
plete and accurate aggregated records from diverse and sometimes
conflicting sources.
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One straightforward approach to determine the truth is to con-
duct majority voting on the collected dataset, which selects the ma-
jority answers as the output. Nevertheless, majority voting fails to
take the reliability levels of different sources into consideration,
which may lead to poor performance when the number of low-
quality sources is large.

Thus, a better approach is multi-source aggregation, which eval-
uates the trustworthiness of each source. In order to solve this prob-
lem, many works have been proposed to derive the correct answers
from a collection of data, with source reliability estimation serv-
ing as an important component [1] [3] [6] [7] [10] [11] [13] [14]
[16] [17] [18] [19]. All these works follow an essential principle
that reliable sources tend to provide more trustworthy information.
Based on this principle, these works assign higher weights to reli-
able sources, so that the information from these sources can make
a greater contribution in the truth discovery process.

The same principle is also utilized in multi-truth discovery, where
multiple true values might exist for a single item. For example, a
book or a conference paper might be collaborated by several au-
thors. Currently there are a few works that pay attention to the
multi-truth finding problem. LTM [19] proposes a probabilistic
graphical model to discover multiple truths for each object, tak-
ing both false positive and false negative claims of the sources into
consideration. Similarly, in [12] and [15], the authors measure the
quality of a source as its precision and recall, then derive multiple
truths of a fact based on the quality of sources that provide it.

However, in both single-truth and multi-truth scenarios, it is un-
fair to assign only one reliability score to each source. Different
fractions of data from the same source can have different qualities.
In fact, none of the sources is promised to be expert in every field.
Source reliability usually varies among different domains. For ex-
ample, a bookseller on the Web may provide more abundant and
precise data for books in the science category, but less and lower
quality data for books in the arts category; a movie website may be
particularly accurate with respect to romantic comedies, but less re-
liable in action and adventure movies. Thus, it is better to consider
domains separately in the truth finding model.

We summarize the major challenges of solving the domain-aware
multi-truth finding problem as follows:

1. Unknown quality of sources in different domains. Since con-
structing the training dataset from large-scale data is rather
nontrivial, truth finding is usually carried out with unsuper-
vised approaches. In such cases, it is impossible to learn the
quality of each source in different domains from the begin-
ning, because none of the sources are guaranteed to provide
100% accurate information. Since inferring the truth relies
on the reliability of sources significantly, truth finding results
can be easily distorted by malicious sources. Therefore, it is
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essential to develop promising methods to infer the sources’
trustworthiness in various domains in an unsupervised way.

2. Derive the proper domain subdivisions. It is difficult for us
to derive the proper domain subdivisions automatically in a
straightforward way. Since there are different attributes re-
lated to an item, we need to choose the most suitable one
for domain classification. For instance, predicting whether a
source is more accurate with respect to books in science, or
books published after 2010, is a nontrivial task.

3. Discover the influence and correlations between different do-
mains. Domains in each source may not be independent.
For example, a source with high reliability in action movies
may also provide relatively high quality data for adventure
movies.

4. Unknown confidence of data values. Compared with the single-
truth finding problem, the multi-truth finding problem makes
unique assumptions about the confidence of data values. In
the multi-truth finding problem, it is common that most of
the sources provide partially correct values for an item. Our
task is to aggregate those values and infer the truth in the
real-world. In such a scenario, a source claiming one value
of an item does not imply that it opposes the other values
claimed by other sources of the same item.

In this paper, we address the problem of discovering multi-truth
on data provided by multiple sources in various domains. We de-
rive the domain expertise of each source based on the information
richness of the sources in various domains. We also investigate the
correlations among different domains provided by each source. We
then apply Bayesian analysis to infer the trustworthiness of each
source in different domains as well as the truthfulness of values
provided for each data object simultaneously.

To summarize, our main contributions are listed as follows:

1. We recognize the difference in source reliability among do-
mains on the truth discovery task, and propose to incorporate
the estimation of fine-grained domain-aware reliability into
truth discovery.

2. We study the correlations between different domains of the
data. We propose the concept of influence between domains
to represent the possible relationship between various do-
main information provided by a source.

3. We propose a principled probabilistic Bayesian based ap-
proach to aggregating true answers and discovering source
reliability without any supervision. Our method provides a
principled avenue for incorporating domain expertise as pri-
ori knowledge of the sources into the truth discovery pro-
cess. In particular, to solve the multi-truth finding prob-
lem, we define a method for calculating the mutual exclusion
between different values. It follows the implication of the
multi-truth finding problem: instead of directly rejecting the
unclaimed values, a source is regarded as a partial provider of
its unclaimed values. Our method naturally supports multiple
truths for an entity and achieves more effective performance.

4. The experiments on two real-world datasets show that the
proposed approach can significantly reduce the error rate com-
pared with existing methods in multi-source aggregation.

In the following sections, we first describe our data model and
formalize the problem in Section 2. In Section 3, with motivating
examples, we introduce the approach to learn the domain expertise
of each source based on its information richness of certain domains,

and study the correlations and inference between the domains. We
then illustrate the integrated Bayesian approach to infer the trust-
worthiness of the sources and the truthfulness of values for objects
in Section 4. Section 5 presents our experimental results. We dis-
cuss the related work in Section 6 and conclude in Section 7.

2. PROBLEM FORMULATION
In this section, we provide the details of our data model and for-

mally define the domain-aware multi-truth finding problem.
In general, a source provides information on an item about sev-

eral attribute types. For each attribute, there are different domains.
For example, an online bookseller provides category and published
year of the books. For category, there are different domains, such
as science, arts, literature and biographies; For published year,
there are also different domains, such as “1901 to 1920”, and “af-
ter 2000”. In our paper, in order to simplify the discussion, we as-
sume that different attribute types are independent and can be dealt
with individually. We also assume that sources are independent.

Our truth finding problem considers a set of sources S = {s1, s2,
..., sn}, which provide values on a set of objectsO = {o1, o2, ..., om}
in a domain set Da = {d1, d2, ..., dD} of attribute a. Each object
o ∈ O corresponds to a domain di ∈ Da. For example, the book
“Lake Champlain: Partnerships and Research in the New Millen-
nium” (ISBN10: 0306484692) is regarded as an object and it is in
the science domain of attribute book category. We use od to indi-
cate that object o resides in domain d.

Let O(s) be the set of objects that source s provides values for.
For each object o ∈ O, a source s ∈ S can provide a value v.
We note that there might be multiple true v for an object, which
means that among the different values provided by an object, one
or more of the values describe the real world and are True; the rest
that conflict with the reality are regarded as False. Moreover, we
denote the set of values claimed for the object o by source s as
Vs(o).

Now, we introduce some important definitions in this paper.

DEFINITION 1. The veracity score of a value v, denoted by
σ(v), is the probability of v being correct.

DEFINITION 2. The trustworthiness of a data source s in do-
main d , denoted by τd(s), is the probability that s provides true
values in d.

We formally define our problem as follows.
Given a source set S = {s1, s2, ..., sn}, a domain set Da, the

objects set O = {od11 , od22 , ..., odDm } where d1, d2, ..., dD ∈ Da,
the value set Vs(o) for each s and o, our goal is to learn the veracity
score σ(v) of each value v provided for each object o, as well as
τd(s) of each source s in each domain d.

Table 1 shows the variables and parameters used in the following
discussion.

3. DOMAIN EXPERTISE INFERENCE
In this section, we first introduce our approach to infer domain

expertise from the information richness in different domains with
real-world examples. Then we propose a method for learning the
correlation between different domains.

3.1 Motivating Examples
After obtaining information from sources and domains, the ma-

jor challenge is to infer the domain-aware trustworthiness of each
source in an unsupervised manner. In order to determine the sources’
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Table 1: Notations used in this paper
Notation Description

S Set of all data sources
Da Set of all domains in attribute a
O Set of objects
od An object o in domain d
Od(s) Set of objects in domain d provided by source s
Vs(o) Set of values claimed for object o by source s
So(v) Set of sources claiming value v for object o
Pd(s) Domain percentage of sources in domain d
rd(s) Domain richness score of sources in domain d
infs(dk → di) Inference from domain dk to domain di
ed(s) Domain expertise score of source s in domain d
ψ(o) Observation of the values provided for object o
σ(v) Veracity of a value v
τd(s) Trustworthiness of a data source s in domain d
cs(v) Confidence score of value v provided by source s

expertise, one heuristic is to consider the distribution of the in-
formation richness of sources in different domains. The reason is
that for some sources, the information richness usually varies a lot
among different domains according to the domain expertise levels.
For instance, a bookseller with large amounts of books in science,
but only a few books related to arts, is more likely to be an expert in
the science domain. Thus, we consider inferring the initial domain
expertise score from the data richness of a particular domain.

We first define a unique factor called global domain percentage,
denoted by Pd(s), for each source s in each domain d. Pd(s) is
the percentage of data quantity provided by source s with respect
to the total data quantity in domain s. It is computed in Equation 1,
where |Od(s)| stands for the size of the set of objects provided by
s in domain d.

Pd(s) =
|Od(s)|∑
s∈S |Od(s)|

(1)

Pd(s) measures the amount of data provided by source s in a
certain domain d. It is only related to the total amount of data in the
specified domain d, but has no correlations with any other domain.

We next use three real-world examples to illustrate the feasibility
of the heuristic of inferring the initial domain expertise score from
data richness.

EXAMPLE 3.1. We consider a dataset that we collected from
an online bookstore aggregator, AbeBooks.com. This dataset in-
cludes 54,591 bookstores (each corresponding to a data provider),
together providing 210,206 books in 18 different categories, such
as science, arts, literature and business. We have collected all the
books provided by each bookseller and the category information
of each book. We identify a book by its ISBN. We select 4 from
all the collected booksellers for further discussion in our exam-
ple. Table 2 shows an example that provides the data richness of
each data source1. Table 3 shows the percentage distribution of the
data sources in different categories. For example, the total quan-
tity of science books is 10,000, where Strand provides 500 of them.
Therefore, the global domain percentage in science of Strand is
500/10,000 = 0.05. Note that Strand’s global domain percentage
in children’s books is 400/500 = 0.8, which is much higher than
its global domain percentage in science, even though it provides
more science books than children’s books, since the total quantity
of science books is much larger than that of children’s books.

This example shows that in some datasets it is common to have
an uneven quantity distribution in different data categories. We
1For simplicity, we have rounded the number to the nearest tenth
and hundredth

Table 2: The number of facts in different domains provided by 4
booksellers

Booksellers Number of Books in Different Categories
science travel arts children

Ergodebooks 7000 200 800 40
Stortbooks 2000 1500 100 40
Hennessey 500 100 4000 20
Strand 500 200 100 400
Total 10000 2000 5000 500

Table 3: The domain percentage distribution of 4 booksellers

Booksellers Percentages in Different Categories stdscience travel arts children
Ergodebooks 0.7 0.1 0.16 0.08 0.2557
Stortbooks 0.2 0.75 0.02 0.08 0.2888
Hennessey 0.05 0.05 0.8 0.04 0.3262
Strand 0.05 0.1 0.02 0.8 0.3231

illustrate how such an uneven distributed information richness re-
flects the data reliability in certain domains and contributes to truth
finding results.

EXAMPLE 3.2. Continue with the same dataset. We observe
that different booksellers provide diversified author lists for differ-
ent books. We show the crawling results in Table 4. For evaluation
purposes, we have manually checked the images of book covers of
407 randomly selected books as the ground truth. The facts pro-
vided by sources that match with the truth are marked in bold.

Take the first book (ISBN10: 0306484692), a science book, as
an example. From the image of the book cover, we find out that
Ergodebooks and Irish BookSellers provide the most accurate in-
formation, while the information from BookExpress is incomplete,
and that from BookVistas is incorrect. However, Ergodebooks does
not always perform well. It provides an incomplete author list for
the last book (ISBN10: 0007123655), which is categorized in chil-
dren’s books. Note that as shown in Table 3, Ergodebooks achieves
a higher domain percentage in science than in children’s books.

This example illustrates that for some particular cases, those
sources with richer data in one domain provide higher quality re-
sults compared to other sources. Actually, such rules also apply to
most of the cases in this book dataset, as shown in the next example.

EXAMPLE 3.3. Continue with the same dataset. We use the
global domain percentage (as calculated in Example 3.2) as the
weights and assign weight to each of 18 domains of every data
source. We then conduct a weighted voting on the dataset and se-
lect the authors with the highest voting score as output. We also
conduct another version of weighted voting, in which we only select
the top 10% of sources with the highest global domain percentage
to be involved in the weighted voting process.
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Figure 1: Comparison of majority voting and weighted voting on
the book-author data set.
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Table 4: Real-world example of conflicting Information about book authors
Book ISBN10 Category Booksellers Authors

0306484692 science

Ergodebooks Tom Manley; Pat Manley; Timothy B. Mihuc
Irish BookSellers Manley, Tom; Manley, Pat; Mihuc, Timothy B.
BookVistas MIHUC
BookExpress Tom Manley

000215644X travel

Hemingway Ventures Ltd. Malcolm Muggeridge; Alec R Vidler
AwesomBooks Malcolm Muggeridge; Alec R. Vidler
Ergodebooks Malcolm Muggeridge
BookExpress Malcolm Muggeridge

0002557541 business and economics

Ergodebooks Lee Selleck; Francis Thompson
Irish BookSellers Lee Selleck; Francis Thompson
Better World Books Lee Selleck; Francis Thompson
BookExpress Lee Selleck

0007123655 children

AwesomBooks Enid Blyton; Chorion CGI
Ergodebooks Blyton, Enid
Irish BookSellers Blyton, Enid
Better World Books Blyton, Enid
Hemingway Ventures Ltd. 1

Table 5: Example: The adjusted domain expertise scores of 4 book-
sellers in the attribute category when α = 1.

Booksellers The adjusted domain expertise score
science travel arts children

Ergodebooks 0.954 0.4359 0.5426 0.392
Stortbooks 0.6 0.9682 0.199 0.392
Hennessey 0.3122 0.3122 0.9798 0.28

Strand 0.3122 0.4359 0.199 0.9798

We still use the manually labeled ground truth for evaluation. In
Figure 1, we compare the two weighted voting results to the ma-
jority voting one. The experimental results show that the result of
weighted voting based on the domain information richness is con-
siderably higher than the result of majority voting. We measure
the correctness with three metrics. Precision measures among the
claimed values, how many are indeed true. Recall measures among
the labeled true values, how many are claimed by the results. F-
measure computes their harmonic mean (i.e. F1 = 2∗prec∗rec

prec+rec
).

This example demonstrates that sources with higher information
richness in certain domains have a positive effect on the truth find-
ing problem on the same domains. It makes sense in reality, be-
cause when one source provides more data in one domain, it usu-
ally implies that this source tends to be an expert in that domain.
Therefore, it is crucial to detect and involve such data richness dif-
ferences and distinguish source qualities for different domains, so
as to improve the data fusion quality.

3.2 Domain Expertise of Data Source
Given a source swith data in different domains, we first compute

the domain richness score rd(s) for s regarding to domain d. rd(s)
is a factor that describes the data richness of s in d. In Equation 2
we compute this score for a certain data source s, based on Pd(s)
in source s in domain d. α is a predefined adjust factor based on
the distribution of global domain percentage of different sources.

rd(s) =
√

1− (α · Pd(s)− 1)2 (2)

EXAMPLE 3.4. Continue with the same dataset in Example 3.1.
Table 5 shows the calculated results of the domain richness scores
of 4 sources in 4 domains. We use Equation 2 to emphasize and dis-
tinguish the differences in the information richness of each source.
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Figure 2: (a) The number of genre labels that have been assigned
to the same movie in the imdb dataset. (b) The genres assigned to
action movies at the same time in the imdb dataset.

Nevertheless, although the data items provided by a source are
categorized into different domains, such domains may have correla-
tions among one another. For example, the book Harry Potter and
the Deathly Hallows (ISBN: 0545010225) is categorized as chil-
dren’s books and literature at the same time by Fallen Leaf Books,
IOBA at AbeBooks.com. Similarly, the movie Harry Potter and the
Goblet of Fire is assigned to three genres adventure, family and
fantasy by www.imdb.com. Take the movie dataset of imdb as an
example. We have collected data of 212,685 movies from imdb.
As shown in Figure 2(a), more than 36% of the movies have two
or more genre labels. Specifically, as illustrated in Figure 2(b), for
the movies that are classified into genre action, over 32% of them
are also classified into genre adventure. However, only 1.9% of ac-
tion movies are also put into the genre musical. From this example,
we can learn that in imdb, a movie in the action domain may have
a higher probability of being classified in the adventure domain,
which implies that action and adventure may have a stronger cor-
relation to each other. As demonstrated by this example, for some
attributes of the items, some of the domain pairs have a stronger
correlation with each other than other pairs. We propose to model
the influence between domains using their probability distribution.

We consider the domain set D = {d1, d2, ..., di} of an attribute
of an item in the dataset. To discover the correlated domains of
domain di in source s, we construct a star graph Gs with di as
the internal node and {d1, d2, .., dk|k 6=i} as the leaves. The edge
from leaf node dk|k 6=i to the internal node di represents the in-
fluence of domain dk|k 6=i on domain di. We define the influence
infs(dk|k 6=i → di) of domain dk|k 6=i di on di as the conditional
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d1

d2

d3

d1 Pr(d1)
adventure 0.2

d2 Pr(d2)
comedy 0.5

d1 d3 Pr(d1∩d3) Pr(d3|d1)

adventure action 0.08 0.4

d2 d3 Pr(d2∩d3) Pr(d3|d2)

comedy action 0.02 0.04

0.4

0.04

Figure 3: An example of probabilistic graph Gs representing the
implication between different domains in source s.

probability of di given dk, as shown in Equation 3. For each edge
between the internal node di and a leaf node dk|k 6=i, we assign the
infs(dk|k 6=i → di) as its weight.

infs(dk|k 6=i → di) =
Pr(di ∩ dk|k 6=i)
Pr(dk|k 6=i)

=
|Odi(s) ∩Odk|k 6=i(s)|
|Odk|k 6=i(s)|

(3)
Figure 3 illustrates an example of the influence between domains

in the movie dataset. Consider nodes d1, d2 and d3 highlighted in
Gs. Among the data provided by s, 20% of the movies are classi-
fied in adventure, while 8% of them are labeled as adventure and
action. Thus, we calculate the conditional probability that a movie
is labeled as action given that it is already labeled as adventure,
which is 0.08/0.2 = 0.4. We regard this conditional probability
as the influence of adventure on action. Similarly, the influence of
comedy on action is calculated as 0.02/0.5 = 0.04.

Note that infs(dk → di) = 0 when there is no intersection
between di and dk in the objects provided by source s. Such cases
are applicable when there is no domain overlap in the attribute. For
example, the domains of release year attribute, if being classified
as before 1980, 1981 to 2000, 2001 to now, are independent from
each other.

We define influence instead of similarity between domains be-
cause such a relationship is asymmetric. Note that we only con-
sider the influence between the leaf nodes and the internal node of
the star graph, but neglect the implication between any pair of leaf
nodes, since we only pay attention to the influence between pairs
of domains, instead of triples. We also consider the implications
between domains of each source separately, since different sources
have different domain labeling patterns and distributions.

We define the adjusted domain expertise score of a source s in
domain di as:

edi(s) = rdi(s) + ρ ·
∑
dk|k 6=i

rdi(s) · infs(dk|k 6=i → di) (4)

ρ is a parameter between 0 and 1 which controls the influence of
any related domains. When an overlap between different domains
is large, ρ should be set higher. When overlap seldom occurs in
different domains, ρ should be set lower.

4. THE TRUTH INFERENCE MODEL
In this section, we propose our solution to the problem of resolv-

ing the conflict and deriving the truth. The basic idea is to build a
joint probabilistic model, which contains two integral components:
(1) the modeling of the domain expertise regarding to data rich-
ness, and (2) the modeling of truth aggregation from answers of
each source. The first part has been discussed in Section 3. We
present the details of the second part in Section 4.1. We propose
the integrated Bayesian joint probabilistic model in Section 4.2,
and demonstrate the algorithm in Section 4.3.

4.1 Truth Confidence Calculation
In order to model the truth aggregation from claims of each source,

we first calculate the confidence of each value provided by each
source. To determine the truth among multiple value candidates,
the basic idea is that reliable sources will provide trustworthy in-
formation in certain domains with higher confidence, thus the truth
should be closer to the claims from sources that are more reliable
in these domains. A lot of truth discovery methods use weighted
voting or average to aggregate the truth [1] [3] [6] [7] [10] [11] [13]
[14] [16] [17] [18] [19], which overcomes the unfairness brought
by the traditional voting and averaging scheme that assumes every
source is equally reliable.

However, traditional single-truth finding methods assume that
when a source supports one or more answers, it opposes the other
potential answers. This assumption may not hold in the multi-truth
problem, where sources may provide partially true values.

EXAMPLE 4.1. Continue with the same book dataset mentioned
in Example 3.1. The true value of the author list of book “Lake
Champlain: Partnerships and Research in the New Millennium”
(ISBN10: 0306484692) should be “Tom Manley; Pat Manley; Tim-
othy B. Mihuc”. However, the bookseller “Strand” claims that the
author list of this book is “Tom Manley”, which is a partially true
value of the truth in the real-world. In such a scenario, we should
not regard the value provided by “Strand” as a malicious value.
Instead, this value still partially supports the truth. Providing the
value “Tom Manley” does not imply that this bookseller opposes
the value “Pat Manley” and “Timothy B. Mihuc”.

This example illustrates that in the multi-truth problem, for a
certain value set V (o) claimed for object o, we should also consider
the sources that provide some (not all) elements in V (o) as partial
contributors. Moreover, we should also assign confidence on those
values that a source does not support. However, it is unfair to assign
evenly distributed confidence to the values that a source supports
and the values that it opposes. Given a set of values V (o) claimed
for object o, if a source s claims that a subset Vs(o) ⊆ V (o) as the
vales of o, the confidence score of value v ∈ Vs(o) is calculated as:

cs(v) =


(1− |V (o) \ Vs(o)|

|V (o)2| )
1

|Vs(o)|
,v ∈ Vs(o)

1

|V (o)2| , v /∈ Vs(o)
(5)

For a value set Vs(o), the sum of the confidence score of all the
value v ∈ Vs(o) is 1, when each cs(v) for each v is in the range of
(0, 1]. This constraint is to ensure that the confidence score of each
value will not be overwhelmed.

Here is an example. Suppose the universal value set of object
o is V (o) = {a, b, c, d} and there is a value set Vs(o) = {a, d}
for o claimed by s. In this case, value b and c are assigned 1

42 =
1
16

as their confidence score from s, while a and d are assigned
(1 − 1

16
· 2) · 1

2
= 7

16
. Note that in the traditional truth discovery

method, if a source only provides a and d as candidates for the truth
of this object, it implies that the scores assigned to b and c are 0.

In order to address the confidence scores in the multi-truth prob-
lem, MBM [15] also proposes the idea to involve the unclaimed val-
ues into confidence score assignment. However, MBM follows the
principle that with a smaller sized value set claimed by the source,
a lower confidence score will be assigned to its claimed values. It
may be unfair to the claimed values when the size of V (o) is small.
For example, when there are only 2 values in V (o), the confidence
score of both values will be 1

2
, which may lead to lower specificity
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in the interactive calculation of the source trustworthiness. To strive
for a balance between the claimed and unclaimed values, we try to
avoid this problem by assigning a relatively lower confidence score
to the values that have not been claimed by the sources and pare
down the influence brought by the portion of unclaimed values.

4.2 Integrated Bayesian Model
To derive the truth, we first need to compute the probability that

a value is true. Intuitively, the computation should consider the
quantity of sources that support or oppose the value, as well as
the trustworthiness of these sources (i.e. the probability that they
provide true values) in the related domain.

We first introduce the basic idea of the proposed Bayesian model.
Let ψ(o) be the observation of claims from the sources for values
of object o. We use σ(v) to represent a priori veracity that v is
true, i.e., the probability that v is true. Our target is to estimate,
for each ψ(o), the probability that a set of output values v is true
given the observed data, Pr(v|ψ(o)). In Equation 6, we use Bayes
rule to express Pr(v|ψ(o)) based on Pr(ψ(o)|v) and the inverse
probabilities Pr(ψ(o)|v̄), which are the probabilities of having the
observed output data when v is true or false respectively.

Pr(v|ψ(o)) =
Pr(ψ(o)|v)Pr(v)

Pr(ψ(o))

=
Pr(ψ(o)|v)σ(v)

Pr(ψ(o)|v)σ(v) + Pr(ψ(o)|v̄)(1− σ(v))

=
1

1 + 1−σ(v)
σ(v)

· Pr(ψ(o)|v̄)
Pr(ψ(o)|v)

(6)

We then consider representing the two conditional probabilities,
Pr(ψ(o)|v) and Pr(ψ(o)|v̄), based on the trustworthiness of the
sources providing or opposing value v for o. Let Sod(v) denote
the set of sources that provide value v for object o in domain d.
Similarly, Sod(v̄) denotes the set of sources that do not provide v
for o in domain d. Let τd(s) be the trustworthiness of a source s,
i.e., the probability that the claims made by s are true in domain
d. Note that τd(s) is the same as the precision of s in d. Hence,
we can use

∏
s∈S

od
(v) τd(s) to represent the probability that the

sources that support v are correct, while
∏
s∈S

od
(v̄)(1 − τd(s))

represents the probability that the sources opposing v are wrong.

τd(s) =

∑
o′∈Od(s)

∑
v∈Vs(o′) σ(v)∑

o′∈Od(s) |Vs(o′)|
(7)

Pr(ψ(o)|v) =
∏

s∈S
od

(v)

τd(s)
∏

s∈S
od

(v̄)

(1− τd(s)) (8)

Pr(ψ(o)|v̄) =
∏

s∈S
od

(v̄)

τd(s)
∏

s∈S
od

(v)

(1− τd(s)) (9)

In a single-truth scenario, using a single metric of precision to
model τd(s) will achieve good results, since it outputs the fact that
is mostly likely to be true. However, when there are multiple truths,
measuring source trustworthiness by precision cannot utilize the
value of negative claims to recognize an erroneous data.

EXAMPLE 4.2. As shown in Table 4, the author list of the third
book (ISBN10: 0002557541) should be “Lee Selleck; Francis Thomp-
son”. The precision of all the 4 sources providing claims for this
book is 1.0, since none of them involve false values. However, ob-
viously, the bookseller “BookExpress” has missed one true value.

Therefore, it is not applicable to evaluate the quality of sources
using only precision in the multi-truth finding problem.

To overcome the disadvantage of only considering the precision
of sources, we consider involving metrics of recall and specificity
to model source quality. Note that recall of source s is the proba-
bility of true values being claimed as true, while 1 − recall is the
false negative rate. Sources with high recall tend not to miss the
true values. Specificity of s is the probability of false values being
claimed as false, while 1 − specificity is the false positive rate.
Sources with high specificity tend not to involve false values.

As first introduced in [19], recall and specificity are important in
the multi-truth finding problem because we are looking for sources
with high recall and high precision. Therefore, we model the recall
and specificity of sources as two independent quality measures to
cover the complete spectrum of source trustworthiness.

The major difficulty is to estimate the recall and specificity of
the data source in unsupervised learning when the truth is actually
unknown. TruthFinder [16] derives the correctness probability of a
value from the Beta distribution of the recall and false positive rate
of its providers. Applying Beta distribution enforces assumptions
about the generative process of the data, but when this model does
not fit the actual data, the results will contradict the reality. PrecRec
[12] computes the recall and the specificity from the training data
set, which needs additional effort from supervised learning. MBM
[15] uses predefined positive precision and negative precision to
represent the initial correctness of the sources and improve the two
rates in the later iterations. We decide to use predefined recall and
specificity of all sources in our model, and improve the accuracy of
estimation during the truth inference.

Obviously, our previous definition of trustworthiness of source
s, τd(s), is not sufficient to describe the recall and specificity at
the same time. Thus, we involve τrecd (s) and τspd (s), which stand
for the trustworthiness of s in recall and specificity in domain d,
respectively. Let V̄s(o) denote the set of values claimed for o by
other sources except s. We redefine these two measures based on
the veracity score σ(v) of value v as follows:

τrecd (s) =

∑
o∈Od(s)

∑
v∈Vs(o) σ(v)∑

o∈Od(s) |Vs(o)|
(10)

τspd (s) =

∑
o∈Od(s)

∑
v′∈V̄s(o)(1− σ(v′))∑

o∈Od(s) |V̄s(o)|
(11)

Specifically, τrecd (s) stands for the probability that the values
claimed by source s for object o are true, among all values claimed
by source s for o. τspd (s) represents the probability that the values
not claimed by source s for object o are false, among all the values
that have not been claimed by source s for o. We adopt the average
probability that the values provided by a source are true or false as
the trustworthiness of this source.

We next propose our approach to extend the Bayesian model by
involving domain expertise and multi-truth assumptions. Domain
expertise ed(s) in domain d, introduced in Section 3.2, represents
the heuristically estimated probability that source s provides true
values in domain i. Confidence score cs(v), discussed in Section
4.1, represents the probability that value v is correct. We plug these
two factors as parameters into the model. In order to avoid the
elimination of factors during calculation and iteration, we model
all the factors as powers of the model.

To compute the confidence score of value v, we redefine the like-
lihood of ψ(o) under different assumptions on the correctness of v
as follows:
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Pr(ψ(o)|v) =
∏

s∈S
od

(v)

τrecd (s)ed(s)cs(v)
∏

s∈S
od

(v̄)

(1−τspd (s))ed(s)cs(v)

(12)

Pr(ψ(o)|v̄) =
∏

s∈S
od

(v̄)

(τspd (s))ed(s)cs(v)
∏

s∈S
od

(v)

(1−τrecd (s))ed(s)cs(v)

(13)
Through substituting Equations 12 and 13 into Equation 6, we

can derive the probability of v being true under the observation
ψ(o).

4.3 The Algorithm
We propose an iterative algorithm for the integrated Bayesian

model. The detailed steps are presented in Algorithm 1.

Algorithm 1 DART: Integrated Bayesian Analysis in Domain-
Aware Truth Finding

Input: The object sets, O; The data source sets S; The value sets
Vs(o) for each s in object o; The domain set D and the map-
ping between each object o in O and each domain d in D.

Output: {v|v ∈ V (o), σ(v) ≥ θ} for all o ∈ O;
1: α, θ, ρ← default value;
2: for each s ∈ S do
3: for each di ∈ D do
4: Pdi(s)← Equation 1
5: rdi(s)← Equation 2
6: end for
7: for each di ∈ D do
8: infs(dk|k 6=i → di)← Equation 3
9: edi(s)← Equation 4

10: τrecdi
(s), τspdi (s)← default value;

11: end for
12: end for
13: for each o ∈ O and each s, v ∈ Vs(o) do
14: σ(v)← default value;
15: cs(v)← Equation 5
16: end for
17: while uncoverage do
18: for each o ∈ O and each s, v ∈ Vs(o) do
19: Pr(ψ(o)|v), P r(ψ(o)|v̄)← Equation 12 and 13
20: σ(v)← Equation 6
21: end for
22: for each s ∈ S do
23: for each di ∈ D do
24: τrecdi

(s), τspdi (s)←, Equation 10 and 11
25: end for
26: end for
27: end while

We initially assign the predefined values to the parametersα, θ, ρ.
The trustworthiness of the sources regarding their recall and speci-
ficity, as well as the value veracity, are also initialized with prede-
fined values. Then we calculate the domain expertise score of each
source in various domains, according to its global domain percent-
age, and the data richness score along with the adjusted domain
expertise score in each domain. Note that the adjusted domain ex-
pertise score will remain unchanged during the whole calculation.

We then start the recursive call of the truth inference until con-
verge. In each round, we calculate the probability of values being
true as well as the trustworthiness of the sources simultaneously.

We first use Equation 12 and 13 to infer the intermediate factors.
Then we apply Equation 6 to update the veracity scores of values
based on the trustworthiness of the sources that support or oppose
them. Afterwards, we update the trustworthiness based on the new
veracity scores of values they provided, based on Equation 10 and
11. Then we start a new round. The algorithm terminates when the
changes of veracity score of each value remains in an interval. For
each object, we pick values with a veracity score greater than θ as
the output truth for this object.

We then analyze the complexity of Algorithm 1. Suppose that
there are N objects and M sources, and on average there are k do-
mains for each object and j values about each object provided by
one source. In the initialization part, for each source, we calculate
its domain expertise score in the k domains, which takes k time.
Then we calculate the adjusted domain expertise score by involving
the inference between the k domains and initialize its trustworthi-
ness in recall and specificity, which takes k2 + 2k time. Thus, for
M sources, it takes O(k2M + 3kM) time. Moreover, assigning
confidence scores to all values of all sources takes O(jMN) time.
Thus, it takes O(k2M + 3kM + jMN) in the initialization.

In the iteration part, suppose that there are I iterations. In each
iteration, for each object provided by each source in a certain do-
main, both calculating the confidence score of a value and inferring
the veracity of the value take constant time. Therefore, O(jMN)
is needed to calculate the veracity of each value provided for each
object. Moreover, the update of the trustworthiness of sources in
recall and specificity for each source takes O(2kM) time.

To summarize, the time complexity of Algorithm 1 isO(k2M +
3kM + jMN + jIMN + 2kIM), denoted by O(MN), which
is linear with respect to the number of objects and sources.

5. EXPERIMENTS
We first describe two real-world datasets in Section 5.1. In Sec-

tion 5.2, we test the performance of the proposed model on multiple
data sources, compared with the state-of-the-art approaches in truth
discovery as well as baseline methods. We analyze the parameters’
sensitivity in Section 5.3. Finally, we conduct experiments on syn-
thetic dataset to test robustness of our model in extreme cases.

All the experiments presented are conducted on a server with
32GB RAM, 1.92GHz CPU, with CentOS Linux Release 7.3.1611
installed. All the algorithms including previous methods were im-
plemented in Python 2.7.5.

5.1 Data Description
Since the information richness feature is required in our frame-

work, none of the existing datasets satisfy the data requirements
of our experiments. Thus, we prepare two real-world datasets by
ourselves. We have also prepared perturbed real datasets to test the
robustness of the algorithms on low-quality data as well as low-
coverage data. The details of the datasets are shown below.

BOOK: We collected the Book dataset from AbeBooks.com in
April 2017. It contains 54,591 different sources registered as book-
sellers and provides 2,338,559 listing information (i.e., bookstores
selling books) for 210,206 books. Each source provides 0.000005%
(1 book) to 28.7% (6,0317 books) of the whole collection. On av-
erage, each book has 4.3 different sets of authors, indicated by 12.5
booksellers. Specifically, we crawled all the book data from each
bookseller to ensure the data richness property. A similar dataset
crawled from AbeBooks.com has been released in [16] and used by
other existing works [1], [12], [15], [17]. However, this dataset
only includes books about computer science. We expanded the
dataset by involving more book data in 18 categories, including
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crime fiction, children’s books, science fiction, horror stories, lit-
erature, arts, romance fiction, biographies, business, cookbooks,
craft books, history, reference, religion, science, self-help, social
science and travel books. We have conducted pre-cleaning on the
authors’ names to filter noise such as numbers and garbled codes.
We select the books with conflicting information on the author lists
from different data sources for validation. We randomly select 407
books and manually check the authors’ names printed on the book
covers to get the ground truths. In every round of the experiment
part, we randomly pick 120 books as a test set, and repeat 10 times.

MOVIE: We collected the Movie dataset in July 2017. This
dataset contains movie data from 15 different websites, includ-
ing imdb, allmovie, amazon, instantwatcher, moviefone, metacritic,
movieinsider, 1moviesonline, goodfilms, dewanontons, letterboxd,
filmcrave, ifcfilms, top250tv and agoodmovietowatch. The dataset
provides 1,134,432 listing information (i.e. source providing a movie)
for 468,607 movies. The genres of these movies include action, ad-
venture, animation, biography, children, comedy, crime, documen-
tary, drama, faith, family, fantasy, history, horror, music, romance,
science-fiction, sports, thriller, war and western (21 in total). The
release year is from 1900 to 2017. Again, we crawled all the movie
data from each data source to ensure the data richness property. We
use this dataset to infer the true answers for the directors attribute.
In the validation part, we pick up the movies mentioned by at least
two data sources. Thus, there are in total 16,955 movies for valida-
tion experiments on the director attribute. On average, each movie
has 2.32 different sets of directors provided by 3.25 websites. Sim-
ilar movie datasets have also been used in [15] [19] for experimen-
tal validation of the multi-truth problem. However, those datasets
do not guarantee the data completeness of each source. Thus, we
prepare the dataset by ourselves. We have carried out the same pre-
cleaning task on the movie dataset as we have done for the book
dataset. We randomly select 210 movies and label the directors
from the movie posters to get the ground truths. In every round of
the experiment, we randomly pick 80 movies as test set, and repeat
10 times.

5.2 Model Performance Validation
5.2.1 Baselines and Metrics

We compare our models with several state-of-the-art techniques
together with voting strategies. We briefly summarize them as fol-
lows, and refer readers to the original publications for details.

Majority Voting regards a value as true if the proportion of
sources that claim the value is the largest.

TruthFinder [16] considers the positive claims only, and for
each object, it calculates the probability that at least one positive
claim is correct using the precision of the sources.

AccuSim [1] applies Bayesian analysis to iteratively detect de-
pendence between sources and discover the truth from conflicting
information. It also considers the accuracy of sources and the sim-
ilarity between values during the truth finding process.

LTM [19] constructs a graphical model and uses Gibbs sam-
pling to determine the source quality and truthfulness of each value
provided for an object. It considers two types of errors under the
scenarios of multiple truths: false positive and false negative.

MBM [15] leverages the unique mapping features of sources and
values to reformulate the multi-truth finding problem. It uses the
mutual exclusion of the values to reflect the inter-value implica-
tions. It also breaks the source reliability into two parameters, one
for the false positive error and the other for the false negative error.

Weighted Voting uses the adjusted domain expertise score of
each source as its weight to calculate the total voting score of each
value. The value set with the highest score is chosen as true.

Domain-Separate TruthFinder and Domain-Separate AccuSim
separate each source across its domains and treat them as different
sources, then employ TruthFinder [16] and AccuSim [1] to infer the
truth. Both approaches serve as natural baselines.

DART is our Domain-AwaRe Truth Discovery model. DART
incorporates the domain expertise score and the confidence score
definition for truth determination.

DARTinf additionally involves the influence between pairs of
domains when inferring the domain expertise score.

DARTinf-Top only selects those data sources with the highest
domain expertise score to be involved based on DARTinf. In the
Books dataset, we select the top 20% of sources with the highest
score as the contributors, while in the Movies dataset, we select the
top 50% as the contributors. We examine the impact of selecting a
different portion of top-contributors in Section 5.3.

We excluded the comparison with several methods that are not
applicable in our multi-truth finding problem. The fine-grained
truth discovery algorithms proposed in [8] [2] [20] are designed
for crowdsourcing tasks, where the major effort is emphasized in
inferring the topical knowledge from the task text description in-
formation. In [12], computing the recall of a data source relies on
knowledge of the set of true triples, and the numbers of true triples
provided by sources are learned from a training dataset, which is
semi-supervised. Moreover, [18] and [5] target on heterogeneous
data fusion, while our method focuses on categorical data.

To ensure a fair comparison, parameters for the algorithms above
are set according to the optimal settings suggested by their authors.
For our method, α is set to be 1.5 in book dataset, and remains as
1 in movie dataset. The reason is that there are a large number of
data sources (i.e., 54,591) in the book dataset, and the percentages
of books provided by different sources are unevenly distributed.
There are a large quantity of sources (i.e., 23%) with very small
global domain percentage (i.e., smaller than 0.01%). Thus, we need
to use an adjusted factor to emphasize the influence of these parts
of data. Otherwise their contribution will be eliminated.

Moreover, in our experiments, we set ρ = 0.2 for the book
dataset, and ρ = 0.3 for the movie dataset. The reason is that in the
book dataset, 12.49% books has two or more categories labeled by
one source, while 39.11% movies has two or more genres labeled
by one source in the movie dataset. Since the overlaps between
domains occur more frequently in movies dataset than in books
dataset, ρ for movies should be set higher. We show the experi-
mental results of changing ρ when inferring the domain expertise
of sources in various datasets in Section 5.3.

We initialize the τrecd (s) and τspd (s) for each source in every
domain as 0.8 and 0.9 in book dataset, and 0.9 and 0.9 in movie
dataset respectively. The parameter sensitivity is also studied in
Section 5.3. Without supervised training, we set the threshold con-
fidence score θ to 0.5. We have also set the a priori veracity score
σ(v) of each value v to 0.5.

5.2.2 Comparison of Truth-Finding Methods
Table 6 shows the performance of different algorithms on the

two datasets in terms of precision, recall and F-measure. Our al-
gorithm achieves the best recall and F-measure among all the com-
pared methods on both datasets. Our methods also achieve rather
high precision, when DARTinf-Top achieves the best precision in
Movie-directors. Note that DARTinf performs better than DART
in both datasets, which demonstrates the importance of involving
inference between domains. DARTinf-Top performs even better by
neglecting the sources with less expertise in certain domains.
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Table 6: Comparison of different algorithms on the three datasets. Our algorithms are conducted on the category/genre attribute. Precision
measures among the returned true triples, how many are indeed true; recall measures among the provided true triples, how many are returned.
F-measure computes their harmonic mean (i.e. F1 = 2∗prec∗rec

prec+rec
). The best, second best and the third best performance values are in bold.

Methods
Book-author dataset Movie-director dataset

Precision Recall F1 Precision Recall F1
Majority Voting 0.9024 0.7400 0.8132 0.9127 0.8190 0.8633
TruthFinder 0.9048 0.8302 0.8659 0.9171 0.9018 0.9093
AccuSim 0.8545 0.6996 0.7693 0.9336 0.8709 0.9012
LTM 0.8850 0.8805 0.8827 0.9185 0.8904 0.9042
MBM 0.8400 0.9322 0.8892 0.7813 0.9344 0.8510
Weighted Voting 0.9175 0.7902 0.8491 0.9039 0.8078 0.8531
Domain-Separate TruthFinder 0.9063 0.8339 0.8686 0.9224 0.9008 0.9115
Domain-Separate AccuSim 0.8567 0.7053 0.7736 0.9383 0.8880 0.9124
DART 0.8750 0.9319 0.9025 0.9107 0.9717 0.9402
DARTinf 0.8762 0.9306 0.9026 0.9307 0.9625 0.9463
DARTinf-Top 0.8777 0.9322 0.9041 0.9414 0.9625 0.9518

Majority Voting achieves lower recall on both datasets. The rea-
son is that most sources tend to provide single truth for the re-
quested object. On the other hand, Majority Voting achieved rel-
atively high precision on both datasets, since both datasets have
multiple claims on each object and therefore the values with major-
ity votes are very likely to be true.

In addition, AccuSim does not perform well on both datasets,
where its recall is rather low. The reason is that we choose conflict-
ing data for the experiment, where most of the books and movies
have two to three truths. Therefore, the multi-truth problem could
not be well addressed by algorithms aimed at solving single truth.
In addition, both TruthFinder and LTM achieve relatively high pre-
cision, especially in the movie-director dataset where there is less
conflicting information. The recall of these methods are relatively
lower when compared with MBM and DART, since both MBM
and DART take the mutual exclusive relation of values into consid-
eration when assigning the confidence scores. Although the preci-
sion of MBM is lower, its recall is higher than other state-of-the-
art techniques. The resaon is that MBM gives a high confidence
score to the unclaimed values of the sources and can easily detect
more potential truths. However, the drawback is that false positive
counts will be raised since some false values are also included. We
avoid this problem by adjusting the confidence score of each value.
DART will not assign a heavy score to the unclaimed values. Thus,
the false positive rate is lower and DART achieves higher precision.

Moreover, both of the baseline methods, Domain Separate Truth-
Finder and Domain Separate AccuSim, perform slightly better than
the original methods TruthFinder and AccuSim. The reason is that
these two baseline methods take domain difference into considera-
tion. It indicates that the same source will perform differently on
different domains. Thus, the performance will be improved if we
consider different domains of the same source separately. How-
ever, this naive approach does not achieve high gain, since it will
reduce the number of answers dramatically on each domain, espe-
cially when the quantity of domains is large. Since the data are
insufficient, it will lead to an incorrect estimation of source ex-
pertise, and hence the overall performance of truth inference will
drop. Faitcrowd [8] also discusses the limitations caused by data
insufficiency in this method. DART outperforms these two base-
line methods by taking the data richness in different domains into
consideration. It tends to trust the sources with richer data in cer-
tain domains and thus avoids the negative impact that comes from
the malicious data providers with low domain expertise. DARTinf
further neglects these drawbacks by considering the possible corre-
lations between domains, and hence increases the amount of data

Table 7: The performance comparison of domain-aware algorithms
on the attribute published year/release year of books and movies.
In both datasets, the domains are classified as before1920, 1921-
1940, 1941-1960, 1961-1980, 1981-2000, 2001-now. WV stands
for Weighted Voting. DS-TF and DS-Accu stands for Domain-
Separate TruthFinder and Domain-Separate AccuSim.

Methods
Book-author dataset Movie-director dataset

Precision Recall F1 Precision Recall F1
WV 0.9098 0.7716 0.8350 0.9135 0.7919 0.8483
DS-TF 0.9063 0.8339 0.8686 0.9211 0.9118 0.9164
DS-Accu 0.8567 0.7053 0.7736 0.9367 0.8861 0.9107
DART 0.8810 0.8983 0.8896 0.9082 0.9717 0.9389
DARTinf-Top 0.9084 0.8983 0.9033 0.9210 0.9717 0.9457

that contributes to the inference of source trustworthiness. Involv-
ing the correlations between domains makes the expertise scores of
sources more reasonable and closer to the real-world.

To summarize, the experimental results show that our model has
significantly reduced the error rate compared with other methods.

5.2.3 Performance Evaluation on Different Attributes
In order to investigate the impact of choosing different attributes

to classify the domains, we have also conducted another experi-
ment to study the performance of DART and DARTinf-Top on the
published year/release year attribute on book-authors and movie-
directors datasets. As demonstrated in Table 7, when it comes to
the domain division in attribute published year and release year,
the results are also promising.

Most of the methods achieve slightly lower precision on book-
authors dataset.The major reason is that values of published year
of books in our datasets are not evenly distributed. More than 87%
books are published after 1981. Only very few booksellers have
high domain expertise for books published before 1980, and thus
the results could be easily misled by the malicious results of these
sources. On the contrary, in the movie dataset, domains enjoy more
uniform distribution in released year. For instance, over 80% of
sources provide movies in the domain “1921 to 1940”. In this case,
truth finding can take advantage of relying more on the real ex-
pertise on the specified domain. This experimental result implies
that domain-aware algorithms may achieve better results on those
attributes with domain values more uniformly distributed.

5.2.4 Efficiency
We also examine the execution time of each algorithm, as listed

in Figure 4(c). We create 5 small datasets by randomly sampling
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(b) Performance evaluation of DART un-
der different number of iterations. We
initialize the τrecd (s) and τspd (s) for each
source in every domain as 0.9 and 0.9 re-
spectively.

Runtime (seconds) vs. #Objects

#Objects 2000 4000 6000 8000 10000

Majority Voting 0.183 0.361 0.480 0.705 1.113
Weight Voting 0.345 0.561 0.978 1.812 2.455

TruthFinder 1.249 4.421 10.012 18.052 28.539
Accusim 2.376 9.107 22.634 38.000 52.823
LTM 2.505 12.035 32.092 55.823 82.952
MBM 0.593 1.008 1.509 2.019 2.541
DART 0.636 1.155 1.704 2.292 2.985
DARTinf 0.644 1.151 1.706 2.291 2.955
DARTinf-Top 0.652 1.132 1.725 2.335 2.912

(c) The execution time of all algorithms (in seconds)
for the movie datasets. We have executed each algo-
rithm 10 times and use the average running time as
the final record.

Figure 4: Efficiency Measurement

2K, 4K, 6K, 8K and 10K movies from the entire 111,987 movies
and selecting all facts associated with the sampled movies. The
results show that all algorithms, except LTM, have comparable ex-
ecution time, while LTM is more sensitive to the data scale. DART
takes slightly more time than MBM, which is the fastest one. We
believe that it is acceptable because DART needs to search for
source expertise in various domains during the truth inference, which
may take a while. Specifically, there is only a very slight difference
between the execution time of DART, DARTinf and DARTinf-Top,
indicating that calculating intra-domain influence and picking up
expertized sources does not take further time.

To further verify that DART runs linearly with respect to the
number of objects, we perform linear regression on the running
time as a function of dataset size, as shown in Figure 4(a). It yields
an exceptional goodness-of-fit R2 score of 0.6693, which demon-
strates the scalability of DRAT.

Our truth inference approach is an iterative algorithm, thus, we
also need to know how many iterations it requires to reach a sat-
isfying F-measure. As illustrated in Figure 4(b), we examine the
algorithm performance after 1, 2, 3, 5, 10, 15, 20, 50, 100, 200,
300, 400, 500 iterations on 100 randomly generated objects with
labels. We repeat it 10 times to account for randomization due
to sampling. The result indicates that at 20 iterations, the algo-
rithm achieves an optimal F-measure, which is around 94%, with
extremely low variance. Additional iterations will not further im-
prove its performance, thus we can conclude that DART converges
quickly with a small number of iterations.

5.3 Parameter Sensitivity
We also explore the impact of the different parameter settings

of our algorithm. As shown in Figure 5(c) and 5(d), the setting of
the initial default values of τsp will not seriously affect the perfor-
mance. However, Figure 5(a) and 5(b) indicates that it is better to
set τrec for each source in range(0.5, 0.9), otherwise the perfor-
mance will be significantly affected.

We also examine the impact brought by the variance of the pa-
rameter ρ, which controls the influence of related domains in Equa-
tion 3. Larger ρ implies that the effect from similar domains is more
influential. We conduct the control experiment in both books data
and movie data. The results show that the F-measure of the algo-
rithm will not benefit much from the domain-dependency analysis
if ρ is set too small. The reason is that a small ρ neglects the influ-
ence from correlated domains even though there are big overlaps
between domains. On the other hand, a large ρmay mix up the cor-
related domains, leading to blurred boundaries between domains

and hence weaken the benefits of domain expertise classification.
However, the overall impact of different values of ρ is still limited.
Figure 5(e) and 5(f) show that the precision and recall of the algo-
rithm varies by no more than 5% if ρ does not change fiercely.

In addition, we examine the performance of DARTinf-Top when
involving different numbers of sources with highest domain exper-
tise scores to determine the truths. As shown in Figure 5(g), for the
book-authors dataset, F1 achieves the highest when we select the
top 20% sources with the highest scores as contributors, while in
the movie-director dataset, F1 is comparably high when we choose
the top 50% to 60% sources. The most suitable portion of sources
that should participate in truth finding depends on the quantity of
sources. Since on average there are around 3,000 different sources
in one domain of the book dataset, filtering out more unprofessional
sources will contribute to the quality of the final output. Thus top
10% to 20% sources perform better in this situation. However, in
the movie dataset there are much fewer sources, thus we can in-
volve more top sources, e.g., the top 50% to 60%, to improve the
F-measure.

5.4 Experiments on Synthetic Data
We have also conducted experiments on perturbed real datasets

to examine the performance of our model in extreme cases.

5.4.1 Data with Low Overall Quality
In order to better study the applicability of DART in real-world

datasets, we conduct two experiments on datasets with low over-
all quality sources. The first one is conducted on book-authors
dataset and movie-directors without data cleaning. Without the
data cleaning procedure, 4.4% of the book data and 2.9% of the
movie data contain noise, such as numbers and garbled codes. As
shown in Figure 6(a) and 6(b), the performance of all the algorithms
degrades, especially in precision. However, DART, DARTinf and
DARTinf-Top still keep the best performance. Note that although
DARTinf-Top does not gain much improvement as it achieves in
the clean dataset, it still beats all the priori techniques.

The second one is conducted on book-authors dataset with
0.1% to 10% noise added. We insert randomly generated 0.1%
to 10% noise into the facts provided by each source and compare
the results. As illustrated in Figure 6(c), DARTinf-Top still beats
all others in all cases. To investigate the performance, we plot the
changes in the precision and recall of DART and DARTinf-Top in
Figure 6(d).

The results of both experiments indicate that all algorithms may
lose a little advantage with dirty data. Note that noise will not sig-
nificantly affect the performance of algorithms that assume single-
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Figure 5: Performance evaluation regarding parameter sensitivity. The experiments in conducted in book-authors dataset and movie-directors
dataset, both rely on the domain classification on the category/genre attributes.

truth, such as Majority Voting and AccuSim. The reason is that the
value with the maximum number of supporters is still very likely to
be true. Hence, the precision of these methods will not be affected.
However, the precision of the algorithms that assume multi-truth,
such as TruthFinder, LTM, MBM and our model, is more easily
affected by noise. With more noise, the precision of these algo-
rithms drops, since they tend to involve more possible values as
final output. Specifically, DARTinf-Top outperforms DART in pre-
cision, since it only considers the values provided by top-sources,
instead of all the values. Hence, the probability that DARTinf-Top
is affected by malicious data is lower compared with that of DART.
Nevertheless, the recall of DART and DARTinf-Top keeps rather
high despite the noise, because noise will not affect the selection of
the possible true values. Therefore, DARTinf-Top still outperforms
other techniques in F- measure.
5.4.2 Noise in Sources with High Domain Expertise

We also examine DARTinf-Top when there are malicious data in
the sources with high domain expertise scores.

We use book-authors dataset, with 1% to 30% noise added
to facts provided by top 10% sources with the highest domain
expertise scores. For each object od, we randomly add noise to
the facts provided by top 10% sources with the highest ed(s). As
demonstrated in Figure 6(e), the precision of DARTinf-Top slightly
drops when more noises are added. The result indicates that the per-
formance of DARTinf-Top will degrade when there is more noise
in the sources with higher domain expertise scores. Note that more
noise will affect the precision of our model, since it tends to involve
more values as truth and has higher chance to mistakenly include
malicious data. Nevertheless, there is no significant change in the
recall of DARTinf-Top, which proves that noise will not affect the
selection of possible true values in our model. Therefore, the per-
formance of DARTinf-Top in F-measure is still promising.

5.4.3 Data with Low-Coverage Sources
In our model, the inference of domain expertise scores is based

on domain coverage. High domain expertise score implies high
domain coverage. Our model relies more on the sources with dom-

inating domain coverage to infer truth. However, in some cases,
certain domains may not have sufficient information. Therefore,
we also need to examine the performance of our methods with such
a lower coverage setting.

We conduct experiments on book-authors dataset, with ob-
jects provided by sources in different range of domain expertise
scores. We first rank the sources according to their domain exper-
tise scores in descending order. We then divide the sources into 10
groups. In each group, we randomly select 100 sources that provide
values for the objects with ground truths. We conduct DART and
DARTinf-Top over these sources and objects. Figure 6(f) illustrates
the experimental results. Specifically, the number N on x-axis rep-
resents group N . Group N is the top (N − 1) × 0.1 to N × 0.1
sources after the ranking. For example, group 2 means the top 10%
to 20% sources with the highest domain expertise scores.

The results show that the precision of our model will not be
significantly affected even with the sources of low domain exper-
tise scores. However, the recall of our model will decrease if we
only involve sources with low domain coverage. The reason is
that sources with low domain coverage usually only provide sin-
gle value for objects (e.g., first author of a book), which contributes
to overall precision but reduce the recall. The recall of DARTinf-
Top is more sensitive to domain coverage, since it relies more on
sources with high coverage. We believe that the result in lower cov-
erage setting is still acceptable, since the high precision contributes
to the F-measure and makes it promising.

6. RELATED WORK
There has been extensive work in the area of data fusion, target-

ing on resolving conflicts and finding the truth. TruthFinder [16]
was the first work to formally formulate the truth finding prob-
lem and propose a Bayesian based algorithm that iteratively in-
fers source quality and truth. Most of the truth discovery methods,
such as [9] [1] [3] [5] [18] [4], assume that there is only one truth
for each fact provided by the data source. Based on this assump-
tion, the most trustworthy information is selected as truth. There
are also other works, such as LTM [19], PrecRec [12], MBM [15],
proposed to solve the multi-truth problem. 2-Estimates [3] adopts
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Figure 6: Performance comparison of different algorithms with synthetic datasets. All experiments are repeated 10 times. Specifically, in (f),
the number N on x-axis represents group N . Group N is the top (N − 1)× 0.1 to N × 0.1 sources after being ranked according to domain
expertise scores in descending order. For example, group 2 means top 10% to 20% sources with highest domain expertise scores.

complementary vote to involve multiple possible truths, while 3-
Estimates [3] augments 2-Estimates by considering the difficulty
of getting the truth about each object. In addition, LTM [19] aims
at discovering multiple truths by applying a probabilistic graphical
model. It breaks source quality into two factors, a false positive and
a false negative, in order to better model the multi-truth problem.
PrecRec [12] and MBM [15] also consider calculating both the pre-
cision and recall of sources to satisfy the multi-truth assumption.

There are also current efforts in the truth inference problem in the
crowdsourcing area [21] [8] [2]. Some of them also try to utilize the
fine-grained reliability of sources. FaitCrowd [8] employs a prob-
abilistic graphical model to divide tasks into topical-level clusters
and estimate a source’s topical reliability accordingly. However,
the number of topics is predefined and the major limitation lies in
the lack of semantics of the topic clusters. A similar method is also
used in iCrowd [2]. Similarity metrics and topic models are ap-
plied to obtain the similarity and topic distribution for each micro
task. Tasks with large text similarity have a higher chance of being
classified into the same domain. Nevertheless, it may lead to the
wrong domain classification, since similar sentences may focus on
different domains. DOCS [20] is another work that also clusters
the tasks into different domains. It consults an existing knowledge
base to obtain domain information based on the task text descrip-
tion. However, the detailed information of unusual data may not be
included in the knowledge base.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we study the problem of discovering multiple truths

for a data item from conflicting sources in various domains. We
investigate the correlations between domain expertise and domain

data richness of the data sources. We also define and apply the
influence between different domains from the same data source to
determine the data expertise of the sources. Specifically, we lever-
age the unique features of the multiple-truth problem, which em-
phasizes that sources may provide partially correct values of a data
item, to determine the confidence score of each value set provided
by various data sources. We propose an integrated Bayesian ap-
proach, which comprehensively incorporates the domain expertise
of the data source and confidence score of the value, to infer mul-
tiple possible truths of a data item. Experiments on two real-world
datasets demonstrate the effectiveness of our approach.

There are still several interesting challenges in this problem. Our
approach outperforms other state-of-the-art algorithms in multi-
truth-finding problems, since we have involved domain expertise,
which is determined by information richness, to infer source qual-
ity. However, the quantity of data may change from time to time.
Thus, we consider modifications of our model to account for the
data updates in future work. Another challenge is to better esti-
mate the influence between domains. Currently we only consider
the influence between pairs of domains. In future, we will involve
more complicated triple correlations, such as triangular relations,
to obtain more accurate domain expertise of data sources.
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